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S1 Methods 

 

S1.1 Molecular  dynamics (MD) 

 An active conformation of the wildtype EGFRTK domain is modeled using the 1M17 

structure and an inactive structure was modeled based on the 2GS7 structure from the Protein 

Data Bank [1, 2] by adding hydrogen atoms and missing residues using the CHARMM [3] 

biomolecular simulation package. The resulting conformations are first energy minimized and 

subsequently equilibrated by performing molecular dynamics. A L834R mutant active structure 

was also generated on the basis of the wildtype structure (mutation performed using the INSIGHT 

II package [4]) and subsequently energy minimized using CHARMM. The proteins are then 

solvated and neutralized by placing ions; the solvated models are minimized and equilibrated 

using the NAMD program [5] with periodic boundaries enforced and long-range electrostatics 

taken into consideration. Each system is subjected to a constant temperature and constant pressure 

molecular dynamics runs at 300 K and 1 atm followed by constant temperature equilibrium at 

300K for 10 ns.  

 

S1.2 Molecular  docking  

 Molecular docking is used to predict ligand binding in the absence of a ligand-bound 

crystal structure and functional affinity data. Generally, employing a docking algorithm involves 

two distinct choices, an efficient search algorithm and an appropriate scoring function. We 

employ AutoDock, an automated docking tool designed to predict how small molecules, such as 



substrates or drug candidates, bind to a receptor of known 3-dimensional structure [6]. The search 

algorithm in AutoDock explores the conformational space of the ligand using the Lamarckian 

genetic algorithm (LGA), which is a hybrid of a genetic algorithm (GA) with an adaptive local 

search (LS) method, and employs an approximate energy-based scoring function to score each 

solution [6]. The binding free energy is calculated based on the intermolecular energy between 

protein and ligands and torsional and solvation free energy of the ligands [6]. We perform a 

global conformational search using a multiple conformation docking strategy, in which the 

protein flexibility is taken into account implicitly by using multiple conformations, i.e., by 

sampling from several (100) frames of the 10 ns molecular dynamics trajectory. The lead docked 

conformations (based on lowest binding free energy) are extracted and clustered on the basis of 

their root-mean-squared deviation or RMSD values.  

 As control simulations, we validated the predicted results of our docking protocol by 

applying our method to study ligand binding to enzymes for which a solved crystal structure of 

the bound complex was available. In all three cases, namely ATP binding to cAMP, ATP binding 

to insulin receptor kinase, and erlotinib binding to EGFRTK, the predictions of the location and 

conformation of the bound ligand matched the crystallographic data very closely (data not shown). 

This multiple conformation docking protocol is employed in calculating the ATP, inhibitor, and 

Y1068/Y1173 peptide substrate binding affinities. 

 

S1.3 Signal transduction 

 EGF stimulation in a cell results in the simultaneous activation of multiple pathways that 

are functionally interlinked [7-9]. The major pathways are depicted in Figure S1 (supplementary 

material): (1) EGF-ERK route. A major downstream signaling cascade triggered by the activation 

of EGFR [10] is the Ras-Raf-MAP-kinase pathway [11-17]. Activation of Ras initiates a 

multistep phosphorylation cascade that leads to the activation of MAPKs, ERK1, and ERK2. 

ERK1 and ERK2 and regulate transcription of molecules that are linked to cell proliferation, 



survival, and transformation. (2) Phosphoinositol Metabolism and Signaling. Activation of 

EGFRTK leads to rapid stimulation of phosphoinositol metabolism and generation of multiple 

second messengers [18-22]. PLCg is rapidly recruited by an activated RTK through the binding of 

its SH2 domains to pTyr sites in the receptor molecules. Upon activation PLCg hydrolyzes its 

substrate PtdIns(4,5)P2 to form two second messengers, diacylglycerol and Ins(1,4,5)P3. By 

binding to specific intracellular receptors, Ins(1,4,5)P3 stimulates the release of Ca2+ from 

intracellular stores. Ca2+ then binds to calmodulin, which in turn activates a family of 

