


1.1.1 The Analysis

To analyze the impact that a market for patents has on the macroeconomy, a search-

theoretic growth model is built. The framework is developed in Section 1.2. Each period

firms invest in research and development (R&D). Sometimes this process generates an

idea, other times it doesn’t. Each firm operates within a particular technology class,

which is fixed over time. An idea increases a firm’s productivity. In the current analysis,

the extent to which a firm uses an idea to push forward its productivity depends on the

propinquity of the idea to the firm’s technology class. A firm may wish to sell an idea

that isn’t close to its own class. It can do so by using a patent agent. Analogously, the

firm might want to purchase an idea through a patent agent if it fails to innovate. Due

to search frictions it may take time for a patent agent to find a buyer for a patent. Also,

a patent may not be the perfect match for a buyer. R&D by firms leads to growth in the

model. Additionally, there is a spillover effect from ideas. A balanced growth path for the

model is explicitly characterized. A unique invariant firm-size distribution exists despite

the fact that the distribution for productivity across firms is continually fanning out.

The model is calibrated in Section 1.4 so that it matches certain features of the U.S.

aggregate economy, such as the average rate of growth, the long-run interest rate, the

share of R&D in GDP, etc. It is also fit to match some facts, presented in Section 1.3, from

the micro data on patents for U.S. public firms. Three such facts are descriptive: the share

of patents that are sold, the empirical duration distribution, and the reduction in distance

between a patent and its owner’s line of business following a sale. Additionally, some

facts from panel-data regression analysis are assembled and targeted using an indirect

inference strategy. First, it is shown that a firm’s market value is positively related to its

stock of patents, controlling for size and other things. Presumably, patents are valuable

because they protect important ideas. Second, the closeness of the patents in a firm’s

portfolio to the firm’s line of business matters for market value. Third, the more distant

a patent is to a firm’s line of business the more likely it is to be sold.
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Clearly, a market for patents affects the incentive to do R&D. On the one hand, the

fact that an idea, which is not so useful for the innovator’s own production, can be sold

raises the return from engaging in R&D. On the other hand, the fact that a firm can buy

an idea reduces the reward from doing R&D. A goal of the analysis is to examine how a

patent market affects R&D and, hence, growth. This is done in Section 1.5.

To gauge the importance of the patent market for economic growth and welfare, a

sequence of structured thought experiments is undertaken in Section 1.5. First, the rate of

contact between buyers and sellers in the market is reduced to zero, which is equivalent

to shutting down the market. In the absence of the patent market, the equilibrium steady-

state growth rate goes from its benchmark value of 2.08% down to 2.02%, resulting in a

welfare reduction of 1.18% in consumption equivalent terms. Next, the efficiency of the

patent market is successively increased. It is shown that a faster rate of contact between

buyers and sellers, where a buyer can find a seller without any delay, increases the growth

rate up to 2.46% and leads to a welfare gain of 5.97% relative to the benchmark economy

(measured in terms of consumption). In addition, if each seller is matched with the

perfect buyer for their patent, then the growth rate increases to 3.05% and a welfare

improvement of 14.3% materializes. Last, if the ideas that firms produce are perfectly

suited for their own production process (this corresponds to a situation where there is no

mismatch between a firm and the idea that it generates) then the growth rate is 3.38%,

which results in a welfare gain of 17.8% compared with the baseline model. So, efficiency

in the market for patents matters.

Two concerns arise with the focus on patents. First, ideas may be transferred via other

means, in particular licensing. The empirical analysis conducted in Section 1.3 controls

for this, to the extent possible. Additionally, the model simulation is redone in Section

1.6 to allow for ideas to be transferred through licensing as well as patents. The results

are not affected in a significant way. Second, perhaps some patents are bought and sold

for reasons surrounding litigation. Such sales may have little to do with the transfer of
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knowledge or increasing productivity. A firm may buy an intrinsically worthless patent

to fend off potential litigation, or perhaps to earn profits by threatening litigation (patent

trolls). The empirical analysis in Section 1.3 also attempts to control for this. Additionally,

as a robustness check, the model is re-simulated in Section 1.6 using data from low-

litigation sectors. Again, the results appear to be immune to this.

The market for patents is often thought of as being inefficient and illiquid. Buying

and selling intellectual property is a difficult activity. Each patent is unique. It may not

be readily apparent who the potential buyers and competing sellers even are, especially

in situations where enterprises desire to keep their business strategies secret. Buyers and

sellers may have very different valuations about the worth of a patent. Patents are often

sold through intermediaries. This motivates the search-theoretic framework presented

here.

Historically patent agents were often lawyers. Dealing with both patent buyers and

sellers, they understood both sides of the market. Inventors used them to file patent

applications. So, the lawyers became acquainted with the new technologies that were

around. Buyers used them to vet the merits of new technologies. Hence, the lawyers were

familiar with the types of patents that were likely to be marketable. This led naturally to

lawyers acting as intermediaries in patent sales. Edward Van Winkle typifies the business.

He was a patent agent at the beginning of the 20th century. Van Winkle was a mechanical

engineer who acquired a law degree by correspondence course. He was well suited to

provide advice on the legal and technical merits of inventions for his clients on both sides

of the market. Van Winkle cultivated a network of businessmen, inventors, and other

lawyers. Lamoreaux and Sokoloff (2003) detail how he brokered various types of deals

with the buyers and sellers of patents. They also document for the period 1870 to 1910 an

increased tendency for inventors (especially the more productive ones) to use specialized

registered patent agents to handle transactions associated with their patents.

While today’s market for patents is sizeable it can be regarded as being thin due to
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the specialized nature of the knowledge that is embodied in each patent. Thus, the patent

market is highly specialized. To date, online intellectual property platforms have failed

to arbitrage the market. The sensitivity of intellectual property makes potential buyers

and sellers reluctant to reveal information online; they prefer face-to-face dealings with

the other party. Also, some buyers may perceive a lemons problem: if the patents were

truly valuable, then the sellers should be able to profit by developing the idea themselves

or by selling it directly to interested parties.

1.1.2 Relationship to the Literature

How does the current paper relate to the literature? This is discussed now. On

the theory side, the model developed here is in a class of its own, but like all work it

is inspired by some important predecessors. The paper contributes to the endogenous

growth literature. Ever since Romer (1986), economists have been concerned with how

knowledge affects economic growth. The cue for a spillover effect from ideas is in the

Romer (1986) growth model. The notion that a firm can push forward its productivity by

incorporating new ideas in its production process is in Aghion and Howitt (1992). Unlike

Aghion and Howitt (1992), this is done here in a competitive environment.

Recent attention has been directed to developing the micro-foundations of how new

ideas spread in an economy. Some work stresses technology diffusion via innovation

and imitation [e.g., Jovanovic and MacDonald (1994), and Konig et al. (2012)]. Other re-

search emphasizes matching and other frictions in the transfer of ideas. [See for instance,

Benhabib et al. (2014), Chiu et al. (2011), Lucas and Moll (2014), and Perla and Tonetti

(2014)]. The work here emphasizes matching frictions. It differs from the above papers in

a number of significant ways. First, the focus is on an economy where growth is driven

by heterogeneous ideas that are invented by firms. A firm may not be able to make the

best use of the idea it discovers. Second, firms can trade their ideas in a market subject

to matching frictions. Third, while the growth literature has mainly been theoretical, the
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current research uses micro data on patent reassignments to motivate and discipline the

analysis.3

The present paper highlights the importance of complementarity (as measured by

distance) between the existing knowledge stock of the firm and new patents. These find-

ings naturally relate to work on diversification. In a classic study on diversification and

integration, Gort (1962) states “when faced with a choice among activities that would

be equally attractive if they were technologically equidistant from the primary one, a

firm will usually undertake those for which technical propinquity to the primary activ-

ity is greatest.” Gort (1962) provides some early evidence in support of this hypothesis.

Figueroa and Serrano (2013) examine the empirical significance of this idea for patenting

and licensing activities.

On the empirical side, the data employed here was first used by Serrano (2010) and

Serrano (2015). He uses the fraction of self-citations as a proxy for the fit of an idea to an

inventing firm and documents that patents that are not a good fit are more likely to be sold

on the market by the inventing firm. A new metric for measuring the distance between

ideas and firms is proposed here. Findings in Serrano (2010) and Serrano (2015) are

confirmed. Additionally, new facts on the relationship between a firm’s market value and

its distance-adjusted patent portfolio are presented. Also, it is shown how the distance

between an idea and its owner changes upon sale. The micro data facts that are obtained

from the U.S. data are then used here to discipline a search-based endogenous growth

model. The model is employed to quantify the misallocation of ideas in the U.S. economy

and the contribution of the patent market to economic growth.

The focus on mismatch in ideas connects with recent work on misallocation [see

3Perhaps the closest theoretical work to the current research is by Chiu et al. (2011). Ideas are homogeneous
in their framework, so there cannot be any misallocation. They are produced by inventors who cannot
commercialize them, so all ideas are sold. Firms cannot do R&D, hence they must purchase an idea to
produce. There are search frictions in their setup: an inventor must find a entrepreneur in order to sell his
idea. Their work emphasizes financial frictions. In particular, an entrepreneur must have cash on hand to
buy an idea. Last, no empirical or quantitative work is done.
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for instance, Acemoglu et al. (2013), Guner et al. (2008), Hsieh and Klenow (2009), and

Restuccia and Rogerson (2008)]. That literature has mainly focused on factor misalloca-

tions, particularly the allocation of capital and labor across establishments. The current

work complements this literature by focusing on differences in total factor productivity

that may arise due to a misallocation of ideas, which are a direct ingredient in productiv-

ity. Ideas are not necessarily born to their best users. The existence of a market for ideas

and its efficiency can have a major impact on mitigating any initial misallocation. Thus,

the presence of a market for ideas may contribute significantly to productivity growth.

Addressing this question is the focus of the current paper.

1.2 Model

The theoretical model with perfectly competitive firms is introduced now. The goal

is to focus on the potential misallocation of ideas and its consequences for growth and

welfare; therefore, the model abstracts from monopoly distortions. Another interesting

feature of this setting is that patents serve a new role in this economy: the possibility

for trading ideas. Some ideas are better than others for a firm. In the analysis there are

two types of ideas: to wit, d-type and n-type. The worth of a d-type idea depends on

the distance of the idea to a firm’s main line of business. The closer the idea, the more

valuable it is. The worth of an n-type idea is unrelated to the distance between the idea

and the firm’s line of business. To obtain a d-type idea a firm must invest resources, either

through R&D or by buying a patent on the market. By contrast, a firm may discover an

n-type idea through serendipity for free. The productivity of both types of ideas depends

upon the general pool of knowledge in the economy; that is, through osmosis some

component of ideas become part of the ether in technology space.
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1.2.1 Environment

Consider an economy, where time flows discretely, with a continuum of firms of unit

measure. The firms produce a homogeneous final good using capital and labor. Each firm

belongs permanently to some technology class j that resides on a circle with radius 1/π.

At each point on the technology circle there are firms of density 1/2. A firm enters the

period with a level of productivity z. At the beginning of a period each firm develops a

d-type idea with an endogenous probability i. The d-type innovation will be patented and

belongs to some technology class k on the circle. The distance between the firm’s own

technology class, j, and the innovation, k, is denoted by d(j, k). This represents the length

of the shortest arc between j and k. Transform this distance measure into a measure of

technological propinquity, x = 1 − d(j, k), defined on [0, 1]. A high value for x indicates

that the innovation is close to the firm’s technology class. The firm will keep or sell the

d-type patent depending on the value for x. The higher x is, the bigger will be the boost

to the z, if the firm decides to keep the idea. The value of x is drawn from the distribution

function X(x). The technology circle is illustrated in Figure 2. Just before production

begins, an n-type idea arrives with an exogenous probability p. The worth of an n-type

idea is unrelated to a firm’s technology class. The analysis will focus on a symmetric

equilibrium around the technology circle. In a symmetric equilibrium, at each point on

the circle the distribution of firms is the same. Analyzing one point on the circle is the

same as analyzing any other, so there is no need to carry around a location index.

Firms produce output, o, at the end of a period according to the production process

o = (e′z′)ζkκ lλ, with ζ + κ + λ = 1, (1.1)

where k and l are the amounts of capital and labor used in production and z′ is its end-

of-period productivity. The variable e′ is a firm-specific idiosyncratic production shock.

It is drawn at the end of each period from a log-normal distribution with E[e′] = 1 and a
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standard deviation represented by STD(ln e′).4 Labor is hired at the wage rate w. There

is one unit of labor available in the economy. Capital is hired at the rental rate r̃. Observe

that there are diminishing returns in capital and labor. Hence, there are profits from

producing. These rents are increasing in the firm’s productivity, z′. This provides an

incentive to do R&D to improve z′. The exponent ζ on e′z′ is an innocuous normalization

that results in profits being linear in e′z′, as is shown below.

A firm’s end-of-period productivity, z′, evolves according to the law of motion

z′ = L(z, x, b; z) = z + γdxz + γnbz. (1.2)

Here z is the firm’s initial productivity level. The second term gives the increment to

productivity from obtaining a d-type patent, where x is the technological propinquity of

the patent to the firm and z is mean of the productivity distribution in the economy at the

beginning of the period. The closer a d-type innovation is to a firm’s own technology class,

as represented by a larger x, the bigger will be the increase in productivity, γdxz. The third

term gives the gain in productivity from acquiring an n-type idea, where b ∈ {0, 1}. The

expected value of b is given by E[b] = p. Once an idea is blended into a firm’s production

process, within the firm’s permanent technology class, it loses its individual identity. This

assumption implies that there is no need to keep track of a firm’s portfolio of patents,

which would vary by technology class and age; doing so would be an insurmountable

task.

