1-1-2015

Dynamic Assessment of Cerebral Metabolic Rate of Oxygen (cmro2) With Magnetic Resonance Imaging

Zachary Bart Rodgers
University of Pennsylvania, zrodgers@mail.med.upenn.edu

Follow this and additional works at: http://repository.upenn.edu/edissertations

Recommended Citation
http://repository.upenn.edu/edissertations/1980

This paper is posted at ScholarlyCommons. http://repository.upenn.edu/edissertations/1980
For more information, please contact libraryrepository@pobox.upenn.edu.
Dynamic Assessment of Cerebral Metabolic Rate of Oxygen (cmro2) With Magnetic Resonance Imaging

Abstract
The brain is almost entirely dependent on oxidative metabolism to meet its energy requirements. As such, the cerebral metabolic rate of oxygen (CMRO2) is a direct measure of brain energy use. CMRO2 provides insight into brain functional architecture and has demonstrated potential as a clinical tool for assessing many common neurological disorders.

Recent developments in magnetic resonance imaging (MRI)-based CMRO2 quantification have shown promise in spatially resolving CMRO2 in clinically feasible scan times. However, brain energy requirements are both spatially heterogeneous and temporally dynamic, responding to rapid changes in oxygen supply and demand in response to physiologic stimuli and neuronal activation.

Methods for dynamic quantification of CMRO2 are lacking, and this dissertation aims to address this gap. Given the fundamental tradeoff between spatial and temporal resolution in MRI, we focus initially on the latter. Central to each proposed method is a model-based approach for deriving venous oxygen saturation (Yv) – the critical parameter for CMRO2 quantification – from MRI signal phase using susceptometry-based oximetry (SBO).

First, a three-second-temporal-resolution technique for whole-brain quantification of Yv and CMRO2 is presented. This OxFlow method is applied to measure a small but highly significant increase in CMRO2 in response to volitional apnea.

Next, OxFlow is combined with a competing approach for Yv quantification based on blood T2 relaxometry (TRUST). The resulting interleaved-TRUST (iTRUST) pulse sequence greatly improves T2-based CMRO2 quantification, while allowing direct, simultaneous comparison of SBO- and T2-based Yv. iTRUST is applied to assess the CMRO2 response to hypercapnia – a topic of great interest in functional neuroimaging – demonstrating significant biases between SBO- and T2-derived Yv and CMRO2.

To address the need for dynamic and spatially resolved CMRO2 quantification, we explore blood-oxygen-level-dependent (BOLD) calibration, introducing a new calibration model and hybrid pulse sequence combining OxFlow with standard BOLD/CFB measurement. Preliminary results suggest Ox-BOLD provides improved calibration “M-maps” for converting BOLD signal to CMRO2.

Finally, OxFlow is applied clinically to patients with obstructive sleep apnea (OSA). A small clinical pilot study demonstrates OSA-associated reductions in CMRO2 at baseline and in response to apnea, highlighting the potential utility of dynamic CMRO2 quantification in assessing neuropathology.

Degree Type
Dissertation

Degree Name
Doctor of Philosophy (PhD)

This dissertation is available at ScholarlyCommons: http://repository.upenn.edu/edissertations/1980
Graduate Group
Bioengineering

First Advisor
Felix W. Wehrli

Keywords
cerebral blood flow, cerebral metabolism, CMRO2, magnetic resonance imaging, obstructive sleep apnea, oximetry

This dissertation is available at ScholarlyCommons: http://repository.upenn.edu/edissertations/1980
DYNAMIC ASSESSMENT OF CEREBRAL METABOLIC RATE OF OXYGEN (CMRO$_2$) WITH MAGNETIC RESONANCE IMAGING

Zachary B. Rodgers
A DISSERTATION
in
Bioengineering
Presented to the Faculties of the University of Pennsylvania in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy 2015

Supervisor of Dissertation

Felix W. Wehrli, Ph.D.
Professor of Radiology

Graduate Group Chairperson

Jason A. Burdick, Ph.D.
Professor of Bioengineering

Dissertation Committee
Peter F. Davies, Ph.D., Professor of Pathology and Laboratory Medicine (Chair)
Victor A. Ferrari, M.D. Professor of Medicine
Ravinder Reddy, Ph.D., Professor of Radiology
Hee Kwon Song, Ph.D., Associate Professor of Radiology
DYNAMIC ASSESSMENT OF CEREBRAL METABOLIC RATE OF OXYGEN (CMRO₂) WITH MAGNETIC RESONANCE IMAGING

COPYRIGHT

2015

Zachary B. Rodgers
Dedicated to my family: past, present, and future.
ACKNOWLEDGEMENTS

It is said that the only decision more important than choosing your PhD advisor is choosing your spouse. In our five-year union, my advisor, Dr. Felix Wehrli, has given me a model for the type of scientist I wish to become: at all times brilliant and curious while unceasingly patient and supportive, setting a high bar for all those around him.

I owe thanks to many members of the Wehrli lab for their help and support: to Michael Langham for teaching me about MRI when I knew nothing and for continuing to be an invaluable source of scientific discussion and inspiration along the way, to Erin Englund for her collaboration, friendship, and hundreds of cups of coffee, to Cheng Li for his astonishing patience and selflessness in sharing his enormous knowledge, and to Alan Seifert for always being one step ahead and reporting back from the other side.

Thank you to the many other wonderful and smart people I have had the pleasure of working with: Varsha Jain, Jeremy Magland, Richard Schwab, Sarah Leinwand, John Detre, Yulin Ge, Suliman Barhoum, Yongxia Zhou, María Fernández-Seara, and many others. And a special thanks to Holly Flachs and Kelly Sexton, for making me laugh and keeping everything running smoothly.

I also thank my dissertation committee, Peter Davies, Ravinder Reddy, Hee Kwon Song, and Victor Ferrari, for their guidance and support. Thank you to the HHMI Interfaces Program and the Medical Scientist Training Program, especially Dr. Ann Tiao and Maggie Krall, for your guardianship and advocacy.

Of course, nothing would be possible without the love, support, and encouragement of my parents, Debbie and Bill. And finally, thank you to my fiancée and best friend, Archna. You keep me looking forward to each day, knowing that the best is yet to come.
ABSTRACT

DYNAMIC ASSESSMENT OF CEREBRAL METABOLIC RATE OF OXYGEN (CMRO$_2$) WITH MAGNETIC RESONANCE IMAGING

Zachary B. Rodgers
Felix W. Wehrli, Ph.D.

The brain is almost entirely dependent on oxidative metabolism to meet its energy requirements. As such, the cerebral metabolic rate of oxygen (CMRO$_2$) is a direct measure of brain energy use. CMRO$_2$ provides insight into brain functional architecture and has demonstrated potential as a clinical tool for assessing many common neurological disorders.

Recent developments in magnetic resonance imaging (MRI)-based CMRO$_2$ quantification have shown promise in spatially resolving CMRO$_2$ in clinically feasible scan times. However, brain energy requirements are both spatially heterogeneous and temporally dynamic, responding to rapid changes in oxygen supply and demand in response to physiologic stimuli and neuronal activation.

Methods for dynamic quantification of CMRO$_2$ are lacking, and this dissertation aims to address this gap. Given the fundamental tradeoff between spatial and temporal resolution in MRI, we focus initially on the latter. Central to each proposed method is a model-based approach for deriving venous oxygen saturation (Y_v) – the critical parameter for CMRO$_2$ quantification – from MRI signal phase using susceptibility-based oximetry (SBO).

First, a three-second-temporal-resolution technique for whole-brain quantification of Y_v and CMRO$_2$ is presented. This OxFlow method is applied to measure a small but highly significant increase in CMRO$_2$ in response to volitional apnea.

Next, OxFlow is combined with a competing approach for Y_v quantification based on blood T$_2$ relaxometry (TRUST). The resulting interleaved-TRUST (iTRUST) pulse sequence greatly
improves T_2-based CMRO$_2$ quantification, while allowing direct, simultaneous comparison of SBO- and T_2-based Y_v. iTRUST is applied to assess the CMRO$_2$ response to hypercapnia – a topic of great interest in functional neuroimaging – demonstrating significant biases between SBO- and T_2-derived Y_v and CMRO$_2$.

To address the need for dynamic and spatially resolved CMRO$_2$ quantification, we explore blood-oxygen-level-dependent (BOLD) calibration, introducing a new calibration model and hybrid pulse sequence combining OxFlow with standard BOLD/CBF measurement. Preliminary results suggest Ox-BOLD provides improved calibration “M-maps” for converting BOLD signal to CMRO$_2$.

Finally, OxFlow is applied clinically to patients with obstructive sleep apnea (OSA). A small clinical pilot study demonstrates OSA-associated reductions in CMRO$_2$ at baseline and in response to apnea, highlighting the potential utility of dynamic CMRO$_2$ quantification in assessing neuropathology.
Chapter 5: Cerebral Metabolic Rate of Oxygen in Obstructive Sleep Apnea at Rest and In Response to Breath-Hold Challenge.................................104

5.1. Abstract ...104
5.2. Introduction ..104
5.3. Methods ...107
 5.3.1. Susceptometry-Based Quantification of Yv (SBO) ...107
 5.3.2. Combination of SBO and PC-MRI for CMRO2 Quantification (OxFlow)108
 5.3.3. Subjects ..110
 5.3.4. Experimental Procedures ...111
 5.3.4.1. Volitional Apnea Paradigm ...111
 5.3.4.2. MR Imaging Protocol ..112
 5.3.5. Data Processing ...113
 5.3.6. Statistical Analysis ..114
5.4. Results ..115
 5.4.1. Subject Demographic and Polysomnography Group Characteristics115
 5.4.2. Baseline Differences Between OSA Subjects and Controls115
 5.4.3. Apneic Response in OSA Subjects and Controls ..118
 5.4.4. Relationship Between CMRO2 and AHI ..118
 5.4.5. Age and BMI Effects Analysis ...119
5.5. Discussion ...120
 5.5.1. Interpretation of Apnea Paradigm Data ...120
 5.5.2. Study Limitations and Future Directions ...122
5.6. Conclusions ...125

Chapter 6: Conclusions and Future Directions ...126

6.1. Conclusions ..126
6.2. Future Directions ...128
 6.2.1. OxFlow Technical Improvements ...128
 6.2.2. Technical Investigations ..128
 6.2.3. Clinical Investigations ..129

BIBLIOGRAPHY ...131
LIST OF TABLES

Table 1.1: MR-based Y_/CMRO_2 quantification methods and their respective features 14
Table 2.1: Individual subject and group values for various extracted parameters at rest and in response to volitional apnea ... 48
Table 3.1: Hypercapnia paradigm parameter values derived from pulse oximetry, capnography, and iTRUST MRI in 10 subjects .. 76
Table 4.1: Whole-brain-averaged parameter values from hypercapnia and hyperoxia M-calibration experiments .. 98
Table 5.1: Group demographic and polysomnography data ... 111
Table 5.2: Summary of baseline and apneic response parameters in OSA subjects and controls ... 118
LIST OF FIGURES

Figure 1.1: Early demonstration of uncoupling between blood flow and CMRO$_2$ upon neuronal activation by PET imaging .. 3

Figure 1.2: Early demonstration of the BOLD effect in humans... 4

Figure 1.3: Hemoglobin dissociation curve illustrating the relationship between oxygen partial pressure and percent hemoglobin oxygen saturation ... 8

Figure 1.4: Schematic illustration of brain oxygen extraction in the capillaries 9

Figure 1.5: Schematic diagram illustrating the various physiologic contributions relating neuronal activity to BOLD signal ... 15

Figure 1.6: Schematic diagram illustrating how vessel size and diffusion distance determine diffusion dephasing versus static dephasing effects ... 20

Figure 1.7: Calibration curve relating Y_v to measured T_2 and Hct for $t_{CPMG}=10$ ms 23

Figure 1.8: Illustration of a blood vessel approximated by the infinite cylinder model 28

Figure 2.1: High temporal resolution CMRO$_2$ quantification pulse sequence 39

Figure 2.2: SSSBF:tCBF ratio determination in three subjects ... 45

Figure 2.3: Error due to Keyhole reconstruction ... 46

Figure 2.4: Apnea paradigm representative subject images and time course data 47

Figure 2.5: Apnea paradigm cohort time course data ... 49

Figure 3.1: TRUST vs. SBO-derived Y_v in 10 healthy subjects at rest 60

Figure 3.2: BRISK vs. Keyhole Cartesian view-sharing .. 62

Figure 3.3: iTRUST pulse sequence and example images ... 65

Figure 3.4: TRUST, OxFlow, and iTRUST parameter values acquired sequentially for four minutes each in three resting subjects ... 70

Figure 3.5: Scatter plot of iTRUST Y_v-T_2 values fitted using all four (0, 40, 80, and 160 ms) vs. only two (0 and 80 ms) eTEs from the same data ... 71
Figure 3.6: Simulation of expected Y_v-T_2 error vs. the number of eTEs used for T_2 fitting 72

Figure 3.7: iTRUST parameter values in response to a 60-second breath-hold in a single subject .. 73

Figure 3.8: Subject-averaged time-course plots of physiologic parameters measured via pulse oximetry (Y_a, HR) and capnography (EtCO$_2$, RR).. 74

Figure 3.9: iTRUST-derived parameter values in response to five minutes of 5% CO$_2$ gas-mixture breathing ... 75

Figure 4.1: Schematic diagram comparing the traditional calibration models to the Y_v-based calibration model .. 90

Figure 4.2: Single-slice Ox-BOLD pulse sequence diagram... 91

Figure 4.3: Multi-slice Ox-BOLD pulse sequence diagram ... 92

Figure 4.4: Single-slice Ox-BOLD data from an example subject .. 96

Figure 4.5: Multi-slice Ox-BOLD data from an example subject .. 97

Figure 4.6: Zoomed-in parametric M-maps from the various calibration methods .. 98

Figure 4.7: M-value histograms for each calibration method .. 99

Figure 5.1: MRI pulse sequences for rapid quantification of global CMRO$_2$... 109

Figure 5.2: MRI protocol for quantifying CMRO$_2$ at rest and in response to apnea 112

Figure 5.3: Apnea paradigm data in a representative OSA subject (male, 63 years old) 116

Figure 5.4: Group-averaged apnea paradigm data in OSA subjects and controls 117

Figure 5.5: Relationship between CMRO$_2$ and AHI .. 119
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>%HbO₂</td>
<td>percent hemoglobin oxygen saturation</td>
</tr>
<tr>
<td>ASL</td>
<td>arterial spin labeling</td>
</tr>
<tr>
<td>ATP</td>
<td>adenosine triphosphate</td>
</tr>
<tr>
<td>AVO₂D</td>
<td>arteriovenous oxygen difference</td>
</tr>
<tr>
<td>BMI</td>
<td>body mass index</td>
</tr>
<tr>
<td>BOLD</td>
<td>blood-oxygen-level-dependent</td>
</tr>
<tr>
<td>C₉</td>
<td>arterial oxygen content</td>
</tr>
<tr>
<td>CBF</td>
<td>cerebral blood flow</td>
</tr>
<tr>
<td>CBV</td>
<td>cerebral blood volume</td>
</tr>
<tr>
<td>CBVₐ</td>
<td>arterial cerebral blood volume</td>
</tr>
<tr>
<td>CBVᵥ</td>
<td>venous cerebral blood volume</td>
</tr>
<tr>
<td>CMRO₂</td>
<td>cerebral metabolic rate of oxygen</td>
</tr>
<tr>
<td>CPAP</td>
<td>continuous positive airways pressure</td>
</tr>
<tr>
<td>CPMG</td>
<td>Carr-Purcell-Meiboom-Gill</td>
</tr>
<tr>
<td>CSF</td>
<td>cerebrospinal fluid</td>
</tr>
<tr>
<td>CVR</td>
<td>cerebrovascular reactivity</td>
</tr>
<tr>
<td>dHb</td>
<td>deoxygenated hemoglobin</td>
</tr>
<tr>
<td>EEG</td>
<td>electroencephalography</td>
</tr>
<tr>
<td>EPI</td>
<td>echo-planar imaging</td>
</tr>
<tr>
<td>EtCO₂</td>
<td>end-tidal carbon dioxide</td>
</tr>
<tr>
<td>eTE</td>
<td>effective echo time</td>
</tr>
<tr>
<td>EtO₂</td>
<td>end-tidal oxygen</td>
</tr>
<tr>
<td>fMRI</td>
<td>functional magnetic resonance imaging</td>
</tr>
<tr>
<td>GRE</td>
<td>gradient-recalled echo</td>
</tr>
<tr>
<td>Hb</td>
<td>hemoglobin</td>
</tr>
<tr>
<td>Hct</td>
<td>hematocrit</td>
</tr>
<tr>
<td>HR</td>
<td>heart rate</td>
</tr>
<tr>
<td>iTRUST</td>
<td>interleaved T₂-relaxation-under-spin-tagging</td>
</tr>
<tr>
<td>MR</td>
<td>magnetic resonance</td>
</tr>
<tr>
<td>MRI</td>
<td>magnetic resonance imaging</td>
</tr>
<tr>
<td>NIRS</td>
<td>near-infrared spectroscopy</td>
</tr>
<tr>
<td>NMR</td>
<td>nuclear magnetic resonance</td>
</tr>
<tr>
<td>OEF</td>
<td>oxygen extraction fraction</td>
</tr>
<tr>
<td>oHb</td>
<td>oxygenated hemoglobin</td>
</tr>
<tr>
<td>OSA</td>
<td>obstructive sleep apnea</td>
</tr>
<tr>
<td>PC-MRI</td>
<td>phase-contrast magnetic resonance imaging</td>
</tr>
<tr>
<td>pCASL</td>
<td>pseudo-continuous arterial spin labeling</td>
</tr>
<tr>
<td>PET</td>
<td>positron emission tomography</td>
</tr>
<tr>
<td>pI₂O₂</td>
<td>interstitial partial pressure of oxygen</td>
</tr>
<tr>
<td>PLD</td>
<td>post-label delay</td>
</tr>
<tr>
<td>pO₂</td>
<td>partial pressure of oxygen</td>
</tr>
<tr>
<td>QSM</td>
<td>quantitative susceptibility mapping</td>
</tr>
<tr>
<td>RF</td>
<td>radiofrequency</td>
</tr>
<tr>
<td>ROI</td>
<td>region of interest</td>
</tr>
<tr>
<td>RR</td>
<td>respiratory rate</td>
</tr>
<tr>
<td>Acronym</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
</tr>
<tr>
<td>SBO</td>
<td>susceptometry-based oximetry</td>
</tr>
<tr>
<td>SDR</td>
<td>static dephasing regime</td>
</tr>
<tr>
<td>SNR</td>
<td>signal-to-noise ratio</td>
</tr>
<tr>
<td>RMSE</td>
<td>root-mean-square error</td>
</tr>
<tr>
<td>SSS</td>
<td>superior sagittal sinus</td>
</tr>
<tr>
<td>SSSBF</td>
<td>superior sagittal sinus blood flow</td>
</tr>
<tr>
<td>tCBF</td>
<td>total cerebral blood flow</td>
</tr>
<tr>
<td>TE</td>
<td>echo time</td>
</tr>
<tr>
<td>TRUST</td>
<td>T$_2$-relaxation-under-spin-tagging</td>
</tr>
<tr>
<td>Y_a</td>
<td>arterial oxygen saturation</td>
</tr>
<tr>
<td>Y_v</td>
<td>venous oxygen saturation</td>
</tr>
</tbody>
</table>
PREFACE

Chapter 2 has been published as: Rodgers ZB, Jain V, Englund EK, Langham MC, and Wehrli FW. High temporal resolution MRI quantification of global cerebral metabolic rate of oxygen consumption in response to apneic challenge. JCBFM, 2013;33(10):1514-1522. DOI: 10.1038/jcbfm.2013.110.

Chapter 3 has been published as: Rodgers ZB, Englund EK, Langham MC, Magland JF, and Wehrli FW. Rapid T$_2$- and susceptometry-based CMRO$_2$ quantification with interleaved TRUST (iTRUST). Neuroimage, 2015;106:441-450. DOI: 10.1016/j.neuroimage.2014.10.061.

Chapter 4 has been published as: Rodgers ZB, Englund EK, Fernández-Seara MA, and Wehrli FW. BOLD calibration with interleaved susceptometry-based oximetry. Proceedings of the 23rd Annual Meeting of ISMRM, Toronto, Canada, p. 597.

Chapter 5 has been accepted for publication in the Journal of Cerebral Blood Flow and Metabolism as: Rodgers ZB, Leinwand SE, Keenan BT, Kini LG, Schwab RJ, and Wehrli FW. Cerebral metabolic rate of oxygen (CMRO$_2$) in obstructive sleep apnea at rest and in response to breath-hold challenge.

Zachary B. Rodgers

July 28, 2015
Chapter 1: Introduction

1.1. Cerebral Metabolism

The mechanism through which the brain converts energetic substrates into thoughts and actions is one of the central questions in human biology. This section discusses the unique energy requirements of the brain, the early efforts to visualize brain energy use, and the motivations for quantifying the cerebral metabolic rate of oxygen (CMRO$_2$).

1.1.1. The Unique Energy Requirements of the Brain

Among human organs, the brain is distinct in its requirement for a large, uniform, and uninterrupted supply of oxygen. Although comprising only 2% of total body mass, the brain accounts for approximately 20% of the body’s total oxygen consumption (1). Furthermore, the brain is almost entirely dependent on oxidative metabolism of glucose to meet its energy requirements, and is therefore especially susceptible to hypoxia and ischemia. If circulation to the brain is stopped, such as following cardiac arrest, loss of consciousness occurs in seconds, and brain tissue is irreversibly damaged in as little as three minutes (2).

Since the brain is almost entirely dependent on oxygen to meet its energy needs, CMRO$_2$ provides a direct, quantitative measure of the brain energy requirements, and an important marker of tissue viability and function. While the precise cellular mechanisms relating neuronal signaling and cerebral metabolism are still an area of active investigation, it is known that approximately 80% of cerebral metabolism at rest is devoted to active signaling processes, i.e., the propagation of action potentials and the restoration of those potentials after neurotransmission (3). Recent observation that these resting-state signals are spatiotemporally correlated across distinct brain regions – the so-called “default mode network” (4) – has heightened interest in understanding the relationship between neuronal signaling and cerebral metabolism.
Because CMRO$_2$ is remarkably well conserved in normal physiology, there is much interest in understanding physiologic and pathologic states in which CMRO$_2$ is affected. Although, alterations in CMRO$_2$ have been suggested in several common neurologic disorders, these changes are relatively small given the critical importance of oxygen in maintaining tissue viability. Furthermore, while cerebral metabolism is increased in response to mental and motor activity, these changes tend to be highly localized, informing on the structural and functional organization of the brain, but at the same time making measurement of these metabolic changes challenging. For these reasons, developing methods for quantification and imaging of brain activity and metabolism remains a major goal and challenge of neuroscience research.

1.1.2. A Brief History of Measuring Brain Activity

One of the major challenges in studying brain function is that the brain is relatively inaccessible to direct measurement. The electrical signals produced by the discharge of neuronal action potentials provide perhaps the closest measure of brain activity. These signals were first observed by Richard Caton in 1875, using galvanometric measurements in animals during chewing and visual stimulation (5). This work was expanded to humans with the invention of the electroencephalography (EEG) by Hans Berger in 1929 (6), which allowed non-invasive measurement of brain electrical activity through the scalp. Unfortunately, EEG and magnetoencephalography (7) – a complementary technique based on measurement of magnetic fields – have very limited sensitivity, spatial resolution, and penetration. However, these electrical changes are also associated with changes in blood flow and metabolism, providing alternative means of assessing brain activity and function.

Despite producing relatively small changes in brain oxygen metabolism, motor and mental processes are associated with large changes in cerebral blood flow (CBF). In fact, these CBF changes are large enough to be observed by the naked eye, as demonstrated in 1881 by Italian physiologist Angelo Mosso, who observed increased regional pulsations in the brains of patients performing mental tasks while undergoing neurosurgery (8). In 1890, Charles Roy and Charles
Sherrington hypothesized that such CBF responses were related to increases in metabolic demand (9). However, quantitative methods for testing such hypotheses did not yet exist.

A major breakthrough came in 1945, when Seymour Kety and Carl Schmidt introduced the first method for quantifying CBF and CMRO$_2$ in humans based on the Fick Principle (10-12). In the 1950s through 1970s, Kety and his student, Louis Sokoloff, led the development of autoradiographic methods to create quantitative images of CBF and CMRO$_2$ in animals (13). The advent of positron emission tomography (PET) allowed extension of this autoradiographic work to humans, where it was used to detect regional activations associated with specific mental functions, for example, language processing (14). Seminal work by Peter Fox and Marcus Raichle (15,16) demonstrated that upon neuronal activation, local CBF increases in excess of CMRO$_2$ (Figure 1.1).

Figure 1.1: Early demonstration of uncoupling between blood flow and CMRO$_2$ upon neuronal activation by PET imaging. Despite a large increase in occipital blood flow, corresponding CMRO$_2$ changes are below the level of detection. This mismatch between flow and metabolism provides the basis for the BOLD fMRI technique. Figure adapted from (15).
This mismatch provides the foundation for the blood-oxygen-level-dependent (BOLD) functional magnetic resonance imaging (fMRI) method, which allows observation of brain activity based on MRI-measured changes in local blood oxygenation. The BOLD fMRI effect was first observed by Seiji Ogawa in rats in 1990 (17) and subsequently demonstrated in humans by Ogawa (18) (Figure 1.2) and several other groups (19-21).

Figure 1.2: Early demonstration of the BOLD effect in humans. (A) T₁-weighted axial image with several regions of interest (ROIs) indicated by square boxes; (B) T₂*-weighted BOLD image at the same slice location; (C) Pseudocolor map of BOLD image intensity changes in response to visual stimulation and (D) corresponding time-course plots of signal intensities from ROIs in (A), indicating restriction of BOLD effect to ROIs (1 and 2) in the visual cortex. Figure from (18).

Unlike PET-based metabolic imaging, BOLD fMRI does not require injection of radioactive tracers, can be performed on standard clinical imaging systems, and provides higher spatial and temporal resolution. In the past 20 years, use of BOLD fMRI has grown exponentially and provided enormous insights into the spatiotemporal functional organization of the brain.
1.1.3. Why Quantify CMRO\textsubscript{2}?

1.1.3.1. Limitations of BOLD fMRI

Though the contribution of BOLD fMRI to basic neuroscience cannot be overstated, the technique has fundamental limitations. The relative simplicity of the technique belies the enormous complexity of interpreting the underlying physiologic meaning of BOLD data.

BOLD signal changes are predominantly vascular in origin, driven by changes in CBF and cerebral blood volume (CBV) more so than metabolism. The relationship between BOLD signal and its vascular and metabolic determinants is a complex one, modified by a number of physiologic and external factors. Therefore, BOLD signal must always be quantified in terms of changes relative to a baseline state; it cannot be used to quantify baseline cerebral metabolism. These relative BOLD signal changes can vary significantly within (22) and across (23) subjects, reducing power to detect group differences. Group comparisons can also be confounded by vascular effects unrelated to metabolic differences, for instance, in studies of aging (24,25).

As a measure of brain activity, CMRO\textsubscript{2} has several theoretical advantages compared to BOLD fMRI signal. Unlike BOLD, CMRO\textsubscript{2} can be measured in absolute physiologic units, and may provide more power to detect group differences in longitudinal and clinical studies. Although simultaneous fMRI and intracortical EEG in animals has shown BOLD signal changes to correlate with underlying neuronal activity (26), BOLD signal onset latency is an order of magnitude greater compared to underlying electrical signals (27). Furthermore, BOLD signal originates from the post-capillary venous vasculature, which may be far from the site of activation (28). In contrast, the CMRO\textsubscript{2} response is expected to exhibit closer spatiotemporal correlation with neuronal activation. CMRO\textsubscript{2} imaging would thus provide a more precise and accurate tool for studying the temporal dynamics of neurologic function and spatial organization of brain functional systems.
1.1.3.2. Potential Clinical Applications of CMRO$_2$ Measurement

CMRO$_2$ measurement and mapping could be of significant benefit to the diagnosis and management of many common neurologic diseases. PET is the current gold standard for metabolic brain imaging; however, its cost, complexity, and invasiveness significantly limit its application. Compared to PET, MRI is inexpensive, non-invasive, and relatively ubiquitous in modern hospitals. Potential clinical applications of MR-based CMRO$_2$ quantification include the study of stroke, brain tumors, Alzheimer’s disease (AD), and obstructive sleep apnea (OSA).

In stroke, blood flow and oxygen delivery are regionally compromised. While some tissue is irreversibly damaged, surrounding tissue in the “ischemic penumbra” region is potentially salvageable. Identifying this tissue is critical to decision making in acute stroke management, as administration of tissue plasminogen activator, a clot-dissolving agent, carries a high risk of acute bleeding. It is believed that imaging of CMRO$_2$ and oxygen extraction fraction (OEF), the fraction of total delivered oxygen extracted from the blood, may provide a better measure of tissue viability than existing MRI methods based on diffusion/perfusion mismatch (29,30).

It has long been known that tumors exhibit hypoxia due to preferential use of anaerobic glycolysis even in the presence of sufficient oxygen, an observation known as the Warburg effect (31). Thus, hypoxia provides a biomarker of tumor presence, and the degree of hypoxia may provide a prognostic and diagnostic measure for decision making in cancer management (32). MR-based CMRO$_2$ mapping could provide a more direct and less invasive means of assessing tumor hypoxia than the current method of fluorodeoxyglucose (FDG) PET.

Though the etiology of AD pathology has long been ascribed to the deposition of beta amyloid plaques and neurofibrillary tangles, recent studies suggest vascular dysfunction plays a significant role in the development of AD and other dementias (33). AD has been associated with regional reductions in CMRO$_2$ with preserved blood flow using PET (34), as well as reduced global cerebrovascular reactivity (CVR) in response to breath-hold measured with Doppler ultrasound (35). Magnetic resonance (MR)-based methods have been widely used in studying
structural changes in AD, and CMRO\textsubscript{2} methodology would add an important functional component to these studies.

Although OSA is defined by structural and functional failure of the upper airway to maintain patency during sleep, it is also associated with extensive neurologic comorbidities of poorly understood etiology. OSA has been associated with gray matter loss in regions associated with ischemic sensitivity, such as the hippocampus (36). Detection of impaired CVR in OSA (37-39), suggests that blunting of the normal apneic cerebrovascular response may allow hypoxic damage to occur during OSA-associated nocturnal apneas. Preliminary data suggests that OSA is also associated with changes in CMRO\textsubscript{2}, both at rest and dynamically in response to breath-hold challenge (40).

1.2. CMRO\textsubscript{2} Quantification

This section outlines the physiology of brain oxygen delivery and consumption – the basis for quantifying CMRO\textsubscript{2}. Current methods for CMRO\textsubscript{2} quantification are discussed and compared, with particular focus on the various MR-based methods and their respective tradeoffs between spatial and temporal resolution.

1.2.1. Overview of Brain Oxygen Delivery and Consumption

In aerobic metabolism, oxygen acts as the final electron acceptor of the electron transport chain, driving the formation of adenosine triphosphate (ATP), the main energy substrate in the body:

\[
6\text{O}_2 + C_6\text{H}_{12}\text{O}_6 + 36\text{ADP} + 36\text{Pi} \rightarrow 6\text{CO}_2 + 6\text{H}_2\text{O} + 36\text{ATP} \quad [1.1]
\]

Oxidative phosphorylation of glucose (and additionally ketone bodies during starvation) is the sole mechanism through which the brain can produce ATP for any appreciable amount of time. While nonoxidative glucose consumption (glycolysis) plays an important role in providing rapid energy during functional activation (15,41), it is considerably less efficient than aerobic metabolism, producing only 2 ATP molecules per glucose molecule compared to 36 ATP. Thus, it is believed
that increased energy demand during even transient brain activation states is met largely through oxidative metabolism (42).