Ca2+/calmodulin-dependent protein kinases. In addition, both diacylglycerol and Ca2+ activate 

members of the PKC family of protein kinases. The second messengers generated by 

PtdIns(4,5)P2 hydrolysis stimulate a variety of intracellular responses in addition to 

phosphorylation and activation of transcriptional factors. (3) PI3K-Akt pathway. Another 

important target in EGFR signaling is phosphatidylinositol 3-kinase (PI3K) and the downstream 

protein-serine/threonine kinase Akt. Prior studies have established that some growth hormone-

stimulated membrane tyrosine kinase receptors interact with Shc adapter protein and 

phosphatidylinositol3'-kinase (PI3K), and consequently PI3K-activated Akt inhibits Raf-1 and the 

following ERK activity [23-26]. Akt transduces signals that trigger a cascade of responses from 

cell growth and proliferation to survival and motility [10, 27-29]. (4) Nuclear Translocation of 

STATs. EGF stimulation leads to rapid tyrosine phosphorylation and migration of STATs to the 

nucleus and transcription of target DNA genes [8]. (5) Also, there is evidence of a c-Src mediated 

functional link between EGFRTK activation and STAT5 [30-33]. (6) EGFR expression is 

negatively regulated by the process of clathrin mediated endocytosis [34] through cbl-CIN85-

endophilin interactions [35, 36]. (7 and 8) External signals can also be transduced by molecular 

cross-talk in which other receptors (e.g., GPCR, integrins) signal using the EGFR network [37-

43]. 



In the kinetic model employed here, signaling through the EGFR is modeled by 

combining three published models and augmented by our own set of reactions and calculations 

(see Figure S1, Figure 1, and Table 2). Phosphorylation and docking reactions are modeled 

according to Ref. [13]; the MAP kinase pathway reactions are modeled after Ref. [17]; Akt and 

PI3K activation are incorporated into the model as described in Ref. [24]. The similar 

parameterization and topology in these models allows us to construct a consistent, stable, and 

comprehensive system with results in good agreement with published experimental data [44]. 

Altogether, our model comprises of 74 reactions and 67 species (see Figure S1). 17 of these 

reactions are novel to this work and represent enhanced molecular resolution and detail in EGFR 

activation, phosphorylation, and docking reactions (Figure 1 and Table 2); we focus our 

discussion on these reactions. A full listing of model reactions and parameters is available in a 

SBML format vis email request to the corresponding author. We note that we restrict our models 

to the early signaling phase (before receptor internalization) and thus our model does not take into 

consideration receptor signaling from endosomal compartments [34, 45, 46]. 

Receptor Dimerization. Ligand-bound receptors associate into dimers in a diffusion-

limited step [13] with a second-order forward rate constant of 0.1 M-1 s-1 and a reverse rate of 0.1 

s-1 (v2 in Table 2). To account for the observed basal levels of autophosphorylation in the absence 

of an agonist [47], we also implemented reactions in which unactivated EGFR can form homo- or 

heterodimers with other unactivated or activated receptors (v3, v4 in Table 2). Assuming a 

dissociation constant of 0.1 mM, we estimate the reverse rate for these reactions (kr,3,4 = 1000 s-1) 

to be 10,000-fold greater  than that of two activated receptors. 

Receptor Phosphorylation. In our model, the phosphorylation of the receptor occurs in 

three steps: (1) ATP binds reversibly to the active site of EGFR (v5-v7 in Table 2). The wildtype 

Km = 24 nM reported by [48] was used for this reaction. (2) An unphosphorylated tyrosine peptide 

on the cytoplasmic tail diffuses and binds transiently to the active site (v8-v11 in Table 2), see 

Figure 1. The forward rate (on-rate or kon) is diffusion limited and calculated as described in 



section 3.4. Peptide dissociation rates were parameterized according to values reported in the 

literature [49]. The reverse rate for these reactions was estimated by setting koff = (kon) • e
+DG/kT, 

where � G was calculated from the Km for each peptide (see section 3.4). (3) In the third step, a 

phosphate group from ATP is transferred to either Y1068 or Y1173 (v12-v15). kcat values of 0.29 

s-1 and 0.25 s-1 were used for catalysis of Y1068 and Y1173, respectively [49]. By undergoing 

two rounds of phosphorylation, a single receptor may be phosphorylated at both sites. 