The higher is the economy-wide baseline level of productivity, z, the more valuable

a patent is for increasing productivity. This is true for both d-type and n-type patents.

Note that z introduces a knowledge externality in this economy. Although not modeled

formally, this could be because either some forms of knowledge can only be imperfectly

protected or because the patents protecting them have expired so that the knowledge

4The e′ shock implies that employment, l, will not be a perfect predicator of a firm’s market value. This
property is important for the quantitative analysis and is discussed in Section 1.4.
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formerly embodied in the patents is now freely available for all. Since n-type patents

arrive with exogenous probability p the firm will benefit from spillovers in a probabilistic

sense, even if the firm does not invest any resources in R&D. This is not true for d-

type patents, as will be seen. Later, the notation L(z, 0, b; z) will be used to signify the

situation where the firm’s productivity is not incremented by a d-type innovation in the

current period, which is equivalent to setting x = 0. One might think that firm would

try to discover a d-type idea that is close to its line of business. As was mentioned, the

propinquity of a d-type idea to the firm, x, is drawn from the distribution X(x). In the

quantitative analysis this is taken to be the empirical distribution. Hence, the propinquity

of ideas to their inventors will be the same as in the data. It turns out that z is also the

aggregate state variable in this economy, a fact shown later. That is, only the mean of

the distribution for the z’s across firms and the evolution of this mean over time matter

for the analysis. Assume that z evolves according to the deterministic aggregate law of

motion

z′ = T(z). (1.3)

Now, at the beginning of a period, firms pick the probability of discovering a d-type

idea, i. They do this according to the convex cost function

C(i; z) = χzζ/(ζ+λ)i1+ρ/(1 + ρ). (1.4)

Cost rises in lock-step fashion with average productivity, z, in the economy. It will be

established later that wages, w, are proportional to z and grow along a balanced growth

path at the same rate as zζ/(ζ+λ). As will be seen, this ensures that along a balanced

growth path the ratio of aggregate R&D expenditures to GDP remains constant. Aggre-

gate productivity will be a function of the aggregate state of the world represented by z.

A firm that successfully innovates can either keep or sell its idea to a patent agent. A firm

that does not innovate can try to buy a patent from an agent. A patent on the market

survives over time with probability σ. In the analysis σ will be set so that patents have
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the same expected life as in the U.S. data. But, by letting a patent die stochastically in

this fashion, instead of deterministically, there is no need to keep track of a patent’s age,

a huge simplification.

d-type ideas can be bought and sold on a patent market. A firm that fails to come up

with a d-type idea can try to buy one from a patent agent. Innovators are not allowed to

buy patents. A firm that draws a d-type idea may sell the associated patent to a patent

agent at the price q. This price is determined on a competitive market. Once a patent is

sold to an agent the seller cannot use it in the future. A patent agent can only handle one

d-type idea at a time. The introduction of patent agents simplifies the analysis. Without

this construct the analysis would have to keep track of the portfolio of patents that each

firm has for sale. This technical construct is imposed without apology, as in the real world

many patents are sold through agents, as was discussed.

Let na and nb represent the numbers of agents and buyers in the market for d-type

patents. The total number of matches in the market is given by the matching function

M(na, nb) = ηnµ
a n1−µ

b .

The matches are completely random. Thus, the odds that an agent will find a buyer are

given by

ma(
na

nb
) =

M(na, nb)

na
= η(

nb

na
)1−µ,

and similarly that a buyer will find an agent by

mb(
na

nb
) =

M(na, nb)

nb
= η(

na

nb
)µ.

This search friction could reflect many things: the hardship of matching buyers and sellers

in a thin market for a complicated product or the difficulty of a buyer assessing the quality

of a patent for his line of business, inter alia.
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Figure 2: The technology circle and the timing of events

The ratio of potential sellers to buyers, na/nb, reflects the slackness of the market.

Since agents and buyers are matched randomly, the propinquity between the buyer’s

technology class and the class of the d-type patent being sold is a random variable. A

buyer will incorporate a d-type patent that he purchases into his production process

in accordance with the above law of motion for z. The price of the d-type patent is

determined by Nash bargaining between the agent and buyer. Represent this price by

p = P(z, x; z). The negotiated price will depend on the propinquity of the patent, x, and

the state of the buyer’s technology, z. The bargaining power of the agent is given by ω. In

contrast, the price at which a firm sells its d-type patent to an agent is fixed at q, because

the agent doesn’t know who he will sell the patent to in the future. The timing of events

in the market for d-type patents is portrayed in the right panel of Figure 2. Last, after the

d-type patent market closes, an n-type idea may arrive to a firm. For the moment assume

that n-type ideas are not traded. A market for n-type ideas is appended onto the model

in Section 1.3.4.

1.2.2 The Representative Consumer/Worker

In the background of the analysis is a representative consumer/worker. This indi-

vidual supplies one unit of labor inelastically. The person owns all of the firms in the
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economy. He also rents out the capital used by firms. Thus, he will earn income from

wages, profits and rentals. Capital depreciates at the rate δ . The real return earned by

renting capital is 1/r. ( I.e., r is the reciprocal of the gross interest rate. It will play the

role of the discount factor in the Bellman equations formulated below.) The individual is

assumed to have a momentary utility function of the form U(c) = c1−ε/(1 − ε), where c

is his consumption in the current period and ε is the coefficient of relative risk aversion.

He discounts the future at rate β. Last, the representative consumer/worker’s goal in life

is to maximize his discounted lifetime utility. Since this problem is entirely standard it is

not presented.

1.2.3 Firms: Buyers, Keepers and Sellers

A firm hires labor, l, at the wage rate w, and capital, k, at the rental rate, r̃ ≡ 1/r −

1 + δ, to maximize profits. It does this at the end of each period after seeing the realized

values for e′ and z′. Thus, its decision problem is

e′Π(z′; z) = max
k,l

[(e′z′)ζkκ lλ − r̃k − wl].

where e′Π(z′; z) is the profit function associated with the maximization problem; the

fact that this function is multiplicative in e′ is established momentarily. The first-order

conditions to this maximization problem imply that

k = κ
o
r̃

, (1.5)

and

l = λ
o
w

. (1.6)

Using (1.1), (1.5) and (1.6), it follows that profits are given by

e′Π(z′; z) = (1 − κ − λ)o = e′z′(1 − κ − λ)[(
κ

r̃
)κ(

λ

w
)λ]1/ζ . (1.7)
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Again, in equilibrium the rental and wage rates, r̃ and w, will be functions of the aggregate

state of the world, z. Note that profits are increasing in z′ when there are diminishing

returns to scale (1 − κ − λ < 1). This provides an incentive to innovative.

The value function for a firm that desires to buy a patent will now be formulated.

To this end, let V(z; z) represent the expected present-value of a firm that currently has

productivity z and is about to learn whether or not it has come up with a d-type idea.

Due to the focus on symmetric equilibrium there is no need ever to record the firm’s

location on the technology circle. Now, suppose that the firm does not innovate. Then, it

will try to buy a d-type patent. With probability 1 − mb(na/nb) it will fail to find a patent

agent. In that circumstance, the firm’s productivity will remain at z; this is equivalent to

setting x = 0 in (1.2). It may still acquire an n-type patent before the start of production,

though, which would allow productivity to increase by γnz. The expected value of the

firm, before the n-type patent shock, is E[Π(L(z, 0, b; z); z)] + rE[V(L(z, 0, b; z); z′)]–recall

that b ∈ {0, 1} is a random variable connected with the n-type idea that takes the value

one with probability p and that E[e′] = 1.

With probability mb(na/nb) the firm will meet an agent selling a d-type patent with

propinquity x. Two things can happen here: either the firm buys a d-type patent from the

agent or it doesn’t. The d-type patent sells at the price p = P(z, x; z), which is a function

of the buyer’s type, z, as well the propinquity of the patent to the firm’s technology class,

x. The determination of the d-type patent price is discussed below. The firm will only

buy the patent if it yields a higher payoff than what it will obtain if it doesn’t buy it. If the

firm buys a patent, its productivity will rise to z + γdxz. Again, before production begins

the firm may also obtain an n-type patent, which would result in a further increase in

productivity. The firm’s expected value (before the n-type patent shock) will then move

up to E[Π(L(z, x, b; z); z)] − P(z, x; z) + rE[V(L(z, x, b; z); z′)]. If it doesn’t buy a d-type

patent then its productivity will remain at z. The expected value of the firm will then be

E[Π(L(z, 0, b; z); z)] + rE[V(L(z, 0, b; z); z′)]. Denote the distribution over propinquity for
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buying a patent from a patent agent by D(x).

The expected discounted present value of the buyer, B(z; z), is easily seen to be

B(z; z) = mb

(
na

nb

) ∫
{Ia(z, x; z){E[Π(L(z, x, b; z); z)]

− P(z, x; z) + rE[V(L(z, x, b; z); z′)]}

+ [1 − Ia(z, x; z)]
{

E [Π(L(z, 0, b; z); z)] + rE
[
V(L(z, 0, b; z); z′)

]}
}dD(x)

+ [1 − mb(
na

nb
)]
{

E [Π(L(z, 0, b; z); z)] + rE
[
V(L(z, 0, b; z); z′)

]}
, (1.8)

where z evolves according to (1.3) and

Ia(z, x; z) =

 1 (sale), if the buyer purchases a patent,

0 (no sale), otherwise.
(1.9)

The indicator function Ia(z, x; z), defined above, specifies whether or not the non-

innovating firm will buy a d-type patent. The determination of this function is discussed

below.

Turn now to the situation where the firm successfully innovates. If it decides to keep

the d-type patent then the firm’s productivity will be z + γdxz as in (1.2). Productivity

may still increase if the firm draws an n-type idea. Before the realization of the n-type

patent shock, the firm will have the expected value K(z + γdxz; z), as given by

K(z + γdxz; z) = E [Π(L(z, x, b; z); z)] + rE
[
V(L(z, x, b; z); z′)

]
, (1.10)

where again z evolves according to (1.3) and b ∈ {0, 1} is a random variable. Alternatively,

it can sell the d-type patent to an agent. Then, its productivity will remain at z (unless it

subsequently draws an n-type idea). The value of a seller, S(z; z), is

S(z; z) = E [Π(L(z, 0, b; z); z)] + σq + rE
[
V(L(z, 0, b; z); z′)

]
. (1.11)
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Once the seller puts a d-type patent up for sale at the beginning of the period it expires

with probability 1 − σ. A firm that innovates will either keep or sell its d-type patent

depending on which option yields the highest value. Given this, it is easy to see that the

decision to keep or to sell a patent can be formulates as

Ik(z, x; z) =

 1 (keep), if K(z + γdxz; z) > S(z; z),

0 (sell), otherwise.
(1.12)

The Decision to Innovate

The firm’s decision to innovate is now cast. With probability i the firm discovers

a d-type idea and with probability 1 − i it doesn’t. The firm chooses the probability of

discovering a d-type idea subject to the convex cost function C(i; z). Hence, write the

innovation decision as

V(z; z) = max
i

{i
∫
{Ik(z, x; z)K(z + γdxz; z) + [1 − Ik(z, x; z)]S(z; z)}dX(x)

+ (1 − i)B(z; z)− C(i; z)}. (1.13)

The first-order condition associated with this problem is

∫
{Ik(z, x; z)K(z + γdxz; z) + [1 − Ik(z, x; z)]S(z; z)}dX(x)− B(z; z) = C1(i; z),

(where C1 is the derivative of C with respect to i) so that

i = R(z; z) (1.14)

= C−1
1

(∫
{Ik(z, x; z)K(z + γdxz; z) + [1 − Ik(z, x; z)]S(z; z)}dX(x)− B(z; z); z

)
.
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1.2.4 Patent Agents

Turn now to the problem of a patent agent. It buys a d-type idea at the competitively

determined price q. With probability ma(na/nb) it will meet a potential buyer on the

market and with probability 1 − ma(na/nb) it won’t. Denote the distribution of buyers by

G(z). The value for an agent, A, with a patent is thus given by

A(z) = ma

(
na

nb

) ∫ ∫ {
Ia(z, x; z)P(z, x; z) + [1 − Ia(z, x; z)]rσA(z′)

}
dG(z)dD(x)

+ [1 − ma

(
na

nb

)
]rσA(z′), (1.15)

where Ia(z, x; z) is specified by (1.9) and is defined formally shortly below. The price

of a d-type patent is determined via Nash bargaining. Specifically, p is determined in

accordance with

max
p

{E [Π(L(z, x, b; z); z)]− p + rE
[
V(L(z, x, b; z); z′)

]
− E [Π(L(z, 0, b; z); z)]− rE

[
V(L(z, 0, b; z); z′)

]
}1−ω

× [p − rσA(z′)]ω.