Oxygen is not produced endogenously and must be continuously transported to the brain via the blood. This is achieved by passive diffusion of oxygen across the alveolar and capillary membranes of the lungs, where it binds to hemoglobin in erythrocytes, and, to a much lesser extent, is dissolved in blood plasma. The degree of binding of oxygen to hemoglobin is governed by the partial pressure of oxygen, represented by the hemoglobin dissociation curve (Figure 1.3).

![Figure 1.3](image)

Figure 1.3: Hemoglobin (Hb) dissociation curve illustrating the relationship between oxygen partial pressure (pO_2) and percent hemoglobin oxygen saturation (%HbO$_2$). Normal values for arterial blood and brain tissue are indicated. The sigmoidal shape of the curve results from cooperative binding of oxygen at the four heme sites of the Hb tetramer, and facilitates unloading of oxygen from blood to brain tissue along the pO_2 gradient.

In normal physiologic and atmospheric conditions, the oxygen partial pressure (pO_2) in the arterial blood is 80-100 mmHg, resulting in an arterial oxygen saturation (Y_a) of approximately 98 percent hemoglobin oxygen saturation (%HbO$_2$). Because pO_2 in the brain (and other end-organs) is much lower, oxygen is released in these tissues from hemoglobin and diffuses along a decreasing pO_2 gradient: across the capillary membrane, through the cellular membrane of neurons and glial brain cells, and finally into the mitochondria where aerobic metabolism takes
place. The oxygen depleted venous blood, with about 1/3 of its hemoglobin desaturated, is returned to the heart and lungs. This process of oxygen extraction is schematically illustrated in **Figure 1.4.** The different magnetic properties of oxygenated and deoxygenated hemoglobin provide the foundation for MR-based quantification of blood oxygen saturation and CMRO\textsubscript{2}, discussed in Section 1.2.4.

![Diagram of brain oxygen extraction](image)

Figure 1.4: Schematic illustration of brain oxygen extraction in the capillaries. oHb is oxygenated hemoglobin and dHb is deoxygenated hemoglobin.

1.2.2. Fick Principle for CMRO\textsubscript{2} Quantification

Assuming all oxygen extracted from the blood is used for ATP production, the Fick Principle (**Equation 1.2**) can be used to quantify CMRO\textsubscript{2} (10-12):

\[
CMRO_2 = C_a \cdot CBF \cdot \left(Y_a - Y_v \right) \tag{1.2}
\]

where \(Y_a\) and \(Y_v\) are the arterial and venous oxygen saturation in %HbO\textsubscript{2}, CBF is the cerebral blood flow in µmol per minute per 100 g of brain tissue, \(C_a\) is the arterial oxygen content of fully saturated arterial blood (i.e., blood with \(Y_a = 100 \%\text{HbO}_2\)) in µmol of O\textsubscript{2} per mL blood, giving CMRO\textsubscript{2} in µmol per minute per 100 g of brain tissue. \(C_a\) is a Hb-dependent constant:

\[
C_a = 0.620559 \cdot Hb \tag{1.3}
\]
where Hb is in g/dL and the scaling factor is calculated from a hemoglobin molar mass of 64458 g/mol (43). \(Y_a \) can be measured continuously with a digital pulse oximeter, leaving \(Y_v \) and CBF to be quantified from the MR imaging experiment. \(Y_a - Y_v \) is often called the arteriovenous oxygen difference (AVO\(_2\)D). Brain oxygen extraction is frequently reported in terms of the OEF, which is equal to AVO\(_2\)D/\(Y_a \). OEF and AVO\(_2\)D values are very similar for \(Y_a \) in the normal range, and are sometimes used interchangeably.

Kety and Schmidt (11,12) were the first to quantify CMRO\(_2\) using the Fick Principle. To quantify CBF, they integrated the differential concentration of nitrous oxide (N\(_2\)O) in the arterial and venous blood during continuous inhalation of N\(_2\)O gas. \(Y_a \) and \(Y_v \) were measured directly via co-oximetry of arterial and venous blood. Though accurate and well validated, the technique is highly invasive, requiring catheterization of the femoral artery and jugular vein. It also provides only a single steady-state global measurement of \(Y_v \), CBF, and CMRO\(_2\). However, this landmark work laid the foundation for the vast array of cerebral blood flow, oxygenation, and metabolism measurement and mapping techniques introduced in the subsequent 60 years.

1.2.3. Non-MR-Based Methods

1.2.3.1. Optical Methods

Several optical methods exist for quantification of cerebral blood flow and oxygen saturation. These methods take advantage of the fact that oxyhemoglobin (oHb) and deoxyhemoglobin (dHb) absorb light at different wavelengths.

Jugular bulb oximetry (JBO) involves intravenous insertion of a fiber optic probe and determination of \(Y_v \) from the absorption spectrum of different wavelengths of light. JBO can be combined with transcranial Doppler (44) measurement of CBF for quantification of CMRO\(_2\). While the approach has the advantage of allowing continuous bedside monitoring, the catheter insertion is invasive and prone to serious complications such as carotid artery puncture (45), and the technique is prone to errors due to poor catheter tip placement and calibration (46).
Optical methods can also be applied to regional measurement of blood flow and oxygenation. Near-infrared spectroscopy (NIRS) (47) involves application of light with wavelength 650-1100 nm, which can penetrate the scalp, skull, and brain to a depth of several centimeters. The measured absorption spectra are used to estimate relative concentrations of oHb and dHb, which are then used to derive Y_v. A complementary optical technique for CBF measurement, diffuse correlation spectroscopy (DCS) (48), measures the scattering of near-infrared light in tissue. NIRS and DCS can be combined to quantify local CMRO$_2$ (49); however, the low penetration depth of light inherently limits the approach to measurement of cortical regions near the skull surface. Thus, the technique is best suited to studies involving neonates (50), whose skulls are thinner, or in animals, where smaller brain sizes and use of cranial windows improves light penetration.

1.2.3.2. PET

PET involves the injection or inhalation of exogenous, positron-emitting radioactive tracers with specific chemical properties. The emitted positrons annihilate with surrounding electrons to produce equal energy 511 keV photons that are emitted in opposite directions and detected by the PET scanner. The position of these detection events can be used to tomographically compute the spatial distribution of annihilation events, and, thus, the spatial distribution of the tracer.

PET-based quantification of CMRO$_2$ (51-53) uses intravenous injection of H$_2^{15}$O water to quantify CBF and separate inhalation of radioactive 15O$_2$ gas to quantify OEF, which together can be used to quantify CMRO$_2$. Although the method is considered the gold standard for CMRO$_2$ mapping, it has a number of significant limitations. It is highly invasive, requiring both arterial and venous punctures, as well as exposure to radiation. Due to the complexity and cost of the protocol, and the need for an on-site cyclotron to produce the 15O tracers, only a handful of sites around the world are equipped to conduct PET-based CMRO$_2$ studies. While the generated CMRO$_2$ maps are of high quality, the spatial resolution is somewhat coarse (≈ 5 mm3). Furthermore, the acquisition time is on the order of tens of seconds, limiting applications in functional experiments.
1.2.4. MR-Based Methods

1.2.4.1. MRI Contrast and CMRO$_2$

Unlike PET, MRI is inherently non-invasive and relatively ubiquitous in modern medical centers. MRI is based on nuclear magnetic resonance (NMR), the process by which atomic nuclei absorb and re-emit electromagnetic radiation. In MRI, a strong magnetic field is used to polarize nuclear spin magnetic moments. Application of radiofrequency (RF) pulses matching a particular nuclei’s resonant (Larmor) frequency causes rotation of those moments into the plane perpendicular to the main field, and precession of the moments about the main field induces a measurable signal in RF coils via electromagnetic induction. This signal will decay with a time constant called the effective transverse relaxation rate (R_2^*). The portion of the signal decay due to static field inhomogeneity can be removed by spin-echo refocusing, thus isolating the transverse relaxation rate (R_2). These two quantities define a third relaxation rate, R_2', where $R_2'=R_2^* - R_2$. R_2' represents the rate of signal decay due to static magnetic field inhomogeneities, but is only an exponential decay constant when this inhomogeneous field distribution is Lorentzian. These relaxation rates are often defined in terms of relaxation times: $T_2^*=1/R_2^*$, $T_2=1/R_2$, and $T_2'=1/R_2'$.

Imaging is made possible by the application of magnetic field gradients, which result in spatial information being encoded into the resulting MR signal (54). While MRI is possible with any nuclei possessing non-zero spin magnetic moment, because the human body is mostly composed of hydrogen-containing water molecules, 1H is the nucleus of choice for most human MRI imaging. The varying chemical and structural properties of tissues have different effects on the time evolution of the MR signal, which can be exploited by different combinations of RF pulses and gradients (pulse sequences) to produce images with widely varying contrast. The tunability and variety of MR contrast has made it an enormously powerful tool for clinical diagnosis and scientific discovery.

A fundamental limitation of NMR and MRI is that the degree of polarization of nuclear magnetic moments is quite small, only a few parts per million, and the exponential time constant for
repolarization (the T_1) is quite long, on the order of seconds for many tissues of interest. For this reason, tradeoffs between signal-to-noise-ratio (SNR), spatial resolution, and temporal resolution must be considered in almost all MRI applications, including CMRO$_2$ quantification techniques.

While direct detection of oxygen with 17O MRI is possible, enriched 17O is enormously expensive, and the detection sensitivity is low. The Fick Principle offers an alternative approach as CBF can be measured non-invasively using either phase-contrast MRI (PC-MRI) (55) in large cerebral vessels or mapped on a voxel-wise basis with arterial spin labeling (ASL) (56,57). Y_a can be measured with pulse oximetry or assumed to be near 98 %HbO$_2$ in normal conditions. This leaves quantification of Y_v, which is the crux of MR-based CMRO$_2$ quantification methods. Y_v is itself of interest in certain applications, for instance, in stroke, where it may provide a marker for potentially salvageable tissue (29,30).

MR-based Y_v quantification takes advantages of the unique magnetic properties of the metalloprotein hemoglobin, first demonstrated by magnetic mass balance experiments conducted by Linus Pauling and Charles Coryell in 1936 (58). In the deoxygenated state, the Fe$^{2+}$ heme iron’s six electrons in the five 3d orbitals are distributed across the e_{g} and t_{2g} orbitals, resulting in four unpaired electrons and a spin $S = 2$. When the heme iron becomes oxygenated, the ligand field separating the t_{2g} and e_{g} orbitals is increased, making the configuration in which all electrons occupy the three t_{2g} orbitals more energetically favorable, and resulting in an electron spin $S = 0$. Thus, only dHb is paramagnetic, whereas oHb is diamagnetic. dHb paramagnetism causes a linear increase in the magnetic susceptibility of blood, and also has varying effects on the relaxation rates of blood and surrounding tissue.

The paramagnetism of dHb is exploited in a variety of MR-based techniques to quantify Y_v and CMRO$_2$, as summarized in Table 1.1 and detailed in the sections that follow. These methods can be categorized based on the tissue compartment in which the effects of dHb are modeled (extravascular vs. intravascular) and the MR contrast method used to quantify these effects (T_2^*, T_2^{\prime}, T_2, or susceptibility). Furthermore, the methods are distinguished by whether the
measurements are made on a global, regional, or voxel-wise basis, and the resultant tradeoff between their spatial and temporal resolutions.

<table>
<thead>
<tr>
<th>Signal Origin</th>
<th>Contrast</th>
<th>Spatial Res.</th>
<th>Method (Ref)</th>
<th>Yv Temp. Res.</th>
<th>Simul. CBF?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extravascular</td>
<td>T*</td>
<td>Voxel-wise</td>
<td>Calibrated BOLD (59)</td>
<td>0:03</td>
<td>YES</td>
</tr>
<tr>
<td></td>
<td>T'</td>
<td>Voxel-wise</td>
<td>qBOLD (60)</td>
<td>8:30</td>
<td>NO</td>
</tr>
<tr>
<td>Intravascular</td>
<td>T2</td>
<td>Global</td>
<td>TRUST (61)</td>
<td>0:24</td>
<td>NO</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Regional</td>
<td>TRU-PC (62)</td>
<td>2:50</td>
<td>NO</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Projection-based T2 (63)</td>
<td>0:15</td>
<td>NO</td>
</tr>
<tr>
<td></td>
<td>Voxel-wise</td>
<td>Voxel-wise</td>
<td>QUIXOTIC (64)</td>
<td>27:30</td>
<td>NO</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>VSEAN (65)</td>
<td>6:18</td>
<td>NO</td>
</tr>
<tr>
<td>Susceptibility</td>
<td>Global</td>
<td>OxFlow (66)</td>
<td>0:28</td>
<td>YES</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Regional</td>
<td>Quantitative Venography (67)</td>
<td>15:42</td>
<td>NO</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Voxel-wise</td>
<td>Zhang et al. (68)</td>
<td>60:00</td>
<td>NO</td>
<td></td>
</tr>
</tbody>
</table>

Table 1.1: Summary of MR-based Yv/CMRO2 quantification methods and their respective features. ‘Signal origin’ is the tissue compartment in which signal used for Yv quantification is modeled. ‘Contrast’ is the MRI contrast mechanism used in the Yv quantification model. ‘Spatial Res.’ is the spatial resolution for Yv quantification in minutes:seconds. ‘Method (Ref)’ is the name/acronym or authors associated with the published method and the most relevant citation. ‘Yv Temp. Res.’ is the reported approximate temporal resolution for a single Yv measurement (ignoring any requisite planning or calibration scans). ‘Simul. CBF?’ denotes whether the method pulse sequence measures CBF simultaneously with Yv.

1.2.4.2. Extravascular T2*-Based Methods (Calibrated BOLD)

Because CMRO2 measurement has many potential advantages compared to standard BOLD fMRI (see section 1.1.3.1), the development and application of BOLD fMRI has been paralleled by attempts to resolve CMRO2 from the BOLD signal. This requires modeling the various physiologic factors that contribute to the BOLD signal, schematically illustrated in Figure 1.5. Neuronal activation causes a local increase in both CMRO2 and CBF; however, the increase in CBF is several times greater than what is required to meet the additional CMRO2 demand (16), resulting in a counterintuitive decrease in the OEF and thus [dHb], the concentration of deoxyhemoglobin in a voxel. CBF also independently increases the venous cerebral blood volume (CBVv) fraction, which acting alone would increase [dHb]. Overall, the CBF washout effect
dominates, resulting in a reduction in [dHb] and the characteristic increase in signal intensity in R_2^*-weighted BOLD fMRI images.

Figure 1.5: Schematic diagram illustrating the various physiologic contributions relating neuronal activity to BOLD signal.

BOLD signal is a simple exponential function of R_2^* and echo time (TE). Because fractional BOLD signal changes are only a few percent, the exponent can be linearized:

$$\frac{\Delta \text{BOLD}}{\text{BOLD}_0} = -\text{TE} \cdot \Delta R_2^* \quad [1.4]$$

where subscript 0 denotes the baseline state and Δ denotes the change from baseline to activation. ΔR_2^* can be expressed as:

$$\Delta R_2^* = A \cdot \left(CBV_v \cdot [dHb]_v^{\beta} - CBV_v \cdot [dHb]_v^{\beta_0} \right) \quad [1.5]$$
where subscript \(v \) denotes the venous blood compartment, and \(A \) is a scaling factor that incorporates effects due to vessel geometry, magnetic field strength, and the susceptibility difference between blood and tissue (69,70).

The supralinearity (i.e., \(\beta > 1 \)) of Equation 1.5 results from the combined effects of: 1) the linear exponential decay of spins in the vicinity of large venous vessels as predicted by the static dephasing model of Yablonskiy and Haacke (71) and 2) the quadratic exponential decay of spins in the vicinity of small vessels (capillaries) as predicted by the Luz-Meiboom model of fast exchange (72). Monte Carlo simulations based on the distribution of vessel sizes in the brain have suggested a \(\beta \) value of 1.5 at 1.5 T (70). The majority of functional imaging studies in recent years have been conducted at 3.0 T field strength, where \(\beta \) is predicted to be closer to 1.3 (73). However, this traditional physical interpretation of \(\beta \) is oversimplified; for example, it does not account for intravascular BOLD effects, which are especially significant at lower field strengths.

Although non-invasive techniques for direct quantification of CBV exist, most notably vascular-space-occupancy (VASO) MRI (74), they suffer from lower sensitivity, and cannot easily distinguish between arterial and venous CBV. Furthermore, the VASO method requires imaging at a specific blood inversion null point, making whole brain coverage difficult. Thus, total CBV is generally derived from ASL-measured CBF based on the Grubb power relationship relating CBV to CBF (75):

\[
\frac{CBV}{CBV_0} = \left(\frac{CBF}{CBF_0}\right)^\alpha
\]

[1.6]

where \(\alpha \) is the Grubb constant. While the original Grubb constant value (0.38) accounts for total CBV changes, because only dHb-containing CBV\(_v\), rather than total CBV, determines BOLD signal, recent work has suggested a lower value of \(\alpha \), 0.18 (76) or 0.23 (77). Although typically treated as a constant, \(\alpha \) may potentially vary between subjects and brain regions (78-80).
Combining Equations 1.4-1.6 and invoking the Fick Principle (with Y_a approximated to equal 100 \%HbO$_2$) gives an expression relating BOLD signal changes to CMRO$_2$ and CBF:

$$\frac{\Delta \text{BOLD}}{\text{BOLD}_0} = T_E \cdot A \cdot CBV \cdot [(dHb)]^\beta \cdot \left[1 - \left(\frac{\text{CMRO}_2}{\text{CMRO}_2} \cdot (\frac{\text{CBF}}{\text{CBF}_0})^\alpha \right)^\beta \right]$$ \[1.7\]

The above equation can be simplified further by defining M, the maximum possible BOLD signal change that would result from total washout of all dHb from a voxel during a maximal CBF response (59,81). In this theoretical situation, the entire term in parentheses would reduce to 1 (as the CBF term would dominate), resulting in the expression known as the Davis model (59):

$$\frac{\Delta \text{BOLD}}{\text{BOLD}_0} = M \cdot \left[1 - \left(\frac{\text{CMRO}_2}{\text{CMRO}_2} \cdot (\frac{\text{CBF}}{\text{CBF}_0})^{\alpha-\beta} \right)^\beta \right]$$ \[1.8\]

Despite the aforementioned problems with the definitions of α and β, simulations based on a more complete BOLD signal model suggest that the general form of Equation 1.8 is valid if the traditional physical interpretations of α and β are relaxed and they are instead treated as fitting constants (82). This heuristic approach suggests lower values for α (0.14) and β (0.91) would be optimal.

With knowledge of M, subsequent measurement of CBF and BOLD during a functional paradigm allows quantification of fractional changes in CMRO$_2$ by solving Equation 1.8. However, M likely varies both across subjects and brain regions (83,84), and must therefore be “calibrated”.

Davis et al. first demonstrated an approach to BOLD calibration via hypercapnic gas-mixture breathing (59). Assuming that hypercapnia does not result in changes in CMRO$_2$ allows further simplification of Equation 1.8:
\[
\frac{\Delta BOLD}{BOLD_0} = M \cdot \left(1 - \left(\frac{CBF}{CBF_0}\right)^{\alpha - \beta}\right) \quad [1.9]
\]

\(M\) is derived from measurement of BOLD and CBF signal during both baseline and hypercapnia.

Application of hypercapnia calibrated BOLD to functional tasks may provide improved intra- and inter-subject reproducibility compared to traditional BOLD signal methods (85). However, the method has several limitations. Breathing hypercapnic gas can induce breathlessness, which may especially problematic in clinical patients who are distressed or infirm. Furthermore, the assumption of isometabolism has been challenged in several recent papers employing direct CMRO\(_2\) quantification based on T\(_2\) (86,87). Due to the large exponent on the relative CBF changes in Equation 1.9, the technique is highly sensitive to noisy ASL-derived CBF data.

Recently, an alternative approach to BOLD calibration based on hyperoxic gas-mixture breathing was proposed (88). Hyperoxia is assumed to cause minimal changes in blood flow (89). Following the derivation of the deoxyhemoglobin dilution model (81) and assuming minimal hyperoxic CBF changes results in the following calibration model:

\[
\frac{\Delta BOLD}{BOLD_0} = M \cdot \left(1 - \left(\frac{[dHb]}{[dHb]_v}\right)^{\beta}\right) \quad [1.10]
\]

where \([dHb]_v\) is assumed to vary uniformly across the brain and is quantified via capnographic measurement of end-tidal O\(_2\) (EtO\(_2\)) before and during hyperoxia. This approach avoids the patient discomfort associated with hypercapnia as well as the sensitivity of the model to errors in ASL-derived CBF (which is assumed to remain constant). Equation 1.10 does not require invoking the Fick Principle, and therefore does not make the assumption that \(Y_a\) equals 100 %HbO\(_2\). However, it has the major disadvantage of requiring an assumed baseline \(Y_v\) value in order to derive \([dHb]_v\) from the EtO\(_2\) measurements. While \(Y_v\) is quite uniform across the brain
(16), it varies considerably even between healthy subjects (61,66). Finally, hyperoxia is believed to induce a modest reduction in CBF. Although this can be incorporated into the model, it is difficult to measure for individual subjects due to the low sensitivity of ASL to small hyperoxic flow changes and further complicated by the T₁ shortening of blood due to dissolved O₂.

Even more recently, several groups (90,91) have proposed combining multiple gas-mixture breathing paradigms in order to improve the precision of calibrated BOLD, as well as to allow extension of calibrated BOLD to the quantification of not just fractional CMRO₂ changes but also resting state CMRO₂. Of course, the need for multiple gas manipulations adds further complexity to the experimental protocol.

Calibrated BOLD is the single current CMRO₂ quantification with both voxel-wise spatial resolution and sufficient temporal resolution for application to functional experiments. However, it is fraught with challenges, including a complex experimental setup and the many physiologic assumptions inherent in the signal model and calibration procedures. The technique also suffers from low precision, such that significant spatial averaging is often required to yield physiologically plausible CMRO₂ values, negating the advantages of voxel-wise coverage.

1.2.4.3. Extravascular T₂'-Based Methods (qBOLD)

Like calibrated BOLD, T₂'-based methods involve modeling the effects of intravascular dHb on extravascular signal. Rather than invoking the semi-empirical model of Equation 1.5, which requires calibration and corresponding physiologic assumptions, the MRI signal behavior is modeled explicitly in terms of known or measurable physical quantities by modeling the MRI signal in the so-called static dephasing regime (SDR). In the presence of magnetic field inhomogeneities, spins accumulate phase at different rates determined by the local magnetic field strength, causing phase incoherence and signal decay. Diffusion of spins between sites of different field strengths will also cause signal decay. In the SDR, it is assumed that static dephasing leads to complete signal decay before diffusion dephasing has an appreciable effect. These various effects are illustrated in Figure 1.6.
Figure 1.6: Schematic diagram illustrating how vessel size and diffusion distance determine diffusion dephasing versus static dephasing effects. When the vessel radius is small relative to the diffusion distance (left), two protons will dephase relative to one another as they randomly diffuse through a range of magnetic field strengths. When the vessel radius is large relative to the diffusion distance (right), two protons will dephase as a result of the different static magnetic field strengths in their local vicinities, long before diffusion dephasing can occur.

The time behavior of extravascular MR signal in the SDR was first described by Yablonskiy and Haacke (71). By modeling small blood vessels as a network of randomly oriented cylinders, Y_v can be expressed in terms of the spin-echo reversible decay rate, R_2':

$$R_2' = CBV \cdot \gamma \cdot \frac{4}{3} \cdot \pi \cdot \Delta \chi_{do} \cdot Hct \cdot (1 - Y_v) \cdot B_0$$ \hspace{1cm} [1.11]$$

where $\Delta \chi_{do}$ is the susceptibility difference between fully oxygenated and fully deoxygenated erythrocytes (discussed further in Section 1.2.4.5), Hct is the blood hematocrit, and B_0 is the main magnetic field strength. It is noted that Equation 1.11 has the same functional form as Equation 1.5; however, the SDR does not consider diffusion effects, and thus $\beta = 1$.

20
The SDR model also predicts that in a free induction decay experiment, the time dependent MR signal, \(S(t) \), exhibits different behavior in the short and long time scales related to the characteristic time, \(t_c \):

\[
S(t) = S(0) \cdot \exp \left(-\frac{4}{3} \cdot \frac{CBV_v}{t_c} \left(\frac{t}{t_c} \right)^2 \right) \quad t < 1.5 \cdot t_c \quad [1.12]
\]

\[
S(t) = S(0) \cdot \exp[CBV_v] \cdot \exp[-R_2' \cdot t] \quad t > 1.5 \cdot t_c \quad [1.13]
\]

CBV\(_v\) can be solved from evaluation of Equations 1.12-1.13, leaving measurement of \(R_2' \) to determine \(Y_v \). Several spin-echo-based pulse sequences have been developed for \(R_2' \) mapping. The method was first applied to human studies by An and Lin (92), and later improved upon by He and Yablonskiy (60), who additionally considered the effects of static field inhomogeneities and signal contributions from cerebrospinal fluid (CSF) and intravascular blood, dubbing the method ‘quantitative BOLD’ (qBOLD). Such methods have shown promise in defining the ischemic penumbra region in acute stroke and post-stroke recovery (93). A recent iteration of the method (94) suggest that a simulation-based “fingerprinting” approach (95) may allow better fitting of acquired data to the qBOLD model.

Although qBOLD achieves quantitative mapping of \(Y_v \) without gas calibration, it has several limitations. The signal model defined by Equations 1.11-1.13, despite its complexity and subsequent modifications in qBOLD, does not account for contributions from diffusion. The assumption of randomly oriented cylinders critical to the SDR model may be inappropriate near large blood vessels, highly vascularized tumors, or regions of iron deposition. Furthermore, \(R_2' \) mapping techniques are based on spin-echo sampling, and thus have relatively long acquisition times compared to echo-planar imaging (EPI)-based \(R_2^* \) mapping (BOLD). Thus, qBOLD temporal resolution is poor and strictly limited to measurement of steady-state \(Y_v \) and CMRO\(_2\).
1.2.4. Intravascular T_2-Based Methods

A variety of T_2-based methods are based on isolation of venous blood T_2, which can be related to Y_v through theoretical and empirical models. As blood water protons diffuse through the magnetic field inhomogeneities created by dHb-containing erythrocytes, spin-echo irreversible (T_2) dephasing occurs in the intravascular space. This decay can be estimated by a multi-spin-echo Carr-Purcell-Meiboom-Gill (CPMG) pulse sequence, containing 180 degree pulses with spacing t_{CPMG}. The Luz-Meiboom model for two-site fast exchange (72) can be modified and applied to diffusion of spins between intra- and extra-erythrocyte compartments (96-98) to quantify the R_2 of venous blood:

\[
R_{2,blood} = R_{2,plasma} + Hct \cdot \left(\Delta R_{2,v} + (1 - Hct) \cdot (\Delta \omega_v)^2 \cdot \tau \cdot \left[1 - \frac{2\tau}{t_{CPMG}} \cdot \tanh \left(\frac{t_{CPMG}}{2\tau} \right) \right] \right)
\]

where $R_{2,plasma}$ is the relaxation rate of blood plasma, $\Delta R_{2,v}$ and $\Delta \omega_v$ are the relaxation-rate and susceptibility-shift differences, respectively, between the erythrocytes and plasma for exchanging water in the blood, τ is the exchange time between frequency-shifted sites, and t_{CPMG} is the time spacing between consecutive 180-degree pulses in the CPMG echo train. This complex model can be simplified by combining multiple physical quantities into calibration constants, resulting in a second-order polynomial relating R_2 of blood and Y_v:

\[
R_{2,blood} = A + B \cdot (1 - Y_v) + C \cdot (1 - Y_v)^2
\]

where A, B, and C are Hct- and CPMG spacing (t_{CPMG})-dependent constants which can be determined empirically from ex vivo blood samples. Such an approach to Y_v quantification was first demonstrated by Wright et al. in the major thoracic vessels (98) and later demonstrated in cerebral veins in response to visual stimulation (96,99). Figure 1.7 shows an example calibration curve obtained from ex vivo blood samples.
Figure 1.7: Calibration curve relating Y_v to measured T_2 and Hct for $t_{CPMG}=10$ ms. Each red dot represents an ex vivo blood sample with known Hct and Y_v obtained from gold-standard co-oximetry. Figure adapted from (100).

Determining the values of the calibration constants in Equation 1.15 is a major challenge for these T_2-based methods. These constants lack specific physical meaning and must be determined empirically from measurements in ex vivo blood samples using a range of precisely controlled oxygenation and Hct levels. Furthermore, the constants must be derived separately for different field strengths and t_{CPMG} times, ideally using a sequence with a CPMG echo train identical to that used for in vivo T_2 mapping. Care must be taken in the calibration experiment to maintain normal blood chemistry (e.g., temperature and pH) and prevent blood settling.

Another major challenge for T_2-based methods is the need to isolate pure blood signal, as partial voluming of tissue or CSF will significantly bias measured T_2 and Y_v. Even in the largest vessels, such as the superior sagittal sinus (SSS), blood signal isolation is non-trivial due to the relatively large voxel sizes required by the fast imaging readouts used in CPMG-based T_2-mapping sequences. Several different approaches have been proposed, as discussed below.

Spin-tagging venous blood isolation (TRUST)

T_2-Relaxation-Under-Spin-Tagging (TRUST) (61) isolates venous blood signal via application of spin tagging, similar in principle to ASL-based CBF quantification. Subtraction of equivalent images acquired with and without venous blood inverted (tag) isolates pure blood signal.
Application of various amounts of CPMG T₂ weighting prior to imaging allows for quantification of blood T₂. This method has been applied in both the SSS and internal jugular veins, with very comparable values obtained (101), suggesting that the SSS can be used as a surrogate for global Yᵥ. Combining TRUST with PC-MRI CBF quantification allows determination of CMRO₂ (101).

Since its introduction, TRUST has been improved in terms of speed and reliability (102) and extensively validated (100,103,104). It has been applied widely in physiologic investigations including the effects of hypercapnia (87), hypoxia and hyperoxia (105), caffeine (106), exercise (107), and cognitive training (108), in studies of neonatal development (109) and normal aging (110), and in diseases including multiple sclerosis (111) and mild cognitive impairment (112).

Although providing a robust and reliable approach to global Yᵥ quantification, TRUST temporal resolution for CMRO₂ quantification is on the order of minutes, due to the temporally inefficient nature of CPMG-based T₂-mapping and the need for a separate measurement of CBF. This limits the methods application to steady-state measurement of CMRO₂.

Phase-contrast venous blood isolation (TRU-PC, projection-based T₂)

As an alternative to spin tagging, blood signal can also be isolated through complex difference subtraction of images acquired with different first gradient moments (62,63), in a similar manner to PC-MRI blood flow quantification. An advantage of this approach over TRUST is that it does not require spin tagging in a drainage territory corresponding to a particular vein, and can thus be applied to smaller cortical vessels with arbitrary vessel geometry, as demonstrated using the T₂-Relaxation-Under-Phase-Contrast (TRU-PC) method (62).

A similar technique using a projection-readout was demonstrated to quantify Yᵥ in as little as 15 seconds (63). However, because the complex difference signal is also dependent on blood flow, multiple averages are required to ensure blood flow effects are removed. This limits application of the technique to situations of steady-state blood flow, and partially negates the advantage of high temporal resolution.
The utility of regional Y_v quantification based on intravascular (as opposed to voxel-wise) measurement is fundamentally limited. Unlike arterial perfusion territories, venous drainage territories corresponding to particular vessels are poorly defined. Thus, determining the Y_v of a given tissue region from the Y_v measured within nearby veins is a major challenge. A recently proposed method for quantitative imaging of venous drainage territories (113) shows promise, though spatial and temporal resolution are significantly limited by the need to spatially encode both venous vessels and corresponding tissue regions separately.