Phosphorylation reactions and parameters are listed in Table 2. 

Docking interactions. Differential signaling is modeled by allowing only a subset of 

signaling proteins to bind to each form of the phosphorylated receptor (Figure 1). Using the most 

comprehensive model of network interactions to date [50] (see Figure S1 in supplementary 

material), we partition signaling proteins into two groups. Grb2 and PI3K bind only to Y1068; 

PLC�  and Shc bind only to Y1173  [9, 51]. Higher order docking reactions are modeled as 

described previously [13, 17, 24]. 

The complete model is assembled and analyzed using the Systems Biology Toolbox for 

MATLAB (http://sbtoolbox.org/). Simulations are carried out using the CVODE solver from 

Sundials (http://www.llnl.gov/CASC/sundials) along with a compiled version of the model. 

 Sensitivity Analysis. In each simulation run, a pair of parameters is selected for two-

dimensional sensitivity analysis. Each parameter is allowed to deviate from its default (wildtype) 

value over a logarithmic range; typically four to five log units. The result is a two-dimensional 

matrix in which each element represents output from a single simulation involving a unique pair 

of parameters (see Figure 5). We concentrate especially on parameters believed to be altered in 

mutant forms of EGFR, such as the dissociation rate of the receptor dimer (koff,2). To assess the 

system-wide effects of these parameter deviations, we monitor state levels of well-known 

downstream indicators of cell growth and proliferation, such as phosphorylated ERK and AkT. 

Each output state is quantified according to peak response, total (integrated) state level, and the 



time elapsed until peak response. Simulation time is 1000 s. The SBML library file is available 

via email request to the corresponding author. 

 

Figure S1: Complete topological interaction map of EGFR-mediated signaling reported by [50]. 

The highlighted interactions are considered in our deterministic signaling model described in 

section S1.3 above. 



S1.4 Intramolecular  diffusional timescales of C-terminal tail tyrosines in auto- and trans- 

phosphorylation 

 Auto- as well as trans-phosphorylation of specific tyrosine sites in the C-terminal tail of 

the receptor involves diffusion of the particular tyrosine residue in the C-terminal tail to the active 

site of the EGFRTK.  Based on the crystal structure of Stamos [1] and the dimer interface 

identified by Kuriyan [2], we identify the unstructured region of the C-terminal tail as constituted 

by residue 960 onwards. The seven tyrosine residues present on each tail will then have a 

characteristic time of diffusion to the active site. We model the tail from residue 960 to the 

particular tyrosine residue of interest as a freely joined chain (FJC) consisting of Kuhn segments 

[52]; a persistence length of 3.04 Å is used following the results of Zhou [53].  According to the 

FJC model, the spatial distribution of one end of the FJC with coordinates x,y,z (where the 

tyrosine residue is located) with the other end (residue 960) fixed at origin is described by a 

Gaussian distribution at thermal equilibrium:  

P(x,y,z) = [3/(2�  NK b
2)]3/2*exp[-3(x2+y2+z2)/(2NK b

2)], 

where, P(x,y,z) is the probability of finding the tyrosine residue at coordinates (x,y,z), NK is the 

number of Kuhn segments between the fixed end and the tyrosine residue, and b is the Kuhn 

length (twice the persistence length) of the protein (~6.08 Å). The diffusion coefficient of the 

tyrosine residue is then calculated using reptation model [52]:  

D = (kBT)/(6 �  Nµa), 

where, D is the diffusivity of the tail, kB is the Boltzmann constant, T is the temperature (300 K), 

N is the number of residues between the fixed end and tyrosine residue, µ is the viscosity (8.9×10-

4 Ns/m2), and a is the hydrodynamic radius of a single amino acid residue (1.9 Å). 

 Spatial points were randomly sampled according to the equilibrium Gaussian distribution 

specified above. Diffusional time of a specified tyrosine residue to reach the active site is taken as 

the ensemble average of diffusion times L2/D over the sampled points, where L is the distance 

between sampled point and the active site.  This procedure is repeated for all tyrosine residues on 



the C-terminal tails of both the head and the tail monomer RTK of the asymmetric RTK dimer 

(see Figure 1).  