The first term in braces gives the buyer’s surplus. This gives the difference between the

value of the firm when it secures a d-type patent and the value when it does not. The

second term details the seller’s surplus. In standard fashion,

p = P(z, x; z) = ω{E [Π(L(z, x, b; z); z)] + rE
[
V(L(z, x, b; z); z′)

]
− E [Π(L(z, 0, b; z); z)]

− rE
[
V(L(z, 0, b; z); z′)

]
}+ (1 − ω)rσA(z′), (1.16)

whenever both the buyer’s and seller’s surpluses are positive. The price lies between

rσA(z′) and E [Π(L(z, x, b; z); z)] + rE [V(L(z, x, b; z); z′)] −E [Π(L(z, 0, b; z); z)]

−rE [V(L(z, 0, b; z); z′)]; if the former is above the latter then no solution exists. Now,
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define Ia(z, x; z) in the following manner:

Ia(z, x; z) =



1, if rσA(z′) ≤ p ≤ E [Π(L(z, x, b; z); z)]

+rE [V(L(z, x, b; z); z′)]

−E [Π(L(z, 0, b; z); z)]− rE [V(L(z, 0, b; z); z′)] ,

0, otherwise.

(1.17)

1.2.5 Symmetric Equilibrium Along a Balanced Growth Path

The focus of the analysis is solely on a symmetric equilibrium along a balanced

growth path. A formal analysis of the model’s balanced growth path is contained in

Theory Appendix A.1. Before starting, define the aggregate level of productivity, z, its

gross rate of growth, g, and the aggregate level of innovation, i, by

z ≡
∫

zdZ(z), g ≡
∫

z′dZ′(z′)∫
zdZ(z)

, and i ≡
∫

R(z; z)dZ(z). (1.18)

In equilibrium the demand for labor must equal the supply of labor. Recall that there

is one unit of labor in the economy. Let Z′(z′) represent the end-of-period distribution

of z′ across firms. Now, using (1.1), (1.5) and (1.6), it is easy to deduce that the labor, l,

demanded by a firm is given by

l =
(κ

r̃

)κ/ζ
(

λ

w

)(ζ+λ)/ζ

e′z′. (1.19)

Equilibrium in the labor market then implies that

∫ (κ

r̃

)κ/ζ
(

λ

w

)(ζ+λ)/ζ

z′dZ′(z′) = 1,
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where the fact that E[e′] = 1 has been used. This implies that the aggregate wage rate, w,

is given by

w = λ
(κ

r̃

)κ/(ζ+λ)
[∫

z′dZ′(z′)
]ζ/(ζ+λ)

= λ
(κ

r̃

)κ/(ζ+λ)
z′ζ/(ζ+λ). (1.20)

The wage rate, w, depends on the mean of the end-of-period productivity distribution

across firms, z′ ≡
∫

z′dZ′(z′).

Next, suppose that there is free entry by agents into the market for d-type patents.

This dictates that the price q will be determined by

q = A(z). (1.21)

To complete the description of a symmetric balanced growth equilibrium, the distribu-

tion over propinquity for patent agents, or D(x), must be specified. It is uniform in a

symmetric equilibrium. Recall that a firm’s permanent location in the technology space is

represented by a point on the circle. Think about a buyer located at the top of the circle.

Suppose that a set of firms on some tiny arc jk to the left of top are selling patents of mass

λ that are of distance between 0 and ε away from the top. Now take any other arc lm of

equal length even further to the left of top. The start of this second arc has distance d(j, l)

from the start of the first one. In a symmetric equilibrium there will be on the second arc,

for all practical purposes, an identical set of firms selling patents of mass λ that are of

distance between d(j, l) and d(j, l) + ε away from the top.

Some Features of a Balanced Growth Path

Along a balanced growth path, consumption, investment, output, profits, wages, and

the selling and buying prices for d-type patents will all grow at a constant rate. Also,

the interest factor and rental rate on capital are constant. Assuming that this is the case,
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then it is easy to deduce from (1.20) that wages must grow at the gross rate gζ/(ζ+λ).

Aggregate output and profits will grow at this rate too, as can be inferred from (1.7).

Given the assumption that tastes are isoelastic, the interest factor and rental rate on capital

are given in standard fashion by

r = β/gεζ/(ζ+λ), (1.22)

and

r̃ = gεζ/(ζ+λ)/β − 1 + δ, (1.23)

where again ε is the coefficient of relative risk aversion. By substituting the solution for

wages, as given by (1.20), into the demand for labor, (1.19), it can be seen that a firm’s

employment is proportional to z′/z′. Since on average one would expect that z′ will be

growing at the same rate as z′, this suggests that a stationary firm-size distribution exists.

It turns out that along a balanced growth path the indicator functions Ik(z, x; z) and

Ia(z, x; z) can represented by simple threshold rules for x that do not depend on either z

or z. In particular,

Ik(z, x; z) =

 1 (keep), x > xk,

0 (sell), otherwise,
and Ia(z, x; z) =

 1 (sale), x > xa,

0 (no sale), otherwise.

That is, an innovating firm keeps its d-type idea when x > xk and sells otherwise. Anal-

ogously, a sale between a buyer and a patent agents occurs if and only if x > xa.
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1.3 Empirical Analysis

1.3.1 Data Sources

This section details data sources and variable constructions. For further information,

please see Empirical Appendix A.2.

NBER-USPTO Utility Patents Grant Data (PDP). The core of the empirical analysis

draws from the NBER-USPTO Patent Grant Database (PDP). Patents are exclusionary

rights, granted by national patent offices, to protect a patent holder for a certain amount of

time, conditional on sharing the details of the invention. The PDP data contains detailed

information on 3,210,361 utility patents granted by the U.S. Patent and Trademark Office

between the years 1976 and 2006. A patent has to cite another patent when the former

has content related to the latter. When patent A cites patent B, this particular citation

becomes both a backward citation made by A to B and a forward citation received by B

from A. Moreover, the PDP contains an International Patent Classification (IPC) code for

each patent that helps identify where it lies in the technology space.5 Extensive use of

the forward and backward citations are made, as well as the IPC codes assigned to each

patent, to determine a patent’s location in the technology space, its distance to a firm’s

location in the technology spectrum, and also to proxy for a patent’s quality. The exact

methodology followed to construct these measures is detailed below.

Patent Reassignment Data (PRD). The second source of data comes from the recently-

released USPTO patent assignment files retrieved from Google Patents Beta. This dataset

provides detailed information on the changes in patent ownership for the years 1980

to 2011. The records include 966,427 patent reassignments not only due to sales, but

also due to mergers, license grants, splits, mortgages, collaterals, conversions, internal transfers,
5The USPTO originally assigns each patent to a particular U.S. Patent Classification (USPC), which is a

system used by the USPTO to organize all patents according to their common technological relevances. The
PDP also assigns an IPC code to each patent using the original USPC and a USPC-IPC concordance based
on the International Patent Classification Eighth Edition.
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etc. Reassignment records are classified according to a search algorithm that looks for

keywords, such as “assignment”, “purchase”, “sale”, and “merger”, and assigns them

to their respective categories. Through this process, 99% of the transaction records are

classified into their respective groups–see Empirical Appendix A.2 for more information.

Compustat North American Fundamentals (Annual). In order to assess the impact of

patents and their technological distance on firm moments, such as stock market valuation,

the PDP patent data is linked to Compustat firms. The focus is on the balance sheets of

Compustat firms between the years 1974-2006, retrieved from Wharton Research Data

Services. The Compustat database and the NBER PDP database are connected using the

matching procedure provided in the PDP data.

Lex Machina Database on Patent Litigations. The information on litigated patents is

obtained from Lex Machina. It is the most comprehensive database on patent litigations

since 2000. Lex Machina obtains its data on a daily basis from (i) the administrative

database of the United States federal courts, (ii) all United States District Courts’ websites,

(iii) the International Trade Commission’s (EDIS) website, and (iv) the USPTO’s websites.

Derwent Litalert Database on Patent Litigations. For litigation information before 2000,

the Derwent Litalert Database is used. Further description about this dataset can be found

in Galasso et al. (2013).

Carnegie-Mellon Survey (CMS) on Industrial R&D. The sector-level licensing informa-

tion is drawn from the CMS. This dataset is one of the rare R&D surveys in the United

States that contains information on the licensing activities of firms. The CMS contains

1,478 randomly selected R&D labs of manufacturing firms, stratified by three-digit SIC

industry codes. All labs are located in the United States. In the survey the firms are

asked to report the most important reason for applying for their product patent, where

one of the answers is “to obtain revenue through licensing.” The percentage of firms pick-

ing this answer is aggregated to two-digit SIC industry classifications, which results in a
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sector-level licensing intensity measure. More information can be found in Cohen et al.

(2000).

The empirical analysis requires the construction of a notion of distance in the tech-

nology space. For that purpose, the citation patterns across IPC technology fields are

utilized. The PDP contains the full list of citations with the identity of citing and cited

patents. Since the data also contains the IPC code of each patent, the percentage of outgo-

ing citations from one technology class to another are observable. Using this information,

a metric, discussed below, is constructed to gauge the distance between a new patent and

a firm’s location in the technology spectrum.

In what follows, for each empirical fact the best and largest possible sample is used.

For instance, for the firm value regressions all patents that are matched to the Compustat

sample are utilized. Similarly, to describe the change from seller to buyer, all patents for

which the buyer and seller could be uniquely identified are used. Therefore, even though

the samples vary across different empirical facts, this approach delivers the most reliable

results.

1.3.2 Technological Propinquity

The notion of technological propinquity between a patent and a firm is now formal-

ized. Think about a patent as lying within some technological class. Call this technology

class X. Empirically this can be represented by the first two digits of its International

Patent Classification (IPC) code. Now, one can measure how close two patents classes, X

and Y, are to each other. To do this, let #(X ∩ Y) denote the number of all patents that

cite patents from technology classes X and Y simultaneously. Let #(X ∪ Y) denote the

number of all patents that cite either technology class X and/or Y. Then, the following
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symmetric distance metric can be constructed:

d(X, Y) ≡ 1 − #(X ∩ Y)
#(X ∪ Y)

,

with 0 ≤ d(X, Y) ≤ 1. This distance metric is intuitive. If each patent that cites X also

cites Y, this metric delivers a distance of d (X, Y) = 0. [Also note that d(X, X) = 0.]

If there is no patent that cites both classes, then the distance becomes d (X, Y) = 1. The

distance between two technology classes increases, as the fraction of patents that cite both

decreases. Given this metric between technology classes, a distance measure between a

patent and a firm can now be constructed.

In order to measure how close a patent is to a firm in the technology spectrum, a

metric needs to be devised. For this purpose, a firm’s past patent portfolio is used to

identify the firm’s existing location in the technology space.6 In particular, the distance

of a particular patent p to a firm f is computed by calculating the average distance of p

to each patent in firm f ’s patent portfolio as follows:

dι (p, f ) ≡

 1∥∥P f
∥∥ ∑

p′∈P f

d
(
Xp, Yp′

)ι

1/ι

, (1.24)

with 0 < ι ≤ 1, and where 0 ≤ dι(p, f ) ≤ 1. In this expression, P f denotes the set of all

patents that were ever invented by firm f prior to patent p,
∥∥P f

∥∥ stands for its cardinality,

and d
(
Xp, Yp′

)
measures the distance between the technology classes of patents p and p′.

Note that d
(
Xp, Yp′

)
= 0 when the firm has another patent, p′, in the same class as p.

Therefore, this metric is defined only for ι > 0. Finally, when ι = 1 the above metric

returns the average distance of p to each patent in firm f ’s patent portfolio: d1 (p, f ) ≡∥∥P f
∥∥−1

∑p′∈P f
d
(
Xp, Yp′

)
, with 0 ≤ d1(p, f ) ≤ 1.

The empirical distribution for this notion of distance is displayed in Figure 3 for three

values of ι. As can be seen, patents have heterogeneous technological distances to the

6The firm’s patent portfolio is defined as all inventions by the firm up to that point in time.
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Figure 3: Empirical distance distributions

inventing firms. The intermediate value, ι = 2/3, is chosen for the subsequent analysis.7

1.3.3 Stylized Facts

Next, the empirical findings highlighted in the introduction of the paper are pre-

sented. Table 1 provides the summary statistics. Panel A shows the summary statistics

of the variables computed using Compustat firms. The distance-adjusted patent stock is

constructed in a way such that each patent’s contribution to the portfolio is multiplied by

its distance to the firm prior to the aggregation. Specifically,

∑
p∈P f

dι (p, f )× quality(p)

where dι (p, f ) and quality(p) are the distance and quality terms for patent p. The quality

of a patent is measured by the citations it has received from other patents, corrected for

7The value chosen for ι does not appear to make much of a difference for the analysis. For example, both
the empirical and model simulation results in the paper are more or less the same when either ι = 1/3 or
ι = 1.
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Summary Statistics

Observation Mean St. Dev
Panel A. Compustat Facts

log market value 37,331 5.58 2.30
log employment 39,431 0.75 2.28
log patent stock 41,515 5.68 2.25
log distance-adjusted patent stock 42,269 3.38 4.23

Panel B. USPTO/NBER Patent Facts
patent quality 2,771,692 12.1 20.6
patent distance 2,548,998 0.48 0.30
litigation probability 2,772,895 0.01 0.10

Panel C. Patent Reassignment Facts
fraction of patents sold (at least once) 3,210,361 0.16 0.36
number of times a patent is sold 3,210,361 0.19 0.52
conditional duration of patent sale, yrs 421,936 5.48 4.58
litigation and sale probability 2,772,895 0.003 0.05

Panel D. Cumulative Density
0 times 1 time 2 times

number of times a patent is sold 85% 97% 99%

Table 1: Summary Statistics

truncation and technology class biases using the weights offered in Hall et al. (2001).