Velocity-selective-excitation venous blood isolation (QUIXOTIC, VSEAN)

Clever application of velocity selective excitation pulses (114) in combination with blood tagging and T_2-preparation similar to TRUST can be used to specifically isolate signal from venous blood in the post-capillary venous compartment. Two similar techniques, QUantitative Imaging of eXtraction of Oxygen and TIssue Consumption (QUIXOTIC) (64) and Velocity Selective Excitation with Arterial Nulling (VSEAN) (65), use this approach to obtain voxel-wise quantification of Y_v. However, because post-capillary blood comprises only a few percent of total parenchymal volume, these techniques suffer from low sensitivity and SNR. As such, they require multiple averages, and thus have long acquisition times even while being limited to a single acquisition slice. CSF signal contamination is also a concern, and may result in overestimation of Y_v values.

1.2.4.5. Intravascular Susceptibility-Based Methods

While the aforementioned techniques are based on modeling the effect of paramagnetic dHb on transverse relaxation, Y_v can also be more directly quantified by measurement of blood susceptibility itself. This technique exploits the relative paramagnetism of dHb versus oHb, which causes the susceptibility of whole blood relative to surrounding tissue, $\Delta \chi$, to be linearly related to Y_v (115):

$$\Delta \chi = Hct \Big(\Delta \chi_{do} (1 - Y_v) + \Delta \chi_{oxy} \Big) \quad [1.16]$$
where Hct is venipuncture-derived hematocrit, and $\Delta \chi_{do}$ and $\Delta \chi_{oxy}$ are the experimentally determined volume susceptibility differences between fully oxygenated and deoxygenated erythrocytes and fully oxygenated erythrocytes and water, respectively. Values of $4\pi \times 0.273$ p.p.m and $4\pi \times 0.008$ p.p.m. (SI units) are used for $\Delta \chi_{do}$ and $\Delta \chi_{oxy}$, respectively, based on theoretical calculations (116,117) as well as ex vivo calibration experiments (116,118). Of note, the model in Equation 1.16 assumes that the susceptibilities of water, plasma, and tissue are the same to within experimental noise, and also assumes a single value for the mean corpuscular hemoglobin content (MCHC), the concentration of hemoglobin per volume of packed red blood cells. MCHC is known to vary in certain diseases, particularly anemia. Thus, a more complete model is obtained by substituting $MCHC_{\text{norm}}/Hb$ in place of Hct in Equation 1.16, where Hb is the individual subject’s measured Hb, and $MCHC_{\text{norm}}$ is the MCHC value assumed in the derivation of the $\Delta \chi_{do}$ and $\Delta \chi_{oxy}$ constants, which, for the values used in this work (118), was 33.3 g/dL, corresponding to a Hct/Hb ratio of 0.03.

Although blood susceptibility cannot be measured directly, it induces a local field offset, ΔB, which can be measured with an MRI multi-echo gradient-recalled echo (GRE) field mapping sequence as:

$$\Delta B = \Delta \phi / \gamma \Delta TE \quad [1.17]$$

where $\Delta \phi$ is the difference in phase accrual between echoes spaced apart by ΔTE in the blood versus surrounding reference tissue, and γ is the proton gyromagnetic ratio.

Thus, solving for Y_v hinges on determining $\Delta \chi$ from the measured ΔB. This relationship can be described in terms of a convolution in the image domain:

$$\Delta B = d \otimes \chi \quad [1.18]$$

where d is the dipole kernel, or a point-wise multiplication in the Fourier domain.
\[F(\Delta B) = D \cdot X \quad [1.19] \]

where \(D \) is the dipole kernel in the Fourier domain:

\[D = \frac{1}{3} - \frac{k^2}{k^2} \quad [1.20] \]

Because \(D \) contains zeros on a pair of conical surfaces at 54.6 degrees relative to the z-direction, inversion of the dipole kernel is ill-posed (119). Regularization or conditioning is necessary in order to find a unique solution for \(\Delta \chi \) given \(\Delta B \) (reviewed in (120)), the challenge of which forms the central focus of the growing field of quantitative susceptibility mapping (QSM).

Susceptometry-based oximetry (OxFlow)

Although inversion of Equation 1.18 is ill-posed in the general case, it can be solved for certain simple susceptibility distributions, including ellipsoids, and, of particular relevance to blood vessels, cylinders. By modeling a venous vessel of interest as a pseudo-infinite cylinder (i.e., with length >> width) and accounting for field cancellation due to the Lorentz sphere effect, the relationship between \(\Delta B \) and \(\Delta \chi \) is given by Equation 1.21 (121,122):

\[\Delta B = \frac{1}{6} \Delta \chi B_0 \left(3 \cos^2 \theta - 1 \right) \quad [1.21] \]

where \(\theta \) is the vessel angle with respect to \(B_0 \). Combining Equations 1.16, 1.17, and 1.21 allows for determination of \(Y_v \) by measurement of \(\Delta \phi \):

\[Y_v = 1 - \frac{6 \left(\Delta \phi / \Delta TE \right)}{\gamma B_0 \Delta \chi_{v} \cdot Hct \left(3 \cos^2 \theta - 1 \right)} + \frac{\Delta \chi_{oxy}}{\Delta \chi_{do}} \quad [1.22] \]
Theoretical modeling suggests this infinite cylinder model is quite accurate for vessels with angles less than 30 degrees relative to B_0 (123). The model is schematically illustrated in Figure 1.8.

\[\Delta \phi = \Delta \phi_{\text{blood}} - \Delta \phi_{\text{ref}} \]

Figure 1.8: Schematic illustration of a blood vessel approximated by the infinite cylinder model. Due to paramagnetic dHb, MR signal in the blood has additional phase ($\Delta \phi_{\text{blood}}$) compared to surrounding reference tissue ($\Delta \phi_{\text{ref}}$). The phase difference ($\Delta \phi$) and vessel angle (θ) are the two imaging-derived parameters used to compute Y_v in Equation 1.22.

In addition to providing a surrogate for global Y_v (63,101), the SSS is long, relatively straight, and nearly parallel to the B_0 field when the subject is lying supine in an MRI scanner, making it an excellent candidate for application of the infinite cylinder model (Equation 1.21). Application of this susceptometry-based oximetry (SBO) approach to Y_v quantification in the SSS has been validated both theoretically (123) and with anatomical phantom models (66).

Because it is based on a simple 2D GRE phase mapping sequence, SBO is very fast compared to T_2-based methods such as TRUST, and can be naturally interleaved with GRE-based PC-MRI for simultaneous quantification of Y_v and CBF, and, thus, CMRO$_2$. This combined blood Oxygenation and Flow (OxFlow) pulse sequence has been used to quantify CMRO$_2$ at rest (66) as well as in response to hypercapnia in both adults (124) and neonates with congenital heart disease (125).

The simple, first principle model relating $\Delta \phi$ to Y_v in SBO is a major advantage over the complex, ex vivo calibration model required in TRUST and other T_2-based Y_v techniques. However, this
model is also a limitation, as it restricts SBO to vessels that are sufficiently long, straight, and parallel to the B_0 field. Regional venous vessels with appropriate geometry are limited, making the technique ideally suited for global Y_v quantification in the SSS. A second limitation of SBO is that static magnetic field inhomogeneity from non-dHb sources (e.g., air-tissue interfaces) must be removed. This can be accomplished with polynomial fitting (126), but will perform poorly in situations of severe background field variation (e.g., near metal orthodontics).

Quantitative susceptibility mapping (Quantitative Venography, technique by Zhang et al.)

The second subset of susceptibility-based Y_v quantification techniques involve 3D phase mapping of the brain and dipole inversion using QSM techniques. This has been done by: 1) focusing on only the intravascular signal to determine Y_v of large and medium sized (MRI-resolvable) veins (67), and 2) modeling the susceptibility effects of the small venous blood compartment of tissue to determine voxel-wise Y_v (68). The first approach produces a venogram of Y_v values in the venous vascular tree, whereas the second gives voxel-wise Y_v maps similar to the qBOLD technique. In both methods, ASL is used to measure CBF. Acquisition times for the 3D field maps are several minutes, thus, both techniques are limited to measurement of baseline physiology or steady-state stimuli.

Though technically remarkable, these methods have significant practical limitations. As with T_2-based techniques for small vessel Y_v quantification, the venogram approach requires relating vessel-specific Y_v values to voxel-wise CBF values, for which there is currently no feasible approach. Though the voxel-wise method avoids this problem, due to the small blood volume fraction of tissue, the induced changes in susceptibility are approximately two orders of magnitude smaller than the corresponding susceptibility shifts measured using intravascular methods. In fact, the intravascular blood susceptibility model (Equation 1.16) ignores such shifts in tissue susceptibility entirely. Furthermore, the voxel-wise method requires imaging during both baseline and an assumed isometabolic stimulus (with caffeine used in (68)) in order to separate blood and non-blood susceptibility effects.
1.2.4.6. Dynamic Quantification of CMRO$_2$

Measurement and mapping of steady-state CMRO$_2$ has proven useful in studies of human physiology, and demonstrated promise as a potential biomarker in neurologic disease. However, the brain must respond to dynamic changes in oxygen supply and demand that occur on the order of seconds, including physiologic stimuli such as acute hypoxia as well as neuronal activation during functional tasks. Better methodology for dynamic quantification of CMRO$_2$ – both whole brain quantification and mapping – is needed. Such methods would provide insight into how neuronal signaling events unfold over time, and the temporal dynamics of neurometabolic-hemodynamic coupling. It could also provide a tool to study diseases of altered neurometabolism and neurovascular reactivity.

In assessing the existing methods for MR-based CMRO$_2$ quantification, there are clear tradeoffs between robustness, spatial coverage, and temporal resolution. Simultaneous quantification of Y_v and flow is critical for any dynamic technique, and currently possible only with calibrated BOLD and SBO. Only calibrated BOLD has sufficient temporal resolution to measure dynamic functional changes and also provide voxel-wise spatial resolution. Unfortunately, it relies on complex theoretical and experimental models, and only relative values are possible without multiple calibration states. On the other end of the spectrum, OxFlow provides a robust and relatively rapid means of whole-brain CMRO$_2$ quantification. It has been used to study physiologic and pathologic processes that are expected to affect the whole brain uniformly and thus do not require mapping, for example, the response to hypercapnia. However, even OxFlow is an order of magnitude slower than BOLD, thus limiting its ability to probe the dynamic neurometabolic response to acute stimuli or functional activation.

1.3. Outline of Dissertation Chapters

This dissertation describes the development and application of novel MR-based CMRO$_2$ quantification methods capable of dynamic assessment of cerebral metabolism. In Chapter 2, a simple, susceptibility-based OxFlow method for whole-brain CMRO$_2$ quantification with three-
second temporal resolution is described, validated, and applied to demonstrate a small but significant increase in CMRO$_2$ in response to volitional breath-hold apnea. In Chapter 3, this rapid OxFlow method is combined with the robust and reproducible, but much slower TRUST technique. The resulting interleaved TRUST (iTRUST) pulse sequence achieves significantly improved T$_2$-based CMRO$_2$ temporal resolution, and permits direct, simultaneous comparison of susceptibility- and T$_2$-based Y$_v$ quantification. iTRUST is used to investigate the highly debated hypercapnic CMRO$_2$ response to better interpret conflicting results from recent studies. In Chapter 4, the potential for improved calibrated BOLD via direct quantification of global Y$_v$ is described and demonstrated using a novel pulse sequence combining OxFlow with traditional multi-slice, double-echo ASL/BOLD. Using hyperoxia and hypercapnia gas-mixture breathing protocols, the technique is demonstrated in comparison to the traditional Davis model approach. Finally, in Chapter 5, the methods outlined in Chapter 2 are translated in a small clinical pilot study of OSA patients and controls. OSA-associated differences in both baseline CMRO$_2$ and the CMRO$_2$ apneic response are reported and discussed.
Chapter 2: High Temporal Resolution Quantification of Global Cerebral Metabolic Rate of Oxygen Consumption in Response to Apneic Challenge

2.1. Abstract

We present a technique for quantifying global CMRO$_2$ in absolute physiologic units at three-second temporal resolution and apply the technique to quantify the dynamic CMRO$_2$ response to volitional apnea. Temporal resolution of three seconds was achieved via a combination of view-sharing and SSS-based estimation of tCBF rather than tCBF measurement in the neck arteries. These modifications were first validated in three healthy adults and demonstrated to produce minimal errors in image-derived blood flow and Y$_v$ values. The technique was then applied in 10 healthy adults during an apnea paradigm of three repeated 30 s breath-holds. Subject-averaged baseline tCBF, AVO$_2$D, and CMRO$_2$ were 48.6 \pm 7.0 mL/100g/min (mean \pm SD), 29.4 \pm 3.4 %HbO$_2$, and 125.1 \pm 11.4 µmol/100g/min, respectively. Subject-averaged maximum changes in tCBF and AVO$_2$D were 43.5 \pm 9.4% and -32.1 \pm 5.7%, respectively, resulting in a small (6.0 \pm 3.5%) but statistically significant ($P = 0.00044$, two-tailed t-test) increase in average end-apneic CMRO$_2$. This method can be used to investigate neurometabolic-hemodynamic relationships in normal physiology, to better define the biophysical origins of the BOLD signal, and to quantify neurometabolic responsiveness in diseases of altered neurovascular reactivity.

2.2. Introduction

Because cerebral metabolism is almost entirely oxidative, continuous O$_2$ delivery to the brain is critical and tightly regulated. The CMRO$_2$, defined as the brain oxygen consumption rate per unit tissue mass, is a direct measure of oxidative metabolism, in contrast to indirect measures such as perfusion or BOLD MRI signal. Therefore, CMRO$_2$ is an ideal parameter for investigating relationships between neuronal activity, blood flow, and cerebral metabolism in normal physiology.
and diseases of cerebrometabolic dysfunction. In fact, alterations in cerebral oxygen metabolism are associated with many of the most common neurologic disorders, including mild cognitive impairment (112), Alzheimer’s disease (34), Parkinson’s disease (127), and multiple sclerosis (111).

In recent years, significant progress has been made toward non-invasive MR-based methods for absolute CMRO$_2$ quantification. Much attention has focused on developing methods to quantify CMRO$_2$ absolutely (in physiologic units) and on a voxel-wise basis. As overviewed in Chapter 1, such voxel-wise methods model the effect of deoxygenated hemoglobin on either brain tissue T_2' (60), T_2 (64), or BOLD signal (90) to quantify the voxel-wise Y_v, which can be combined with ASL CBF measurement to yield CMRO$_2$. In contrast, methods that quantify oxygen extraction globally model the effect of dHb on the intravascular T_2 (63,101) or MR signal phase (66,128) of large veins to quantify intravascular Y_v, which combined with PC-MRI-based quantification of CBF yields CMRO$_2$. Although these intravascular methods lack the ability to measure local changes in oxygen metabolism, many physiologic states and neurologic disorders are global in nature, and therefore assessable via measurement of global CMRO$_2$. Furthermore, voxel-wise absolute CMRO$_2$ techniques require many minutes for each CMRO$_2$ measurement and therefore cannot quantify changes in response to dynamic physiologic challenges or neurologic stimuli. By sacrificing spatial specificity, intravascular methods enable CMRO$_2$ quantification in clinically feasible scan-times and at much higher temporal resolutions – seconds rather than minutes – compared to voxel-wise approaches.

Based on the infinite cylinder model (121,122), SBO is a simple and robust method for intravascular CMRO$_2$ quantification. Unlike T_2 relaxation-based methods for quantifying intravascular Y_v, the paramagnetic cylinder model approach does not require prior calibration to specific scanners, sequences, or blood Hb/Hct values (Hb and Hct are input parameters theoretically included in the model). It also has equal accuracy and precision across all Y_v values and is scalable with field strength. These features make the model suitable for application to a
variety of clinical populations and experimental conditions, including longitudinal and multi-center studies. The simplicity of this approach also enables rapid CMRO$_2$ quantification in response to stimuli. For example, in recent work (124), CMRO$_2$ was measured at 25-second temporal resolution in response to hypercapnia by application of a SBO method and found to be constant during hypercapnic steady state. Though 25-second temporal resolution represents a drastic improvement over previous approaches, changes in cerebral oxygen supply and demand take place on the order of seconds, and thus require yet improved temporal resolution to be fully resolved. Calibrated BOLD-based methods can assess relative CMRO$_2$ changes in seconds (85), however, such methods cannot quantify CMRO$_2$ in absolute physiologic units. Furthermore, these BOLD-based methods require calibration via gas-mixture breathing, complicating application to human subjects, and are based on the assumption that the response to such gases is isometabolic, itself a topic of debate (117).

Higher temporal resolution CMRO$_2$ quantification would provide valuable insight into global neuronal activity during various dynamic stimuli. For instance, it could be applied to validate whether the aforementioned gas-mixture breathing stimuli used in calibrating the BOLD fMRI signal, including hypercapnic (59,81) and hyperoxic (88) gas-mixture breathing as well as breath-hold (129), are in fact isometabolic and over what time frame (i.e., whether a delay exists in reaching an isometabolic steady state). Validating these assumptions is critical given the extensive use of fMRI in biomedical research and the growing interest in making BOLD fMRI more quantitative. Further, applying the dynamic CMRO$_2$ method to neuronal activation tasks could help elucidate the biophysical mechanisms underlying the BOLD response, including the relative CMRO$_2$ contribution to the BOLD post-stimulus undershoot, a topic of significant contention (130).

Breath-hold apnea is another important area of investigation where high temporal resolution CMRO$_2$ measurement is essential. Apnea is involved in a number of important diseases, such as asthma, chronic obstructive pulmonary diseases, and OSA. The normal physiologic response to
apnea maintains cerebral oxygen delivery via reduced cardiac output, peripheral vasoconstriction, and cerebral vasodilation (131). However, it has been suggested that in OSA the repeated nocturnal apneic events caused by upper airway mechanical failure may result in blunting of this normal response (37,132,133), potentially explaining the extensive neurologic pathology associated with the disease. Exploration of this hypothesis requires better methods for quantifying the cerebrometabolic apneic response. While non-MR methods such as Doppler ultrasound (37) or NIRS (133) have been applied to study the neurometabolic response to apnea in subjects with OSA, these techniques measure changes in either CBF or tissue O$_2$ saturation (S$_{tO_2}$), but not CMRO$_2$, which requires simultaneous quantification of CBF and tissue oxygen extraction. CMRO$_2$ is maintained across healthy subjects both at baseline (66) and in response to certain physiologic stimuli such as hypercapnia (124), suggesting that it is a more significant index for assessing neurovascular dysfunction than either blood flow or oxygenation alone. Developing methods to better assess the normal CMRO$_2$ response to apnea and its potential alteration in OSA could improve understanding of OSA neuropathology and provide insight into OSA treatment.

In this section, we present and validate a method for dynamic CMRO$_2$ quantification with three-second temporal resolution, which extends the SBO approach previously described (66) to dynamic stimuli. This temporal resolution is achieved by using view-sharing to reduce the number of phase-encode lines by four-fold and by combining the Y$_v$ and flow quantification portions of the sequence. After validating the assumptions inherent in these temporal-resolution-improving measures, the technique was applied to a cohort of healthy individuals during a volitional apnea paradigm, both to demonstrate the method’s sensitivity and to characterize the normal apneic CMRO$_2$ response.

2.3. Methods

2.3.1. CMRO$_2$ Quantification via the Fick Principle

The cerebral metabolic rate of oxygen is estimated by combining venous and arterial oxygen saturation and tCBF measurements using the Fick Principle (10-12):
\[CMRO_2 = C_a \cdot tCBF \cdot (Y_a - Y_v) \] \[2.1\]

where \(CMRO_2 \) is the cerebral metabolic rate of oxygen consumption in \(\mu \text{mol} \) per minute per 100 g brain tissue, \(tCBF \) is the total cerebral blood flow in mL per 100 g brain tissue per minute, \(Y_a \) and \(Y_v \) are the arterial and venous oxygen saturation in %HbO_2, and \(C_a \) is the arterial oxygen content in \(\mu \text{mol} \) of \(\text{O}_2 \) per mL blood, a product of the measured hemoglobin concentration (Hb) and the \(\text{O}_2 \) carrying capacity of hemoglobin. \(C_a \) varies for each subject, and is given by:

\[C_a = 0.620559 \cdot Hb \] \[2.2\]

where Hb is the venipuncture-derived hemoglobin in g/dL and the scaling factor is based on a hemoglobin molar mass of 64458 g/mol (43). \(Y_a \) can be measured continuously with a digital pulse oximeter, leaving \(Y_v \) and \(tCBF \) to be quantified from MRI.

2.3.2. Principles of Susceptometry-Based Global CMRO\(_2\) Quantification

SBO exploits the relative paramagnetism of deoxygenated versus oxygenated hemoglobin, which causes the susceptibility of whole blood relative to surrounding tissue, \(\Delta \chi \), to be linearly related to \(Y_v \) (115):

\[\Delta \chi = Hct \left(\Delta \chi_{do} \left(1 - Y_v \right) + \Delta \chi_{oxy} \right) \] \[2.3\]

where Hct is the venipuncture-derived hematocrit, and \(\Delta \chi_{do} \) and \(\Delta \chi_{oxy} \) are the experimentally determined volume susceptibility differences between fully oxygenated and deoxygenated erythrocytes and fully oxygenated erythrocytes and water, respectively. Values of \(4\pi \times 0.273 \) and \(4\pi \times 0.008 \) p.p.m. (SI units) are used for \(\Delta \chi_{do} \) and \(\Delta \chi_{oxy} \), based on ex vivo calibration experiments (116,118).

Although this blood susceptibility cannot be measured directly, it induces a local field offset, \(\Delta B \), which can be measured with an MRI multi-echo GRE field mapping sequence as:
\[\Delta B = \Delta \phi / \gamma \Delta TE \quad [2.4] \]

where \(\Delta \phi \) is the difference in phase accrual between echoes spaced apart by \(\Delta TE \) in the blood versus surrounding reference tissue, and \(\gamma \) is the proton gyromagnetic ratio. Quadratic fitting is used to remove contributions to \(\Delta \phi \) from static field inhomogeneities (126).

Solving for \(Y_v \) thus hinges on determining \(\Delta \chi \) from the measured \(\Delta B \), an inversion problem that is mathematically ill-posed in the general case (119). However, by modeling the vessel of interest as a pseudo-infinite, circular cylinder, and accounting for field cancelation due to the Lorentz sphere phenomenon (121,122), the relationship between \(\Delta B \) and \(\Delta \chi \) can be calculated analytically:

\[\Delta B = \frac{1}{6} \Delta \chi B_0 \left(3 \cos^2 \theta - 1 \right) \quad [2.5] \]

where \(\theta \) is the vessel angle with respect to the main magnetic field, \(B_0 \). Combining Equations 2.3-2.5 allows determination of \(Y_v \) by measurement of \(\Delta \phi \):

\[Y_v = 1 - \frac{6 \left(\Delta \phi / \Delta TE \right)}{\gamma B_0 \Delta \chi_{do} \text{Hct} \left(3 \cos^2 \theta - 1 \right) + \Delta \chi_{oxy} / \Delta \chi_{do} \quad [2.6] \]

Because the SSS is long, relatively straight, and virtually parallel to the \(B_0 \) field with the subject lying supine, it is an excellent candidate for application of the infinite cylinder model. Application of the model to the SSS has been validated both theoretically (123) and with anatomical phantom models (66). Furthermore, the SSS is the largest cerebral vein, and it has been shown that oxygen saturation levels in the SSS are comparable to global cerebral \(Y_v \) levels measured in the internal jugular vein (63,101), making the SSS an appropriate surrogate for global cerebral \(Y_v \). Direct susceptometry-based measurement of \(Y_v \) in the internal jugular vein is difficult due to the often severe susceptibility artifacts caused by the proximity of air spaces such as the oral cavity and trachea.
2.3.3. Combination of SBO and PC-MRI for CMRO₂ Quantification (OxFlow)

Non-gated PC-MRI is used to quantify tCBF. The method utilizes motion-sensitizing gradient waveforms to encode information about velocity into the phase of the MR signal. Specifically, the pulse sequence involves two interleaves, both having null zeroth gradient moment along the direction of blood flow but nonzero first gradient moment. The latter determines the sensitivity of the accrued phase difference between the two interleaves, Δφ, to the velocity of the flowing spins as:

$$\Delta \phi = \gamma \Delta M_1 v \quad [2.7]$$

where ΔM₁ is the difference in the fist moment between the two interleaves and is dictated by a user-defined parameter VENC, defined as:

$$VENC = \gamma \Delta M_1 / \pi \quad [2.8]$$

VENC represents the velocity that causes a net phase accrual of π radians and therefore the maximum velocity that can be resolved without phase aliasing, and is typically chosen to be approximately 30% higher than the maximum velocity expected. Flow is quantified from velocity maps via multiplication of average vessel blood flow velocity by vessel cross-sectional area. In order to quantify CMRO₂ per unit brain mass, flow must be normalized to total brain volume, which is quantified with a T₁-weighted 3D magnetization-prepared rapid GRE (T₁ MP-RAGE) pulse sequence (134).

In previous work, these phase-based techniques for quantifying Yᵥ and tCBF have been combined to quantify global CMRO₂ at rest (66) and during hypercapnic gas breathing (124). In this approach, Yᵥ is measured in the SSS and tCBF is measured simultaneously in the internal carotid and vertebral arteries of the neck using a two-slice-interleaved multi-echo GRE sequence. Four interleaves are required for each phase encoding, two to generate susceptometry weighted
phase difference maps and two to generate velocity encoded phase maps, resulting in a temporal resolution of 25 seconds.

2.3.4. Pulse Sequence Modifications for Improved Temporal Resolution

Modification of the susceptibility-based CMRO$_2$ technique to achieve three-second temporal resolution (Figure 2.1) was accomplished via two changes to the original approach:

1. Combining of sequence interleaves: Rather than using two interleaves with different echo times to generate the Y_v weighted phase-difference map, a multi-echo readout enables generation of a phase-difference map from data acquired in a single interleave. Any phase accrued due to velocity encoding will equally affect both echoes of the multi-echo readout, as both echoes have
the same polarity. Thus, the velocity and susceptometry interleaves can be combined. As a consequence of this modification, SSS blood flow (SSSBF) is quantified rather than tCBF from the neck arteries. However, tCBF can be accurately estimated by calibrating SSSBF based on the SSSBF:tCBF ratio measured at baseline with a two-slice-interleaved version of the sequence. This reference sequence (Figure 2.1a) is run immediately before starting the main (SSS-only) high temporal resolution CMRO$_2$ sequence (Figure 2.1b), which is continued for the remainder of the scan. This modification yields a two-fold temporal resolution increase.

2. Keyhole (136) reconstruction with reduced phase encoding lines: The number of phase-encode lines in the main (SSS-only) CMRO$_2$ sequence is reduced by a factor of four from 208 to 52, and outer k-space is filled with data acquired from the same fully-phase encoded reference sequence used for calibrating SSSBF to tCBF (outer k-space data from echoes 1 and 2 in Figure 2.1a is added to continuously updated central k-space data from echoes 4 and 5 in Figure 2.1b). Unlike the main sequence, the reference sequence retains full phase encoding to facilitate Keyhole image reconstruction and allow higher fidelity quantification of the SSSBF:tCBF ratio. This modification yields a four-fold temporal resolution increase.

The resultant pulse sequence (Figure 2.1a-b) has the following parameters: FOV = 208×208 mm2 (head slice), 176×176 mm2 (neck slice), voxel size = 1×1×5 mm3 (head slice), 0.85×0.85×5 mm3 (neck slice), TR/TE1/ΔTE = 28.85/5.5/7.04 ms, bandwidth = 521 Hz/pixel, flip angle = 15 degrees, VENC = 60 cm/s (head), 80 cm/s (neck), temporal resolution = 12 s (reference sequence), 3 s (main sequence). The modifications described combine to provide an eight-fold improvement in temporal resolution without reducing theoretical SNR. In fact, because two phasedifference maps are simultaneously generated at every time point (one for each flow encoding) and subsequently averaged, SNR should theoretically improve by approximately $\sqrt{2}$. The modifications described depend on several crucial assumptions that must be validated:

1. In order to determine tCBF from the SSSBF:tCBF ratio at baseline, the SSSBF:tCBF ratio must remain constant throughout the experiment. Because the SSS receives venous blood from most
of the cortex, this assumption should be valid, especially during global physiologic challenges such as apnea or gas-mixture breathing.

2. Keyhole reconstruction assumes that dynamic information is band-limited in k-space (i.e., image changes are low spatial-frequency processes). To satisfy this assumption, the diameter of any features of interest must be approximately greater than the Keyhole reduction factor times the static resolution, or 4 mm for the 1 mm resolution and 4x Keyhole reduction factor used in the sequence described. The SSS is approximately 10 mm in diameter, and thus should fulfill this requirement.

3. Keyhole reconstruction assumes anatomic correspondence between the reference images and the main sequence images, and therefore requires that there be no movement over the course of the experiment. This is achievable at the level of the SSS because it is easy to keep the head stationary in the MR scanner, even during a challenging paradigm such as volitional apnea.

In addition to improving temporal resolution, another motivation for velocity measurement in the SSS only is that the neck vessels are more prone to movement, especially during physiologic paradigms such as apnea, violating assumption 3, and are also relatively smaller, violating assumption 2.

2.3.5. In Vivo Magnetic Resonance Imaging Studies

Human subject studies were approved by the Institutional Review Board of the University of Pennsylvania. Ten healthy volunteers (6 males, 4 females, ages 29 ± 4 years) were recruited and participated after giving written informed consent. The subjects were judged to be healthy on the basis of their medical history. The particular population demographic was chosen to ensure maximal subject compliance to the physiologic paradigms. In all studies, images were acquired on a 3T Siemens Tim Trio system (Siemens Medical Solutions, Erlangen, Germany) using a 12-channel head coil and 2-channel neck coil. A vendor-provided GRE axial localizer scan was used to select the location of the vessels of interest (SSS, internal carotid arteries, and vertebral
arteries) and estimate θ, the tilt angle of the SSS with respect to B₀, from the coordinates of the centroid of the vessel for quantification of Yᵥ as in Equation 2.6.

2.3.5.1. Validation of Critical Methodological Assumptions
Three of the volunteers (2 males, 1 female, ages 25 ± 1 years) completed a tube-breathing paradigm involving 2.5 minutes of normal breathing baseline, 2.5 minutes of breathing through 10 feet of plastic tubing with an attached mouthpiece to induce changes in flow and Yᵥ, and 2.5 minutes of normal breathing recovery. Tube-breathing was chosen in this validation study because it induces a mixed hypercapnic/hypoxic state, similar in nature to breath-hold but sustainable over a long enough duration to acquire multiple data points at both slice locations with full phase encoding (137). The fully phase-encoded, two-slice-interleaved reference sequence was run during the entire paradigm, allowing quantification of the SSSBF:CBF ratio over the course of the paradigm to test whether it remains constant during an apnea-like physiologic paradigm (assumption 1). Using full phase-encoding also allows comparison of SSSBF and Yᵥ values obtained from retrospectively Keyhole reconstructed data, where various amounts of outer k-space are replaced at each time point with the corresponding data from the first time point, as if only the central k-space had originally been acquired, as is the case when running the main sequence. This tests whether changes in parameter values are sufficiently bandlimited in k-space to be accurately determined when using Keyhole sampling and image reconstruction (assumption 2). Finally, because the paradigm requires both manipulation of the tube mouthpiece and significantly increased respiration, it challenges the subject’s ability to remain static (assumption 3).