 

S1.5 Spatial stochastic model for  receptor  internalization 

 Clathrin mediated endocytosis is a major mechanism for the down regulation of activated 

receptor proteins. While the pioneering cell biology studies have delineated the components of 

the endocytotic machinery, limited insight is obtained on how this machinery comes together 

during the internalization process. Several questions remain uncoupled [54]: how does the 

clathrin coat identify the site of the phosphorylated receptor? What is the nature of the coupling 

between subcellular signal transduction and membrane invagination? How do the collective 

interactions of membrane deforming proteins such as epsin lead to the origin of vesicle 

formation? Our spatial and stochastic model for receptor internalization is based on a hypothesis 

unifying these questions. 

 The assembly of a clathrin coat proceeds via a polymerization of clathrin trimers [55], 

which is observed to coat the endocytotic vesicle. However, it is believed that the clathrin coat 

alone may not be capable of inducing the required curvature in the membrane. Another protein, 

epsin, in fact plays a crucial role in inducing the curvature of the membrane [56, 57]. The protein 

epsin has binding sites in the clathrin lattice and also directly interacts with the membrane. This 

dual interaction together with the dual interaction of an adaptor protein Ap180 with clathrin and 

the membrane (Ap180 tethers the clathrin coat to the membrane) is believed to induce the vesicle 

nucleation and anchor the clathrin lattice to the budding vesicle. Once the vesicle is stabilized, the 

protein endophilin and its interacting partner CIN85 act as effectors for the vesicle “neck”  

formation. In a subsequent energy intensive step, dynamin motor proteins are involved in the 

pinching-off of the endocytotic vesicle neck via a concerted power-stroke action. 

 Recently, we developed the KMC-TDGL (kinetic Monte Carlo- time-dependent 

Ginzburg Landau) heterogeneous multiscale approach for studying membrane dynamical 



processes by combining two different phenomenological theories [58]. In our multiscale spatially 

resolved stochastic model, we treat the membrane dynamics as a field evolving in time according 

to the time-dependent Ginzburg-Landau approach [59-62]. We treat the diffusion of intracellular 

and membrane-bound proteins using a random walk process on a lattice using the kinetic Monte 

Carlo approach [63, 64]. We then combine the two descriptions using a methodology that is 

dictated by the competition between the timescale of diffusion to that of membrane dynamics 

[58]. This approach yields the time evolution of the membrane undulations and deformation in 

response to the diffusion of membrane bound epsins, leading to the nucleation of an endocytotic 

vesicle.  

 Diffusion of membrane-bound, and intracellular epsins: we explicitly allow for the 

diffusion of epsins in the intracellular and membrane-bound phases. The diffusion is treated via a 

kinetic Monte Carlo (KMC) scheme [63, 64] on a discretized grid (“ lattice”) in which each hop 

(diffusion) to a neighboring lattice-site is treated as an elementary chemical reaction with a rate 

inversely proportional to the timescale of diffusion. Epsins can freely diffuse in the intracellular 

space and adsorb/desorb on the membrane (see Figure 4A). The association, dissociation 

constants and the intracellular and lateral (membrane-bound) diffusion coefficients are available 

from the experimental data published in the literature [65, 66]. The rates of hopping ki to a 

neighboring “ lattice-site”  are determined as ki =Di/a0
2, where Di is the diffusion coefficient, and a0 

is the lattice spacing.  