Panel B reports the summary statistics of the USPTO/NBER patent data. As seen,

the average distance between a new patent and its firm is 0.48. The so-called “garage

inventors” and firms that do not have any existing patents in their portfolio are dropped

when patent distance is computed. Panel C lists the summary statistics using patent

reassignment data. On average, 15.6% of patents in the sample were traded at least once.

The mean time to sell a patent after its grant date is 5.5 years. The average number of

trades per patent is 0.2. Panel D shows that 97% of patents are traded at most one time

and this number goes up to 99% when the fraction of patents that are traded at most two

times are considered. Only a paltry 1.0% of patents involve litigation. The following fact

summarizes this section.

Fact 1. About 15% of patents are sold and it takes about 5.5 years to sell them on average.
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Firm Market-Value Regressions

Dependent Variable: log market value
(1) (2) (3) (4) (5) (6)

log patent stock 0.039*** 0.039*** 0.039*** 0.038*** 0.037*** 0.071***
(0.008) (0.008) (0.008) (0.009) (0.009) (0.010)

log dist-adj pat stock -0.020*** -0.020*** -0.020*** -0.020*** -0.020*** -0.032***
(0.003) (0.003) (0.003) (0.003) (0.003) (0.004)

log employment 0.728*** 0.728*** 0.736*** 0.763*** 0.763*** 0.692***
(0.008) (0.008) (0.008) (0.009) (0.009) (0.010)

firm litigation intensity no yes no no yes no
sector litigation intensity no no yes no yes no
sector licensing intensity no no no yes yes no
only renewed patents no no no no no yes
Obs 36,094 36,091 36,094 33,062 33,060 27,528
R2 0.92 0.92 0.92 0.92 0.92 0.92

Table 2: Firm Market-Value Regressions

Firm Market Value and Patent-Firm Distance

Are patent-firm distances important when it comes to the relationship between a

firm’s patent portfolio and its value? In order to answer this question, Table 2 regresses

“log market value” in year t on a firm’s patent portfolio, its distance-adjusted patent

portfolio, and the firm’s size in the same year. The regressions also include year and firm

fixed effects to rule out firm-specific properties and time trends.

As expected, column 1 shows that the patent portfolio of a firm is positively related to

its stock market valuation. Presumably this is because patents are protecting knowledge

that is valuable for the firm. More interestingly, a firm’s patent portfolio, once adjusted

by patent distances, is negatively related to the firm’s market value. The coefficient for

the distance-adjusted patent stock quantifies the loss of correlation between the patent

portfolio and firm value due to the technological mismatch between the firm and its

patents. In short, while the non-distance component of the patent portfolio contributes

positively, the distance-related component contributes negatively to firm value. In order

to interpret the results correctly, consider the ratio of the (negative) coefficient of the

distance-adjusted patent stock to that of the unadjusted patent stock. The ratio of the two
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elasticities is 51.3%. This reflects the relative importance on market value of a shift in

the distance-adjusted patent portfolio versus a change in the non-adjusted one. This ratio

will be targeted in the simulation. It provides information on the importance of d-type

patents relative to n-type ones.

Two factors that have been receiving some attention in the literature recently are li-

censing and litigation. They could influence a firm’s incentives to do R&D, the value of

a firm’s patent stock, or a firm’s decision to buy, keep or sell patents. Licensing is an

alternative vehicle for technology transfer. Additionally, litigation might affect a firm’s

decision to acquire, retain or sell patents. Therefore, controls are introduced for litiga-

tion and licensing: Columns 2-4 introduce the fraction of a firm’s portfolio that is ever

litigated, sector-level litigation intensity (defined as the fraction of litigated patents over

total patents in that sector), and sector-level licensing intensity, respectively. Column 5

introduces all these controls at once. All of these alternative specifications show that

the benchmark estimates in column 1 are remarkably robust. Last, some patents have

little value. To control for this, the last column only includes those patents that were re-

newed at least once.8 (Patents must be renewed, at a small fee, in their 3rd, 7th and 11th

years.) As can be seen, a lot of patents aren’t renewed and purging these patents increases

somewhat the impact of the patent stock and distance-adjusted patent stock on the firm’s

market value. The story remains more or less the same, though, with the relative value

of the first two regression coefficients more or less staying fixed. The gist of this section

is summarized as follows:

Fact 2. A patent contributes more to a firm’s stock market value if it is closer to the firm in terms

of technological distance.

8Information on patent renewals is obtained from the USPTO’s U.S. Patent Grant Maintenance Fee Events.
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Patent Sale Decision and Patent-Firm Distance

Does the technological distance of a patent to the firm influence the decision to keep

or sell it? In order to conduct this analysis, the indicator variable for whether a patent

is sold or kept (=1 if a patent is sold, =0 if not) is regressed on a number of potentially

related regressors, including the patent’s distance to the initial owner. Table 3 reports the

OLS regression results.

Using the full sample, column of Table 3 indicates that a patent is more likely to be

sold if it is more distant to the firm. The regression includes controls for the size of the

patent portfolio of the firm, patent quality, year and firm fixed effects. The coefficient

on the distance variable is statistically significant and positive. Considering the average

number of patents sold (≃ 15%) in the time period, the coefficient suggests that a perfectly

mismatched patent is 13.1% (≃ 0.0197/0.15) more likely to be sold to another firm, rather

than being kept. Recall also that the definition employed for a sale is quite conservative,

in the sense that patent transfers due to mergers and acquisitions are not considered sales,

even though the primary motive for these events might be the acquisition of patents. The

results are in line with the intuition that a firm is more likely to sell patents that are not a

good fit, rather than keeping them, due to the potential gains from trading the patent to

a firm that might be better suited to exploit the embedded ideas commercially.

Column 2 controls for the litigation intensity of the technology class, while column

3 controls for the lifetime litigation status of the patent, and column 4 for both simul-

taneously. The association of distance to a patent sale is unaffected by the presence of

these additional controls. Column 5 redoes the first regression but purges those patents

that aren’t renewed at least once. The effect of distance is only slightly more pronounced.

The results are also robust to inclusion of the licensing intensity of a sector–see Section

A.2.6 in the Empirical Appendix for the results. The stark result is that adding additional

controls or restricting the sample do not weaken the link between distance and patent
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Patent Sale Decision

(Full Sample with Litigation Intensity)
Dependent Variable (=1, if sold, 0 otherwise)

(1) (2) (3) (4) (5)
distance 1.972*** 1.982*** 1.980*** 1.991*** 2.398***

(0.078) (0.078) (0.078) (0.078) (0.091)
tech-class litigation intensity no yes no yes no
patent litigation dummy no no yes yes no
renewed patents only no no no no yes
Obs 2,547,881 2,547,881 2,547,881 2,547,881 1,976,964
R2 0.42 0.42 0.42 0.42 0.44

Table 3: Patent Sale Decision

sale; to the contrary, they make it more pronounced. The implications of litigation and

licensing on the market for ideas will be explored in more detail in Section 1.6.

Fact 3. A patent is more likely to be sold the more distant it is to a firm.

The primary motivation behind considering patent distance as a likely determinant

of patent sale decisions is the potential gains from trade that arise if the patent can be sold

to a firm that can use it better, which in expectation yields more profits. If this intuition

is correct, the distance between the owner firm and the patent is expected to decrease

after a patent is sold. Let d (p, fb) denote the distance of the patent to the buyer firm, and

d (p, fs) to the seller firm. Next, the change in distance, d (p, fb)− d (p, fs), is computed.

This difference is −0.152 in 1980, the beginning of the sample, with a standard error of

0.049. What this shows is that conditional on a patent sale, the distance between a patent

and its owner is significantly decreased. In other words, the mismatch between the idea

and the firm owning it is reduced. The effect is economically large. Considering that the

average measure for distance is 0.481, the average reduction in distance is approximately

32% (≃ 0.152/0.481) of the average distance. The average distance reduction in the whole

sample is 16% and this number goes up to as high as 49% in 2006, which is the end year

of the sample.

Fact 4. A patent is technologically closer to the buying firm than to the selling firm.
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1.3.4 Tacking on a Market for n-type Patents

To append a market for n-type ideas onto the model, recall that a firm obtains an

n-type idea with probability p. This can arise in one of two ways: either the firm develops

an n-type idea or it purchases one. Let a firm that develops an n-type idea sell it with

probability ps. Likewise, assume that a firm that fails to come up with an n-type idea

will purchase one with probability pb. Suppose that the market for n-type ideas clears

instantaneously every period. This implies that pps = (1 − p)pb, so that pb = psp/(1 − p).

Adding a market for n-type patents onto the above structure does not alter the model’s

solution for a symmetric balanced growth path. This is discussed further in the Theory

Appendix, Section A.1.2.

In the U.S. data the distance between a patent and its owner’s line of business shrinks

on average upon a sale; i.e., a patent is closer to the buyer than the seller. This is not true

empirically for all patent sales. The presence of n-type patents helps the model better

capture Fact 4. It is easy to deduce that on average the distance between a d-type patent

and its owner would contract in the model by [1/(1− xa)]
∫ 1

xa
xdx− [1/X(xk)]

∫ xk
0 xdX(x),

since a non-innovating business buys if x > xa and an innovating firm sells when x < xk.

The average distance between an n-type patent and its owner would contract in the model

by
∫ 1

0 xdx −
∫ 1

0 xdX(x).9 This is smaller than the number for d-type patents, because

[1/(1 − xa)]
∫ 1

xa
xdx >

∫ 1
0 xdx and [1/X(xk)]

∫ xk
0 xdX(x) <

∫ 1
0 xdX(x). Thus, the presence

of a market for n-type patents operates to reduce the average shrinkage in distance upon

sale between a patent and its owner.

9The distance between an n-type patent and its owner has no real effect; i.e., the technology class for an
n-type patent is just a label.

33



1.4 Calibration

In order to simulate the model values must be assigned to the various parameters.

There are sixteen parameters to pick: β, ε, κ, λ, δ, σ, γd, χ, ρ, µ, η, ω, γn, p, ps, and std(e′).

A distribution for X(x) needs to be provided as well. As is standard in macroeconomics,

some of the parameter values are chosen on the basis of a priori information, while

others are determined internally using a minimum distance estimation routine. By se-

lecting some parameters using a priori information the size of the calibration/estimation

procedure is reduced. This is important because undertaking calibration/estimation is

problematic when there is a large number of parameter values. For the most part, there

is either a consensus about what the appropriate values for these parameters are, or the

U.S. data speaks directly to them. The selection of parameter values on the basis of a

priori information is now discussed.

1.4.1 The Use of A Priori Information

1. Capital’s and labor’s shares of income, κ and λ. In line with Corrado et al. (2009) esti-

mates from the U.S. National Income and Product Accounts, capital’s and labor’s

shares of incomes, κ and λ, are set to 25 and 60%. This implies that the profit pa-

rameter, as represented by ζ, accounts for the remaining 15%. This is a fairly typical

value used in the macroeconomics literature, as is discussed in Guner et al. (2008).

2. Depreciation rate for capital, δ. The depreciation rate of capital is chosen to be 6.9%.

This is consistent with the U.S. National Income and Product Accounts.

3. Survival rate for a patent, σ. In the United States a patent lasts for 17 years. Hence,

σ = 1 − 1/(1 + 17).

4. CRRA parameter, ε. This parameter is taken to be 2, the midpoint between the vari-
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ous estimates reported in Kaplow (2005). This is a common value used in macroe-

conomics.

5. Long-run interest rate. A reasonable value for the long-run interest rate in the United

States is 6%–see Cooley and Prescott (1995). Now, the long-run growth rate for

the United States is 2%. Given the value for the economy’s long-run growth rate,

gζ/(ζ+λ) = 1.02, and the coefficient of relative risk aversion, ε = 2, the discount

factor, β, is then uniquely pinned down using the equation β = rgεζ/(ζ+λ)– see

(1.22). This is standard procedure for a growth model.

6. The Empirical Distribution for the Proximity of Patent to a Firm’s Technology Class. The

empirical distance distribution for the United States displayed in Figure 3, for ι =

2/3, is used for the analysis. Define a measure of propinquity (or closeness) between

a patent p and a firm f by cι(p, f ) ≡ 1 − dι (p, f ), where dι (p, f ) is given by (1.24).

The density associated with cι(p, f ) is used for X(x). This amounts to just a simple

change in units on the horizontal axis in Figure 3. Assume that x is distributed

uniformly within each of the ten bins of the histogram. (There is an additional mass

point at one.) One might think that a firm will try to invent ideas that are close to

its line of business. The calibration strategy forces the propinquity of ideas to the

inventor’s line of business in the model to be congruent with the U.S. data.

7. R&D Cost Elasticity, ρ. In order to estimate the elasticity of the R&D cost func-

tion, the cost function in the model is inverted to obtain a production function.

Then, a regression is run using Compustat data to determine the parameter value,

ρ, where the output of the R&D production function is proxied for by citation-

weighted patents.