2.3.5.2. Quantification of CMRO₂ in Response to Apneic Challenge
Volunteers completed an apnea paradigm involving three repeated blocks of a 30 s normal breathing baseline period, a 30 s breath-hold apnea period, and a 90 s normal breathing recovery period. Before being scanned, subjects were instructed that all breath-holds should be completed at functional residual capacity, in other words, at normal end expiration. After running the
reference sequence, the main sequence was run for the length of the 7.5-minute paradigm as in Figure 2.1c, allowing quantitation of Y_v and tCBF at three-second temporal resolution. Y_a was measured continuously during the paradigm with a digital pulse oximeter placed on the right middle finger. Except in cases of abnormal cardiac anatomy, blood pumped to the brain and periphery originates from the same mixed pool in the left ventricle and therefore has the same Y_a. Thus, digital pulse oximetry will reflect cerebral Y_a. To correct for the known temporal delay in the measured Y_a when using digital pulse oximetry, the Y_a curve was shifted forward in time for each subject so that arterial resaturation occurs 7.5 seconds after cessation of breath-hold, matching the known circulatory transport delay between the lungs and brain (138) to within the temporal resolution of the MR pulse sequence (3 s). Breath-hold at normal end expiration was chosen to keep breath-holds as consistent as possible across repeats and subjects, ensuring that inspiration would occur immediately at the end of the breath-hold period. Subjects were verbally coached during the imaging experiment to “breathe in”, “breathe out”, and “stop breathing” six, three, and zero seconds before the start of each apnea period, respectively, to ensure exact timing of the breath-holds. All subjects were able to successfully complete each of the breath-holds as confirmed by direct observation and pulse oximetry data. Following the breath-hold paradigm, a T_1-weighted MP-RAGE image data set (voxel size = 1×1×1 mm3) was acquired for normalization of tCBF to brain volume. Total brain volume was obtained using a semiautomated region-growing algorithm in ITK-SNAP (139). After completion of the MR imaging experiment, each subject gave a venous blood sample, which was sent for complete blood count laboratory analysis to obtain a blood hemoglobin and hematocrit value.

2.3.6. Data Processing

In all experiments, binary masks were generated for the carotid and vertebral arteries and SSS by thresholding of complex difference images, which robustly isolates the signal from flowing blood. Y_v was quantified in the SSS from Equation 2.6 with $\Delta \phi$ equal to the average phase difference between the reference tissue and the SSS ROI. Flow was quantified in the neck arteries and SSS
by multiplying average velocity by cross sectional area for each corresponding vessel ROI, summing over the four neck arteries to get tCBF.

In the tube-breathing experiments, images were retrospectively Keyhole-reconstructed at Keyhole reduction factors of 2, 4, 8, and 16 by discarding all but the central 104, 52, 26, or 13 lines of k-space, respectively, and replacing outer k-space with corresponding data from the first image of the data set. In the apnea paradigm experiments, corresponding data acquired from the reference sequence was used to fill missing outer k-space data from the main sequence run for the duration of the paradigm.

All time-course data from the apnea experiments was averaged over the three repeated blocks of the paradigm to remove physiologic noise not related to the paradigm and improve SNR. Average baseline parameter values were quantified from the first 24 seconds (8 data points) of the baseline period to exclude breathing effects from the coached inspiration and expiration during the final 6 seconds (2 data points) of the baseline period. Data from only the final 15 seconds (5 data points) of the apnea period were used to generate end-apnea parameter values to eliminate residual breathing effects and because physiologic changes due to apnea are not expected to occur instantaneously.
2.4. Results

Tube-breathing produced a similar response across the three subjects. Time-course plots of Y_v, tCBF, and SSSBF in a representative subject (Figure 2.2a) demonstrate the expected increase in blood flow and venous oxygen saturation caused by hypercapnia that develops during the tube-breathing portion of the paradigm. Coefficients of variation of the SSSBF:tCBF ratio (assumed to remain constant for a given subject to allow tCBF estimation from SSSBF) across all time points ($N = 45$) were 0.094, 0.075, and 0.084 for the three subjects. The SSSBF:tCBF ratio for each subject averaged across the normal breathing baseline and recovery (30 data points) and tube-breathing (15 data points) portions of the paradigm is shown in Figure 2.2b. Welch’s t-tests for equal means between these two groups of SSSBF:tCBF values yields non-significant P-values (> 0.40) for all subjects.

![Time-course plot of Y_v, tCBF, and SSSBF](image)

![Histograms grouped by subject showing the SSSBF:tCBF ratio averaged over the baseline/recovery ($N = 30$ per subject) and tube-breathing ($N = 15$ per subject) portions of the paradigm with errors bars indicating ± 1 SD.](image)

Figure 2.2: SSSBF:tCBF ratio determination in three subjects. (A) Time-course plot of Y_v, tCBF, and SSSBF in response to 3 minutes of tube-breathing (gray bar); (B) Histograms grouped by subject showing the SSSBF:tCBF ratio averaged over the baseline/recovery ($N = 30$ per subject) and tube-breathing ($N = 15$ per subject) portions of the paradigm with errors bars indicating ± 1 SD. Figure from (135).
Figure 2.3 demonstrates the effects of Keyhole reconstruction on the accuracy of derived parameters as observed from the tube-breathing experiment. In Figure 2.3a, time-course plots of Y_v and SSSBF derived from images with full phase encoding are compared to the same plots generated from images retrospectively Keyhole-reconstructed with a range of Keyhole reduction factors. Note the greater errors when larger Keyhole reduction factors are used. In Figure 2.3b, these errors are plotted versus number of phase-encode lines used in the Keyhole reconstruction.

Values are averaged over the tube-breathing portion of the paradigm only, where errors should be greatest as observed in Figure 2.3a. For the Keyhole reduction factor of 4 used in the CMRO$_2$ quantification sequence, mean error and root-mean-square error (RMSE) had magnitudes less than 0.04 for both Y_v and SSSBF for all subjects.

Figure 2.3: Error due to Keyhole reconstruction. (A) Time-course plot of Y_v and SSSBF in response to tube-breathing (gray bar) derived from images reconstructed with full phase encoding (208 phase encode lines) and retrospective Keyhole reconstruction with 104, 52, 26, or 13 phase encode lines used; (B) Percent mean error and RMSE in Y_v and SSSBF during tube-breathing using different numbers of phase encode lines for retrospective Keyhole reconstruction. ‘Sub’ stands for ‘subject’. Figure from (135).
Figure 2.4 displays data from the apnea paradigm experiment in a typical subject. Changes in flow and Y_v in response to apnea are visualized in the corresponding velocity and phase difference maps (Figure 2.4a). Time-course plots of the measured parameters (Figures 2.4b-c) demonstrate an increase in Y_v and tCBF and a decrease in Y_a in response to apnea (gray bar). From these data, AVO_2D is quantified and plotted alongside the tCBF, the product of which yields CMRO_2 (Figures 2.4d-e).

Figure 2.4: Apnea paradigm representative subject images and time course data. (A) Magnitude image with the SSS outlined and corresponding velocity and phase difference ($\Delta\phi$) maps from specific time points (denoted by black symbols in B); (B) Time-course plot of pulse oximetry measured Y_a and image-derived Y_v and tCBF absolute parameter values with black symbols corresponding to images in A; (C) percent changes in Y_a, Y_v, and tCBF parameter values normalized to average baseline value; (D) tCBF, AVO_2D, and CMRO_2 absolute parameter values and (E) percent changes in parameter values normalized to baseline. Gray bars indicate the apnea period. All values in time-course plots are averaged across the three repeats of the paradigm. The bracketed sections ‘Base’ and ‘EA’ indicate the data used for computing average baseline values and end-apnea values for each subject. Figure from (135).
Table 2.1 lists parameters extracted from the time-course data for each subject, both at baseline and in response to apnea. The average baseline Y_v, tCBF, and CMRO$_2$ values were 68.6 ± 3.0 %HbO$_2$, 48.6 ± 7.0 mL/100g/min, and 125.1 ± 11.4 µmol/100g/min, respectively, consistent with previous findings (66). As previously observed (66), oxygen delivery (the product of C_a and tCBF) was negatively correlated with oxygen extraction (AVO$_2$D) at baseline ($r = -0.76$, $P = 0.011$, two-tailed t-test). Maximum percent changes in tCBF and AVO$_2$D were 43.5 ± 9.4% and -32.1 ± 5.7%, respectively, resulting in a small (6.0 ± 3.5%) but significant ($P = 0.00044$, two-tailed t-test) increase in CMRO$_2$ between baseline and end-apnea (final 15 s of apnea period).

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Subject</th>
<th>Mean</th>
<th>SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>tCBF</td>
<td>Baseline</td>
<td>52.3</td>
<td>7.0</td>
</tr>
<tr>
<td>(mL/100g/min)</td>
<td>Maximum</td>
<td>83.6</td>
<td>12.9</td>
</tr>
<tr>
<td></td>
<td>Change (%)</td>
<td>60.0</td>
<td>9.4</td>
</tr>
<tr>
<td>Y_v</td>
<td>Baseline</td>
<td>66.0</td>
<td>3.4</td>
</tr>
<tr>
<td>(%HbO$_2$)</td>
<td>Maximum</td>
<td>73.8</td>
<td>2.4</td>
</tr>
<tr>
<td></td>
<td>Change (%)</td>
<td>11.6</td>
<td>3.4</td>
</tr>
<tr>
<td>Y_a</td>
<td>Baseline</td>
<td>99.4</td>
<td>1.1</td>
</tr>
<tr>
<td>(%HbO$_2$)</td>
<td>Minimum</td>
<td>92.7</td>
<td>1.9</td>
</tr>
<tr>
<td></td>
<td>Change (%)</td>
<td>-8.6</td>
<td>1.8</td>
</tr>
<tr>
<td>AVO$_2$D</td>
<td>Baseline</td>
<td>33.4</td>
<td>3.4</td>
</tr>
<tr>
<td>(%HbO$_2$)</td>
<td>Minimum</td>
<td>20.0</td>
<td>3.1</td>
</tr>
<tr>
<td></td>
<td>Change (%)</td>
<td>-40.0</td>
<td>5.7</td>
</tr>
<tr>
<td>CMRO$_2$</td>
<td>Baseline</td>
<td>142.2</td>
<td>6.0</td>
</tr>
<tr>
<td>(µmol/100g/min)</td>
<td>End-Apnea</td>
<td>147.1</td>
<td>5.2</td>
</tr>
<tr>
<td></td>
<td>Change (%)</td>
<td>3.5</td>
<td>3.5</td>
</tr>
</tbody>
</table>

Table 2.1: Summary of individual subject and group (mean and SD) values of various extracted parameters at rest and in response to volitional apnea. Ave. Baseline (average value over the first 24 s of the baseline period), Maximum/Minimum (highest/lowest value reached over the entire paradigm), End-Apnea (CMRO$_2$ only: average value over the final 15 s of the apnea period); Change (percent change between Ave. Baseline and corresponding Maximum (Y_v, tCBF), Minimum (Y_a, AVO$_2$D), or End-Apnea (CMRO$_2$) parameter value. Table from (135).
The subject-averaged apneic response is displayed in the time-course plots of Figure 2.5. It is evident that flow increases during apnea and then undershoots before returning to baseline while oxygen extraction decreases during apnea and then overshoots before returning to baseline. The slightly larger magnitude of the flow increase compared to the AVO$_2$D decrease causes a small increase in CMRO$_2$ during apnea followed by a transient undershoot before return to baseline.

Figure 2.5: Apnea paradigm cohort time course data. (A) Time-course plot of cohort-averaged Y_a, Y_v, and tCBF absolute parameter values and (B) percent changes in parameter values normalized to average baseline; (C) tCBF, AVO$_2$D, and CMRO$_2$ absolute parameter values and (D) percent changes in parameter values normalized to average baseline. Error bars indicate ± 1 SD. Gray bars indicate the apnea period. All values in time-course plots are averaged across the three repeated blocks of the paradigm. The bracketed sections ‘Base’ and ‘EA’ indicate the data used for computing average baseline values and end-apnea values. Figure from (135).
2.5. Discussion

We have introduced an MR-based method for absolute quantification of CMRO$_2$ in humans with three-second temporal resolution. Key methodological assumptions were validated in a tube-breathing paradigm. The sensitivity of the technique to detect dynamic changes in cerebral blood flow, oxygen extraction, and CMRO$_2$ was assessed in response to a dynamic volitional apnea paradigm in a cohort of young healthy adults.

Results from the tube-breathing experiment (Figures 2.2 and 2.3) suggest application of the technique in the SSS produces only small systematic errors. Coefficients of variation of the SSSBF:tCBF ratio across all time-points of the paradigm were small (< 0.10) for each subject. Furthermore, Welch’s t-tests for equal means comparing the SSSBF:tCBF ratio for tube-breathing and non-tube-breathing portions of the experiment were nonsignificant for all subjects (P > 0.40). Therefore, it appears that SSSBF closely parallels tCBF in response to tube-breathing. This result is expected considering that the SSS accounts for nearly half of tCBF and because a global physiologic paradigm such as tube-breathing would not be expected to have a regional bias. Because of the similarity between tube-breathing and apnea, the results support estimation of tCBF based on SSSBF for quantifying CMRO$_2$ in response to apnea or other global physiologic challenges.

Systematic errors due to Keyhole reconstruction were observed to decrease expectedly as the Keyhole reduction factor was decreased. Mean errors and RMSEs in flow and Y$_v$ were less than 0.04 for all subjects and less than 0.02 averaged across subjects when using a reduction factor of 4.

In response to apnea, we observed a small (6.0 ± 3.5%) but significant (P = 0.00044, two-tailed t-test) increase in CMRO$_2$. Apnea has been used in the past as an assumed isometabolic stimulus in BOLD fMRI studies, both for calibrating the BOLD signal to quantify relative CMRO$_2$ changes (129) and as an isometabolic standard in studies investigating the BOLD post-stimulus undershoot (140). Our results suggest that apnea may be slightly pro-metabolic. Increased
CMRO$_2$ in response to apnea could represent a physiologic mechanism for buffering the brain energy supply in anticipation of prolonged apnea, which eventually would lead to exhaustion of energy stores and neuronal cell death. This would be consistent with other observations of the normal apneic response, such as reduced cardiac output, peripheral vasoconstriction, and cerebral vasodilation, which serve to maintain oxygen stores in the brain at the expense of the periphery.

Previous studies quantifying CMRO$_2$ using the Fick Principle have focused on baseline physiology or steady-state stimuli only. Specific considerations must be made in applying the Fick Principle during dynamic stimuli. For instance, there is a possibility that the amount of oxygen stored in brain tissue changes during apnea, due to either changes in CBV or pO$_2$. In applying the Fick Principle to large feeding or draining vessels, it is not possible to distinguish between changes in O$_2$ storage and true O$_2$ consumption (i.e., via aerobic metabolism). Potential errors in CMRO$_2$ due to O$_2$ storage effects are considered in the Appendix (Section 2.7), and shown to be negligible.

To our knowledge, no previous studies have directly quantified CMRO$_2$ during apnea, though studies of the CMRO$_2$ response to various gas mixtures provide insight into the present work. In recent work, a similar CMRO$_2$ technique employing SBO has shown that CMRO$_2$ does not change during hypercapnic steady state (124). However, apnea represents a mix of both hypercapnia and hypoxia, and never reaches a steady state. Data from the periods between steady states were not recorded in the prior study, and the temporal resolution used (25 s) would be unable to distinguish the transient changes in CMRO$_2$ detected in the present study. Studies of the CMRO$_2$ response to hypercapnia using T$_2$-based methods for Y$_v$ quantification have yielded mixed results, with T$_2$-based intravascular approaches reporting both no change (141) and a 13.4 ± 2.3% decrease (87) in CMRO$_2$ in response to moderate hypercapnia. The latter T$_2$-based approach was recently applied to detect a 5.0 ± 2.0% average increase in CMRO$_2$ in response to mild (14% inspired FiO$_2$) steady state hypoxia (105), a difference of 18.4% compared
to the \(\text{CMRO}_2 \) response to hypercapnia using the same methodology. Given that apnea is a mixed hypercapnic/hypoxic stimulus, that similar SBO techniques as the one used in the present study have found hypercapnia to be isometabolic (124), and that \(T_2 \)-based approaches support a large \(\text{CMRO}_2 \) difference between hypoxia and hypercapnia, the small apneic \(\text{CMRO}_2 \) increase observed in this study is not unexpected. Nevertheless, extrapolations based on steady-state gas-mixture breathing are of limited relevance to apnea, which is inherently non-steady state, involving continuously increasing levels of both hypercapnia and hypoxia.

Application of the proposed technique during administration of breathing gases (\(\text{CO}_2 \) and \(\text{O}_2 \)) would better establish the relative contributions of hypercapnia and hypoxia to the observed apneic \(\text{CMRO}_2 \) response. Such studies would also suggest the extent to which hypercapnia and hypoxia are isometabolic, not only at steady state, but in the transition to steady state. Such information is critical given the use of \(\text{CO}_2 \) and \(\text{O}_2 \) in calibrating BOLD fMRI, as there is growing interest in making BOLD fMRI more quantitative through respiratory calibration.

The ability of the method to capture details of the temporal dynamics of the apneic response is especially well illustrated by the group-averaged time-course plots (Figure 2.5), which illustrate not only the neurovascular effects of apnea, but also the more subtle effects of respiration. Coached inspiration from six to three seconds prior to apnea causes reduced intrathoracic pressure and increased right atrial venous return, changes reflected by the small observed increase in CBF just prior to apnea initiation. In contrast, coached expiration during the final three seconds before apnea has the opposite effect, and the end-expiratory breath-hold state reached upon apnea initiation is also known to result in decreased cerebral venous blood flow (142). Indeed, CBF was observed to transiently decrease during the beginning of the apnea period, taking nearly half the apnea period for the flow increase due to apnea-induced hypoxia and hypercapnia to overcome the small flow reduction caused by the end expiration-induced reduction in cerebral venous blood flow. Finally, immediately after apnea cessation, another transient, sharp increase in flow is observed, likely also arising from the large initial inspiration at
the end of the apnea period. While opposite magnitude changes in the AVO$_2$D difference were observed during the same aforementioned inspiratory and expiratory periods, they are of lesser magnitude, and, therefore, flow driven CMRO$_2$ changes are recorded.

It is difficult to ascertain whether these transient CMRO$_2$ changes are real or arise from a temporary mismatch between the true (arterial) tCBF, and the SSS blood flow used to quantify tCBF in the described technique. Inspiration and expiration during other free-breathing portions of the paradigm is not temporally matched across subjects and paradigm repeats, and is therefore averaged out of the time course data.

One possible limitation of the proposed method is the necessity of measuring Y_a with pulse oximetry. No arterial vessels of suitable geometry for application of the infinite cylinder model exist in the head or neck region. Furthermore, the SNR of SBO phase difference maps is proportional to the accrued phase, which is small in highly oxygenated arterial blood. Accurate Y_a quantification is critical as even a small underestimation in the Y_a drop would mitigate the observed increase in CMRO$_2$ in response to apnea. However, if underestimation of Y_a were the cause of the observed apneic CMRO$_2$ increase, one would expect the percent changes in Y_a and CMRO$_2$ in response to apnea to be positively correlated across subjects, however, this correlation was small, negative, and insignificant ($r = -0.18$, $P = 0.62$, two-tailed t-test).

An alternative approach to fast CMRO$_2$ quantification is the use of projection-based T$_2$ measurement, which achieves Y_v quantification in 15 s, is independent of vessel orientation, and is not sensitive to field inhomogeneities (63). However, the method assumes that flow remains constant over the course of each 15 s measurement. It is therefore not suitable for a paradigm, such as apnea, in which significant flow changes occur over seconds. Furthermore, the model used for determining %HbO$_2$ values from T$_2$ measurements must be empirically calibrated to specific Hct values, with errors due to deviations in Hct becoming especially large for higher blood oxygen saturation levels.
2.6. Conclusions

In conclusion, we have introduced and validated an approach for rapid quantification of CMRO$_2$ with three-second temporal resolution, and applied it to characterize the CMRO$_2$ response to apnea. Potential clinical applications include investigation of diseases of altered neurometabolic response, for instance, obstructive sleep apnea. More broadly, by providing a simple, robust, and quantitative method for assessing CMRO$_2$ in response to physiologic stimuli, the technique can be used to investigate neurometabolic-hemodynamic relationships in a variety of normal physiologic and pathologic conditions.

2.7. Appendix: Non-Steady-State Application of the Fick Principle

In applying the Fick Principle to non-steady state stimuli such as volitional apnea, one must consider the potential confounding effects of dynamic changes in the amount of O$_2$ stored in the brain secondary to changes in either CBV or interstitial oxygen tension (piO$_2$).

Changes in CBF will cause a concomitant expansion of arterial and venous cerebral blood volume (CBV$_a$ and CBV$_v$) (143) such that flow quantified in the large arteries or veins will not reflect instantaneous capillary flow. Because the OxFlow method described measures CBF on the venous side in the SSS, only changes in CBV$_v$, and not CBV$_a$, will affect the relationship between measured CBF and instantaneous capillary flow. In response to apnea, we observed a flow increase of about 30% during the 15 s end-apnea period (Figure 2.5). Assuming a Grubb power law relationship (75) between CBV$_v$ and CBF with $\alpha=0.18$ (76), and a baseline CBV$_v$ of approximately 2% (60,144) (or 2 mL/100g tissue with blood and tissue approximated as having density equal to water), the calculated CBV$_v$ change is $(1.30^{0.18}-1)\times2 \approx 0.1$ mL/100g, or an average rate of 0.4 mL/100g/min over the 15 s end-apnea period. In other words, approximately 0.4 mL/100g/min of the blood flowing through the capillary bed was directed toward CBV$_v$ expansion and not measured as tCBF. Given that this is less than 1% of tCBF, even at baseline, and that CMRO$_2$ is linear with tCBF, a reasonable upper bound for the underestimation of CMRO$_2$ during the end-apnea period is 1.3 μmol/100g/min (1% of the average end-apnea CMRO$_2$). This
would correspond to a true average end-apnea CMRO₂ change of 7.1%, only slightly larger than the measured change of 6.0%.

Another potential mechanism of O₂ storage is the increase in piO₂ that accompanies increased CBF (145). Additional dissolved oxygen in the interstitial space would temporarily be stored rather than metabolized in cells, resulting in overestimation of the instantaneous CMRO₂. In response to apnea, CMRO₂ increased by 7.6 µmol/100g/min (Table 2.1), which is 1.9 µmol/100g after integration over the 15 s end-apnea period or 0.048 mL/100g applying the Ideal Gas Law at 37°C. Assuming an interstitial oxygen solubility of 0.003 mL/100g and interstitial volume fraction of 20% (146), Henry’s Law predicts a piO₂ change of 80 mmHg would be required for additional O₂ storage in the interstitium to entirely account for the observed CMRO₂ change.

There is limited literature examining the piO₂ change associated with breath-hold; however, approximate values can be inferred from hypercapnia studies in animals. A study in Rhesus monkeys measured a 7 mmHg piO₂ increase in response to 5% CO₂ gas-mixture breathing (147). In humans, CBF changes in response to 5% CO₂ are of similar magnitude to those observed in response to 30 s apnea in the present study (43.5%) (87,124). In a study of rats exposed to hypercapnia (145), the derived relationship between piO₂ and CBF changes suggests a 43.5% increase in CBF would produce a piO₂ increase of about half that amount (22%), corresponding to a 7 mmHg increase from a baseline piO₂ of 30 mmHg. In both of these animal experiments, the expected piO₂ change is less than 10% of what would be required to drive an apparent 6.0% CMRO₂ increase. Furthermore, these inferred piO₂ changes likely represent upper bounds, as apnea-associated hypoxia will independently lower piO₂, opposing changes associated with increased CBF. Finally, if the observed CMRO₂ increase was driven by piO₂ changes, one would expect the maximum ΔtCBF and ΔCMRO₂ to be positively correlated across subjects, which was not the case (ΔCMRO₂ = -0.11×ΔtCBF+10.6, r² = 0.08). In summary, O₂ storage effects are expected to have a negligible impact on CMRO₂ quantified via the Fick Principle, even during non-steady state stimuli such as apnea.
Chapter 3: Rapid T_2- and Susceptometry-Based CMRO$_2$

Quantification with Interleaved TRUST (iTRUST)

3.1. Abstract

SBO and TRUST are two promising methods for quantifying CMRO$_2$, a critical parameter of brain function. We present a combined method, interleaved TRUST (iTRUST), which achieves rapid, simultaneous quantification of both susceptometry- and T_2-based CMRO$_2$ via insertion of a flow-encoded, dual-echo GRE (OxFlow) module within the T_1 recovery portion of the TRUST sequence. In addition to allowing direct comparison between SBO- and TRUST-derived Y_v values, iTRUST substantially improves TRUST temporal resolution for CMRO$_2$ quantification and obviates the need for a separate blood flow measurement following TRUST acquisition. iTRUST was compared directly to TRUST and OxFlow alone in three resting subjects at baseline, exhibiting close agreement with the separate techniques and comparable precision. These baseline data as well as simulation results support the use of two instead of the traditional four T_2 preparation times for T_2 fitting, allowing simultaneous quantification of susceptometry- and T_2-based Y_v (and CMRO$_2$) with three- and six-second temporal resolution, respectively. In 10 young healthy subjects, iTRUST was applied during a 5% CO$_2$ gas-mixture breathing paradigm. T_2-based Y_v values were lower at baseline relative to susceptometry (mean ± SD of 62.3 ± 3.1 vs. 66.7 ± 5.1 %HbO$_2$, $P < 0.05$), but increased more in response to hypercapnia. As a result, T_2-based CMRO$_2$ decreased from 140.4 ± 9.7 at baseline to 120.0 ± 9.5 µmol/100g/min during hypercapnia, a significant $−14.6 ± 3.6\%$ decrease, whereas susceptometry-based CMRO$_2$ changed insignificantly from 123.4 ± 18.7 to 127.9 ± 25.7, a $3.3 ± 9.7\%$ change ($P = 0.31$). These differing results are in accord with previous studies applying the parent OxFlow or TRUST sequences individually, thus supporting the reliability of iTRUST but also strongly suggesting that a systematic bias exists between the susceptometry- and T_2-based Y_v quantification techniques.
3.2. Introduction

The human brain comprises only 2% of total body mass, but accounts for approximately 20% of total body oxygen consumption (1). Because the brain is almost entirely dependent on aerobic metabolism to meet its energetic demands, irreversible ischemic damage will result in minutes if oxygen delivery is disrupted. Unlike surrogate markers of metabolism such as CBF or BOLD fMRI signal, CMRO$_2$ provides a direct measure of brain oxygen consumption. CMRO$_2$ changes significantly over the course of neonatal development (109) and aging (110), and is altered in many of the most common neurologic diseases, including mild cognitive impairment (112) and Alzheimer’s disease (34), Parkinson’s disease (127), and multiple sclerosis (111). However, CMRO$_2$ is relatively stable across healthy subjects at baseline (66,101), and in response to physiologic challenges such as hypercapnia (87,124,141), hypoxia and hyperoxia (105), and apnea (135). Thus, CMRO$_2$ is an important quantity for understanding brain function in health and disease.

The gold standard for CMRO$_2$ quantification is triple-oxygen PET imaging (53), yet the technique is rarely applied in humans due to the radiation exposure and complexity of the protocol. Moreover, long scan times restrict PET to measuring resting-state CMRO$_2$. MRI provides a non-invasive, non-contrast alternative. During the past two decades, BOLD fMRI has been applied extensively to study neuronal activation in health and disease (148,149). However, BOLD signal does not provide a direct measure of brain oxygen metabolism, but rather reflects a complex interplay between CBF, CBV, and tissue properties such blood vessel diameter, in addition to CMRO$_2$ (150).

Recently, a number of MR-based approaches for direct quantification of cerebral Y_v have been proposed (60-67,90-92,98,99,121,122,128,141,151). In combination with PC-MRI or ASL CBF quantification, these techniques allow determination of CMRO$_2$ via the Fick Principle (10-12):

$$CMRO_2 = C_a \cdot tCBF \cdot \left(Y_a - Y_v \right) \quad [3.1]$$
where C_a is the arterial oxygen content of blood in μmol/100mL and Y_a is the arterial oxygen saturation in $\%$HbO$_2$, which can be measured with pulse oximetry. Total CBF ($tCBF$) is typically reported in units of mL blood/100g brain tissue/minute, giving CMRO$_2$ in units of μmol/100g/minute.

Measurement of Y_v poses the most significant technical challenge in CMRO$_2$ determination. Techniques for Y_v quantification can be categorized based on the contrast mechanism – venous blood magnetic susceptibility (66,67,121,122,128), T$_2$ (61-65,98,99,141,151), T$_2^*$ (60,92), or T$_2^*$ (BOLD) (64,91) – as well as spatial specificity – large-vessel/whole-brain (61,63,66,98,99,121,122,128,141,151), small-vessel/regional (62,67), or parenchymal/voxel-wise (60,64,65,90-92). Regional and voxel-wise approaches are clearly desirable due to the heterogeneous nature of brain functional activation and pathology. However, these techniques have scan times on the order of several minutes, precluding dynamic measurements, and tend to suffer from low SNR, requiring significant spatial averaging to achieve acceptable precision and thus negating the utility of regional or voxel-wise measurement. In comparison, techniques for whole-brain Y_v quantification are fast, robust, and easy to implement.

The two best-established methods for global Y_v quantification are TRUST (61) and SBO (SBO) (66). Both methods involve quantification of intravascular Y_v in the SSS, the largest cerebral venous drainage vessel, which, in combination with PC-MRI quantification of tCBF, can be used to determine CMRO$_2$ via Equation 3.1. In the case of TRUST, tCBF measurement requires a separate PC-MRI acquisition (101). However, because PC-MRI and SBO are both GRE sequences, they can be naturally combined into a single sequence, which we term OxFlow. This hybrid sequence was originally implemented via a two-slice-interleaved approach with CMRO$_2$ quantification temporal resolution of 25 seconds (66). Recently, addition of view-sharing and SSS-based estimation of tCBF improved OxFlow temporal resolution to three seconds, allowing study of the regulation of CMRO$_2$ in response to dynamic physiologic paradigms such as breath-hold apnea (135). Compared to OxFlow, TRUST has inherently lower temporal resolution, compounded by the need for a separate PC-MRI measurement to quantify CMRO$_2$. Furthermore,
the relationship between T_2, Y_v, and Hct is non-linear, and must be calibrated to both pulse sequence parameters and field strength. However, unlike SBO, TRUST is vessel geometry independent, less sensitive to partial volume effects, and does not require background phase removal.

A particularly important application of CMRO$_2$ quantification is investigating the metabolic response to hypercapnia. Hypercapnia is relevant to a number of common diseases, including asthma, chronic obstructive pulmonary disease, obstructive sleep apnea, and congestive heart failure. Furthermore, knowledge of the CMRO$_2$ response to hypercapnia is of substantial importance to functional imaging, where hypercapnia is routinely used for 'calibrating' the fMRI signal (59,81), often under the assumption that hypercapnia is isometabolic (i.e., does not affect CMRO$_2$). However, the CMRO$_2$ response to a hypercapnic stimulus remains controversial (117), with previous studies reporting a wide range of results from reduced, to unchanged, to increased CMRO$_2$. An early MRI study using T_2-based to Y_v quantification reported an isometabolic response (141); however, CMRO$_2$ responses to mild and moderate hypercapnia were in different directions (5.0% and -6.8%, respectively) and based on a calibration plot derived from room temperature blood samples (152), potentially impacting the accuracy of in vivo T_2 quantification (116). Subsequently, both OxFlow and TRUST have been applied to study the CMRO$_2$ response to hypercapnia using similar cohorts and experimental protocols involving a 5% CO$_2$ gas-mixture delivery (87,124). While OxFlow data supported an isometabolic CO$_2$ response, the TRUST study found a significant $13.4 \pm 2.3\%$ (mean \pm standard error, N = 14) decrease in CMRO$_2$. This discrepancy is disconcerting given both the importance of understanding the CMRO$_2$ response to hypercapnia as well as the increasing application of TRUST and OxFlow in studying CMRO$_2$ responses to other stimuli and disease states. A recent study directly comparing resting TRUST- and SBO-derived Y_v values in the same cohort (153) found SBO and TRUST Y_v values to be correlated across subject, with TRUST Y_v values slightly lower (mean \pm SD of 63.2 \pm 4.1 vs. 65.9 \pm 3.3 %HbO$_2$, $P < 0.01$) (Figure 3.1). However, this baseline difference does not by itself explain
the discrepancy in the hypercapnia results, which depends on the relative change in \(Y_v \) in response to the stimulus.

\[
\begin{align*}
y &= 0.88x + 5.1 \\
R^2 &= 0.50 (p<0.05)
\end{align*}
\]

Figure 3.1: TRUST vs. SBO-derived \(Y_v \) in 10 healthy subjects (age 33 ± 6) at rest. Error bars indicate intrascan standard deviations over 10 repeated measures. The dashed lines denote the 95% confidence interval for the linear fit. Figure adapted from (153).