 Membrane dynamics: localized membrane deformation and curvature is coupled with the 

adsorption of epsins on the membrane surface. Epsin induces a change in the intrinsic curvature 

of an otherwise planar membrane. The free energy cost associated with the membrane is 

minimized by the subsequent relaxation process occurring during the membrane dynamics. This 

interaction formally establishes the coupling between membrane motion and diffusion of species 

interacting with the membrane. We describe the dynamics of the membrane via a time-dependent 

Ginzburg-Landau (TDGL) model (see [58]), 



 

 

where, z=z(x,y,t) is the height of the deformed membrane segment (Figure 4A-D), M is a 

generalized mobility factor associated with the membrane dynamics, z is the thermal noise term, 

and F is the Helfrich free energy functional (in Monge or Cartesian notation) associated with 

membrane elasticity [67-70]. F is given by [71], 

2 2 2 2[ ]( ) ( )F dxdy C z z Cg k k= + Ñ + Ñ - .� �  

Here g is the interfacial tension, k is the bending rigidity, and C is the intrinsic curvature. The 

values of k, g, and M for a phospholipid bilayer membrane are obtained from experiments [66, 

72]: g=3 mN/m, k = 400 kBT, M=10-5 µm4s-1(kBT)-1. In the equation above, the integrand accounts 

for the elastic energy associated with membrane bending and interfacial tension. The value of 

intrinsic curvature C is taken to be zero if no protein molecules are adsorbed and nonzero if 

molecules are adsorbed. The above equation is solved numerically using a finite difference 

scheme for a given profile of C(x,y) that is dictated by the adsorbed species, for a square patch of 

the membrane 1 mM in length with periodic boundary conditions in x, y dimensions [58]. The 

noise term is generated by drawing a random number from a Gaussian distribution with zero 

mean and with variance depending on T and the viscosity of the surrounding medium, (in our 

case this is assumed to be water). The finite difference equations are solved using MATLAB. The 

simulation results in a constant temperature dynamics for the membrane. Since the timescale for 

epsin diffusion is much shorter than that for membrane dynamics, we determine the steady state 

profiles C(x,y) (determined via epsin positions on the membrane in the KMC simulations) at 

every timestep of integration involving the membrane dynamics (TDGL) equations. Thus, the 

TDGL equations are propagated in time based on average interactions resulting from KMC 

simulations. The temperature T in the TDGL and KMC schemes are made equal to ensure 

thermal equilibration for epsins as well as for the membrane. 
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 We calculate the timescale for epsin-induced endocytotic vesicle nucleation from our 

membrane simulations performed using the KMC-TDGL approach [58]. We combine this 

timescale for nucleation with the timescales for signal transduction calculated using the network 

simulations (section 2.3)  to estimate an overall timescale for phosphorylated receptor 

internalization.  

 

S1.6 Model approximations and scope 

 In our multiscale approach, we have chosen to employ several pre-validated 

phenomenological models of interactions. The biological complexity of protein-protein and 

protein-membrane interaction and the coupling to biochemical properties all but forbids the 

formulation of a theory and modeling strategy that incorporates all of the known details from 

structural biology at the molecular level. Our strategy is therefore to adopt a hierarchical 

multiscale model by including crucial but manageable models of interactions at the nano, micro, 

and macroscales. Therefore simplifications and model approximations are inevitable parts of our 

computational strategy, the limitations of which we circumvent by careful choice of models, 

validation by complementary molecular level simulations. The specific choices of our 

microscopic governing phenomenological equations have also been validated independently by 

prior modeling and experimental studies.  

 Molecular dynamics simulations and high throughput docking approaches suffer from 

many inherent modeling limitations (force-field uncertainties, solvent approximations, limited 

sampling, finite size effects, uncertainties in structure etc.). Some of these issues (e.g., finite size 

effects) are difficult to overcome because of computational demands. However, a majority of the 

issues are well appreciated so as to be able to make controlled approximations. Ultimately the 

validity of the modeling results will be assessed by comparing to experimental data by 

performing several control simulations. This is the approach we have taken in this work to 

validate our protocols. In our deterministic model for signal transduction, approximations such as 



neglect of spatial gradients and inherent stochasticity are controlled by ensuring 

compartmentalization, and checking for a large copy limit, respectively. The regime in which 

these approximations are expected to break down (i.e., in the endocytotic signaling) is dealt with 

by explicitly developing a spatially resolved stochastic model. Of course, any network modeling 

scheme will likely contain a large number of parameters some of which may not be available 

experimentally. Moreover, kinetic models often ignore some protein interactions in the hopes of 

capturing the essential ones, which make the quantification of errors inherently difficult. 