8. Bargaining power, ω. The bargaining powers of buyers and sellers are chosen to be

equal. This assumption is often imposed in macroeconomic models using Nash

bargaining. Unfortunately, there does not seem to be a good way to identify a
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value for this parameter, either using a priori information or through the calibra-

tion/estimation procedure discussed below. Due to the presence of a spillover exter-

nality in (1.2), the Hosios condition will not necessarily lead to an efficient matching

equilibrium.

Therefore, values for the parameters β, ε, κ, λ, δ, σ, ρ, and ω are imposed using a priori

information in line with (1), (2), (3), (4), (5), (7), and (8) without having to solve the

model. The distribution X(x) is constructed in line with point (6).

1.4.2 Minimum Distance Estimation

Values for the remaining parameters, χ, µ, γd, η , γn, p, ps, and STD(ln e′), must

be assigned. This is done by minimizing the sum of the squares between some data

targets, discussed below, and the model’s predictions for these targets. The model is

highly non-linear in nature. Computing the solution to the model essentially involves

solving a system of nonlinear equations, as is discussed in the Theory Appendix, Section

A.1.1. Therefore, it is not the case that a particular parameter is identified uniquely by

a particular data target. By computing the Jacobian of the system the influence of each

parameter on the data targets can be gauged. The presentation below uses this Jacobian

and other features of the framework to discuss, in a heuristic fashion, how the parameters

are identified. The Jacobian is presented in Section A.2.7 of the Empirical Appendix. The

data targets are listed in (1) to (2) below. Targets (1) to (5) are discussed now.

1. Long-run growth in output. In the United States output grew at about 2% per year

over the postwar period. Intuitively, one would expect the parameter γd, which

governs how d-type innovations enter the law of motion for a firm’s productivity

growth (1.2), should play an important role in determining this. The same is true for

the n-type patent parameters, γn and p. The Jacobian confirms that these parameters

have a positive impact on growth–see Appendix A.2.7 for more detail. The term for
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the d-type patents, or γd, dominates the others. The parameter governing the cost

of R&D, χ, has a negative and smaller effect on growth.

2. The ratio of R&D expenditure to GDP. U.S. expenditure on research and development

is about 2.91% of GDP. What parameters influence this ratio? Again, the parameter

γd governing the productivity of d-type patents is very important. It increases this

ratio because the payoff from R&D rises with γd. Not surprisingly, the R&D cost

parameter, χ, has a bearing here, because it directly governs the cost of innovation,

as can be seen from (1.4). Last, the n-type patent parameters, γn and p, are nega-

tively associated with this ratio. They increase GDP growth without the need to do

R&D.

3. Fraction of patents sold. About 16% of patents are sold in the United States, as cata-

logued in Table 1. The parameters governing the matching function, µ and η, control

how easy it is to sell a d-type patent. They are important in determining this ratio.

The parameters, p and ps, regulating the arrival and sales rates for n-type patents

are also important, although the dependence here is of a mechanical nature.

4. Duration until a sale. The entire empirical frequency distribution for the duration

of a sale is targeted–see Figure 4.10 In particular, the calibration procedure tries to

minimize the sum of the squared differences between the empirical distribution and

its analogue for the model. It takes about 5.34 years on average to sell a patent. The

coefficient of variation around this mean is 0.84. So, there is considerable variation

in sale duration. The parameters governing the matching function, µ and especially

η, are obviously central here. This can be seen from equation (A.3) in Section A.1.1

of the Theory Appendix, which specifies the odds that a patent agent will find a

10Different criteria can be used for dating when an idea is born. One could use the application date instead
of the grant date since some patents are sold before they are granted. An alternative would be to use the first
time that another inventor builds on this invention (as measured by the first citation that a patent receives).
This reflects the time it that took for others to learn about the idea. Last, it is possible that excluding more
recent observations might prevent the confounding effects of a potential truncation bias. This occurs because
patents toward the end of sample have less time to be sold. Repeating the analysis using these three new
sale duration distributions does not change the main findings.
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buyer. These parameters also influence the spread in duration.

5. Distance reduction upon sale–all patents. Section 1.3.3 presents an estimate (−0.152)

from the the micro data on the average difference between a buyer’s and seller’s

technological propinquity for a patent.11 This estimate is targeted and helps to

discipline the relative importance d- and n-type patents. As is discussed in Section

1.3.4, the arrival rate of n-type ideas and the probability of selling them, or p and ps,

are central here. They operate to reduce the observed amount of distance reduction

since the sale of these patents does not depend upon technological propinquity.

This is shown by the Jacobian of the system. Additionally, the parameters of the

matching function, µ and η, influence the model’s ability to hit this target. More

efficient matching implies a larger reduction in distance.

Indirect Inference

The indirect inference data targets (1) and (2) discussed below derive from the firm-

level panel-data regressions presented in Section 1.3. As was mentioned, computing the

equilibrium solution for the model essentially involves solving a system of nonlinear

equations, as the Theory Appendix, Section A.1.1, makes clear. Undertaking the indirect

inference involves an additional step. Here a Monte Carlo simulation is undertaken on a

panel of 30,000 firms for 30 periods (to replicate the number of periods in the data). This

is used to estimate the panel-data regressions analogues for the model that correspond

with the ones estimated from the U.S. data, which are presented in Table 2.

1. Relative strength of the patent stock versus the distance-adjusted patent stock on a firm’s

market value. This is estimated from the micro data–Table 2, column 1. It is measured

by the ratio of the coefficient on log distance-adjusted patent stock to log patent

stock. This target plays a significant role in identifying the size of the distance

11The quantitative results do not change in a material way when the mean of the averages over all years in
the sample is used instead.
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related term, γd, relative to the non-distance related ones, γn and p, in the law of

motion for productivity (1.2). The former has a positive impact on this ratio, while

the latter have negative ones. The matching function parameters, µ and η, also have

an influence on this target because they affect the value of a d-type patent. Similarly,

so does the cost of doing R&D, χ. Last, the probability of selling an n-type patent,

conditional upon its arrival, ps, affects this statistic. The higher the likelihood that an

n-type patents is sold, and therefore that it is not used production, the less impact

it will have a firm’s market value. This results in d-type patents mattering more for

market value relative to n-type ones–again, the detail is in the Jacobian presented in

Appendix A.2.7.

2. Relative strength of the patent stock versus employment on a firm’s market value. This, too,

is estimated from the micro data–Table 2, column 1. It is measured as the ratio of

the coefficient on log patent stock to the coefficient on log employment. The (inverse

of this) ratio can be thought of as measuring the impact of an increase in the patent

stock on employment, holding fixed the firm’s market value. In the model there

are two reasons a firm’s market value may rise relative to other firms. Its long-run

productivity, z′, may have increased relative to average long-run productivity, z′, or

it may have realized a favorable value for the temporary production shock, e′. This

ratio identifies the standard deviation of the firm-specific idiosyncratic production

shock, STD(ln e′). Without the e′ shock, employment would be a perfect predictor

of relative productivity, z′/ z′. Introducing the e′ shock breaks this one-to-one cor-

respondence. The parameter STD(ln e′) has no impact on the other data targets.

The parameter γn governing the productivity of n-type patents also affects this ra-

tio. As γn rises employment becomes a better predictor of a firm’s market value,

so it impinges on this ratio in a negative way. An increase in γd does not work the

same way as it results in more d-type ideas, which makes the patent stock a better

predictor of market value.
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Parameter Values

Parameter Value Description Identification
β = 0.98 Discount factor A priori information
ε = 2.00 CRRA parameter A priori information
κ = 0.25 Capital’s share A priori information
λ = 0.60 Labor’s share A priori information
δ = 0.07 Depreciation rate A priori information
σ = 0.94 Patent survival rate A priori information
γd = 0.25 Distance-related productivity Calibration/Estimation
χ = 0.83 Cost of R&D Calibration/Estimation
ρ = 3.00 R&D cost elasticity A priori information
µ = 0.50 Matching function, exp Calibration/Estimation
η = 0.09 Matching function, const Calibration/Estimation
ω = 0.50 Bargaining power Imposed
X(x) Proximity distribution A priori information
γn = 0.18 Non-distance related productivity Calibration/Estimation
p = 0.17 Pr(n-type idea) Calibration/Estimation
ps = 0.47 Pr( sell n-type patent |arrival) Calibration/Estimation
STD(ln e′) = 0.07 Production shock, std Calibration/Estimation

Table 4: Parameter Values

Calibration Targets

Target U.S. Data Model
Long-run growth in output 2.00% 2.08%
Ratio of R&D expenditure to GDP 2.91% 1.96%
Fraction of patents that are sold 15.6% 16.6%
Average duration until a sale (fit entire distribution) 5.48 yrs. 6.28 yrs.
Sale duration, c.v. (fit entire distribution) 0.84 0.71
coef(dist-adj pat stock)/coef(pat stock) -0.511 -0.590
coef(pat stock)/coef(empl) 0.054 0.054
d(p, fs)− d(p, fb), all sold 0.152 0.165

Table 5: Calibration Targets
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To highlight a central aspect of the calibration procedure, note that a key goal of

this research here is to quantify the importance of the patent market for eliminating

the misallocation of ideas across producers. Two considerations come into play: the

importance of technological propinquity between a patent and a producer (or γd) and

the efficiency of the market for ideas (or η). A low volume of patent sales could occur

either because technological propinquity is not very important (but the patent market is

still efficient) or because the patent market is inefficient (but technological propinquity is

important). The above micro data is used to identify both of these channels. At the risk

of sounding repetitive, the firm market-value regressions in Table 2 are used to speak to

the size of γd. Since firm fixed effects are included in these regressions, there is a strong

sense in which changes in the distance-adjusted patent stock are being tied to firm market

value. Therefore, reproducing similar regression results using the model-generated data

(in particular the relative size of the coefficients on the log distance-adjusted patent stock

to the log patent stock) helps identify γd. Matching up the model’s output with the micro

data on the fraction of patent sold, average sale duration, and the difference between the

buyer’s and seller’s technological propinquities pins down η. The efficiency of the market

for ideas plays a very important in the analysis and is analyzed in detail in Section 1.5.

It is well known that patents show big differences in terms of their qualities which

could also affect their sales. A reasonable belief might be that a small fraction of patents

are highly valuable while the median one is not. To take quality heterogeneity into ac-

count, all regressions control for patent citations as a proxy for patent quality. So, the

empirical analysis attempts to purge concerns about patent quality from the stylized

facts.12

12Alternatively, one could introduce quality into the model. In particular, every idea could have a quality
component drawn from some distribution. Now, the decisions to buy and sell patents would be a function
of distance and quality (in addition to the aggregate state variable). Perhaps the distribution governing
quality could be mapped into the empirical distribution for patent citations. Doing this would significantly
complicate the analysis, but could be a fruitful avenue for future research.

41



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

Fr
eq

ue
nc

y

Years

Model

Data

Figure 4: Sales duration distribution, data and model

The upshot of the calibration procedure is displayed in Tables 4 and 5. Figure 4

shows, for both the data and model, the frequency distribution over the duration for a

sale. As can be seen, it appears to be harder to affect a sale in data than in the model.

1.5 Findings

The importance of a market for patents will be gauged now. There are two sources of

inefficiencies in the model. The first one is the usual knowledge externality. Each single

innovation raises the aggregate knowledge stock in society, which benefits the future

generations that stand on the shoulders of former giants through z in (1.2). The second

source of inefficiency emerges due to matching frictions, which is of particular interest

here. To analyze the latter, various experiments that change the efficiency of the market

for d-type patents will be entertained. The efficiency of the market for d-type patents is

increased in stages. First, the market is shut-down by setting the meeting rate to zero.

Then, an experiment is performed where the meeting rate for matches is allowed to rise.

While it may be easier for buyers and sellers to meet now, a seller’s idea may still not be

well suited for the buyer. The next experiment considers a situation where patent agents
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can find buyers who are perfect matches for the ideas that they are selling. So, there is

no mismatch between buyers and sellers on the patent market. Still, innovating firms

produce d-type ideas that are not ideally suited for their own businesses and this injects a

friction into the analysis. A patent that is not incorporated into an innovator’s production

process will only have a finite life on the market. Additionally, it may take time to find

a buyer. The final experiment focuses on the case where innovating firms produce ideas

that are tailored toward their own production activity. Here ideas are perfectly matched

with the developer. The change in welfare from moving from one environment to another

is calculated. The metric for comparing welfare is discussed now.

1.5.1 Welfare Comparisons

Consider two economies, namely A and B, moving along their balanced growth

paths. Aggregate consumption, the gross growth rate, and aggregate productivity for

economy A are represented by cA, gA, and zA. Similar notation is used for country B.

To render things comparable, start each country off from the same initial position where

zA = zB = 1. Now, the levels of welfare for economies A and B are given by

WA =
∞

∑
t=1

βt−1 (c
A
t )

1−ε

1 − ε
=

(cA
1 )

1−ε

(1 − ε)[1 − β(gA)1−ε]
, and WB =

(cB
1 )

1−ε

(1 − ε)[1 − β(gB)1−ε]
,

where cA
1 and cA

1 are the time-1 levels of consumption in economies A and B. How much

would initial consumption in economy A have to be raised or lowered to make people

have the same welfare level as in economy B? Denote the fractional amount in gross

terms by α (which may be less than one). Then, α must solve

(αcA
1 )

1−ε

(1 − ε)[1 − β(gA)1−ε]
= WB,

so that

α = (WB/WA)1/(1−ε).
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Figure 5: The impact of an increase in the contact rate on duration, innovation, growth
and welfare

This welfare measure is used in all experiments.