In this work, we propose a combined technique – termed interleaved TRUST (iTRUST) – whereby an OxFlow module is interleaved within the T\(_1\) recovery period of the TRUST sequence. This approach has two distinct benefits. First, it obviates the need for separate, non-simultaneous measurement of tCBF following the TRUST acquisition, substantially improving TRUST temporal resolution for CMRO\(_2\) quantification. Second, it allows for direct comparison of \(Y_v \) quantified via magnetic susceptibility and T\(_2\) measurement of blood. Further temporal acceleration of TRUST is achieved by using fewer tag-control image pairs for T\(_2\) fitting. Both the combination of the techniques as well as the use of fewer T\(_2\) fitting points is validated in simulations and in vivo. The sensitivity of the technique to detect dynamic changes is demonstrated in response to breath-hold apnea. Finally, iTRUST is applied in a cohort of young healthy individuals during a CO\(_2\) gas-mixture breathing paradigm with the goal of further investigating the potential disagreement between the TRUST and OxFlow techniques with regard to the hypercapnic CMRO\(_2\) response.
3.3. Theory

3.3.1. Susceptometry-Based Quantification of Y_v (SBO)

SBO exploits the relative paramagnetism of deoxygenated versus oxygenated hemoglobin, which causes the susceptibility of blood relative to surrounding tissue, $\Delta \chi$, to be linearly related to Y_v:

$$\Delta \chi = Hct \left(\Delta \chi_{\text{do}} \left(1 - Y_v \right) + \Delta \chi_{\text{oxy}} \right) \quad [3.2]$$

where $\Delta \chi_{\text{do}}$ and $\Delta \chi_{\text{oxy}}$ are the experimentally determined volume susceptibility differences between fully oxygenated and deoxygenated erythrocytes and fully oxygenated erythrocytes and water, respectively. Values of $4\pi \times 0.273$ and $4\pi \times 0.008$ p.p.m. (SI units) are used for $\Delta \chi_{\text{do}}$ and $\Delta \chi_{\text{oxy}}$, based on ex vivo calibration experiments (116,118).

Blood susceptibility induces a local field offset, ΔB, which can be measured with a field mapping sequence as:

$$\Delta B = \Delta \phi / \gamma \Delta T E \quad [3.3]$$

where $\Delta \phi$ is the difference in phase accrual between echoes spaced apart by $\Delta T E$ in the blood versus surrounding reference tissue. By modeling the vessel of interest as an infinitely long, circular cylinder, the relationship between ΔB and $\Delta \chi$ can be calculated analytically:

$$\Delta B = \frac{1}{6} \Delta \chi B_0 \left(3 \cos^2 \theta - 1 \right) \quad [3.4]$$

where θ is the vessel angle with respect to the main magnetic field, ΔB. Combining Equations 3.2-3.4 allows determination of Y_v by measurement of $\Delta \phi$.

The SSS, the largest cerebral venous drainage vessel, is relatively long and straight when the subject is lying supine in the scanner, and therefore can be effectively approximated by the infinite cylinder model, despite its non-circular cross-section (66,123). The SSS has also been
shown to have a Y_v nearly identical to that in the internal jugular vein (63,101), making it an excellent surrogate for global venous Y_v. Furthermore, while field mapping of the internal jugular vein is complicated by the presence of trachea-induced susceptibility artifacts, the field local to the SSS is relatively homogenous.

3.3.2. Combination of SBO and PC-MRI for CMRO$_2$ Quantification (OxFlow)

SBO can be combined with PC-MRI blood flow quantification to allow simultaneous measurement of Y_v, tCBF, and, therefore, CMRO$_2$, from a single sequence. By adding flow-encoding to the same dual-echo GRE used for Y_v quantification, SSS blood flow (SSSBF) and Y_v can be quantified from data acquired in the same TR period. SSSBF can then be retrospectively up-scaled to tCBF based on a single measurement of the SSSBF:tCBF ratio at baseline (135).

In this study, OxFlow was implemented with a BRISK k-space sampling scheme, with one-quarter k-space acquired at each time point (154,155). BRISK provides reduced motion sensitivity compared to previous view-sharing implementations of OxFlow using Keyhole k-space sampling (135,136) (Figure 3.2).

Figure 3.2: BRISK vs. Keyhole Cartesian view-sharing. (A) Keyhole and BRISK temporal k-space sampling strategies. In Keyhole, only inner k-space is continuously updated, with outer k-space supplied from a separately acquired, fully sampled reference image. In BRISK, the most inner k-space segments are updated most frequently, and full k-space images are reconstructed via interpolation, using the nearest acquired data for each segment. (B) Axial magnitude images of the SSS, before, 2 seconds (1 time point) after, and 20 seconds (10 time points) after a deliberate head shift. Because Keyhole assumes outer k-space does not change, it is highly sensitive to motion, whereas BRISK updates outer k-space periodically and thus resolves motion artifacts after several time points.
BRISK images were reconstructed by interpolating across time points using the nearest acquired data at each k-space segment, effectively resulting in a sliding window reconstruction with minimum window width of three seconds (inner 1/8th of k-space) and maximum window width of 60 seconds (outer 5/8th of k-space). Other OxFlow sequence parameters include: TR/TE_{i}/TE_{2} = 14.2/6.5/11.5 ms, VENC = 40 cm/s, reconstructed matrix = 192×192, and resolution = 1.0×1.0×5.0 mm.

3.3.3. TRUST and Interleaved TRUST (iTRUST)

The TRUST pulse sequence uses a non-selective MLEV-16 CPMG T_{2} preparation of varying effective echo time (eTE) – 0, 40, 80, and 160 ms – following either an 8 ms adiabatic hyperbolic secant pulse (bandwidth = 2214 Hz, thickness = 100 mm) to invert the blood magnetization (tag), or application of an equivalent off-resonance pulse without gradient (control). Similar in principle to ASL, tag-control subtraction of each eTE image pair isolates the venous blood signal. A non-selective 90º spoiler RF pulse is applied to reset the magnetization before each tag-control module (102). A two-compartment exchange model is used to relate Y_{v} to T_{2}:

\[\frac{1}{T_{2}} = A + B \cdot (1 - Y_{v}) + C \cdot (1 - Y_{v})^2 \] \[\text{[3.5]} \]

where A, B, and C are Hct- and CPMG spacing (t_{CPMG})-dependent constants which have been determined from ex vivo blood samples (100). T_{2} is quantified by mono-exponential fitting of SSS tag-control difference signals vs. eTE as:

\[\Delta S = S_{0} e^{eTE \left(\frac{1}{T_{1}} - \frac{1}{T_{2}} \right)} \] \[\text{[3.6]} \]

where S_{0} is the difference signal at eTE = 0 and a T_{1} value of 1.613 seconds is assumed for venous blood (102).

The TRUST sequence used in the present work follows that described in recent literature (102), with a TR of three seconds used to provide an optimal tradeoff between scan duration, accuracy, and precision, allowing a single Y_{v} value to be quantified every 24 seconds. Important differences
relative to the published sequence include insertion of a slice-selective saturation pulse 200 ms before EPI readout (prior to T_2 preparation) in order to better suppress static tissue signal (63,151), and use of a flow-compensated EPI readout with TE of 8 ms ($5/8^{th}$ partial Fourier readout). Flow compensation prevents flow velocity-dependent signal variations between tag and control images, which could lead to errors in the difference signals, especially in situations of rapidly changing flow (46). An alternative approach to avoiding these effects is use of a shorter TE achieved via parallel imaging (102), though this reduces SNR. Other TRUST sequence parameters include: $t_{CPMG} = 10$ ms, reconstructed matrix = 64\times64, and resolution = 3.4\times3.4\times5.0 mm.

More than half of the duration of the TRUST sequence consists of dead time, required to allow blood signal to undergo sufficient T_1 recovery following global saturation before the next T_2 preparation. In iTRUST, this time is utilized to run an OxFlow module at the same location as the TRUST readout slice (Figure 3.3), beginning 350 ms after the saturation in order to capture the tissue signal approximately at its steady-state longitudinal magnetization. Besides the added OxFlow module, iTRUST is otherwise identical to TRUST.

It is important to note that the RF pulses played out during the OxFlow module only affect spins in the imaging slice, whereas spins relevant to T_2-quantification are located outside the imaging slice in the labeling slab. Furthermore, because the OxFlow module is run during both tag and control, any effect on spins in the subsequently acquired EPI images used for T_2 quantification should be identical, and hence removed by tag-control subtraction. Likewise, the OxFlow GRE acquisition itself is unaffected by the TRUST sequence because it is acquired only after global magnetization reset.
Figure 3.3: iTRUST pulse sequence and example images. (A) TRUST sequence diagram with (B) inset depicting the OxFlow module inserted within the T₁ recovery period of the TRUST sequence. (C) Sagittal scout image indicating the relative positions of the labeling slab (red) and imaging slice (blue). (D) Magnitude image with square ROI indicating the position of the SSS. (E) Velocity map and (F) phase difference map of the SSS ROI from (D). (G) TRUST difference images for each eTE. Note that the spin histories of the OxFlow module and TRUST sequence should not interact as they are isolated by the global spin reset and the spatial separation of the imaging slice and labeling slab. Figure from (86).

3.4. Methods

3.4.1. Human Subject Protocols

All human subject imaging protocols were approved by the University of Pennsylvania’s Institutional Review Board, and subjects provided written informed consent prior to participation. Studies were performed on 10 healthy subjects (age 29 ± 5 years, range 24-42, six males and four females) using a 3T Siemens Tim Trio system (Siemens Medical Solutions, Erlangen, Germany) with a 12-channel (validation study and apnea study) or 32-channel (hypercapnia
study) receive-only head coil. A vendor-provided time-of-flight axial localizer scan was used for slice selection, and retrospectively to determine \(\theta \) in Equation 3.4. Before each OxFlow or iTRUST acquisition, a two-slice-interleaved PC-MRI pulse sequence was run at the level of the internal carotid and vertebral arteries in the neck and the SSS in the head in order to determine the subject’s SSSBF:tCBF ratio. OxFlow, TRUST, and iTRUST pulse sequences were programmed in SequenceTree (156).

At the end of each scanning session, a 1-mm-isotropic 3D \(T_1 \)-weighted MPRAGE (134) data set was acquired so that tCBF could be normalized per unit brain mass in each subject. Total brain volume was obtained using the BET tool in FSL (157), and converted to mass based on an average brain density of 1.05 g/mL (158). Total intracranial mass (gray matter, white matter, and CSF) rather than total parenchymal mass (gray matter and white matter) was used for normalization to facilitate comparison of CMRO\(_2\) values with prior studies that did the same (66,101). It has recently been shown that inclusion of CSF volumes in flow normalization may bias toward underestimation of CMRO\(_2\) in older individuals (110), though this is not a concern in the present study due to the relatively young age of the subjects.

3.4.2. Validation Study

To test whether the combination of OxFlow and TRUST causes a bias in the measurements of either sequence, equivalent OxFlow, TRUST, and iTRUST sequences were run back to back for four minutes each in three subjects (age 29 ± 3 years, range 26-34, two males and one female). This protocol corresponds to 10 repetitions of TRUST and iTRUST with 24-second temporal resolution, and 80 repetitions of OxFlow with three-second temporal resolution. For the OxFlow only sequence, TR was increased to 31.25 ms to use the entire three-second time frame with sequence parameters otherwise equal to the iTRUST-inserted OxFlow module.

For each subject, \(T_2 \)-based \(Y_v \) (\(Y_v-T_2 \)) was derived from TRUST and iTRUST data, and SBO-based \(Y_v \) (\(Y_v-SBO \)) and tCBF from iTRUST and OxFlow data. Differences in parameter values across subjects were compared between techniques – TRUST vs. iTRUST for \(Y_v-T_2 \), OxFlow vs.
iTRUST for \(Y_v \)-SBO and tCBF – to determine any potential bias in the interleaved approach relative to the separate techniques. Further, \(T_2 \) values obtained from the iTRUST data were recalculated using only the 0 and 80 ms eTE image pairs to determine any bias caused by using fewer eTEs. \(T_2 \) fitting with two eTEs has previously been demonstrated at 7T field strength (159), where the short \(T_2 \) value of blood precludes the use of longer \(T_2 \) preparations.

3.4.3. Simulations

The use of fewer eTE image pairs was further explored by simulating TRUST difference signals with a blood \(T_2 \) value of 72 ms, corresponding to typical physiologic values of \(Y_v = 65 \% \text{HbO}_2 \) and Hct = 0.40, with noise added corresponding to the typically observed SNR range of our acquired TRUST data (SNR = 20-80). This SNR range is similar to that reported in previous studies (102). Exponential fitting was performed and \(Y_v \) values were determined from the published calibration curve (100) using all four (0, 40, 80, 160 ms), three (0, 40, and 80 ms), or two (0 and 80 ms) eTEs. RMSE relative to the true \(Y_v \) of 65 \% \text{HbO}_2 was quantified as a function of SNR and number of eTEs used.

3.4.4. Apnea Study

To evaluate the sensitivity of the iTRUST technique to detect dynamic changes in flow, \(Y_v \)-SBO, and \(Y_v \)-\(T_2 \), a breath-hold challenge was conducted in one healthy subject (age 28 years, male). iTRUST was run with two eTEs (0 and 80 ms) during a paradigm consisting of two minutes baseline, one-minute breath-hold after inhalation, and two minutes recovery. \(Y_v \)-SBO and tCBF were quantified every three seconds. \(Y_v \)-\(T_2 \) values were quantified with sliding-window reconstruction using all adjacent difference image pairs, yielding six-second temporal resolution from 12-second data windows. The mean and standard deviation of the difference between time matched \(Y_v \)-\(T_2 \) and \(Y_v \)-SBO values was quantified across all time points, and compared by paired two-sample Student’s t-tests.
3.4.5. Hypercapnia Study

In 10 subjects, iTRUST comprising only two eTEs (0 and 80 ms) was applied during a hypercapnia paradigm to determine whether differences exist in the CMRO$_2$ as determined via T$_2$- versus susceptometry-based quantification of Y$_v$. A two-way non-rebreathing T-valve (2700 Series, Hans Rudolph, Inc., Kansas City, MO, USA) was used to deliver 5% CO$_2$ in room air for five minutes via a 100 L Douglas bag. Room air was delivered five minutes before and after hypercapnia, and MRI data were collected continuously for the entire 15 minutes. Y$_a$ and heart rate (HR) were monitored with pulse oximetry, and end-tidal CO$_2$ (EtCO$_2$) and respiratory rate (RR) with capnography (Expression, Invivo Research Inc., Orlando, FL, USA).

tCBF, Y$_v$-SBO, and SBO-based CMRO$_2$ (CMRO$_2$-SBO) parameter values were determined from the OxFlow data at three-second temporal resolution, and Y$_a$ values were sampled at three-second intervals to match the MRI data. Y$_v$-T$_2$ values were quantified every six seconds from the EPI data with sliding-window reconstruction. tCBF and Y$_a$ values were interpolated to the corresponding Y$_v$-T$_2$ time points to determine T$_2$-based CMRO$_2$ (CMRO$_2$-T$_2$) values every six seconds. For each parameter, means and standard deviations were quantified across the baseline (0-5 minutes) and steady-state hypercapnia (7.5-10 minutes) periods, and used to determine percent changes in response to hypercapnia. Changes in CMRO$_2$-T$_2$ and CMRO$_2$-SBO in response to hypercapnia were evaluated with one-sample Student’s t-tests.

3.4.6. Image Analysis

All image reconstruction was performed with in-house-written MATLAB (Mathworks, Natick, MA) scripts. BRISK-sampled raw OxFlow data, whether acquired alone or as part of an iTRUST sequence, were first reordered to create full k-space images corresponding to each three-second time point. To determine tCBF, the phase difference between positive gradient-moment flow-encoded and flow-compensated images acquired at TE$_1$ were used to generate velocity maps, and SSSBF was obtained by integrating velocity across the vessel cross-sectional area. Data from the two-slice-interleaved PC-MRI sequence used to determine the SSSBF:tCBF ratio were
processed analogously. This ratio was then used to upscale the dynamically acquired SSSBF data to determine tCBF.

For Y_v-SBO determination, a raw phase difference map was generated from images acquired at T_E_1 and T_E_2 of the flow-compensated OxFlow interleave. Low spatial frequency bulk susceptibility effects were removed via second-order polynomial fitting of the induced field in the surrounding brain tissue (126). The average phase difference, $\Delta \phi$, was determined between pixels entirely within the SSS (i.e., without any tissue partial voluming) and pixels in a reference region of brain tissue surrounding the SSS approximately one vessel-radius in width and located one vessel-radius from the SSS border, allowing determination of Y_v-SBO from Equations 3.2-3.4.

TRUST or iTRUST EPI data for T_2-determination were first reconstructed and corrected for N/2 ghosting. Difference images were produced for each eTE via tag-control subtraction. As previously described (61), the four brightest pixels in the SSS were selected for T_2 fitting, using a weighted least-squares fit calculated by the MATLAB function lsqnonlin.
3.5. Results

Across the three subjects scanned at baseline, quantified Y_v and $tCBF$ values were consistent with previous reports (66,101), and mean absolute bias between TRUST and iTRUST Y_v-T_2 (Figure 3.4a) and between OxFlow and iTRUST Y_v-SBO (Figure 3.4b) and $tCBF$ (Figure 3.4c) values were small. These values likely represent an upper bound on any true bias, as they also include contributions from measurement noise and true physiologic variation over the scan duration. Standard deviations of the parameter values varied across subjects, but were similar between techniques, suggesting precision of the combined iTRUST sequence to be comparable to the separate TRUST and OxFlow sequences.

![Figure 3.4](image)

Figure 3.4: TRUST, OxFlow, and iTRUST parameter values acquired sequentially for four minutes each in three resting subjects. (A) TRUST vs. iTRUST Y_v-T_2 values. (B) OxFlow vs. iTRUST Y_v-SBO values. (C) OxFlow vs. iTRUST $tCBF$ values. Mean absolute bias is the absolute value of the bias between techniques, averaged across all time points and subjects. Error bars indicate ± 1 SD across the N = 10 (A) or N = 80 (B and C) data points collected in each four-minute acquisition. Figure from (86).
In Figure 3.5, iTRUST \(Y_v-T_2 \) values are shown based on \(T_2 \) fitting using all four (0, 40, 80, and 160 ms) or just two (0 and 80 ms) eTE difference signals. The mean ± SD difference between the two sets of values was small at 0.2 ± 1.8 %HbO\(_2\) (\(P = 0.65 \)). The 95% confidence interval for the linear least-squares regression line includes the line of identity, further indicating that no significant bias is introduced by using two instead of four eTEs. \(Y_v-T_2 \) variability was slightly larger when using two versus four eTEs (subject-averaged SDs of 2.6 and 1.6 %HbO\(_2\), respectively). However, this difference is largely eliminated if RMSEs are scan-time normalized, that is, after multiplying by \(\sqrt{\text{number eTEs}} \) used for fitting. These data support the use of two eTEs in subsequent iTRUST experiments.

Figure 3.5: Scatter plot of iTRUST \(Y_v-T_2 \) values fitted using all four (0, 40, 80, and 160 ms) vs. only two (0 and 80 ms) eTEs from the same data. The 30 data points represent 10 repeat measures from each of three subjects. The linear least-squares regression line for all data points (solid line) is shown alongside the line of identity (dotted line). 95% confidence intervals for the slope [0.93,1.25] and intercept [-16.4, 4.3] of the linear fit contain 1 and 0, respectively, indicating no statistically significant bias between the four and two eTE \(Y_v-T_2 \) values. Figure from (86).
Figure 3.6 shows RMSEs for Y_v-T_2 values across the typical TRUST SNR range, both absolute (6a) and scan-time normalized (6b). Even before normalization, three and two eTEs result in less error than four eTEs. Normalized for scan time, both three and two eTEs perform significantly better than four eTEs, with ≈ 30-45% reduction in RMSE across the SNR range.

Figure 3.6: Simulation of expected Y_v-T_2 error vs. the number of eTEs used for T_2 fitting. (A) RMSE in Y_v-T_2 vs. TRUST difference signal SNR for four, three, or two eTEs. (B) RMSE normalized to acquisition time. Simulations were performed for $N = 1000$ virtual images for each SNR value, incremented by an SNR value of 1. Figure from (86).
iTRUST with two eTEs was evaluated in response to breath-hold apnea to test the ability of the technique to detect dynamic physiologic processes. A time-course plot of the extracted parameter values (Figure 3.7) demonstrates the expected apneic response of increased Y_v and tCBF (135). Y_v-SBO and Y_v-T$_2$ values match closely, with Y_v-SBO values higher by an average of 1.5 ± 3.0 %HbO$_2$ (P < 0.01).

![Figure 3.7: iTRUST parameter values in response to a 60-second breath-hold in a single subject. T$_2$ fitting with two eTEs and application of sliding window reconstruction yields Y_v-T$_2$ temporal resolution of six seconds. Y_v-SBO and tCBF temporal resolution is three seconds. Gray shading indicates the apnea period. Figure from (86).]
All 10 subjects were able to successfully complete the hypercapnia paradigm. Average brain volume, Hct, and SSS angle (θ) were 1468 ± 77 mL, 0.43 ± 0.04, and 15.2 ± 5.0°. On average, the SSSBF:ICBF ratio was 0.48 ± 0.03, in line with previous studies (135). Subject-averaged time-course plots of physiologic parameters measured via pulse oximetry (\(Y_a\), HR) and capnography (EtCO\(_2\), RR) are displayed in Figure 3.8.

![Figure 3.8](image)

Figure 3.8: Subject-averaged time-course plots of physiologic parameters measured via pulse oximetry (\(Y_a\), HR) and capnography (EtCO\(_2\), RR). Gray shading indicates the hypercapnia period. Error bars indicate standard errors (N = 10). Comparing average baseline (0-5 minutes) and steady-state hypercapnia (7.5-10 minutes) values across subjects, significant increases were observed in EtCO\(_2\) (\(P < 0.0001\)), \(Y_a\) (\(P < 0.01\)), and HR (\(P < 0.05\)). RR did not show a significant change (\(P = 0.64\)). Figure from (86).

Figure 3.9 displays a representative subject time-course plot of all MRI-derived parameters (and \(Y_a\)) in absolute physiologic units (9a), subject-averaged plots of both absolute parameter values (9b) and baseline-normalized parameter values (9c), and a scatter plot comparing \(Y_v\)-SBO and \(Y_v\)-T\(_2\) values across all subjects and time points (9d).
Figure 3.9: iTRUST-derived parameter values in response to five minutes of 5% CO₂ gas-mixture breathing. (A) Time-course plots of absolute parameter values from (A) a representative subject and (B) averaged across all 10 subjects. (C) Subject-averaged parameter values normalized to average baseline values, with error bars indicating standard errors (N = 10) at each time point. In all time-course plots, tCBF, Y₂, Yᵥ-SBO, AVO₂D-SBO, and CMRO₂-SBO temporal resolution is three seconds, and Yᵥ-T₂, AVO₂D-T₂, and CMRO₂-T₂ temporal resolution is six seconds. Gray shading indicates the hypercapnia period. (D) Scatter plot of time-matched Yᵥ-SBO and Yᵥ-T₂ values across all subjects and time points (N = 1490), with different symbols/colors denoting individual subjects. Linear least-squares regression lines are plotted for each subject (solid lines), as well as the line of identity (dotted line). Mean slope and r² values of the regression lines across subjects are β = 1.47 ± 0.20 and r² = 0.90 ± 0.02. Figure from (86).
Parameter values were observed to reach a steady state after approximately 2.5 minutes of hypercapnia. Average baseline (0-5 minutes) and steady-state hypercapnia (7.5-10 minutes) values are displayed in Table 3.1. EtCO$_2$, tCBF, Y$_v$-SBO, and Y$_v$-T$_2$ all increased significantly in response to hypercapnia (P < 0.0001). Subject-averaged CVR was 4.6 ± 0.9% tCBF/mmHg EtCO$_2$, in line with previous results (66,141).

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Baseline (0-5 min)</th>
<th>CO$_2$ (7.5-10 min)</th>
<th>Change (%)</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>EtCO$_2$ (mmHg)</td>
<td>38.5 ± 2.9</td>
<td>50.1 ± 2.1</td>
<td>30.5 ± 5.5</td>
<td>< 0.0001</td>
</tr>
<tr>
<td>Y$_v$ (%HbO$_2$)</td>
<td>97.7 ± 0.6</td>
<td>98.3 ± 0.7</td>
<td>0.6 ± 0.6</td>
<td>< 0.01</td>
</tr>
<tr>
<td>tCBF (mL/100g/min)</td>
<td>45.7 ± 6.0</td>
<td>70.1 ± 11.4</td>
<td>53.0 ± 12.7</td>
<td>< 0.0001</td>
</tr>
<tr>
<td>Y$_v$-SBO (%HbO$_2$)</td>
<td>66.7 ± 5.1</td>
<td>77.2 ± 4.8</td>
<td>15.9 ± 2.8</td>
<td>< 0.0001</td>
</tr>
<tr>
<td>Y$_v$-T$_2$ (%HbO$_2$)</td>
<td>62.3 ± 3.1</td>
<td>78.4 ± 3.5</td>
<td>25.8 ± 3.7</td>
<td>< 0.0001</td>
</tr>
<tr>
<td>AVO$_2$D-SBO (%HbO$_2$)</td>
<td>31.1 ± 4.8</td>
<td>21.1 ± 4.4</td>
<td>-32.5 ± 4.7</td>
<td>< 0.0001</td>
</tr>
<tr>
<td>AVO$_2$D-T$_2$ (%HbO$_2$)</td>
<td>35.4 ± 2.9</td>
<td>19.9 ± 3.0</td>
<td>-43.8 ± 5.9</td>
<td>< 0.0001</td>
</tr>
<tr>
<td>CMRO$_2$-SBO (µmol/100g/min)</td>
<td>123.4 ± 18.7</td>
<td>127.9 ± 25.7</td>
<td>3.3 ± 9.7</td>
<td>0.31</td>
</tr>
<tr>
<td>CMRO$_2$-T$_2$ (µmol/100g/min)</td>
<td>140.4 ± 9.7</td>
<td>120.0 ± 9.5</td>
<td>-14.6 ± 3.6</td>
<td>< 0.0001</td>
</tr>
</tbody>
</table>

Table 3.1: Summary of hypercapnia paradigm parameter values derived from pulse oximetry, capnography, and iTRUST MRI in 10 subjects. Parentheses indicate the standard deviations of parameter values across subjects. P-values are based on one-sample Student’s t-tests of the percent changes from baseline to hypercapnia. Table adapted from (86).

Y$_v$-T$_2$, although lower than Y$_v$-SBO at baseline, increased more during hypercapnia. As a result, in response to hypercapnia CMRO$_2$-SBO did not change significantly (3.3 ± 9.7%, P = 0.31), whereas CMRO$_2$-T$_2$ decreased substantially (~14.6 ± 3.6%, P < 0.0001). Following cessation of apnea, tCBF and Y$_v$ undershot before gradually returning to baseline. CMRO$_2$ values during the end-recovery period (12.5-15 minutes) were not significantly different from baseline values (P = 0.36 and P = 0.33 for CMRO$_2$-SBO and CMRO$_2$-T$_2$, respectively).

3.6. Discussion

3.6.1. Validation of iTRUST

Because changes in flow and Y$_v$ tend to oppose each other both at baseline and in response to stimuli, it is critical to measure these two quantities simultaneously to most accurately determine CMRO$_2$. This is especially important during physiologic stimuli, where temporal mismatch between Y$_v$ and flow quantification could lead to significant errors. iTRUST makes such
simultaneous measurement, previously achievable only with susceptometry-based CMRO$_2$ approaches, possible for T$_2$-based CMRO$_2$ quantification as well.

Combination of the TRUST and OxFlow techniques in iTRUST did not significantly impact the accuracy or precision of the quantified parameters (Figure 3.4). This is expected, as the OxFlow and T$_2$-quantification portions of the pulse sequence are separated in such a way that they should not affect one another’s spin histories. While less time is available for OxFlow measurement in iTRUST than OxFlow alone for a given temporal resolution (1420 ms versus 3000 ms in this study), this did not appear to impact the precision of the OxFlow data as evidenced by similar standard deviations for iTRUST and OxFlow derived parameters (Figures 3.4b-c).

3.6.2. T$_2$-Based CMRO$_2$ Temporal Resolution

Previous implementations of TRUST had a temporal resolution for CMRO$_2$ quantification of several minutes (103), compared to as little as three seconds for OxFlow (135). This is partially due to the usual acquisition of three TRUST averages (requiring $3 \times 24 = 72$ seconds) and measurement of each arterial inflow vessel with a separate 30-second PC-MRI measurement, which has been demonstrated to produce accurate and reproducible CMRO$_2$ measurements (103). While this approach is optimal when a single CMRO$_2$ measure of baseline physiology is the objective, it does not allow for quantification of dynamic changes in T$_2$-based Y/v/CMRO$_2$.

iTRUST increases CMRO$_2$-T$_2$ temporal resolution to as little as six seconds via insertion of flow quantification within the T$_1$ recovery period and use of two eTEs with sliding window reconstruction. These modifications may also improve measurement precision. For instance, rapid measurement of SSSBF is achieved more easily than quantification of tCBF in the neck arteries, due to the sagittal sinus’ larger size, less pulsatile flow, and fixed position in the scanner even during swallowing, breath-hold, or gas-mixture breathing manipulations that can complicate flow quantification in the neck arteries. Upscaling this dynamically acquired SSSBF to tCBF only requires a single high-quality PC-MRI acquisition before or after accelerated SSSBF-only
measurement, since the SSSBF:tCBF ratio has been observed to remain fixed in response to blood flow changes (135).

Simulation results (Figure 3.6) suggest that inclusion of a 160 ms eTE difference image actually reduces T_2 estimation precision due to its relatively low SNR. For iTRUST at 3T, T_2 measurement based on two eTEs performs slightly better than three eTEs after normalization for scan time differences. This is because an eTE of 80 ms most closely matches the physiologic T_2 range (60-100 ms). In vivo measurements at baseline suggest a slightly greater Y_v variation when retrospectively using two vs. four eTEs for T_2 fitting (SDs of 2.6 vs. 1.6 %HbO$_2$, respectively). However, this greater variation likely reflects some degree of sensitivity to true physiologic fluctuations – absent in the simulation data – which is more significantly removed through averaging when using all four eTEs for fitting. One limitation of using only two eTEs is that confidence intervals for the exponential fitting (and therefore Y_v) cannot be derived based on the regression of the exponential fit.

3.6.3. Hypercapnia Study
Parameter values quantified from the hypercapnia data were in good agreement with previous studies using TRUST or OxFlow independently, both in terms of resting state values (66,101) and changes in response to hypercapnia (87,124). Specifically, hypercapnia caused significant reduction in $\text{CMRO}_2\cdot T_2$ ($-14.6 \pm 3.6\%$, mean \pm SD), similar to the original TRUST study (87) ($-13.4 \pm 8.6\%$, mean \pm SD, calculated from the reported standard error with $N = 14$), and also a non-significant change in $\text{CMRO}_2\cdot \text{SBO}$ ($3.3 \pm 9.7\%$, mean \pm SD), similar to the original OxFlow study (124). It was suggested (124) that the negative hypercapnic response observed with TRUST could have been biased due to flow measurement in the SSS, rather than in the neck arteries as was done with OxFlow. However, the present study used only SSS-based flow quantification, yet achieved results consistent with both previous studies (87,124). This consistency lends additional support to the use of SSS-based quantification of tCBF, a critical requirement for obtaining high temporal resolution CMRO_2 quantification with OxFlow and iTRUST. It also strengthens confidence that the modifications involved in the combined iTRUST
sequence (including the use of 2 eTEs for T_2 fitting) does not bias Y_v-T_2 quantification relative to the parent TRUST sequence. Most strikingly, it implies that the observed bias between Y_v-T_2 and Y_v-SBO values – both in terms of the baseline offset and relative changes in response to hypercapnia – is not due to random error, differences in experimental protocols, or differences in subject populations, but rather a systematic bias between the techniques.