Uncertainty in network topology, feedback effects from autocrine loops etc. further amplify the 

problems with a deterministic modeling approach. Nevertheless, modeling these important 

biological responses has value in their potential to uncover new emergent characteristics of the 

model network (which are experimentally testable) representing a significant biochemical 

response. Where possible, we have relied on experimental data from the literature to choose the 

parameters of our model. We further explore a range of these parameters in order to determine the 

sensitivity of our simulation results to these model parameters.  

 

S2 Validation of Systems-Level Model 

Signaling through the EGFR was modeled by combining modular portions of three 

published models and augmented by our own set of reactions and calculations (see Figure S1 in 

the supplementary material and Figure 1, Table 2). Short-term EGFR signaling, including 

phosphorylation, PLC-�  activation, and other docking reactions, are modeled according to Ref. 

[13]; the MAP kinase pathway reactions are modeled as in Ref. [17]. These two modules are 

joined through the activities of Ras kinase, which exists in both modules. Akt , Gab1, and PI3K 

activation are incorporated according to Ref. [24]. The final model specification is calibrated with 

the same biochemical data used to fit Schoeberl’s model [17]. Agreement among the models is 

shown by similar time-course traces for different levels of stimulation by growth factor ligand 

(Figure S4). We note that the two largest modules in our model (Kholodenko, Schoeberl) were 



originally constructed using many of the same reactions and parameters, and thus similar network 

behavior is not unexpected by merging these two networks. While the transient patterns of most 

species in our model are consistent with previous results, absolute state levels (concentrations 

over time) are generally smaller. This result can be explained by a larger number of species in our 

model that must compete for the same number of phosphorylated EGF receptors. Altogether, the 

model comprises 74 reactions and 67 species (see Figure S1). 17 of these reactions are novel to 

this work and represent enhanced molecular resolution and detail in EGFR activation, 

phosphorylation, and docking reactions (Figure 1 and Table 2); we focus our discussion on these 

reactions. A full listing of model reactions in the SBML format is available via email request to 

the corresponding author. We restrict our models to the early signaling phase (before receptor 

internalization) and thus our model does not take into consideration receptor signaling from 

endosomal compartments [34, 45, 46].  

Integrated systems model for 

signaling through EGFR is 

schematically depicted in Figure S2. 

Kinetic models from three published 

sources were joined by allowing 

modules that share commonly defined 

species to interact. The receptor dimer, 

which represents the primary system 

node, was modeled at finer resolution 

as indicated in the text. Output levels 

of ERK and AKT were subject to sensitivity analysis. 

  

 
Figure S2: Molecular resolution to systems model 

showing branching pathways. 



Figure S3: Calculated time-

course for down-stream 

signaling markers triggered by 

EGF binding and 

phosphorylation. The 

conditions are set as 100 nM 

initial EGFR concentration 

and 3 nM (20 ng/ml) initial 

EGF concentration. 

 
 
 
Figure S4 Calibration of system model with 

biochemical data. Network model was 

simulated under conditions identical to those 

used in biochemical assays. (a) Fraction of EGF 

receptor in the phosphorylated state after 

stimulation of wild-type EGFR with 20 ng/ml 

EGF [Saso, 1997]. Blue trace, model time-

course; Squares, experimental data-points. 

 
 The calculated time-dependent EGFR phosphorylation (Figure S4) correlates well with 

biochemical data. The normalized time-course traces for activated species in the model (e.g., 

PLC-� , MEK, ERK, see Figure S3) follow the same general trends as observed in previously 

published sources, as quantified by delay-to-peak time for activation. We note that the two largest 

modules in our model (Kholodenko, Schoeberl) were both constructed using many of the same 

reactions and parameters, and thus similar network behavior is not unexpected by merging these 

two networks. While the transient patterns of most species in our model are consistent with 



previous results, absolute concentrations are generally smaller. This result can be explained by 

the large number of species in our model that must compete for the same number of 

phosphorylated EGF receptors (signal dilution). 
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