1.5.2 Varying the Contact Rate for Matches, η

The patent market mitigates the initial misallocation of ideas. Still, it takes time to

sell a patent as the patent agent may not be able to find a buyer. To understand how this

friction in matching affects the economy, it is useful to examine the relationship between

the scale factor for the matching function, η, and several key variables. Figures 5 and 6

summarize the results.

The market for d-type patents is shut down when η = 0. When there is no mar-

ket, the equilibrium growth rate goes down to 2.02% from from its benchmark value of

2.08%. Shutting down the market results in a welfare reduction of 1.18% in consumption

equivalent terms, which is quite sizable. As the contact rate, η, rises it becomes easier

to find a buyer for a patent, ceteris paribus. This is reflected in a drop in the length of

time that it takes to find a buyer, as the right panel of Figure 5 illustrates. The price that

an innovating firm receives for a patent, q, rises accordingly–see the left panel of Figure

6. As the price moves up an innovating firm becomes choosier about the patents that it

will keep. Figure 6, right panel, illustrates how an innovator’s cutoff for selling, xk, rises
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Figure 6: The impact of an increase in the contact rate on the price for the innovator,
slackness and the cutoffs

with η. (Recall that better patents are associated with higher values for the propinquity

metric.) Similarly, buyers become pickier about the patents that will they purchase so that

xa moves up with η.

The rate of innovation, i, does not change much. It falls as η starts to rise since the

consequences of failing to innovate are now lessened, because it will be easier for a firm

to buy a patent. The high price for patents begins to spur innovation at higher levels of η.

Market slackness, na/nb, has an interesting ∩ shape, which is displayed in the left panel

of Figure 6. When η = 0 the patent market is essentially closed as no innovators will

want to sell their ideas. The number of prospective buyers is 1 − i. As η starts to rise

so does the number of innovators that want to sell their ideas. This increases the flow of

new patents into the patent market and results in na/nb moving upwards. As the rate of

innovation, i, declines the number of prospective buyers, 1 − i, rises. This force operates

to reduce na/nb. Additionally, as the contact rates increases the market becomes more

efficient. It is easier for a seller to find a buyer, ceteris paribus. This works to reduce the

stock of sellers.

Growth increases along with efficiency in matching, despite the reduction in the num-

ber of new ideas–see the left panel of Figure 5. So does welfare. If the efficiency of the

market was at its extreme (the minimum value for η that results in all buyers meeting
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a patent agent with probability 1), growth would go up to 2.46% and welfare would be

5.97% higher than the calibrated economy. The upshot is that the market for patents plays

an important role in the economy.

1.5.3 Perfectly Directed Search

A second source of inefficiency in the model is the random search technology used in

the d-type patent market. In the baseline model, conditional upon a meeting between a

buyer and a patent agent, the propinquity of the idea to the firm is drawn from a uniform

distribution. Instead imagine a perfectly directed search structure, where patent agents

are able to target the segment of the economy that exactly matches the patent they want

to sell. In such a case, whether or not a patent agent meets a buyer is still a probabilistic

event governed by the matching function. The propinquity between the patent and the

buying firm would be nonstochastic and equal to unity; in other words, a perfect match.

The level of welfare in this alternative economy is 1.94% higher than in the baseline one.

The output growth rate increases slightly from 2.08 to 2.19%, despite a small decline in

the innovation rate. The fraction of all patents sold increases from 16.6 to 19.9%. Last, a

decomposition of growth reveals that the fraction of growth due to all patents sold moves

up from 18.9 to 26.6%.13 Table 6 summarizes the results (where the baseline model is

labeled BM and PDS refers to the perfectly directed search structure).

13Appendix A.1.1 shows that g − 1 = γdi
∫ 1

xk
xdX(x) + γd(1 − i)mb(

na
nb
)
∫ 1

xa
xdx + γnp, where i is the

aggregate rate of innovation. Note that there are three terms on the right side. The first term can be used
to measure the contribution to growth from the distance-related ideas that firms keep, the second from the
ones that they sell. The third term gives the growth arising from non-distance related ideas. This term
can be further decomposed as γnp = γn[p(1 − ps) + (1 − p)pb], where the first term in brackets gives the
contribution from non-distance-related patents kept and the second from the ones sold.
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Thought Experiments

BM PDS PDSwHC PI
Output growth rate, %, (gζ/(ζ+λ) − 1)× 100 2.08 2.19 3.05 3.38
Innovation rate, i 0.58 0.56 0.57 0.61
Welfare gain, α − 1 0.00 0.02 0.14 0.18
Fraction of all patents sold 0.17 0.20 0.68 0
Growth from all patents sold 0.19 0.27 0.73 0

Table 6: Thought Experiments

Perfectly Directed Search with a High Contact Rate

Now, redo the above experiment with perfect directly search while also using a high

contact rate for matches.14 The results are reported in Table 6 (under the column la-

beled PDSwHC). Output growth is now much higher at 3.05%, even though innovation

is slightly lower than in the baseline model. This reflects a reduction in misallocation. As

can be seen, now most patents are sold. Economic welfare is 14.3% higher.15

Figure 7 gives the upshot from the experiments that have been conducted so far.

It shows how the cumulative distribution function for the propinquity of new ideas to

firms, or for x, changes across the various experiments. First, firms in the U.S. data

produce ideas that are not well suited for their own lines of business, as can be seen from

the distribution labeled “Empirical”. (Recall that a higher value for x ∈ [0, 1] indicates

that an idea is better suited for the firm’s business activity.) In the baseline model, a

firm is free to sell such an idea. A firm that fails to innovate can try to buy one from

another firm. This leads to a better distribution of ideas, as is reflected in the distribution

function for the baseline model after transactions on the market for patents have been

consummated. The distribution function for the baseline model stochastically dominates,

in the first-order sense, the empirical distribution. When the contact rate for matching is

14The contact rate, η, is set high enough that all buyers meet a patent agent with probability 1.
15This large welfare gain derives solely from the large increase in growth, gζ/(ζ+λ), given the assumed

form of preferences over consumption, as can be gleaned from Section 1.5.1. That is, if there is a large
increase in growth then this form of preferences will always show a large increase in welfare (when ε = 2,
which is a standard value).
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Figure 7: Misallocation of ideas

high it is relatively easy to consummate a patent sale. The distribution for x improves–

see the histogram labeled “High Contact Rate”, which stochastically dominates the one

for the baseline model. Of course, if search could be perfectly directed things would be

better still–“High Contact w Directed Search”, which stochastically dominates all other

distributions.

Note that not all firms sell their patents, even though they are not perfectly matched

with their ideas. This occurs because are still some frictions left in the patent market. First,

there are more sellers than buyers on the market, so not all patents will be immediately

sold. Second, patents have a finite life on the market and hence suffer some depreciation.

Both these factors imply that the price at which a firm can sell a patent, q, will be less

than what it is worth to a perfectly matched firm.
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1.5.4 Removing the Misallocation of Ideas

The central inefficiency in the framework derives from the fact that firms develop

ideas that are imperfect matches for the own production processes. The presence of a

market for patents mitigates this problem. Suppose that an innovating firm comes up

with a d-type idea that is always a perfect match for its production process. That is, let

each innovating firm always draw x = 1. This case is summarized in Table 6 (under the

column labeled PI). In this situation, the economy could increase its growth rate from 2.08

to 3.38%, a big jump. Welfare would increase by 17.8%. This illustrates that the frictions

arising from mismatches in innovation are large.

1.6 Quantitative Extensions: Licensing and Litigation

When it comes to technology transfer and the market for ideas, two important con-

cerns about patenting and the market for ideas deserve additional attention, namely

licensing and litigation. Licensing provides an additional mechanism for transferring

ideas. By limiting attention to patent sales, a fear might be that the analysis overstates

the amount of misallocation in the market for ideas. A firm may buy or keep a patent to

prevent litigation. This does not increase the firm’s productivity in a technological sense.

Hence, the value of patents for a firm’s productivity may be overestimated.

1.6.1 Licensing

Arora and Ceccagnoli (2006) report that licensing intensity in the United States is

around 5%. The goal here is to understand the quantitative implications of licensing in

the current setting. Zuniga and Guellec (2009) conduct a survey on firms that license

out their patents and analyze the obstacles to licensing. The most frequent problem

reported by firms was that “identifying (a) partner is difficult.” This shows that search

49



Results with Licensing and Low-Ligation Sectors

Panel A: Calibration Targets
Licensing Low-Litigation

U.S. Data Model U.S. Data Model
Growth in Output, % 2.00 2.03 2.00 2.10
Ratio of R&D expenditure to GDP, % 2.91 1.81 2.91 1.98
Fraction of Ideas that are sold, % 20.6 20.5 16.4 17.6
Average duration until a sale, yrs. 5.48 6.05 5.94 6.35
Sale duration, c.v. 0.84 0.72 0.78 0.70
coef(dist-adj pat stock)/coef(pat stock) -0.511 -0.607 -0.568 -0.596
coef(pat stock)/coef(empl) 0.054 0.057 0.052 0.050
d(p, fs)− d(p, fb), all sold 0.152 0.161 0.136 0.143

Panel B: Impact of Shutting Down the Market for Ideas (η = 0)
Benchmark Licensing Low-Litigation

∆ in Growth (percentage pt.) -0.06 -0.07 -0.06
∆ in Welfare, % -1.18% -1.40% -1.12%

Table 7: Results with Licensing and Low-Ligation Sectors

frictions, which are highlighted in the model of the patent market developed here, seem

to apply to the licensing market as well. Licensing could have many other purposes than

pure technology transfer, such as deterring entry. To the extent that licensing is used as a

substitute arrangement for a patent sale, the previous analysis might have underestimated

the liquidity in the market for ideas and generated too much search frictions. In order

to take this substitutability into account, assume that all the licensing arrangements are

for the purpose of technology transfer. Hence in what follows, assume that the overall

turnover in the market for ideas is 20.6% = 15.6% + 5%. The model is recalibrated and

simulated using this number. Table 7 reports the results. The model matches the data

well when it is recalibrated to allow for a larger number of ideas to be transferred. Not

surprisingly, a shutdown in the market for ideas leads now to a bigger welfare loss (1.40

versus 1.18%). As before, the reduction in growth is still small, but slightly higher (a loss

of 0.07 versus 0.06 percentage points). Again, the small loss in growth is due to the fact

that the rate of innovation rises when the market for ideas is closed, as was shown earlier

in the right panel of Figure 5.
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1.6.2 Litigation

Patent litigation could also lead to patent sales for reasons not necessarily related

to technology transfer [Galasso et al. (2013)]. To begin with, it is useful to get a sense

of the share of patents that are ever litigated in the sample employed here. Using the

Derwent and Lex Machina databases, Table 1 shows that about 1.0% of patents involve

litigation. Furthermore, when patents that are both ever litigated and ever sold during

their lifetime are considered, the share drops down to 0.3%. Hence, among sold patents,

only 2% (=0.3/15.6) are ever litigated. Given these small shares, it may seem unlikely that

litigated patents could have a major impact on the quantitative results.

As Galasso et al. (2013) emphasize, however, the threat of litigation might be very

important in the sale decision, even if in practice, few litigations are actually observed.

In order to exclude this potential channel, the analysis is redone, focusing exclusively

on sectors with very low litigation intensity. All the micro data targets are recalculated

using patent and firm observations that have a litigation intensity below the mean of

the pertinent sample–the targets for the U.S. growth rate and R&D expenditures to GDP

remain the same. Indeed, sectors have a lot of heterogeneity in terms of the litigations

observed, and a sector’s litigation intensity might be a good indicator for the propensity

of a given patent to be litigated.

Table 7 presents the new estimates and the welfare gain from the market. Note that

the affected data targets change only slightly. These changes occur from restricting the

micro data to the low-litigation sectors. The model still fits very well. The welfare loss for

shutting down the market for ideas is now a bit smaller (1.12 versus 1.18%). The upshot

is that focusing on low-litigation sectors does not affect the analysis in a material way.
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1.7 Conclusions

A model of the market for patents is developed here. Each period a firm conducts

research and development. This R&D process may spawn new ideas. Some of the ideas

are useful for a firm’s line of business, others are not. A firm can patent and sell the

ideas that are not. The fact it can sell ideas provides an incentive to engage in R&D.

Likewise, firms that fail to innovate can attempt to buy ideas. This allows a firm to grow

its business. This reduces the incentive to do R&D. The efficiency of the patent market

for matching ideas with firms has implications for growth. These are examined here.

The empirical analysis, drawing on the NBER-USPTO patent grant database and

patent reassignment data available from Google Patents Beta, establishes five useful facts.

First, somewhere between 15 and 20% of patents are sold. Second, it takes on average 5.48

years to sell a patent. Third, a firm’s patent stock contributes more to its market value the

closer it is to the firm in terms of average technological distance. Fourth, a patent is more

likely to be sold the more distant it is to a firm’s line of business. Fifth, when a patent is

sold it is closer to the buyer’s line of business than to the seller’s. The empirical analysis

attempts to control for licensing and litigation. These five facts suggest that a market for

patents may play an important role in correcting the misallocation of ideas across firms.

It may also influence a firm’s R&D decision.