Average baseline Y_v-T_2 values were observed to be significantly lower than Y_v-SBO values (62.3 ± 3.1 vs. 66.7 ± 5.1 %HbO$_2$, respectively, $P < 0.05$), consistent with another recent study (153). Longer TRUST EPI readouts have been shown to cause a systematic underestimation of T_2 (and therefore Y_v), especially at lower SNR. This effect was hypothesized to be caused by variations in blood flow, and led the authors to recommend use of a shorter (3 ms) EPI TE via application of parallel imaging (46). While the present study used a longer TE (8 ms), the slice-select gradient was first moment-compensated. This should prevent signal differences due to varying degrees of intravoxel dephasing in tag/control images acquired at different blood flow velocities. Furthermore, if a flow velocity-dependent bias did exist, the proposed Y_v-T_2 underestimation would be expected to get worse at higher Y_v values due to the accompanying CBF and heart rate increase during hypercapnia. In fact, the opposite trend was observed, with Y_v-T_2 values rising significantly more than Y_v-SBO values during the hypercapnic stimulus, regardless of the baseline offset between Y_v-T_2 and Y_v-SBO. This is illustrated by the subject specific regression lines in Figure 3.9d, all of which had slopes significantly greater than unity ($\beta = 1.47 \pm 0.20$, $P < 0.0001$ for H_0: $\beta = 1$).

As recently described by Xu et al. (160), a flow-dependent error in Y_v-SBO values could potentially arise due to phase accumulation as venous blood travels through an inhomogeneous B_0 field. This flow-dependent phase accumulation will increase quadratically with echo time and linearly with the dot product between the flow velocity and the background field gradient. Were the background field gradient direction similar in each subject, it could cause a systematic bias toward flow-dependent over- or under-estimation of Y_v-SBO. However, this effect alone cannot explain the observed bias between Y_v-T_2 and Y_v-SBO values, as it would predict the bias to
increase in magnitude with increasing flow velocity, whereas the observed bias reverses direction between the low flow (baseline) and high flow (hypercapnia) states. Furthermore, for the pulse sequence parameters used, quantitative evaluation suggests the maximum possible error due to flow-dependent phase accumulation is small (see Appendix, Section 3.8).

In addition to the aforementioned flow effects, another likely source of the observed discrepancy is an error in the calibration of one or both techniques – that is, the values of the constants in the model equations. However, the susceptibility model (Equation 3.2) is considerably simpler, with only two calibration constants – $\Delta\chi_{do}$ and $\Delta\chi_{oxy}$ – defining a linear relationship between measured phase, Hct, and Y_v. The values of these constants have been validated theoretically (116) and experimentally (116,118) with excellent agreement. In contrast, TRUST requires calibration of a quadratic equation (Equation 3.5) with six linear coefficients (100). This calibration equation is based on a two-compartment exchange model, which may be less appropriate than an alternative diffusion-based model (161). Furthermore, unlike SBO, T$_2$-based Y_v quantification has a complex dependence on field strength and pulse sequence parameters (RF inversion pulse, t_{CPMG}).

3.6.4. Applications of iTRUST

In this work, we were interested in directly comparing T$_2$- and susceptometry-based Y_v/CMRO$_2$ values; however, iTRUST could also be used specifically as a high temporal resolution T$_2$-based CMRO$_2$ quantification technique. In this case, a single rather than dual-echo PC-MRI sequence module could be used, allowing for an increase in TR or reduction in the required view-sharing factor. Such a technique could be applied to CMRO$_2$ quantification in the jugular vein, which is less well suited to SBO because of trachea-induced susceptibility artifacts.

A potential clinical application of iTRUST is the assessment of CVR, the ability of the brain to dynamically increase flow in response to a vasodilatory challenge such as hypercapnia or breath-hold apnea. Reduced CVR is strongly correlated with increased stroke risk (162) and associated with lower cognitive performance in subjects with mild cognitive impairment and Alzheimer’s disease (163). While CVR has typically been assessed in terms of blood flow changes only,
iTRUST and similar techniques for rapid \(\text{CMRO}_2 \) quantification (135) allow multi-parametric assessment of the brain's response to stimuli. Because \(\text{CMRO}_2 \) is a more direct reflection of oxygen supply and demand, CVR assessed in terms of \(\text{CMRO}_2 \) may provide a more meaningful index of neurovascular dysfunction than traditional flow-based CVR.

The described approach of inserting a fast imaging sequence within a longitudinal signal recovery period has applications beyond iTRUST. \(T_2 \)-relaxation-under-phase-contrast (TRU-PC), which uses phase-contrast rather than tag-control isolation of venous blood (62), and which can probe vessels with diameters as small as one mm, contains an equivalent signal waiting period as in TRUST. Addition of flow quantification within TRU-PC would provide a means of quantifying oxygen flux rather than simply oxygen saturation in small regional vessels not suitable to SBO. An interleaved approach similar to iTRUST has been used to quantify perfusion, \(Y_v \), and \(T_2^* \) (termed PIVOT) via insertion of a multi-echo GRE within the post-label delay (PLD) of a pulsed ASL sequence (164). The technique allowed simultaneous measurement of all three parameters with two-second temporal resolution during a reactive hyperemia paradigm in the leg. Such combination of perfusion and \(Y_v \) quantification may also provide a method for improved BOLD fMRI calibration, as suggested in recent work by Driver et al. (165).

3.7. Conclusions

We presented a novel technique, iTRUST, for combined susceptometry- and \(T_2 \)-based quantification of \(\text{CMRO}_2 \) at high temporal resolution. Simulations and in vivo evaluations demonstrate that iTRUST has comparable precision and accuracy relative to the traditional uncombined methods. In addition, iTRUST provides significantly improved temporal resolution for \(T_2 \)-based \(\text{CMRO}_2 \) quantification. In summary, iTRUST is a promising method for dynamic assessment of \(\text{CMRO}_2 \), and offers a unique approach for evaluating and comparing susceptometry- and \(T_2 \)-based \(\text{CMRO}_2 \) quantification techniques.
3.8. Appendix: Analysis of Flow-Dependent Error in SBO

Following Equation 2 in (160), \(\Delta \phi \) in Equation 3.3 can be written as:

\[
\phi = \psi + \gamma \Delta B(r)TE - \frac{1}{2} \gamma \mathbf{v}(r) \cdot \nabla \left(\Delta B(r) \right) TE^2 \tag{3.7}
\]

where \(\psi \) is the initial phase after RF excitation, and \(r \) and \(v \) are the position and velocity, respectively, of a spin isochromat. Equation 3.7 assumes that from spin excitation until the largest TE, the isochromat moves with constant velocity along a path with a linear field gradient, a reasonable assumption given the small distance traveled by a spin in time TE. Thus, the measured phase difference between TE\(_1\) and TE\(_2\) will be:

\[
\Delta \phi = \gamma \Delta B(r) \left(TE_2 - TE_1 \right) - \frac{1}{2} \gamma \left(\mathbf{v}(r) \cdot \nabla B(r) \right) \left(TE_2^2 - TE_1^2 \right) \tag{3.8}
\]

The infinite cylinder model used in SBO requires isolating the first (linear) phase term from the second (quadratic) phase term. In (160), this is accomplished through a quadratic fitting procedure, the “adaptive quadratic fit”. However, such fitting is not possible when only two echoes are acquired as in SBO. Instead, we consider the fractional error (\(\varepsilon \)) in the derived \(\Delta \phi \) resulting from the quadratic term, which is approximately the same as the resultant fractional error in the derived OEF (\(1-Y_v \)):

\[
\varepsilon = \left(\frac{\Delta \phi_{\text{measured}} - \Delta \phi_{\text{linear}}}{\Delta \phi_{\text{linear}}} \right) = -\left(\frac{\mathbf{v}(r) \cdot \nabla B(r)}{\Delta B(r)} \right) \frac{TE_1 + TE_2}{2} \tag{3.9}
\]

where \(\Delta \phi_{\text{measured}} \) is the measured phase difference and \(\Delta \phi_{\text{linear}} \) is the phase difference due to only the linear term (what would ideally be measured to generate the correct value for \(Y_v \)). Equation 3.9 demonstrates that the fractional error will be linear with the spin velocity, the gradient of the field along the path of the spin, and average echo time. Considering the echo times used for SBO
in this study (6.5 and 11.5 ms) and a “worst case scenario” of a flow velocity equal to the VENC (40 cm/s), the error is:

\[\varepsilon = 0.36 \frac{-\mathbf{v}(r) \cdot \nabla B(r)}{\Delta B(r)} \]

where the field gradient is in units of Tesla/cm. Thus, if the field gradient along a 1 cm path of the spin is equal to the field difference between the vessel and surrounding tissue, 1−Y_v will be underestimated by 36%, a significant error. Fortunately, for properly chosen SBO slice locations in the SSS, field maps generated at sequential slices along the path of the SSS suggest field gradients approximately an order of magnitude smaller than this. Thus, a value of several percent is a reasonable upper bound for error due to the quadratic phase term. However, this analysis highlights the critical need to select an ideal slice location for SBO, and the importance of shimming prior to SBO. It also provides motivation for minimizing the TE values as much as possible while maintaining sufficient phase contrast. Detailed investigation of this potential source of error should be explored in future work by applying a quadratic phase model – the “adaptive-quadratic fit” as described in (160) – to an SBO sequence with several rephased echoes and longer echo times.
Chapter 4: BOLD Calibration with Interleaved Susceptometry-Based Oximetry and Phase-Contrast Flow Quantification

4.1. Abstract

BOLD calibration is a promising approach for improving the interpretability and reproducibility of fMRI. However, current calibration methods based on hypercapnia and hyperoxia gas-mixture breathing have significant limitations. Here, we present a new ‘Yv-based’ BOLD calibration model and accompanying Ox-BOLD pulse sequence. This Yv-based model requires measurement of whole-brain Yv and tCBF in addition to voxel-wise mapping of CBF and BOLD signal. These various parameters are measured simultaneously with Ox-BOLD, which interleaves the rapid, GRE-based OxFlow method for global Yv and tCBF quantification with a BOLD-calibration-optimized dual-echo pseudo-continuous ASL (pCASL) sequence for mapping CBF and BOLD signal. Both single and multi-slice versions of the sequence are applied to hypercapnia and hyperoxia gas-mixture breathing in healthy subjects. The resulting calibration M-maps compare favorably to those produced from the traditional Davis model using the same data, with considerably fewer non-physiologic M-values and more plausible anatomic contrast.

4.2. Introduction

In BOLD fMRI experiments, it is assumed that BOLD signal changes reflect neuronal activation spatially and temporally. This correspondence has been demonstrated by animal experiments involving simultaneous BOLD fMRI and intracortical EEG recordings (26). However, as discussed in Chapter 1, because BOLD signal changes are primarily driven by vascular processes (i.e., CBF changes), BOLD signal is temporally delayed and dispersed, and spatially broadened relative to underlying neuronal activity (27,28). Furthermore, BOLD signal changes have been shown to exhibit large intra- and inter-subject variability in response to the same task repeated across different days (22,23). Thus, despite the wide application of BOLD fMRI in studies of
normal physiology and disease, the technique is limited in its ability to detect group differences and longitudinal effects.

In recent years, there has been much focus on developing techniques for direct quantification of \(\text{CMRO}_2 \) (see Table 1.1 and citations). However, none of these techniques achieve both the high temporal resolution and whole-brain coverage of BOLD fMRI. Because the brain is a spatially heterogeneous and temporally dynamic organ, spatial and temporal resolution are both of critical importance in functional neuroimaging. Therefore, an attractive approach to \(\text{CMRO}_2 \) quantification is conversion of BOLD signal changes to relative changes in \(\text{CMRO}_2 \), known as BOLD calibration.

The relationship between neuronal activity and BOLD signal reflects a complex interplay between multiple factors (see Figure 1.5), including CBF, CBV, and \(\text{CMRO}_2 \), as well as tissue properties such as blood vessel diameter, and field strength. BOLD calibration first requires modeling these various contributions to BOLD signal. This has typically been accomplished using the Davis model (59), which relates relative changes in BOLD, CBF, and \(\text{CMRO}_2 \) in response to a stimulus:

\[
\frac{\Delta BOLD}{BOLD_0} = M \cdot \left(1 - \left(\frac{\text{CMRO}_2}{\text{CMRO}_2^0} \right)^\beta \left(\frac{\text{CBF}}{\text{CBF}_0} \right)^{\alpha-\beta} \right)
\]

[4.1]

where subscript 0 designates the baseline state, \(\Delta \) denotes the change from baseline to activation, and \(M \) is the BOLD calibration constant, equal to the maximum possible BOLD signal change that would occur if all dHb were removed. The exponent \(\alpha \), the Grubb constant, reflects the relationship between CBF and CBV changes (75), while \(\beta \) reflects the relative contributions of large and small vessel dephasing effects (69,70). Exponents \(\alpha \) and \(\beta \) are typically treated as constants. Although the Davis model has important theoretical limitations, including the fact that it excludes intravascular signal contributions, simulations based on a more complete multi-compartment BOLD signal model suggest that the general form of Equation 4.1 is remarkably
accurate (82). A more detailed description and derivation of the Davis model is given in Section 1.2.4.2.

In BOLD calibration experiments, CBF and BOLD signal are typically measured simultaneously using an ASL pulse sequence (56,57), ideally with a double echo or double excitation scheme to achieve optimal contrast for both ASL and BOLD signals (166). This leaves only M and CMRO$_2$ as unknowns; thus, BOLD calibration is synonymous with determining M, which is expected to vary between subjects and across brain regions, and, therefore, should ideally be spatially mapped (83,84). Accurate M mapping is crucial for successful BOLD calibration as errors in M can heavily influence subsequently quantified CMRO$_2$ changes (84).

Davis et al. first demonstrated an approach to M calibration based on measuring hypercapnia-induced changes in BOLD and CBF via CO$_2$ gas-mixture breathing (59). If CO$_2$ is assumed to have a negligible effect on CMRO$_2$, Equation 4.1 can be simplified as:

$$\frac{\Delta \text{BOLD}}{\text{BOLD}_0} = M \cdot \left(1 - \left(\frac{\text{CBF}}{\text{CBF}_0}\right)^{\alpha-\beta}\right)$$ \[4.2\]

Measurement of CBF and BOLD during baseline and hypercapnia are then used to determine M, which is subsequently applied to the full Davis model (Equation 4.1) to determine CMRO$_2$ changes associated with subsequent functional experiments. Early application of this approach was used to demonstrate large and stimulus-intensity-dependent CMRO$_2$ changes in the primary visual cortex in response to a graded visual stimulus (42), supporting the notion that elevated energy demands in response to brain activation are met largely through oxidative metabolism. Hypercapnia-calibrated fMRI has demonstrated improved intra- and inter-subject reproducibility compared to BOLD signal alone (85).

The major limitation of hypercapnia-based calibration is the need to assume a specific CMRO$_2$ response to hypercapnia. Despite numerous studies, CO$_2$ effects on cerebral metabolism remain a topic of controversy (117), with disparate results from recent studies using similar experimental
paradigms and study populations (86,87,124,141). M-values derived from CO$_2$-based calibration are also highly sensitive to errors from noise-prone ASL-derived CBF values due to the large negative exponent ($\alpha-\beta$) on the CBF term in Equation 4.2. Finally, because it induces a sensation of breathlessness, CO$_2$ is not well tolerated by some subjects, limiting its application.

To address these challenges, Chiarelli et al. (88) proposed an alternative BOLD calibration approach based on hyperoxia (88). Unlike hypercapnia, which is used to isolate the effects of CBF on BOLD signal, hyperoxia causes BOLD signal changes based on changes in [dHb], with only small effects due to blood flow (89). Following the deoxyhemoglobin dilution model proposed by Hoge et al. (81) and assuming CBF changes minimally in response to hyperoxia (89), one obtains an alternative form of the calibration equation:

$$\frac{\Delta \text{BOLD}}{\text{BOLD}_0} = M \cdot \left(1 - \frac{[\text{dHb}]_t}{[\text{dHb}]_0}\right)^\alpha$$ \[4.3\]

Hyperoxia gas-mixture breathing has the advantages of better subject tolerability and a lack of sensitivity to noisy ASL-derived CBF measurements. However, hyperoxia may cause a small change in CBF, which can be incorporated into the calibration model (88) but are not easily measured due to the low sensitivity of ASL to small flow changes and its dependence on O$_2$-induced changes in blood T$_1$. Furthermore, current implementations of the approach quantify [dHb], changes from EtO$_2$. This requires normal lung physiology and an assumed baseline OEF and CMRO$_2$ response to O$_2$. This is problematic because while OEF is relatively uniform across the brain (167), it varies significantly between even healthy subjects (61,66). Furthermore, CMRO$_2$ may decrease slightly in response to hyperoxia (105).

Recent approaches have attempted to combine hypercapnia and hyperoxia for improved calibration accuracy (90,91). These methods also allow determination of baseline Y_v and CMRO$_2$ in addition to M. However, multiple gas manipulations add further time and complexity to the protocol, while still requiring many of the aforementioned assumptions.
Improved BOLD calibration requires: 1) removing problematic model assumptions, 2) reducing calibration model dependence on noise-sensitive parameters (i.e., ASL-derived CBF), and 3) increasing the accuracy of the measurements applied to the model. To accomplish this, we propose a novel pulse sequence and modified BOLD calibration model. The technique combines rapid, MR-based quantification of whole-brain \(Y_v \) and tCBF with the usual ASL-based BOLD calibration pulse sequence for voxel-wise mapping of CBF and BOLD signal. Data from either hypercapnia or hyperoxia gas-mixture breathing are applied to a generalized \(Y_v \)-based calibration model, which assumes only that changes in \(1-Y_v \) are spatially uniform across the brain.

4.3. Methods

4.3.1. \(Y_v \)-Based Model

Following a similar derivation as the hyperoxia-calibration model (88), but without assuming small changes in CBF, one obtains the following calibration equation:

\[
\frac{\Delta \text{BOLD}}{\text{BOLD}_0} = M \left(1 - \left(\frac{[dHb]}{[dHb]_0} \right)^\beta \left(\frac{\text{CBF}}{\text{CBF}_0} \right)^\alpha \right) \] [4.4]

Because \([dHb]_v\) is linearly proportional to \(1-Y_v\), **Equation 4.4** can be modified to:

\[
\frac{\Delta \text{BOLD}}{\text{BOLD}_0} = M \left(1 - \left(\frac{1-Y_v}{1-Y_v_0} \right)^\beta \left(\frac{\text{CBF}}{\text{CBF}_0} \right)^\alpha \right) \] [4.5]

In traditional calibrated BOLD approaches, an optimized ASL pulse sequence is used to measure CBF and BOLD simultaneously to maximize temporal correspondence between the measures and improve overall temporal resolution. In applying the \(Y_v \)-based model, one would ideally quantify \(Y_v \) simultaneously alongside CBF and BOLD. Although there are a number of recently proposed MR-based techniques for \(Y_v \) quantification (60-67,90-92,98,99,121,122,128,141,151),
most have poor temporal resolution compared to ASL. However, several recent studies (described in Chapters 2-3 of this dissertation) have demonstrated rapid quantification of whole-brain Y_v using SBO applied to the SSS (86,135). In the present work, a BOLD-calibration-optimized ASL pulse sequence was combined with SBO to simultaneously generate voxel-wise CBF and BOLD maps as well as a global measure of Y_v. Addition of flow-encoding to the SBO sequence – i.e., OxFlow – provides a robust, global measure of CBF as well. To avoid confusion, voxel-wise CBF from ASL data will be denoted ‘CBF’, whereas OxFlow PC-MRI-derived blood flow will be denoted ‘tCBF’.

This combined Ox-BOLD sequence generates the necessary data for application to the Y_v-based model and has several advantages over previous calibration approaches. Unlike traditional hypercapnia calibration, no assumed CMRO$_2$ response is necessary, and sensitivity to noise-prone ASL-derived CBF values is reduced due to the small (α) exponent on the CBF term. The simultaneously acquired tCBF can be used to correct the voxel-wise ASL-derived CBF for pCASL labeling efficiency reduction which occurs at higher flow rates, such as during hypercapnia (168). Unlike traditional hyperoxia calibration, the Y_v-based model places no assumptions on the CBF response, which can be measured globally from the PC-MRI data with high precision and no T_1 sensitivity. Baseline Y_v does not need to be assumed, as it is measured from SBO, and thus capnography is not required. The Y_v-based model can be equally well applied to any global BOLD stimulus – including hypercapnia and hyperoxia – so long as the stimulus produces relative changes in $1-Y_v$ that are spatially uniform across the brain, as SBO measures Y_v globally. The traditional calibration approaches and the Y_v-based approach are compared schematically in Figure 4.1.
Two versions of the detailed description of the OxFlow pulse sequence is given in order to achieve simultaneous SBO monitoring and ASL tagging. The pulse sequence was designed with single-slice and multi-slice approaches (Figure 4.2 and Figure 4.3) for EPI readouts, respectively. In single-slice Ox-BOLD, the OxFlow module involves interleaving an OxFlow module with a BOLD-calibration-optimized, dual-echo pCASL (169) ASL pulse sequence. Since its initial demonstration for whole-brain CMRO₂ quantification (66), various iterations of the OxFlow method have been demonstrated with sufficient temporal resolution to allow integration with other pulse sequences (86,135,155). The OxFlow module applied in Ox-BOLD is similar to that in the recently described iTRUST method (86) for combined T₂- and SBO-based CMRO₂ quantification (see Chapter 3). The OxFlow module used in Ox-BOLD (see inset in Figures 4.2 and 4.3) involves a single-slice, flow-encoded, dual-echo GRE with BRISK Cartesian view-sharing to achieve simultaneous SBO-based Yᵥ quantification and PC-MRI-based flow quantification. A detailed description of the OxFlow pulse sequence is given in Chapter 2. The pulse sequence parameters for the OxFlow module used in this work are virtually identical to those used in iTRUST (as described in Chapter 3).

Two versions of the Ox-BOLD pulse sequence were designed with single-slice (Figure 4.2) and multi-slice (Figure 4.3) EPI readouts, respectively. In single-slice Ox-BOLD, the OxFlow module involves interleaving an OxFlow module with a BOLD-calibration-optimized, dual-echo pCASL (169) ASL pulse sequence. Since its initial demonstration for whole-brain CMRO₂ quantification (66), various iterations of the OxFlow method have been demonstrated with sufficient temporal resolution to allow integration with other pulse sequences (86,135,155). The OxFlow module applied in Ox-BOLD is similar to that in the recently described iTRUST method (86) for combined T₂- and SBO-based CMRO₂ quantification (see Chapter 3). The OxFlow module used in Ox-BOLD (see inset in Figures 4.2 and 4.3) involves a single-slice, flow-encoded, dual-echo GRE with BRISK Cartesian view-sharing to achieve simultaneous SBO-based Yᵥ quantification and PC-MRI-based flow quantification. A detailed description of the OxFlow pulse sequence is given in Chapter 2. The pulse sequence parameters for the OxFlow module used in this work are virtually identical to those used in iTRUST (as described in Chapter 3).
is interleaved within the PLD to maximize temporal efficiency; no additional scan time is needed for acquisition of global \(Y_v\) and tCBF. The pCASL labeling / control location is selected to intersect both internal carotid arteries and both vertebral arteries. The OxFlow slice is positioned 20 mm superior to the EPI slice to prevent if from impacting blood that will later flow into the pCASL slice, potentially affecting the EPI-derived BOLD or CBF measurement. Successful application of a similar GRE module within the PLD of an ASL sequence has been demonstrated in the PIVOT technique, used to quantify perfusion and \(Y_v\) during post-ischemia reperfusion in the leg (164).

Figure 4.2: Single-slice Ox-BOLD pulse sequence diagram. The OxFlow module is shown in the inset and relative slice locations are indicated on the sagittal magnitude image. Following pCASL labeling in the feeding arteries, OxFlow global tCBF and \(Y_v\) data are acquired during the PLD, followed by a dual-echo EPI readout to generate voxel-wise CBF and BOLD maps. Sequence parameters include: pCASL – matrix = 80 x 80 (5/8th partial Fourier), FOV = 250 x 250 mm, slice thickness = 5 mm, TR/TE\(_1/\Delta TE\) = 3650/8.1/52.9 ms, label duration = 1.8 s, PLD = 1.8 s, Hanning window average B1 = 1.7 µT, pulse interval = 1 ms, \(G_{\text{max}}/G_{\text{avg}} = 9/1\) mT/m. OxFlow – matrix = 192x48 (BRISK reconstructed to 192x192), FOV = 176x176 mm, slice thickness = 5 mm, TR/TE\(_1/\Delta TE\) = 17.5/7.2/6.65 ms, VENC = 40 cm/s.
In multi-slice Ox-BOLD (Figure 4.3), the OxFlow module is interleaved outside the pCASL sequence, with slab-selective saturation pulses used to prevent interaction between OxFlow and pCASL. The OxFlow readout is initiated 350 ms following saturation in order to capture the tissue signal approximately at its steady-state longitudinal magnetization (86). The post-OxFlow slab-saturation resets spin history in the imaging slices, and also serves as a pre-saturation pulse for pCASL. The multi-slice sequence allows full brain coverage at the cost of the temporal efficiency afforded by the single-slice approach, resulting in prolongation of the TR from 3.75 to 6 seconds.

Figure 4.3: Multi-slice Ox-BOLD pulse sequence diagram. The OxFlow module is shown in the inset and relative slice/slab locations are indicated on the sagittal magnitude image. pCASL labeling in the feeding arteries and PLD is followed by a 2D, 11-slice, dual-echo EPI readout to generate voxel-wise CBF and BOLD maps. After a slab-selective saturation pulse to remove spin history and a 350 ms waiting period for signal recovery, OxFlow global tCBF and Y_v data are acquired, followed by a second slab-selective saturation for ASL pre-saturation. Sequence parameters include: pCASL – matrix = 64x64 (5/8th partial Fourier echo 1, 6/8th partial Fourier echo 2), FOV = 220x220 mm, slice thickness = 7 mm, slice gap = 1 mm, TR/TE1/TE2 = 6000/7.64/35.26 ms, label duration = 1.8 s, PLD = 1.8 s, Hanning window average $B_1 = 1.7 \mu T$, pulse interval = 1 ms, $G_{max}/G_{avg} = 9/1$ mT/m. OxFlow – matrix = 192x48 (BRISK reconstructed to 192x192), FOV = 176x176 mm, slice thickness = 5 mm, TR/TE1/ΔTE = 15.7/6.5/5.76 ms, VENC = 40 cm/s.
In both sequence versions, pCASL labeling parameters were adopted from Alsop et al. (170). An M₀ image was acquire at the beginning of each Ox-BOLD sequence to correct for proton density weighting.

4.3.3. In Vivo Imaging Experiments

All imaging was performed on a 3T Siemens Tim Trio system (Siemens Medical Solutions, Erlangen, Germany) using a vendor-supplied 32-channel receive-only head coil. Before each Ox-BOLD acquisition, a vendor-provided time-of-flight axial localizer scan was used for slice selection, and retrospectively to determine the vessel tilt angle (θ) in Equation 1.22 for Y_v quantification. Furthermore, a two-slice-interleaved PC-MRI pulse sequence was run at the level of the internal carotid and vertebral arteries in the neck and the SSS in the head in order to determine the subject’s SSSBF:tCBF ratio (135).

4.3.3.1. Single-Slice Ox-BOLD Validation

Single-slice Ox-BOLD uses the PLD to acquire OxFlow data, which may cause inadvertent spin tagging effects. To test this possibility, single-slice Ox-BOLD was run in a single healthy volunteer at rest with five sequence versions: one with the OxFlow module removed and four with the OxFlow slice location varied relative to the EPI slice (which was kept constant) with Δz = 20, 30, 60, or 100 mm. 30 tag/control pairs (3:45 minutes) of data were collected for each of the five sequences, repeated a second time with acquisition order reversed to control for physiologic drift. Average gray matter CBF and T₂* for each of the five sequences was quantified.

4.3.3.2. Gas-Mixture Breathing Experiments

A two-way non-rebreathing T-valve (2700 Series, Hans Rudolph, Inc., Kansas City, MO, USA) was used to deliver 5% CO₂ in room air (hypercapnia) or 100% O₂ (hyperoxia) for five minutes via a 100 L Douglas bag. For all gas stimuli, room air was delivered five minutes before and after the gas-mixture, and MRI data were collected continuously for the entire 15 minutes. Using this protocol, three healthy subjects were scanned with single-slice Ox-BOLD during hypercapnia.
One subject was subsequently scanned during hyperoxia. On a separate day, this same subject was scanned with multi-slice Ox-BOLD during hypercapnia followed by hyperoxia.

4.3.4. Data Analysis

OxFlow data analysis was analogous to that described previously (86,135). In brief, following BRISK data reordering to create full k-space images, time-resolved SSSBF was determined from the phase difference between images acquired at TE₁ with flow-encoding and flow-compensation. SSSBF was upscaled to tCBF based on the SSSBF:tCBF ratio quantified from the two-slice-interleaved PC-MRI scan. Time-resolved Y_v values were determined from the phase difference between flow-compensated data acquired at TE₁ and TE₂, with quadratic fitting used to remove static field inhomogeneities (126).

EPI images were pre-processed using a standard pipeline involving homodyne reconstruction, N/2 ghost correction, brain extraction, motion correction, and 5mm Gaussian kernel smoothing. CBF was quantified using a general kinetic model (171) as described in (170). Average maps for baseline (CBF₀, BOLD₀) and stimulus (CBF, BOLD) conditions were generated after excluding data in the transition periods (minutes 0-1 and 10-11 for baseline, 5-6 for stimulus). For single-slice Ox-Flow, this results in 32 and 64 tag/control pairs for stimulus and baseline conditions, respectively, and for multi-slice Ox-Flow, 20 and 40 tag/control pairs (due to the longer TR). OxFlow-derived, time-resolved Y_v and tCBF values were averaged over equivalent time periods.

For hypercapnia experiments, M-maps were generated using Equation 4.5 (Y_v-based model) and Equation 4.2 (Davis model). For hyperoxia experiments, only the Y_v-based model was applied, as the Davis model is unreliable for stimuli producing only small flow changes, and the traditional hyperoxia approach (Equation 4.3) requires capnography. For hyperoxia Y_v-based calibration, OxFlow-derived tCBF values were used in place of ASL-derived CBF values. Values of $\alpha = 0.18$ and $\beta = 1.5$ were used throughout (76,91). M-values from the single-slice sequence were normalized to a TE of 35.26 ms (the multi-slice sequence BOLD TE) to facilitate comparison between the sequence versions.
Whole-brain average values for ASL-derived CBF, BOLD, and M were generated based on manual segmentation of gray matter (single-slice Ox-BOLD) or application of exclusion criteria on a per-voxel basis (multi-slice Ox-BOLD). Inclusion criteria were as follows: Hypercapnia – 0% < ΔBOLD < 15%, 0% < ΔCBF < 200%, and 0% < M < 20%; Hyperoxia – 0% < ΔBOLD < 15%, -50% < ΔCBF < 50%, and 0% < M < 20%.