The developed model is calibrated to match several stylized facts characterizing the

U.S. data, such as the postwar rate of growth, the ratio of R&D spending to GDP, the

fraction of patents sold, the empirical sale duration distribution, and the reduction in

distance between a patent and its owner upon a sale. Additionally, some micro-level facts

from panel data regressions are targeted using an indirect inference strategy. Specifically,

the importance of distance in a firm’s patent portfolio for determining the firm’s market

value is zeroed in on. The value of a market for selling patents is then assessed. This is

done by conducting a series of thought experiments where the market is first shut down
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and then the efficiency of the patent market is increased successively. The efficiency of

this market is important for economic growth and welfare.

The new NBER patent reassignment data opens new and exciting directions for fu-

ture research on innovation and technological progress. One direction is the analysis of

optimal patent policy that not only considers the monopoly distortions and innovation

incentives, but also takes into account the possibility of trading ideas through patents.

Another direction is the analysis of firm dynamics when patents are not only produced

in-house, but also purchased from others. Finally, the role of financial frictions is also a

new and important channel that could impact the (mis)allocation of ideas. These are all

very exciting and important aspects of technological progress that await further research.
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Chapter 2

Young, Restless, and Creative: Open-
ness to Disruption and Creative Inno-
vations

This chapter is co-authored with Ufuk Akcigit and Daron Acemoglu.

Abstract

This paper argues that openness to new, unconventional and disruptive ideas has a
first-order impact on creative innovations—innovations that break new ground in terms of
knowledge creation. After presenting a motivating model focusing on the choice between
incremental and radical innovation, and on how managers of different ages and human
capital are sorted across different types of firms with different degrees of openness to dis-
ruption, we provide firm-level, patent-level and cross-country evidence consistent with
this pattern. Our measures of creative innovations proxy for innovation quality (average
number of citations per patent) and creativity (fraction of superstar innovators, the likeli-
hood of a very high number of citations, and generality of patents). Our main proxy for
openness to disruption is the age of the manager—based on the idea that only companies
or societies open to such disruption will allow the young to rise up within the hierarchy.
Using this proxy at the firm, patent and country level, we present robust evidence that
once the effect of the sorting of young managers to firms that are more open to disruption
are factored in, the (causal) impact of manager age on creative innovations is small.
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2.1 Introduction

This paper investigates the impact of economic and social incentives on “creative in-

novations,” which we identify with the most influential, innovative and original patents.

Though there are currently more than half a million patents granted by the US Patent

and Trademark Office (USPTO) per year, only a handful are truly transformative in terms

of their contribution to society’s knowledge and their impact on the organization of pro-

duction, and probably only a small fraction account for the bulk of the value created.16

For example, within the field of drugs and medical inventions, there were 223,452 patents

between 1975 and 2001, but the median number of citations of these patents within the

next five years was four. A few patents receive many more citations, however. One was

the patent for “systems and methods for selective electrosurgical treatment of body struc-

tures” by the ArthroCare Corporation (with 50 citations), which has also had a major im-

pact on the field by improving many existing surgical procedures and devices used, inter

alia, in arthroscopy, neurology, cosmetics, urology, gynecology and laparoscopy/general

surgery. Another example is Amazon’s patent for “method and system for placing a

purchase order via a communications network,” which received 263 citations within five

years (while the median number of citations within this class is five) and has fundamen-

tally altered online businesses.

An idea dating back to Schumpeter (1934) associates creative innovations and en-

trepreneurship not only with economic rewards to this type of transformative idea, but

also with the ability and desire of potential innovators and entrepreneurs to significantly

deviate from existing technologies, practices and rules of organization and society and

to engage in “disruptive innovations.” This is natural; as Schumpeter emphasizes, in-

novation is a deviation from existing, inertial ways of doing things, and thus relies on

“mental freedom” from, or even “rebellion” against, the status quo (pp. 86-94). Similarly,

16See, among others, Trajtenberg (1990), Harhoff et al. (1999) and Sampat and Ziedonis (2004) on the
relationship between citations and patent quality.
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technologies that will cause the most fundamental “creative destruction” naturally cor-

respond to, and perhaps are driven by, “deviant” and disruptive behavior. This notion

is pithily captured by an inscription prominently displayed on the walls of Facebook’s

headquarters in Silicon Valley:

“Move fast and break things.”

This perspective suggests that societies and organizations that impose a set of rigidly

specified rules, discourage initiative and deviations from established norms, shun or even

ostracize rebellious behavior, and do not tolerate those that “move fast and break things”

will significantly lag behind their more open, “individualistic” or “risk-taking” counter-

parts in creative innovations—even though they might still be able to function successfully

with existing technologies. In the rest of the paper, we thus refer to this constellation of

social and economic incentives as openness to disruption (short for openness to disruptive

innovations, ideas and practices).

We first provide a simple model of the interplay between “corporate culture” (firm

type capturing how open the firm is to disruption) and innovation strategies. Firms can

engage in an incremental innovation by building on their existing leading-edge products.

In addition, high-type firms (those that have a corporate culture open to disruption) can

attempt a radical innovation, which involves combining diverse ideas to generate a tech-

nological improvement in a new area. We also assume that the skills of young managers

who have more recently acquired general skills (or are less beholden to a particular type

of product or technology) can be fruitfully utilized in the process of radical innovation.

In the model, though incremental innovations also increase productivity, it is the radical

innovations that are the engine of growth. This is because incremental innovations in

a particular “technology cluster” run into diminishing returns (as in Akcigit and Kerr

(2010), or Abrams et al. (2013)), while radical innovations create new technology clus-

ters, which increase productivity directly, and also indirectly, by making another series of

incremental innovations possible.
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Our model predicts a reduced-form cross-sectional relationship between manager age

and radical innovation. But this relationship does not correspond to the causal effect of

manager age on creative innovations. Rather, manager age is both an economically rele-

vant variable and more generally a proxy for openness to disruption, as highlighted by

our model where young managers tend to work in firms that are open to radical inno-

vation, but also contribute to the likelihood of radical innovations in such firms. These

forces can also be seen from the longitudinal predictions of the model: firms that hire

younger managers should subsequently have more creative innovations (because hiring

a young manager is associated either with a change in a firm’s type or a change in the

firm’s innovation strategy as it runs out of productive incremental innovation opportu-

nities). But because firms that are more open to disruption need not immediately hire a

young manager, the increase in creative innovations can precede the hiring of a younger

manager.

The model further clarifies that radical innovations will generate higher quality

patents that are more likely to receive a high number of citations and tend to be more

general in terms of the range of citations they receive (because they are expanding into

new areas), and this provides us with an empirical strategy to measure the creativity of

innovations (and present evidence about several aspects of the model’s implications).

Our theoretical framework also predicts another relationship we investigate empiri-

cally: products with higher sales will encourage even high-type firms and young man-

agers to pursue incremental innovations (because of Arrow’s replacement effect) (Arrow,

1962), and those with many patents will tilt things in favor of radical innovations (because

of diminishing returns and more generally because there is a substantial knowledge base

to build upon for such an expansion).

Finally, our model further suggests that institutions or attitudes that ban or discour-

age expansion into new areas or combinations that have not been previously experi-

mented with can be highly detrimental to radical innovations. Equally, those that prevent
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young managers from leading companies could slow down creative innovations by fail-

ing to use their more recent vintage skills in radical innovations. Such institutions and

attitudes typically vary across countries, and this reasoning suggests that similar relation-

ships might be found in the cross-country data.

The bulk of our paper comprises an empirical study of the ideas illustrated by our

theoretical model. We investigate whether companies with younger managers engage in

more radical and creative innovations. As already noted, manager age is a natural proxy

for openness to disruption, since companies with a corporate culture open to disruption

are more likely to allow young managers to rise up to the top of the corporate hierarchy.17

Our empirical work uses several different measures of creative innovations, all com-

puted from the USPTO data. These are the average number of citations per patent; the fraction

of superstar innovators, which corresponds to the fraction of patents accruing to an inno-

vator classified as a “superstar” on the basis of the number of citations; tail innovations,

which we measure as the fraction of patents (of a country or company) that are at the

pth percentile of the overall citations distribution (such as the 99th percentile) relative

to those that are at the median, thus capturing the likelihood of receiving a very high

number of citations normalized by the “median” number of citations; and generality in-

dex, constructed by Hall et al. (2001), which measures the dispersion of the citations that

a patent receives from different technology classes. We report several salient and robust

pattern using these data.

First, we establish a very robust cross-sectional correlation between CEO (or top man-

agement) age and all of our measures of firm-level creative innovation (with or without

a variety of firm-level controls). In summary, firms that tend to employ younger CEOs

receive a greater number of citations per patent, have a greater fraction of their patents

generated by superstar innovators, have more tail innovations, which are at the very high

17Interestingly, in the examples of major innovations mentioned above, these were produced by companies
with unusually young leadership. The average age of top managers at ArthroCare Corporation was 41 at the
time, and only 33 at Amazon (compared to an average age of 54.84 among Compustat companies).
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percentiles of the citations distribution, and have more general patents.

Second, we find similar (but somewhat smaller) results when we focus on “within-

firm” variation generated by CEO changes: when a younger CEO takes charge, inno-

vations (new patent applications) become more creative. Recall, however, that, as our

theoretical analysis highlights, these within-firm results are still a mixture of the sorting

effects and the causal effect of manager age on creative innovations.

Third, related to this last point and again consistent with our theoretical model, we

show that there is a significant increase in creative innovations before a firm switches to a

younger CEO, but once it does make the switch, there is a further increase in the creativity

of their innovations.

Fourth, we also use the structure of our model, in conjunction with the reduced-

form patterns in the data, to shed further light on the relative roles of sorting and the

causal effect of manager age on innovation. Namely, we utilize a simple indirect infer-

ence procedure to estimate from the reduced-form regression coefficients some of the key

parameters of our model, including those governing the causal effect of manager age on

creative innovations. This exercise implies that the causal effect of manager age on cre-

ative innovations is small and is dwarfed by the sorting effects resulting from the fact

that firms that are more open to disruption, and thus more creative, tend to hire younger

managers.

Fifth, we exploit the patent-level variation to estimate the separate impacts of CEO

and inventor age on the creativity of innovations. Our results indicate that both matter,

with roughly similar magnitudes. But we also find that younger CEOs tend to work

with younger inventors (though CEO age has a fairly precisely estimated impact even

after controlling for inventor age). These two findings, which suggest that firms typi-

cally undertake many associated changes while they are switching towards generating

more creative innovations, further corroborate our interpretation that much of the cross-
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sectional (and within-firm) evidence reflects sorting of younger managers to firms with

corporate cultures that are more open to disruption.

Finally, we also use the firm-level data to shed light on our model’s prediction that

firms with greater sales should be less willing to encourage new, potentially disruptive

ideas, practices and innovations, while firms that are technologically more advanced, and

thus not able to profitably function without engaging in major innovations, should be

more likely to encourage this type of disruptive innovation. Our firm-level data enable

us to investigate this idea by simultaneously including interactions of CEO age with (log)

sales and (log) number of patents of the firm. Though the results here are somewhat less

strong than our main findings, they are broadly consistent with the notion that CEO age

interacts negatively with sales and positively with the number of patents.

We conclude the paper by showing in Section 2.5 that the firm-level results aggregate

up to the country level, so that countries that employ younger managers appear to have

more creative innovations controlling for other factors. For this exercise, we use the

average age of (top) managers (e.g., CEO and CFO) in the 25 largest listed companies

in the country (when available), which we collected from publicly available sources. We

find a fairly stable relationship between manager age and creativity of innovations at the

country level as well, suggesting that the forces we emphasize might account for cross-

country differences in the type and quality of innovations.

The cross-country context is also useful for us because it provides a corroboration that

manager age is indeed capturing practices related to openness to disruption. We do this

by utilizing the individualism and uncertainty avoidance indices of “national cultures”

constructed by the Dutch social scientist Geert Hofstede.18 Our results using these indices

are similar to those based on average manager age, suggesting that, at least at the country

18The individualism index is based on the distinction between collectivism and individualism in Durkheim
(1933), and measures the extent to which a society functions by relying on loosely knit social ties and thus
permits and condones individual actions even when they conflict with collective goals and practices, partic-
ularly in a business context. The uncertainty avoidance index, on the other hand, is an inverse proxy for a
society’s tendency for risk-taking based in part on ideas from the seminal Cyert and March (1963) book.
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level, our manager age variable is likely to be capturing some aspects related to a society’s

openness to disruption.

Our paper is related to several literatures. First, we build on and extend the emerging

literature on the interplay between micro and macro aspects of innovation. In particular,

we build on the model of innovation dynamics developed in Klette and Kortum (2004) by

including a choice between radical and incremental innovations, and by incorporating the

dimension of matching between managers of different vintages of human capital (age)

and type of innovation.19 The burgeoning empirical literature in this area (e.g., Foster

et al. (2001), Lentz and Mortensen (2008), Akcigit and Kerr (2010), Hurst and Pugsley

(2011), Syverson (2011), Kogan et al. (2012), Acemoglu et al. (2013)) focuses on R&D,

patent and productivity dynamics. We depart from this literature both by focusing on

the choice between radical (creative) and incremental innovations, and by presenting a

detailed analysis of the relationship between creativity of innovations and manager age.