4.4. Results

4.4.1. Interleaved Sequence Assessment

Presence or location of the OxFlow module had no significant effect on CBF or T$_2^*$ values. For the four sequences with the OxFlow module present, the mean and SD percent difference relative to the sequence with OxFlow module off were 0.9 ± 3.0 % and -0.4 ± 0.5 %, for CBF and T$_2^*$ values, respectively. These small differences were not correlated with Δz (P = 0.40 and P = 0.24 for CBF and T$_2^*$, respectively, based on Pearson’s correlation coefficients). Thus, no measurable error is introduced by acquiring OxFlow data in the pCASL PLD for single-slice Ox-BOLD. Similar validation experiments applied to the PIVOT sequence in the leg (164) also found no cofounding effect due to GRE data acquired in an ASL PLD.

4.4.2. Single-Slice Ox-BOLD M-Quantification

Figure 4.4 displays parameter time courses and parametric maps derived for single-slice Ox-BOLD data from subject 3. CBF increases substantially in response to hypercapnia but decreases slightly in response to hyperoxia, whereas BOLD signal and Y_v increase in response to both stimuli. Temporal correspondence between ASL-derived CBF and OxFlow derived tCBF is observed for both stimuli. Hypercapnia M-maps and average M-values using the Davis and Y_v-based model show similar values and anatomic contrast. Hyperoxia results in a slightly higher average M-value, also with similar anatomic contrast. Average gray-matter M for the three subjects who underwent hypercapnia was 9 ± 1% using the Davis model, and 8 ± 1% using the Y_v-based model, in good agreement with recent literature (90,91,150).
Figure 4.4: Single-slice Ox-BOLD data from an example subject. (A) Time-course plot of OxFlow-derived tCBF and Y_v and ASL-derived CBF and T_2^* during baseline, hypercapnia (HC), and hyperoxia (HO). (B) Parametric maps of time-averaged ASL-derived parameters (T_2^*, CBF) are placed below the corresponding time-course data, with gray matter voxel-wise averaged M-values at bottom. All parametric maps are overlaid on GRE magnitude images. Note: although gray matter masking was applied to generate the time-course values and average M values, parametric maps include all voxels to illustrate gray/white anatomic contrast and retain outliers to facilitate comparison of model performance.

4.4.3. Multi-Slice Ox-BOLD M-Quantification

Figure 4.5 displays magnitude images and parametric maps at each of the 11 slices from both the hypercapnia and hyperoxia calibration experiments in subject 3. CBF maps are not displayed for hyperoxia as OxFlow-derived tCBF was instead used in the Y_v-based model. As mentioned, without capnography, only the Y_v-based model can generate M-maps for hyperoxia. Contrast between gray and white matter is apparent in all parametric maps, with M-values greater in gray
than white matter as expected. Image quality is generally lower in the inferior slices due to susceptibility artifacts from air spaces. This is especially apparent in the hyperoxia images, as paramagnetic O$_2$ gas enhances susceptibility artifacts, causing intra-voxel dephasing and signal voids near the frontal sinuses (172).

![Magnitude Images](image)

<table>
<thead>
<tr>
<th>GRE</th>
<th>EPI</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hypercapnia (5% CO$_2$) Parametric Maps</th>
</tr>
</thead>
<tbody>
<tr>
<td>CBF$_5$ (mL/100g/min)</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hyperoxia (100% O$_2$) Parametric Maps</th>
</tr>
</thead>
<tbody>
<tr>
<td>ΔBOLD (%)</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Figure 4.5: Multi-slice Ox-BOLD data from an example subject. The scale bars for each parameter value are shown at right. For ΔCBF, ΔBOLD, and M, the scale bar ranges correspond to the outlier exclusion thresholds. Note: parametric maps include outlier voxels to illustrate gray/white anatomic contrast and retain outliers to facilitate comparison of model performance.

Figure 4.6 displays only the three middle slices for each of the three M-maps, highlighting the superior anatomic contrast present in the Y$_v$-based model M-maps, as well as the presence of more significant outliers (bright spots) in the Davis model M-map.
Figure 4.6: Zoomed-in parametric M-maps from each of the three methods (slices 5-7 only). Bright spots in the Davis model CO\textsubscript{2} calibration M-map represent outlier voxels, which are not apparent in the \(Y_v \)-based M-maps.

Table 4.1 lists whole-brain mean ± SD parameter values, and the number of voxels used for averaging (i.e., excluding outliers) out of the total N=12443 voxels included in the initial brain extraction. Hypercapnia ASL-derived CBF and OxFlow-derived tCBF correspond well. Average M-values for all three calibrations are similar, with \(Y_v \)-based model hyperoxia calibration lowest. Both \(Y_v \)-based model calibrations retained approximately 10% more voxels than the Davis model calibration.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Hypercapnia</th>
<th>Hyperoxia</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{CBF}_i) (mL/100g/min)</td>
<td>46.3 ± 31.1</td>
<td>------------</td>
</tr>
<tr>
<td>(\text{CBF} / \text{CBF}_i) (%)</td>
<td>69.2 ± 44.0 (N = 9367)</td>
<td>------------</td>
</tr>
<tr>
<td>(\text{BOLD} / \text{BOLD}_i) (%)</td>
<td>3.9 ± 2.9 (N = 10713)</td>
<td>3.5 ± 2.7 (N = 10703)</td>
</tr>
<tr>
<td>((1-Y_i) / (1-Y_v)_i) (%)</td>
<td>-54.1</td>
<td>-30.0</td>
</tr>
<tr>
<td>(\text{tCBF} / \text{tCBF}_i) (%)</td>
<td>68.6</td>
<td>2.6</td>
</tr>
<tr>
<td>M-Davis (%)</td>
<td>7.6 ± 4.3 (N = 7779)</td>
<td>------------</td>
</tr>
<tr>
<td>M-(Y_v) (%)</td>
<td>5.5 ± 3.8 (N = 8510)</td>
<td>7.0 ± 4.1 (N = 8409)</td>
</tr>
</tbody>
</table>

Table 4.1: Whole-brain-averaged parameter values from hypercapnia and hyperoxia M-calibration experiments. N corresponds to the number of voxels remaining after outlier exclusion out of a possible 12443.
The distribution of M-values for each of the three maps is shown in Figure 4.7, with outliers included. As suggested by the data in Table 4.1 and Figure 4.6, Y\textsubscript{v}-based M-maps show a tighter distribution of M-values, and many fewer non-physiologic (i.e., very high or negative) M-values. The Davis model demonstrates a tendency to produce extreme outlier values not seen in the Y\textsubscript{v}-based models; without outlier exclusion the average M-value for the Davis model is significantly greater whereas the average Y\textsubscript{v}-based M-values are minimally affected (data not shown). Time-course plots (not shown) were similar to those from the single-slice data (Figure 4.4a).

![Figure 4.7: M-value histograms for each calibration. Outliers are not excluded. Note that all voxels with M values below 0 or above 20, as well as others excluded based on ΔCBF and ΔBOLD cutoffs, were not included in generating the whole-brain averaged values in Table 4.1.](image)

4.5. Discussion

In a recent review of calibrated BOLD techniques (150), Blockley et al. suggested that current BOLD calibration approaches could benefit from additional measurement of Y\textsubscript{v}, either to remove CMRO\textsubscript{2} assumptions from hypercapnia calibration or baseline Y\textsubscript{v} assumptions from hyperoxia calibration. The proposed Y\textsubscript{v}-based model and Ox-BOLD sequence incorporate these ideas into a comprehensive BOLD-calibration approach. Using this approach, hypercapnia and hyperoxia gas-mixture breathing calibration was successfully demonstrated with fewer assumptions compared to traditional methods, resulting in visually improved M-maps compared to traditional hypercapnia calibration using the Davis model. These proof-of-principle results should be replicated in additional subjects, with the calibration results applied in subsequent task-based fMRI experiments to assess the performance of the method in deriving fractional CMRO\textsubscript{2} response maps.
4.5.1. Prior Applications of Yv to BOLD Calibration

Using TRUST MRI, Lu et al. (173) found a negative correlation between baseline Yv and BOLD signal changes in response to a visual task, and suggested that Yv could be used as a regressor to reduce intersubject variability in the BOLD response, potentially improving reproducibility of fMRI studies. However, such an approach does not provide a means of determining CMRO2 from BOLD signal, and could potentially remove variability due to differences in the CMRO2 response itself.

In a recent study, Driver et al. (165) demonstrated that Yv can be used to remove the need for an assumed CBF/CBV coupling constant (α). Yv was obtained by applying SBO to the phase data of the same EPI images used for BOLD signal quantitation. Because SBO is highly sensitive to partial voluming errors, EPI phase images do not provide an optimal approach given their relatively low spatial resolution. Furthermore, the Driver et al. method requires performing the functional task of interest during both baseline and hyperoxia. Though removing model dependence on α is a notable achievement, recent works suggest that errors due to inaccuracies in α can be minimized by relaxing the physical interpretation of α and β and instead treating them as fitting constants (82).

4.5.2. Assessment of Calibration Results

Both a single- and multi-slice version of the Ox-BOLD sequence was assessed. Single-slice Ox-BOLD has better temporal resolution for M-calibration, and thus may be useful for calibration during short-term stimuli (such as breath-hold). However, lack of whole-brain coverage is a major limitation. While the multi-slice Ox-BOLD sequence has a longer TR, the OxFlow module is only needed during calibration, but not in subsequent application of the sequence for CMRO2 mapping during functional tasks. This is possible because M-values are minimally affected by pulse sequence parameters other than the EPI readout TE. Furthermore, the slab-saturation pulses isolate effects of the OxFlow module, such that the BOLD/ASL portion of the sequence should be unaffected by removal of the OxFlow module so long as the pre-saturation pulse remains.
Yv-based calibration M-maps from the multi-slice data were visually superior to the Davis calibration M-maps (Figure 4.6). However, single-slice Ox-BOLD data showed little difference between models (Figure 4.4). The reason for these differences is unclear. Multi-slice Ox-BOLD M-maps also had lower average M-values compared to the equivalent single-slice maps from the same subject. This is likely a result of the different exclusion criteria used (i.e., gray matter thresholding for single-slice vs. stimulus-response-based outlier exclusion for multi-slice), which can have a significant effect on quantified M-values (174).

M-values tended to be higher in the most inferior slices, secondary to both higher ΔCBF and higher ΔBOLD. These trends seem unlikely to be entirely physiologic, and are also not confined to the frontal regions of the brain, arguing against susceptibility-induced intravoxel-dephasing effects as a sole explanation (172). Investigation of these slice-dependent effects would be aided by additional data sets in more subjects.

4.5.3. Yv-Based Model Assumptions

Despite removing various physiologic assumptions inherent in traditional calibration approaches, the Yv-based model equation (Equation 4.5) assumes that fractional changes in 1−Yv are spatially uniform across the brain. Although Yv is quite uniform across the brain at baseline (16), limited data is available regarding the spatial heterogeneity of its fractional changes in response to gas-mixture breathing challenges. This critical assumption requires further validation, and may be more appropriate for hyperoxia than hypercapnia given the spatially heterogeneous CVR response to hypercapnia. An alternative approach to Ox-BOLD hypercapnia-based calibration would be to use the original Davis model equation, but with OxFlow-derived fractional CMRO2 changes in place of an assumed CMRO2 response (i.e., isometabolism). However, this would sacrifice the reduced ASL noise sensitivity of the Yv-based model. More work is needed to investigate the validity of these various approaches.

It is important to note that the Yv-based model is specific to calibration, and the Davis model equation (Equation 4.1) must still be applied for subsequent determination of task-induced
CMRO$_2$ changes. The accuracy of CMRO$_2$ changes derived from Equation 4.1 will be influenced by both measurement errors as well as inaccuracies in model assumptions. For parameters that appear in both equations, for instance, the α and β constants, these errors may be propagated or partially canceled. While Figures 4.6 and 4.7 suggest that the Y_v-based model has improved stability against outliers, detailed modeling of error propagation (82,175) would provide insight into the expected performance of the various calibration approaches.

The SBO technique used to derive Y_v assumes that tissue susceptibility does not change. This may not be strictly true in hyperoxia, as a significant amount of paramagnetic O$_2$ becomes dissolved in tissue water and arterial blood (CBV$_a$). The potential effect of dissolved O$_2$ on SBO-measured Y_v should be further explored to determine whether the susceptibility model described by Equation 1.16 is appropriate, and, if not, what corrections must be made.

4.5.4. Calibration Stimulus Considerations

Although simultaneous acquisition of all MR-derived model parameters is an attractive feature of Ox-BOLD, and ensures temporal correspondence of the various physiologic parameters, it is not critical when measurements are made over long periods of steady state stimuli, as is usually the case in gas-mixture calibration studies. In this case, serial measurements of ASL, BOLD, PC-MRI, and field mapping during both baseline and stimulus could provide similar information, and, furthermore, could be accomplished on most human scanning systems using only vendor-supplied product sequences. However, the fully interleaved approach offered by Ox-BOLD could allow calibration with shorter stimulus epochs, non-steady-state stimuli such as breath-hold (176), or graded/stepped stimuli (81,177), which could improve M-map accuracy by fitting Equation 4.5 over a range of measured values.

The use of shorter stimulus periods or graded/stepped stimuli may be better suited to hyperoxia than hypercapnia calibration, as ASL SNR is often the limiting factor determining the number of averages needed (and ASL data is not needed for hyperoxia calibration). On the other hand, improving ASL SNR is desirable no matter what calibration method is used, as ASL data are
needed for subsequent derivation of task-induced CMRO$_2$ changes with Equation 4.1. To this end, use of a double-excitation rather than double-echo approach (166) could permit use of state-of-the-art 3D background-suppressed ASL readouts, which have long pulse trains precluding double-echo readouts. A feature of Ox-BOLD not explored here is the ability to correct for reduced ASL tagging efficiency during hypercapnia with OxFlow derived tCBF. Such correction is often estimated or determined from a separate PC-MRI acquisition (168).

4.6. Conclusions

This work demonstrates the potential for improved BOLD calibration using a new Y_v-based calibration model and hybrid Ox-BOLD pulse sequence for simultaneous BOLD and CBF mapping alongside whole-brain Y_v and tCBF quantification. The model requires fewer assumptions than traditional BOLD calibration approaches, and can be equally applied to hypercapnia and hyperoxia gas-mixture breathing. Preliminary data suggest the approach performs better than standard Davis model hypercapnia calibration, producing M-maps with more plausible contrast and many fewer non-physiologic outliers.
Chapter 5: Cerebral Metabolic Rate of Oxygen in Obstructive Sleep Apnea at Rest and In Response to Breath-Hold Challenge

5.1. Abstract

Obstructive sleep apnea (OSA) is associated with extensive neurologic comorbidities. It is hypothesized that the repeated nocturnal apneas experienced in patients with OSA may inhibit the normal apneic response, resulting in hypoxic brain injury and subsequent neurologic dysfunction. In this study, we applied the recently developed OxFlow MRI method for rapid quantification of CMRO\textsubscript{2} during a volitional apnea paradigm. MRI data were analyzed in 11 OSA subjects and 10 controls (mean ± SD apnea-hypopnea index (AHI): 43.9 ± 18.1 vs. 2.9 ± 1.6 events/hour, \(P < 0.0001 \); age: 53.8 ± 8.2 vs. 45.3 ± 8.5 years, \(P = 0.027 \); body mass index (BMI): 36.6 ± 4.4 vs. 31.9 ± 2.2 kg/m2, \(P = 0.0064 \)). Although total cerebral blood flow and arteriovenous oxygen difference were not significantly different between apneics and controls (\(P > 0.05 \)), apneics displayed reduced baseline CMRO\textsubscript{2} (117.4 ± 37.5 vs. 151.6 ± 29.4 µmol/100g/min, \(P = 0.013 \)). In response to apnea, CMRO\textsubscript{2} decreased more in apneics than controls (-10.9 ± 8.8 % vs. -4.0 ± 6.7 %, \(P = 0.036 \)). In contrast, group differences in flow-based CVR were not significant. Results should be interpreted with caution given the small sample size and future studies with larger independent samples should examine the observed associations, including potential independent effects of age or BMI. Overall, these data suggest that dysregulation of the apneic response may be a mechanism for OSA-associated neuropathology.

5.2. Introduction

OSA is defined by structural and functional failure of the upper airway to maintain patency during sleep, resulting in periodic cessations or reductions in breathing and subsequent arterial desaturations. One in five adults in the Western world is believed to have at least mild OSA (178), a figure that is rapidly increasing as obesity, the main risk factor for OSA, becomes more prevalent. In addition to the typical symptoms of daytime sleepiness, snoring, and disturbed
sleep, OSA is also associated with significant systemic comorbidities, including hypertension, myocardial infarction and congestive heart failure, stroke, and type 2 diabetes (179). Of particular relevance to this study, patients with OSA have a high prevalence of central nervous system dysfunction, including depression, dementia, and diminished cognitive performance (180). MRI studies of OSA patients have detected neurologic lesions suggestive of hypoxic damage, including focal loss of gray matter (36) and white matter (181).

The etiology of OSA-associated neurologic comorbidities is not well understood. Brain tissue is particularly sensitive to hypoxic damage and rapid reperfusion (182), and brain regions known to be more acutely affected by hypoxia, such as the hippocampus, are among those identified as having gray matter loss in OSA (36). In normal physiology, apnea-induced hypercapnia and hypoxia cause chemoreceptor-mediated central vasodilation and concurrent peripheral vasoconstriction, preferentially conserving oxygen delivery to the brain to prevent hypoxic brain injury (183). In fact, recent work by our group has demonstrated that CMRO\textsubscript{2} is not just maintained, but slightly increased in young healthy subjects in response to 30-second volitional apnea (135). This may represent a mechanism for increasing energy stores in anticipation of prolonged apnea, and is consistent with gas-mixture breathing studies demonstrating increased CMRO\textsubscript{2} in response to steady-state hypoxia (105). However, it is possible that patients with OSA do not possess a normal apneic response, allowing hypoxic damage to occur during OSA-associated nocturnal apneas.

In support of this hypothesis are studies associating OSA with blunted CVR (37-39), typically defined as the CBF change in response to a vasoactive stimulus, such as hypercapnia (39) or apnea (37,38), the latter of which is particularly pertinent to OSA pathophysiology. In one study, CVR assessed in response to breath-hold by Doppler ultrasound was found to be significantly lower in OSA subjects, and more so in the morning, indicating that their diminished vasodilatory response is worsened by more recent exposure to nocturnal apneas (37). Recently, BOLD fMRI was used to detect reduced CVR in select brain regions of apneics, including the hippocampus (38). Blunted cerebrovascular responses to autonomic challenges (184,185) (e.g., orthostatic
hypotension, cold pressor challenge, etc.) suggest a mechanism of brain injury even during wakefulness, whereby day-to-day activities (e.g., standing) may not be met with an adequate cerebrovascular response to preserve central oxygen delivery. Finally, studies in both animals (186) and healthy humans (187) exposed to chronic intermittent hypoxia paradigms indicate a causal link between exposure to cyclic hypoxia and impaired vascular reactivity. If initial hypoxic injury itself leads to further blunting of the apneic response, a negative feedback cycle of worsening hypoxic damage could ensue.

Though supporting a mechanism for hypoxic brain injury in OSA, these previous studies all measure surrogate markers of brain oxygen metabolism (i.e., blood flow, perfusion, or BOLD fMRI signal), reductions of which do not necessarily correlate with decreased oxygen delivery and consumption. Of more central interest is whether oxygen consumption itself is maintained. Direct quantification of CMRO\textsubscript{2} requires quantification of both cerebral blood flow and oxygen extraction, the latter posing the greater technical challenge. CMRO\textsubscript{2} is less variable than blood flow or oxygen extraction in healthy subjects at baseline (66,101), and relatively conserved in response to physiologic challenges such as hypercapnia (87,124) and hypoxia (105), suggesting that CMRO\textsubscript{2} may be a more significant index for assessing neurovascular dysfunction than either blood flow or oxygenation alone. CMRO\textsubscript{2} reduction has been associated with many of the most common neurologic disorders, including mild cognitive impairment (112) and Alzheimer’s disease (34), Parkinson’s disease (127), and multiple sclerosis (111).

Quantifying CMRO\textsubscript{2} in response to apnea requires temporal resolution on the order of several seconds. Although this temporal resolution can be achieved with BOLD fMRI, attempts to ‘calibrate’ the BOLD signal (i.e., convert fractional BOLD signal change to fractional change in CMRO\textsubscript{2}), rely on models with many physiologic assumptions and complex experimental setups involving gas-mixture breathing (150). Moreover, such calibration techniques still provide only relative changes in CMRO\textsubscript{2}, with additional calibration needed to quantify baseline values in absolute physiologic units.
Recently, we have introduced an MRI technique for rapid whole-brain CMRO$_2$ quantification based on simultaneous SBO and PC-MRI blood flow quantification – termed OxFlow (66). Subsequent iterations of the technique have employed view-sharing to achieve temporal resolution as low as three seconds for whole brain CMRO$_2$ quantification (86,135). Unlike all previous CMRO$_2$ measurement techniques, this method has sufficient temporal resolution to detect CMRO$_2$ changes in response to apnea, allowing direct evaluation of the relationship between apnea, CVR, and brain oxygen delivery and consumption.

In this study, OxFlow was applied to compare the CMRO$_2$ response to apnea in OSA subjects and healthy controls. We hypothesized that OSA would be associated with reduced baseline CMRO$_2$, as well as a blunted CMRO$_2$ response to volitional apnea, and that this blunting would correlate with disease severity as measured by the apnea hypopnea index (AHI).

5.3. Methods

5.3.1. Susceptometry-Based Quantification of Y_v (SBO)

SBO exploits the relative paramagnetism of hemoglobin in the deoxygenated state, which results in a linear relationship between Y_v and venous blood magnetic susceptibility relative to surrounding tissue ($\Delta \chi$):

$$\Delta \chi = Hct \left(\Delta \chi_{do} \left(1 - Y_v \right) + \Delta \chi_{oxy} \right)$$ \[5.1\]

where Hct is the hematocrit and $\Delta \chi_{do}$ and $\Delta \chi_{oxy}$ are the volume susceptibility differences between fully oxygenated and deoxygenated packed red blood cells and between fully oxygenated packed red blood cells and water, respectively. Values of $4\pi \times 0.273$ and $4\pi \times 0.008$ p.p.m. (SI units) are used for $\Delta \chi_{do}$ and $\Delta \chi_{oxy}$, based on ex vivo calibration experiments (118). The susceptibility offset ($\Delta \chi$) induces a field shift (ΔB), which causes an increase in MR signal phase ($\Delta \phi$) between blood and surrounding ‘reference’ tissue as a function of echo spacing (ΔTE) in a multi-echo gradient echo imaging sequence:
\[\Delta B = \Delta \phi / \gamma \Delta TE \quad [5.2] \]

where \(\gamma \) is the proton gyromagnetic ratio.

Solving for \(Y_v \) thus hinges on determining \(\Delta \chi \) from the measured \(\Delta B \), an inversion problem that is mathematically ill-posed in the general case. However, by modeling the blood vessel of interest as a pseudo-infinite straight cylinder (121) with defined tilt angle (\(\theta \)) relative to the main magnetic field (\(B_0 \)), an expression relating the susceptibility and field offsets can be derived analytically:

\[\Delta B = \frac{1}{6} \Delta \chi B_0 \left(3 \cos^2 \theta - 1 \right) \quad [5.3] \]

To quantify global \(Y_v \), this infinite cylinder model is applied to the SSS, the largest cerebral vein, which drains about 50% of total cerebral outflow. \(Y_v \) in the SSS is nearly identical to global cerebral venous oxygenation measured in the internal jugular veins as shown by \(T_2 \)-based oximetry methods (63,101). However, while trachea-induced susceptibility artifacts complicate SBO in the jugular veins, the field adjacent to the SSS is relatively homogeneous, making it the ideal candidate for global \(Y_v \) quantification via SBO.

5.3.2. Combination of SBO and PC-MRI for CMRO\textsubscript{2} Quantification (OxFlow)

SBO and PC-MRI can be readily combined as a single gradient echo sequence by applying flow-encoding before a multi-echo GRE readout, achieving simultaneous quantification of blood oxygenation and flow (Figure 5.1) (66,135). In this study, OxFlow was implemented with BRISK Cartesian view-sharing (154), with one-quarter k-space acquired at each time point and a resulting temporal resolution of two seconds for each simultaneously acquired pair of field- and velocity-maps. BRISK is more robust against subject motion compared to previous implementations of OxFlow using Keyhole view-sharing (135,136). Other OxFlow pulse sequence parameters used in this study were: reconstructed matrix = 208 \(\times \) 208, resolution = 0.85 \(\times \) 0.85 \(\times \) 5.00 mm, \(TR/TE_i/\Delta TE \) = 19.23/5.73/7.04 ms, bandwidth = 321 Hz/pixel, and VENC = 50 cm/s.
SSS blood flow (SSSBF) can be converted to total CBF (tCBF) via multiplication by a calibration factor determined through a separate two-slice-interleaved PC-MRI acquisition toggled between the internal carotid and vertebral arteries in the neck (which comprise tCBF) and the SSS in the head (Figure 5.1b) (135). This calibration step can be run before subsequent OxFlow experiments, allowing tCBF to be quantified as:

\[
tCBF = \left(t_{CBF_{cal}} / SSSBF_{cal} \right) \cdot SSSBF
\]

[5.4]

CMRO\textsubscript{2} can then be quantified via the Fick Principle (10-12):
\[CMRO_2 = C_a \cdot tCBF \cdot \left(Y_a - Y_v \right) \] \[5.5\]

where \(C_a \) is the hematocrit-dependent arterial oxygen content of blood in \(\mu \text{mol} \ O_2/100 \text{mL} \) and \(Y_a \) is the arterial oxygen saturation in \%HbO_2, which can be measured by digital pulse oximetry. The SSSBF:tCBF calibration pulse sequence parameters used in this study were: reconstructed matrix = 208 \times 208, resolution = 0.85 \times 0.85 \times 5.00 \text{ mm}, TR/TE = 12.02/5.73 \text{ ms}, bandwidth = 321 \text{ Hz/pixel}, VENC = 50 \text{ cm/s (head slice) / 80 cm/s (neck slice)}, temporal resolution = 10 \text{ s}, and averages = 4.

5.3.3. Subjects

Subjects were recruited based on results of a clinically indicated sleep study (in-lab attended polysomnography) performed at the University of Pennsylvania Sleep Center. The AHI was calculated as the mean number of apnea and hypopnea events per hour of sleep. Obstructive apneas were defined as at least a 90% drop in the thermal sensor excursion of baseline lasting at least 10 seconds; hypopneas were defined as a 50% reduction in airflow for greater than 10 seconds and associated with greater than 3% decrement in oxyhemoglobin saturation and/or an arousal. Nasal pressure monitors were used in all subjects to measure airflow.

Thirteen newly diagnosed apneics (AHI > 15 events/hour) and 10 non-apneic controls (AHI < 10 events/hour) were selected after screening for standard MRI exclusion criteria (claustrophobia, metal implants, pregnancy, etc.) and excluding diseases expected to affect cerebral metabolism and/or CVR, including congestive heart failure, chronic obstructive pulmonary disease, stroke, head trauma, and other significant neurological diseases. Cigarette smokers or users of other nicotine products were excluded as smoking can affect vasodilation. Subjects had no prior history of OSA diagnosis or continuous positive airway pressure (CPAP) use. Subject demographics are displayed in Table 5.1.
<table>
<thead>
<tr>
<th>Parameter</th>
<th>OSA (N = 11)</th>
<th>Control (N = 10)</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td>53.8 ± 8.2</td>
<td>45.3 ± 8.5</td>
<td>0.027*</td>
</tr>
<tr>
<td>Gender (Male / Female)</td>
<td>7 / 4</td>
<td>4 / 6</td>
<td>0.39</td>
</tr>
<tr>
<td>Race (CA / AA)</td>
<td>2 / 9</td>
<td>6 / 4</td>
<td>0.081</td>
</tr>
<tr>
<td>BMI (kg/m²)</td>
<td>36.6 ± 4.4</td>
<td>31.9 ± 2.2</td>
<td>0.0064*</td>
</tr>
<tr>
<td>AHI (events/hour)</td>
<td>43.9 ± 18.1</td>
<td>2.9 ± 1.6</td>
<td>< 0.0001*</td>
</tr>
<tr>
<td>Yₙ Nadir (%HbO₂)</td>
<td>77.5 ± 8.5</td>
<td>89.0 ± 3.7</td>
<td>0.0001*</td>
</tr>
</tbody>
</table>

Table 5.1: Group demographics and polysomnography data. Parameter values are reported as mean ± SD across subjects. P-values are based on Wilcoxon two-sample exact tests (Age, BMI, AHI, Yₙ Nadir) or Fisher’s exact tests (Gender, Race). Abbreviations: CA, Caucasian; AA, African American. * denotes P < 0.05. Table from (40).

5.3.4. Experimental Procedures

All imaging protocols were approved by the Institutional Review Board of the University of Pennsylvania according to the ethical standards of the Belmont Report, and subjects provided written informed consent. Prior to scanning, a capillary blood sample was obtained and analyzed using an Hb 201⁺ (HemoCue, Brea, CA, USA) portable hemoglobin measurement device for determination of Hct in Equation 5.1 and Cₐ in Equation 5.5.

5.3.4.1. Volitional Apnea Paradigm

The apnea paradigm consisted of thirty-second breath-holds at end-expiratory volume to mimic nocturnal apneas experienced in OSA. Coaching was used to maximize intra- and inter-subject repeatability and consistency of the apneas. Prior to scanning, breathing at normal end-expiratory volume was explained and demonstrated. During all breath-holds, subjects were verbally instructed to “breathe in”, “breathe out”, and “stop breathing” at six, three, and zero seconds, respectively, before the designated start of each apnea period, and instructed to “breathe normally” at the end of the apnea period. Each subject performed two practice apneas in the MRI scanner prior to OxFlow scanning and three during OxFlow scanning. Verbal instructions were given via MRI-compatible headphones. Breath-hold compliance was monitored by respiratory bellows.
5.3.4.2. **MR Imaging Protocol**

To minimize biological confounds and normal variations that might occur during the diurnal cycle, all subjects were scanned in the afternoon and instructed to abstain from caffeine (which promotes vasoconstriction) on the day of the study. All MR-imaging studies were performed on a 1.5 T wide-bore (70 cm) Siemens Espree system (Siemens Medical Solutions, Erlangen, Germany) using vendor-supplied 12-channel head and 2-channel neck receive coils. Subjects were fitted with pulse oximetry (Expression, Invivo Research Inc., Orlando, FL, USA) and respiratory bellows before performing the first practice breath-hold. A vendor-provided axial localizer scan was run for subsequent slice planning, followed by a second practice breath-hold.

To allow tCBF normalization to brain mass, a 1-mm-isotropic T\textsubscript{1}-weighted MPRAGE data set was acquired. Next, the SSSBF:tCBF calibration scan was run, followed by second-order shimming over the brain volume. Finally, the OxFlow sequence was run continuously for nine minutes, during which the subjects completed three coached 30-second apneas, each followed by two minutes of normal breathing recovery. The entire MRI protocol lasted approximately 20 minutes (Figure 5.2).

![Figure 5.2: MRI protocol for quantifying CMRO\textsubscript{2} at rest and in response to apnea. Red boxes indicate 30-second coached volitional apneas. Two practice apneas are performed during protocol setup. During continuous CMRO\textsubscript{2} quantification with OxFlow, three apneas are performed, each followed by two minutes of normal breathing recovery. Figure from (40).](image)

All subjects were able to successfully complete each breath-hold. However, two subjects (both apneics) failed to remain awake and experienced obstructive apneas during the recovery portions of the OxFlow acquisition, resulting in periodic desaturations throughout the paradigm. Their data were excluded from further analysis.
5.3.5. Data Processing

All image reconstruction was performed with in-house-written MATLAB (Mathworks, Natick, MA) scripts. BRISK-sampled raw OxFlow data were first reordered to create full k-space data sets corresponding to each echo at two-second temporal resolution. Velocity-maps were obtained from the phase difference between flow-encoded and flow-compensated images reconstructed from data acquired at TE\(_1\). Field-maps were generated from the phase difference between flow-compensated images reconstructed from data acquired at TE\(_1\) and TE\(_2\). Magnitude images at each time point were used to motion-correct the time series velocity- and field-maps using the StackReg plugin for ImageJ (188).

OxFlow-derived SSSBF was determined by integration of the velocity-map over an ROI fully containing the SSS. Data from the two-slice-interleaved calibration sequence was processed analogously – with tCBF\(_{\text{cal}}\) quantified by integration over the internal carotid and vertebral arteries – to calculate the tCBF\(_{\text{cal}}\)/SSSBF\(_{\text{cal}}\) calibration factor to upscale OxFlow-derived SSSBF and determine tCBF in Equation 5.4. Total brain volume was determined from the T\(_1\)-MPRAGE data using the BET tool in FSL (157), and converted to mass based on an average brain density of 1.05 g/mL (158).

For \(Y_v\) quantification, bulk susceptibility effects were removed from the field-maps via second-order polynomial fitting of the field in brain tissue surrounding the SSS. Average phase was measured in two ROIs, one entirely within the SSS and another in a small reference region of brain tissue immediately surrounding the SSS approximately one vessel radius in width and located one vessel radius anterior to the SSS border. The difference in phase between these regions provides \(\Delta \phi\) in Equation 5.2.

\(Y_a\) values obtained via pulse oximetry were recorded at two-second intervals matching each OxFlow time point. To correct for the temporal delay between central and peripheral blood arrival from the lungs, the pulse oximetry data was time-shifted for each subject such that the initial resaturation following apnea occurred 7 seconds after apnea cessation. This timing corresponds
to the known circulatory transport delay between the lungs and brain (138) to within the temporal resolution of the pulse sequence. AVO₂D was quantified as \(Y_a - Y_v \). Combination of Equations 5.1-5.5 was used to determine temporally resolved CMRO₂.

5.3.6. Statistical Analysis

For each subject, time-course data were averaged over the three repeated blocks of the paradigm to improve signal-to-noise (SNR) and remove physiologic variation unrelated to apnea. For all parameters, average baseline values were quantified over the 24 seconds (12 data points) immediately preceding the “breathe in” command. For parameters that change monotonically in response to apnea, maximum (tCBF, \(Y_v \)) or minimum (\(Y_a \), AVO₂D) percent changes relative to the average baseline values were quantified. To characterize the CMRO₂ apneic response, data were averaged over the second half (final 14 seconds, seven data points) of the apnea period to generate average end-apnea parameter values. The second half of the apnea period was used to eliminate residual breathing effects and because physiologic changes from apnea are not expected to occur instantaneously. The CMRO₂ apneic response was quantified as the percent change from the average baseline to the average end-apnea period.

Continuous outcomes were summarized using means and standard deviations (SDs) and categorical outcomes using frequencies and percentages. Given the relatively small number of apneics (\(N = 11 \)) and controls (\(N = 10 \)) in this study, summary measures were compared between groups using Wilcoxon two-sample exact tests (for continuous variables) and Fisher’s exact tests (for categorical variables). Baseline CMRO₂ and the CMRO₂ apneic response values were correlated with AHI using Spearman’s rank correlations. Statistical significance was defined as \(P < 0.05 \). Throughout the manuscript, parameter values are reported as mean ± SD and all \(P \)-values are two-sided.

Given the limited overlap in age and BMI between OSA subjects and controls, it was not possible to model the independent effect of these variables on CMRO₂ or the CMRO₂ apneic response within the entire sample. Instead, the potential effect of between-group differences in these
variables was assessed in a secondary analysis within a small sample of apneics and controls (N = 4 pairs), matched for age (within 2.5 years) and BMI (within 2.5 kg/m2). Differences in traits of interest were calculated within each pair, as the value in the apneic subject minus that in the control. Observed differences were tested for significance using an exact P-value from the non-parametric signed rank test on the difference. The calculated differences in the matched sample were compared to that in the overall population. If a similar magnitude was observed, it was concluded that results in the overall population were unlikely to be primarily driven by differences in age and BMI. As a further step toward understanding potential confounding effects, age and BMI were associated with CMRO$_2$ and the CMRO$_2$ apneic response using Spearman’s rank correlations. These tests were performed across all subjects (N = 21), apneics only (N = 11), and controls only (N = 10).

5.4. Results

5.4.1. Subject Demographic and Polysomnography Group Characteristics
AHI was significantly higher (43.9 ± 18.1 vs. 2.9 ± 1.6 events/hour, $P < 0.0001$) and Y_a nadir lower (77.5 ± 8.5 vs. 89.0 ± 3.7 %HbO$_2$, $P = 0.0001$) in apneics relative to controls. Subjects in the OSA group (AHI > 15 events/hour) were of greater age (53.8 ± 8.2 vs. 45.3 ± 8.5 years, $P = 0.027$) and BMI (36.6 ± 4.4 vs. 31.9 ± 2.2 kg/m2, $P = 0.0064$), and had slightly though non-significantly larger brain mass (1437 ± 208 vs. 1376 ± 177 g, $P = 0.39$).

5.4.2. Baseline Differences Between OSA Subjects and Controls
Time-course plots of the MR- and pulse oximetry-measured parameters in a single OSA subject (male, 63 years old) (Figure 5.3a) demonstrate the expected increase in Y_v and tCBF and decrease in Y_a in response to apnea (red shading), as previously observed in young healthy subjects (135). The resulting CMRO$_2$ time-course in the same OSA subject (Figure 5.3b) shows a CMRO$_2$ reduction from baseline (denoted ‘Base’) to end-apnea (denoted ‘EA’) of 12.1%.
Figure 5.3: Apnea paradigm data in a representative OSA subject (male, 63 years old). (A) Single subject time-course plot of measured parameters (MRI-derived tCBF and Y_v and pulse-oximetry-derived Y_a) and (B) quantified CMRO$_2$ in absolute physiologic units. In all plots, data has been averaged over the three repeated blocks of the apnea paradigm and the gray shading indicates the apnea period. Black symbols correspond to the maximum (tCBF, Y_v) or minimum (Y_a) parameter values used to quantify the peak apneic response. 'Base' indicates the data averaged to quantify the baseline parameter values. 'EA' indicates the CMRO$_2$ data averaged to quantify the end-apnea CMRO$_2$ for determination of the CMRO$_2$ apneic response. Figure from (40).

Group time-course plots of measured parameters (Figure 5.4a) demonstrate a lower tCBF and Y_a and higher Y_v in apneics versus controls, as well as a considerably lower CMRO$_2$ in apneics (Figure 5.4b) throughout the paradigm. Although tCBF, Y_a, and Y_v baseline-averaged parameters values were not statistically different between groups (Table 5.2), they synergistically resulted in a significantly lower CMRO$_2$ in apneics versus controls (117.4 ± 37.5 vs. 151.6 ± 29.4 µmol/100g/min, P = 0.013). The initial rise and fall in tCBF and Y_v observed at the beginning of the apneic period is attributable to breath-hold-induced intrathoracic pressure changes causing modulations in cerebral venous return, as previously observed (135).
Figure 5.4: Group-averaged apnea paradigm data in OSA subjects and controls. (A) Time-course plots of OSA subject (solid lines) and control subject (dotted lines) measured parameters (MRI-derived tCBF and Yv and pulse-oximetry-derived Y_a) and (B) quantified CMRO$_2$ in absolute physiologic units. (C) Baseline normalized tCBF, AVO$_2$D and (D) CMRO$_2$ illustrate the change in parameter values in response to apnea in each group. Error bars represent standard errors within each group and correspond to individually sampled time points. In all plots, data have been averaged over the three repeated blocks of the apnea paradigm and the gray shading indicates the apnea period. ‘Base’ indicates the data averaged to quantify the baseline parameter values. ‘EA’ indicates the data averaged to quantify the end-apnea CMRO$_2$ for determination of the CMRO$_2$ apneic response. Figure from (40).
<table>
<thead>
<tr>
<th>Parameter</th>
<th>OSA (N = 11)</th>
<th>Control (N = 10)</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>tCBF Ave. Baseline (mL/100g/min)</td>
<td>42.4 ± 11.3</td>
<td>45.4 ± 7.1</td>
<td>0.20</td>
</tr>
<tr>
<td>Peak Apneic Response (%)</td>
<td>35.6 ± 17.1</td>
<td>35.7 ± 8.8</td>
<td>0.56</td>
</tr>
<tr>
<td>Yₘ Ave. Baseline (%HbO₂)</td>
<td>95.6 ± 1.8</td>
<td>96.9 ± 1.9</td>
<td>0.13</td>
</tr>
<tr>
<td>Peak Apneic Response (%)</td>
<td>-6.8 ± 0.5</td>
<td>-6.1 ± 1.4</td>
<td>0.036*</td>
</tr>
<tr>
<td>Yₙ Ave. Baseline (%HbO₂)</td>
<td>62.2 ± 6.2</td>
<td>58.7 ± 7.2</td>
<td>0.25</td>
</tr>
<tr>
<td>Peak Apneic Response (%)</td>
<td>15.5 ± 10.6</td>
<td>13.4 ± 4.7</td>
<td>0.86</td>
</tr>
<tr>
<td>AVO₂D Ave. Baseline (%HbO₂)</td>
<td>33.4 ± 6.5</td>
<td>38.2 ± 7.5</td>
<td>0.17</td>
</tr>
<tr>
<td>Peak Apneic Response (%)</td>
<td>-40.9 ± 14.0</td>
<td>-32.0 ± 6.4</td>
<td>0.099</td>
</tr>
<tr>
<td>CMRO₂ Ave. Baseline (µmol/100g/min)</td>
<td>117.4 ± 37.5</td>
<td>151.6 ± 29.4</td>
<td>0.013*</td>
</tr>
<tr>
<td>Ave. Baseline to End-Apnea Change (%)</td>
<td>-10.9 ± 8.8, P = 0.0049*</td>
<td>-4.0 ± 6.7, P = 0.13</td>
<td>0.036*</td>
</tr>
</tbody>
</table>

Table 5.2: Summary of baseline and apneic response parameters in OSA subjects and controls. Parameter values are reported as mean ± SD across subjects. P-values are based on Wilcoxon two-sample exact tests. * denotes P < 0.05. Table from (40).

5.4.3. Apneic Response in OSA Subjects and Controls

To better illustrate the apneic response, measured parameters (Figure 5.4c) and CMRO₂ (Figure 5.4d) are displayed in terms of percent changes relative to average baseline values. CVR – the change in tCBF in response to apnea – was not different between groups. However, there was a trend toward a larger decrease in oxygen extraction (AVO₂D) in apneics (-40.9 ± 14.0 vs. 32.0 ± 6.4 %, P = 0.099). CMRO₂ decreased significantly in apneics (-10.9 ± 8.8 %, P = 0.0049) but not in controls (-4.0 ± 6.7 %, P = 0.13), with a significant group difference (P = 0.036). Yₘ reduction in response to apnea was greater in apneics (-6.8 ± 0.5 vs. -6.1 ± 1.4 %, P = 0.036), although it should be noted that the magnitude of this difference was quite small, and thus had little impact on the observed differences in the CMRO₂ apneic response.

5.4.4. Relationship Between CMRO₂ and AHI

To examine the sensitivity of CMRO₂ to OSA disease severity, AHI was correlated with both baseline CMRO₂ (Figure 5.5a) and the CMRO₂ apneic response (Figure 5.5b). When including all subjects (N = 21), AHI correlated significantly with baseline CMRO₂ (Spearman’s ρ = -0.65, P = 0.0014) and the CMRO₂ apneic response (Spearman’s ρ = -0.53, P = 0.013). When restricted to apneics only, AHI correlation with baseline CMRO₂ was only marginally significant.
(Spearman’s $\rho = -0.61$, $P = 0.047$), and AHI correlation with the CMRO$_2$ apneic response (Spearman’s $\rho = -0.47$, $P = 0.14$) was only a trend.

Figure 5.5: Relationship between CMRO$_2$ and AHI. (A) Correlation plots of baseline CMRO$_2$ vs. AHI and (B) CMRO$_2$ apneic response vs. AHI. OSA subjects (solid diamonds) and controls (empty triangles) are clearly separated by AHI. Least squares regression lines are plotted for OSA-subjects only (solid lines) and for all subjects (dotted lines) with corresponding Spearman’s rank correlations and P-values indicated. Figure from (40).

5.4.5. Age and BMI Effects Analysis

Examination of a sub-sample of age- and BMI-matched subjects provided insight into possible confounding effects of the slight mismatch in these group characteristics. As expected given matching, pairs were similar with respect to age (mean ± SD difference: -0.25 ± 1.26 years, $P > 0.99$) and BMI (1.2 ± 1.5 kg/m2, $P = 0.375$). Within the matched sample, apneics had a baseline CMRO$_2$ 45.9 µmol/100g/min lower on average compared to matched controls ($P = 0.125$) and a CMRO$_2$ apneic response 10.4% lower ($P = 0.375$). These differences are greater than those observed between apneics and controls in the overall sample, supporting the effect size seen in that population. This suggests that although statistical significance was not achieved in this small matched sample, associations in the overall sample were not completely driven by imbalances in age and BMI.
Though not reaching significance, the data were suggestive of a negative correlation between CMRO$_2$ and BMI ($\rho = -0.40$, $P = 0.070$) across the entire sample. In contrast, correlation between CMRO$_2$ and BMI in apneics only ($\rho = -0.38$, $P = 0.25$) or controls only ($\rho = 0.25$, $P = 0.49$) was not significant, and correlations between BMI and the CMRO$_2$ apneic response were not significant in any group. Across all subjects, correlations between age and both baseline CMRO$_2$ and CMRO$_2$ apneic response were small and non-significant. Age correlated significantly only with the CMRO$_2$ apneic response in control subjects ($\rho = 0.73$, $P = 0.016$), and approached significance when correlated with baseline CMRO$_2$ in control subjects ($\rho = 0.54$, $P = 0.105$).

5.5. Discussion

5.5.1. Interpretation of Apnea Paradigm Data

While a range of technologies have been used to study the pathophysiology of OSA, to the best of our knowledge, this is the first study to directly measure CMRO$_2$ and its change in response to apnea in OSA subjects. We highlight two main findings: 1) baseline CMRO$_2$ is lower in OSA subjects relative to controls and 2) there is a larger CMRO$_2$ decrease in response to apnea in OSA subjects. Given the small sample size of the study, and that confounding by age and/or BMI cannot entirely be excluded given that groups were not fully matched, these preliminary findings should be interpreted with caution and replicated in larger samples. However, the results are consistent with growing evidence that blunted autoregulatory mechanisms in OSA may contribute to OSA-associated neuropathology (37-39,184,185,189), and suggest a potential role for CMRO$_2$ in studying these mechanisms.

The observed reduction in baseline CMRO$_2$ in OSA subjects is a consequence of both oxygen delivery (tCBF) and oxygen extraction (AVO$_2$D) reduction. Although OSA subjects had lower values in both tCBF and AVO$_2$D on average, results did not reach statistical significance. As mentioned, these negative results must be interpreted with caution given the limited sample size. Nevertheless, they suggest that CMRO$_2$ may provide a more sensitive marker of baseline metabolic dysfunction than blood flow or oxygen extraction alone. Recently, a similar study of
OSA subjects and controls also found no group differences in baseline blood flow and no change in baseline blood flow in apneics treated with CPAP (38). We emphasize that our observed CMRO$_2$ reduction in OSA subjects cannot be explained by brain atrophy, as the CMRO$_2$ is normalized to brain volume, and, furthermore, brain mass was not significantly different between groups.

In addition to lower baseline CMRO$_2$, OSA subjects had a significantly larger decrease in CMRO$_2$ in response to apnea compared to controls. In contrast, the increase in flow in response to apnea (CVR) was nearly identical between groups, with the reduced CMRO$_2$ apneic response largely driven by a greater reduction in AVO$_2$D in apneics. Just as CMRO$_2$ has been proposed as a better measure of baseline neuronal function than blood flow, our results suggest that the CMRO$_2$ response to vasoactive challenges may provide a more sensitive marker of regulatory dysfunction than flow-based CVR. While some studies have associated OSA with reduced CVR (37-39), others, including the present study, have not (185,187). More so than CVR reduction alone, inability to maintain CMRO$_2$ during apnea provides a potential mechanism to explain the development of hypoxic brain damage in OSA.

Although not reaching statistical significance, the control group in this study also displayed a negative CMRO$_2$ response to apnea. This contrasts with previous data in 10 young, non-obese healthy subjects with no major underlying medical conditions, where a small but significant ($6.0 \pm 3.5 \%$, $P = 0.0004$) increase in CMRO$_2$ was observed during apnea using the same imaging protocol (135). One likely explanation for the different CMRO$_2$ apneic response in these two control groups is the differences in their clinical characteristics. Controls in the present study were recruited among older, relatively obese subjects from a Sleep Clinic. These subjects likely have a higher prevalence of obesity, high blood pressure, and metabolic syndrome compared to the previously studied young healthy cohort.

AHI correlated significantly with baseline CMRO$_2$ across all subjects as well as in apneics only, demonstrating that baseline CMRO$_2$ may be sensitive not just to apnea status but also apnea
disease severity. In contrast, AHI correlation with the CMRO$_2$ apneic response was significant among all subjects, but only a trend when restricted to apneics. Thus, studies with more subjects are needed to determine the relative sensitivity of baseline vs. apneic response CMRO$_2$ to OSA disease state.

5.5.2. Study Limitations and Future Directions

Our study has several limitations. First, it was performed in a relatively small sample of apneics and controls. A larger sample size would increase power to detect group differences, some of which were marginally significant. Thus, negative results ($P > 0.05$) should be interpreted with caution. However, our study did observe significant differences in our primary outcomes of interest, and, in general, power was approximately 75% to observe a mean difference between apneics and controls of 1.25 standard deviations.

In this study, OSA subjects were significantly older and more obese than controls. While these differences reflect differences between OSA and non-OSA patients in the general population, the small sample and limited covariate overlap restricted our ability to control for potential confounders which could affect CMRO$_2$ – such as age and BMI – in statistical models.

While some recent work suggests that baseline CMRO$_2$ may increase slightly with age (110), such a trend would have biased our results towards the null. In our data, there was a lack of association between CMRO$_2$ measures and age in the overall sample, further suggesting that age did not confound the relationship between OSA and CMRO$_2$ measures in our study. While a significant positive correlation was observed between age and the CMRO$_2$ apneic response in controls only ($\rho = 0.73$, $P = 0.016$), it is unclear why this effect would exist only in controls, and, therefore, this result should be interpreted with caution.

The relationship between BMI and CMRO$_2$ has not been specifically investigated previously, and presents an added complication in our study, as obesity may affect the subjects’ ability to hold their breath. For instance, obesity lowers functional residual capacity, which could potentially cause more significant hypoxia or hypercapnia to develop during volitional apnea, impacting the
apneic response. While we observed a negative correlation between CMRO$_2$ and BMI across the entire sample ($\rho = -0.40$, $P = 0.070$), this does not necessarily demonstrate confounding by BMI, as such a trend would in fact be expected if CMRO$_2$ were independently associated with OSA, given the BMI mismatch between apneics and controls. Furthermore, the fact that the same trend was not observed among control subjects only ($\rho = 0.25$, $P = 0.49$) suggests that in the absence of OSA pathology, CMRO$_2$ is not independently associated with lower BMI, thus arguing against BMI effects driving our observed group differences. Finally, the observed correlation between BMI and CMRO$_2$ was only 62% as strong as the correlation between AHI and CMRO$_2$ ($\rho = -0.65$, $P = 0.0014$). Thus, it is possible that the observed CMRO$_2$ correlation with BMI is due to an independent CMRO$_2$ association with AHI, rather than BMI. Future, larger studies including subjects and controls with a similar range of BMIs could better assess whether BMI independently affects CMRO$_2$, and whether any such effects exist across the general population or are restricted to apneics alone.

CMRO$_2$ group differences observed in the overall study sample were similar to those in the subset of age and BMI matched subjects, again arguing in favor of OSA independently lowering baseline CMRO$_2$ and the CMRO$_2$ apneic response. However, it will be essential for larger independent studies to confirm the observed associations. Furthermore, future studies should examine the possible effects of additional OSA-associated co-morbidities, including type 2 diabetes.

Two subjects (both apneics) were excluded from data analysis due to inability to stay awake between breath-holds. Compliance could be improved in future studies via modification of the breath-hold protocol to include more frequent, shorter apneas, or by introducing visual cuing of the breath-holds, which in addition to sustaining subject attention, has been shown to improve breath-hold reproducibility (190). However, even with perfect subject compliance, volitional apnea may not elicit the same neurovascular response as true sleep-associated nocturnal apneas. To address this, our methodology could be applied during sleep to capture true apneic events in
OSA subjects. The feasibility of high temporal resolution MR imaging during sleep has been demonstrated in previous studies examining airway closure in OSA (191).

A limitation of the OxFlow technique is that it is confined to quantification of global blood flow, oxygenation, and CMRO$_2$. Though apnea, like hypercapnia and hypoxia, can be thought of as a global cerebrovascular challenge, OSA has been associated with focal brain lesions (36,181), and a recent study employing BOLD fMRI detected regional differences in CVR in OSA subjects (38). Unfortunately, CMRO$_2$ mapping techniques are still at a developmental stage, with temporal resolutions on the order of many minutes and image noise levels often requiring whole-brain averaging to achieve physiologically plausible parameter values. While mapping of BOLD fMRI signal is possible at high temporal resolution, it does not provide a direct measure of either brain oxygen metabolism or blood flow, but rather reflects a complex interplay between blood flow, tissue properties, and CMRO$_2$. A combination of both quantitative global measures, such as OxFlow, and qualitative but spatially resolved measures such as BOLD fMRI, could offer an ideal approach for future studies of vascular and metabolic dysfunction in OSA.

Interpreting changes in baseline and apneic tCBF and CMRO$_2$ is challenging, as such alterations could be viewed as either a cause or effect of underlying neuropathology. In a study of baseline CMRO$_2$ and hypercapnic CVR in subjects with mild cognitive impairment (192), reduced CMRO$_2$ in the setting of maintained CVR was interpreted as suggesting less demand for oxygen due to primary cerebral dysfunction, as opposed to failure to meet demand due to vascular dysfunction. In our study, reduced baseline CMRO$_2$ and maintained CVR were also observed, though the CMRO$_2$ apneic response was reduced, suggesting that there may be a component of supply-side deficiency in OSA not accounted for by CVR. Longitudinal monitoring of CMRO$_2$ in OSA could help to discriminate between these various interpretations, for instance, by determining whether changes in baseline CMRO$_2$ and CMRO$_2$ apneic response occur concurrently or serially in OSA disease progression, and the extent to which CPAP therapy and resulting neurocognitive improvements are reflected by CMRO$_2$ metrics. The simplicity, speed, and robustness of the OxFlow technique make it well suited for such applications.
5.6. Conclusions

In summary, our results suggest that baseline CMRO$_2$ is reduced in OSA subjects relative to controls, and, furthermore, that OSA subjects may fail to maintain normal CMRO$_2$ during apnea. These findings add to the growing evidence that OSA-associated neuropathology is a consequence of autoregulatory dysfunction. MR-based quantification of CMRO$_2$ may offer a new method for better understanding the mechanisms of neurologic impairment in patients with sleep apnea.
6.1. Conclusions

MRI has facilitated major advancements in our understanding of brain energy use. This began with the advent of BOLD fMRI over 20 years ago, and has continued more recently with attempts to quantitatively measure CMRO$_2$. Although much effort has been focused toward spatially mapping CMRO$_2$, the brain is both spatially heterogeneous and temporally dynamic. This dissertation has outlined the development and application of a series of methods for dynamic quantification of CMRO$_2$. The major results of this work are summarized as follows:

In Chapter 2, we presented the OxFlow method for high temporal resolution quantification of whole-brain CMRO$_2$. By applying temporal view-sharing and combining SBO-based Y_v and PC-MR-based tCBF quantification in the same slice, OxFlow achieves the highest reported temporal resolution for absolute quantification of whole-brain CMRO$_2$: three seconds. This allows quantification of CMRO$_2$ during dynamic stimuli, demonstrated in application to breath-hold apnea, where a small but significant increase in CMRO$_2$ ($6.0 \pm 3.5\%$, $P = 0.00044$) was measured in ten young healthy subjects. This result highlights the utility of dynamic CMRO$_2$ quantification, and argues against treating breath-hold apnea as an isometabolic stimulus, as has been done previously in some BOLD fMRI calibration studies.

Unlike OxFlow, the T_2-based TRUST technique is not limited by vessel geometry or background field effects; however, it is comparatively quite slow. In Chapter 3, we combined OxFlow and TRUST, producing an interleaved iTRUST sequence capable of six-second temporal resolution, T_2-based, whole-brain CMRO$_2$ quantification. iTRUST was used to directly compare SBO and T_2-based CMRO$_2$ in response to hypercapnia, a topic of controversy in the functional imaging community as the two methods have produced conflicting results in recent literature. In striking agreement with these previous results, we found no significant change in iTRUST measured Y_v-based CMRO$_2$ ($P = 0.31$), but a substantial reduction in T_2-based CMRO$_2$ ($−14.6 \pm 3.6\%$, $P <$
These results suggest a true bias exists between these widely applied techniques for CMRO$_2$ quantification, demanding further investigation.

Calibrated BOLD fMRI provides a unique opportunity for both high spatial and high temporal resolution CMRO$_2$ mapping, though current techniques lack the robustness of OxFlow and TRUST. Thus, in Chapter 4 we explored improved BOLD calibration through a combined Ox-BOLD approach, where direct quantification of whole-brain Y_v permits use of a generalized calibration model. Ox-BOLD calibration was demonstrated in a small group of healthy volunteers using both hypercapnia and hyperoxia gas-mixture breathing. Results suggest improved calibration with Ox-BOLD compared to the traditional Davis hypercapnia model, with significantly fewer non-physiologic outlier voxels and a more anatomically plausible gray/white matter contrast in calibration M-maps.

Finally, in Chapter 5 we explored clinical application of dynamic CMRO$_2$ quantification in patients with OSA. The original OxFlow method and breath-hold paradigm presented in Chapter 2 were applied in a clinical pilot study of 11 apneics and 10 controls. Although CBF and CVR were not significantly different between groups ($P > 0.05$), apneics displayed a significantly reduced baseline CMRO$_2$ (117.4 ± 37.5 vs. 151.6 ± 29.4 µmol/100g/min, $P = 0.013$) and apneic CMRO$_2$ response (-10.9 ± 8.8 % vs. -4.0 ± 6.7 %, $P = 0.036$). This suggests that CMRO$_2$ may be a more sensitive marker of neurologic dysfunction than blood flow alone, and adds to growing evidence that OSA-associated neurologic dysfunction stems from blunting of normal cerebrovascular and cerebrometabolic autoregulation.

In summary, this dissertation has presented a number of promising techniques and applications for dynamic quantification of CMRO$_2$. Of the four main classes of CMRO$_2$ quantification techniques presented in Chapter 1 (T_2^*, T_2', T_2, or susceptibility), significantly improved temporal resolution has been achieved for two (susceptibility and T_2), and a promising approach presented for improving a third (T_2^*). These various methods have been successfully applied to physiologic stimuli in healthy subject as well as in a pilot study of patients with OSA.
6.2. Future Directions

6.2.1. OxFlow Technical Improvements

The OxFlow technique pushes the limits of temporal resolution, and would benefit from modifications improving temporal SNR. Because SBO is scalable with field strength, with B_0 explicitly defined in the infinite cylinder model, application at 7T field strength is an attractive option for SNR improvement. Higher field strength would both increase bulk magnetization and result in greater susceptibility and flow-related phase accrual. However, realizing these benefits requires mitigating concomitant increases in background field inhomogeneity and chemical shift artifacts associated with high field strength.

Radial acquisition presents another method for improved temporal SNR. It achieves more optimal sampling of center versus outer k-space than the Cartesian view-sharing approaches (i.e., Keyhole and BRISK) currently applied to OxFlow. Furthermore, golden angle radial trajectories allow retrospective optimization of temporal-view sharing and under-sampling factors, and facilitate application of signal processing techniques such as compressed sensing (193).

A major limitation of the OxFlow technique is that it assumes infinite cylinder geometry, with tilt angle the only vessel feature used to relate measured phase accrual to Y_v. A more general approach suggested by Driver et al. (194) is to first measure a vessel of interest’s exact geometry, and then apply a forward field calculation (195) to calibrate the field-susceptibility relationship. Using this approach as a calibration step could improve the accuracy of SBO-derived Y_v and permit its application to vessels with less than ideal geometry. This forward approach would also allow investigation (and mitigation) of the potential effects of adjacent bone, fat, and CSF on the accuracy of SBO.

6.2.2. Technical Investigations

The results of Chapter 3 raise concerns regarding the relative agreement between, and accuracy of, SBO- and T_2-based Y_v quantification techniques. As these methods gain wider application,
defining and understanding their potential biases is critically important. Given the relative complexity of the T_2-based calibration model compared to that of SBO, we hypothesize an error in the former is most likely. However, this should be thoroughly investigated with both in vivo and ex vivo validation studies (100). The iTRUST pulse sequence would provide an ideal technique for such investigations.

Unlike other CMRO$_2$ quantification techniques, BOLD calibration offers both high spatial and high temporal resolution, though current techniques lack the necessary robustness to realize this potential. The Ox-BOLD pulse sequence and Y_v-based model presented in Chapter 4 may be a step in the right direction, at the same time increasing the number of measured parameters while reducing the number of physiologic assumptions. Initial results are promising, though data in more subjects is needed, and the technique’s underlying assumption of spatially uniform changes in $1-Y_v$ should be thoroughly validated. Although assessment of the Ox-BOLD method is challenging given the lack of a true gold standard for CMRO$_2$ quantification in humans, it may be possible in animals via comparison to direct CMRO$_2$ quantification techniques (i.e., 17O MRI or 15O PET).

6.2.3. Clinical Investigations
As discussed in Chapter 5, the conclusions regarding CMRO$_2$ reductions in OSA are limited by the small sample size of the study. Ongoing studies will validate these results in a larger cohort of subjects, including age- and weight-matched controls, using a modified radial version of the OxFlow sequence. To complement OxFlow-derived global CMRO$_2$, voxel-wise BOLD-based CVR maps will also be acquired using an identical breath-hold paradigm, and resting state perfusion maps obtained with state-of-the-art background-suppressed 3D ASL (196). Furthermore, it will be investigated whether OSA-associated changes in CMRO$_2$, CVR, and CBF are reversible with CPAP treatment, and whether these measures correlate with makers of neurologic function including cognitive battery performance.
In recent years, CBF and BOLD have been applied extensively to measure CVR in a variety of clinical disorders, including stroke (162) and Alzheimer’s disease (163). However, we anticipate that CVR assessed in terms of CMRO$_2$ changes will provide a more sensitive marker of neurovascular dysfunction than traditional CBF- or BOLD-based measures. This hypothesis is supported by our finding of a significantly reduced CMRO$_2$ response to apnea in OSA, despite non-significant differences in traditional CBF-based CVR.

Indeed, dynamic assessment of CMRO$_2$ has many potential applications for both clinical investigations and basic neuroscience. Much work remains in addressing critical challenges and defining new avenues of discovery.
BIBLIOGRAPHY

130. Van Zijl PC, Hua J, Lu H. The BOLD post-stimulus undershoot, one of the most debated issues in fMRI. NeuroImage 2012;62(2):1092-1102.

145. Duong TQ, Iadecola C, Kim SG. Effect of hyperoxia, hypercapnia, and hypoxia on cerebral interstitial oxygen tension and cerebral blood flow. Magnetic

Magnetic resonance in medicine : official journal of the Society of Magnetic Resonance in Medicine / Society of Magnetic Resonance in Medicine

174. Hare HV, Blockley NP, Gardener AG, Clare S, Bulte DP. Investigating the field-dependence of the Davis model: Calibrated fMRI at 1.5, 3 and 7T. Neuroimage 2015;112:189-196.