Second, three papers most closely related to our work are MacDonald and Weisbach

(2004), Gorodnichenko and Roland (2012) and Fogli and Veldkamp (2013). MacDon-

ald and Weisbach construct an overlapping generations model in which each generation

makes technology-specific human capital investments. They show that younger agents

are the ones who invest in human capital complementary to new technologies. Their

framework does not incorporate innovations and thus has no distinction between cre-

ative, radical innovations vs. incremental innovations. Gorodnichenko and Roland draw

a link between innovation and individualism and provide evidence using Hofstede’s in-

dividualism data. Despite the similar motivating questions, the approaches of the two pa-

pers are very different. While Gorodnichenko and Roland look at aggregate measures of

productivity, such as TFP or labor productivity, we focus on creative innovations defined

using patent citations data from the USPTO. We therefore first start with a microeconomic

model of how firms choose their innovation strategies and how managers of different ages

19This matching aspect is common with theoretical analyses of the role of managers, in particular, Lucas Jr
(1978), Garicano (2000), and Garicano and Rossi-Hansberg (2004).
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endogenously sort across different types of firms. Our main empirical work instead uses

the proxy for openness to disruption we have constructed ourselves based on the age

of managers across countries and, more centrally, focuses on firm-level and patent-level

analysis across US companies. Fogli and Veldkamp also use Hofstede’s individualism

index in their theoretical and empirical analysis of “individualistic” social networks and

the diffusion of new technologies, but their emphasis is on how new technologies diffuse

over different network structures and their empirical work exploits exposure to different

types of diseases to generate cross-country variation in societal network structures.

Third, our work is linked to the small literature on age and creativity. Galenson and

Weinberg (1999), Galenson and Weinberg (2001), Weinberg and Galenson (2005), Jones

and Weinberg (2011) and Jones (2010) provide evidence that a variety of innovators and

top scientists are more creative early in their careers, but they also acquire other types

of human capital (perhaps generating different types of creativity) later on. Jones (2009)

develops a model in which scientists have to spend more time mastering a given area and

have to work in teams because the existing stock of knowledge is growing and thus be-

coming more difficult to absorb and use. Relatedly, Sarada and Tocoian (2013) investigate

the impact of the age of the founders of a company on subsequent performance using

Brazilian data.20

Fourth, our work is related to the literature pioneered by Bertrand and Schoar (2003),

Bloom and Van Reenen (2007) and Bloom and Van Reenen (2010) which investigates the

relationship between CEO and manager characteristics and firm performance. Benmelech

and Frydman (2014), for example, show that military CEOs pursue more conservative in-

vestment and financial strategies (lower investment in R&D), are less likely to be involved

in financial fraud, and perform better during times of distress. Bennedsen et al. (2008)

20See also Azoulay et al. (2011) who document the impact of changes in incentives driven by large aca-
demic awards and grants on creativity, and Azoulay et al. (2010) who investigate the impact of the death of
a very productive co-author on academic productivity.

There is also an extensive literature in social psychology, mostly using survey and experimental evidence,
on age and various attitudes both in general and in business. See, e.g., the survey by Walter and Scheibe
(2013).
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show that the death of a CEO or shocks to the CEO that potentially affect her focus

(death of an immediate family member) impact profitability or operating returns. Kaplan

et al. (2012) provide evidence from a factor analysis that CEO ability is positively corre-

lated with subsequent firm performance. Also noteworthy in this context is Barker and

Mueller (2002), who show that firms with younger CEOs spend more on R&D.

Finally, there is a growing literature on the impact of cultural factors and practices on

long-run economic development. The distinction between individualist and collectivist

cultures is deep-rooted in sociology (e.g., Durkheim (1933)) and has been widely ap-

plied within the sociology, anthropology and psychology literatures (e.g., Parsons (1949),

Kluckhohn and Strodtbeck (1961), Schwartz (1994), Triandis (1995), and Hofstede (2001)).

It has been emphasized within the economics literature by Greif (1994), though we are not

aware of any other studies emphasizing or empirically investigating the impact of “open-

ness to disruption”.21 More closely related to our focus in this context is the vision of

Schumpeter (1934) of an innovator as creating disruption, partly in response to economic

incentives and partly for psychological motives that lead them to seek challenges and

deviate from norms, is more closely related to our focus. Traces of this approach can also

be seen in the psychological study of authoritarianism in Adorno et al. (1950), and in the

approaches to entrepreneurship found in McClelland (1961) and Winslow and Solomon

(1987) (see Kirzner (1997), for a survey). These ideas have been applied in a cross-country

context by Shane (1993), Shane (1995), Hofstede (2001), Schwartz (1994), Schwartz and

Bilsky (1990) and others. To the best of our knowledge, no other work links these ideas to

creative innovations, develops a formal theory along the lines of what we are attempting

here, or provides systematic evidence based on firm- or patent-level data.

The rest of the paper is organized as follows. The next section presents our motivating

model. Section 2.3 describes our data sources and variable construction and provides a

21Other aspects of cultural practices have been emphasized as major determinants of economic develop-
ments by, among others, Tabellini (2008a), Tabellini (2008b), Fernandez and Fogli (2009), Guiso et al. (2010),
and Alesina et al. (2011).
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few basic descriptive statistics. Section 2.4 presents our main empirical results, which are

based on firm-level data. Section 2.5 returns to the cross-country data and shows that the

patterns we identify in the microdata appear to aggregate up to the country level. Section

2.6 concludes.

2.2 Motivating Theory

In this section, we provide a simple model of radical and incremental innovations to

motivate both the conceptual underpinnings of our approach and some of our empirical

strategies.

2.2.1 Production

We consider a continuous-time economy in which discounted preferences are defined

over a unique final good Y (t). This final good is produced by labor and a continuum of

intermediate goods j, each located along a circle, C, of circumference 1. The production

technology takes the following constant elasticity of substitution form

Y (t) =
1

1 − β

(∫
C

qj (t)
β k j (t)

1−β dj
)

Lβ, (2.1)

where k j (t) denotes the quantity and qj (t) the quality (productivity) of intermediate good

j used in final good production at time t, while L is the total amount of production labor,

which is supplied inelastically.

We follow Klette and Kortum (2004) in defining a firm as a collection of leading-edge

(best) technologies. A perfectly enforced patent for each leading-edge quality technology

is held by a firm, which can produce it at constant marginal cost γ in terms of the unique

final good. Because costs and revenues across product lines are independent, a firm will

choose price and quantity to maximize profits on each of its product lines. In doing so, it
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will face an iso-elastic inverse demand derived from equation (2.1), which can be written,

suppressing time arguments, as:

pj = Lβqβ
j k−β

j , ∀j ∈ C.

The profit-maximization problem of the firm with leading-edge technology for interme-

diate good j can then be written as

Π
(
qj
)
= max

k j≥0

{
Lβqβ

j k1−β
j − γk j

}
∀j ∈ C.

The first-order condition of this maximization problem implies a constant markup over

marginal cost, pj = γ/(1 − β), and thus

k j =

[
(1 − β)

γ

] 1
β

Lqj. (2.2)

Equilibrium profits for a product line with technology qj are

Π
(
qj
)
= β

[
(1 − β)

γ

] 1−β
β

Lqj

≡ πqj,

where the second line defines π.

2.2.2 Managers

In addition to workers, the economy is also populated by managers, who play both

an operational role (reducing costs for firms) and manage innovation.

Managers enter and exit the economy following a stationary Poisson birth and death

process, so that the measure of managers, M, and their age distribution is constant over

time. We index a manager by her age a, or equivalently by her birth date b. Denoting the
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death rate of managers by δ, the fact that the measure of managers is constant at M implies

that the age distribution of managers is simply given by an exponential distribution, i.e.,

the fraction of managers who are below the age a is 1 − e−δa.22

When a manager is born, she acquires the knowledge associated with the average

technology in the period in which she is born, giving her a knowledge base of

q̄b ≡
∫
C

qjbdj.

Similarly, we denote the current period’s knowledge stock—current average technology—

by

q̄t ≡
∫
C

qjtdj.

Managers will be hired by monopolists to manage production and innovation in their

leading-edge products. In equilibrium, managers will be paid a wage wb,t as a function

of the current period’s technology, q̄t, and their knowledge, q̄b. We assume that M < 1,

which implies that the measure of managers is less than the measure of product lines in

the economy, so some product lines will not use a manager. This simplifies the analysis

by providing a simple boundary condition for the determination of equilibrium wages of

managers. We also assume that M is not too small, which will ensure that all firms that

need a manager for a “radical innovation,” as described next, are able to hire one (one

can take M → 1 without any loss of generality).

2.2.3 Corporate Culture and Innovation Dynamics

The economy is populated by two types of firms, with firm type denoted by θ ∈

{θH, θL} where θH > θL. Firm type does not affect productivity directly, but influences

the success of radical innovations. In particular, high-type firms, i.e., those with θ =

θH, are those with corporate cultures that are open to disruption, and will thus have a

22It is also straightforward to see that if the birth rate of managers is given by δbirth, then M = δbirth/δ.
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comparative advantage in radical innovations. In contrast, we will suppose that low-type

firms, i.e., those with θ = θL, is incapable of engaging in radical innovations, thus setting

θL = 0. Firm type is initially determined upon entry (as described in the next subsection).

Thereafter, a low-type firm switches to high type at flow rate φ ∈ (0, 1).23

The productivity of each intermediate product is determined by its location along

a quality ladder in a given product line. In addition, as noted above and following

Klette and Kortum (2004), each leading-edge technology gives the firm an opportunity

for further innovation. Innovation dynamics at the firm level are determined by whether

the firm pursues an incremental innovation or a radical innovation strategy. Low-type firms

can only engage in incremental innovations as we describe next.

Incremental Innovation Incremental innovations improve the productivity of a product

line within the current technology cluster.24 A technology cluster here refers to a specific

family of technologies for that product line. Because incremental innovations take place

within this technology cluster, they will run into diminishing returns. We model this

by assuming that the additional productivity improvements generated by an innovation

decline in the number of prior incremental innovations within a technology cluster. In

addition, again for the same reason, incremental innovations build on a narrow technol-

ogy base and create improvements only over this base. This implies that, as illustrated in

Example 1 below, incremental innovations will have few citations and limited “general-

ity” (captured by the dispersion of citations they receive from different technology classes

as we discuss further below).

We assume that all firms (regardless of their type) can successfully innovate incre-

mentally at the exogenous rate ξ > 0. The nth incremental innovation in a technology

cluster improves the current productivity of product line j by a step size ηn(qj, q̄t), where

23We assume that there are no switches from high type to low type to simplify the expressions and the
analysis.

24Our modeling of technology clusters follows Akcigit and Kerr (2010) and Abrams et al. (2013).
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qj is the current productivity of the technology, and q̄t is the current period’s technology,

and

ηn(qj, q̄t) =
[
κq̄t + (1 − κ) qj

]
ηαn (2.3)

with α ∈ (0, 1), η > 0, and κ ∈ (0, 1). This functional form implies two features. First, each

innovation builds both on the current productivity of the product line where it originates,

with weight 1 − κ, and on average technology, q̄t, with weight κ. Second, productivity

gains from incremental innovations decline geometrically, at the rate α, in the number of

prior incremental innovations in the technology cluster.

Denoting by tn the time of the nth incremental improvement for product line j, the

evolution of the technology of product line j in a technology cluster that started with

productivity q0
j after n incremental innovations can then be written as

qn
j = q0

j + ∑n
i=0

[
κq̄ (ti) + (1 − κ) q0

j

]
ηαi

= q0
j

[
1 + (1 − κ) η

1 − αn+1

1 − α

]
+ ηκ ∑n

i=0 αi q̄ (ti) .

Radical Innovations Radical innovations combine the current technology of the prod-

uct line the firm is operating, the knowledge base of the manager, and the available

knowledge stock of the economy to innovate in a new area (creatively destroying the

leading-edge technology of some other firm). Similar to the approach in Weitzman (1998)

based on recombination, this combination of knowledge bases creates a new technology

cluster. Because they create new technology clusters, radical innovations tend to receive

more citations, are more likely to have a very high number of (“tail”) citations, and have

greater generality.

If there is a radical innovation in a particular product line, the innovator will initiate a

new technology cluster in a different product line (and will still keep its original product

line). The creation of a new technology cluster generates a larger improvement on current
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technology, and also provides the innovator with the opportunity to start a new series

of incremental innovations. Because radical innovations are not directed and each firm

controls an infinitesimal fraction of all products, the likelihood that it will be the firm

itself radically innovating over its own product is zero.25 Thus radical innovations are

associated with “Schumpeterian creative destruction.” We next describe the technology

for radical innovations.

A successful radical innovation leads to an improvement over the product line uni-

formly located on the circle C, and thus generates creative destruction. In particular, if

there is a successful radical innovation over a product line with technology qj, this leads

to the creation of a new leading-edge technology (now under the control of the innovating

firm and manager), with productivity

q0
j = qj + η0,

where the superscript 0 denotes the fact that a radical innovation initiates a new cluster

with no prior incremental innovations.

Managers’ Role For each of their active product lines, firms hire managers who influ-

ence their revenues in two ways. First, a manager of age a = t − b contributes q̄t f (a)

to the revenues of a firm when the aggregate technology level is q̄t (e.g., by reducing

costs).26 We presume (but do not need to impose) that f is increasing, so that more expe-

rienced managers are better at cost reductions. If the firm hires no manager, then it does

not receive this additional revenue. Second, a manager affects the flow rate of radical

innovations for firms attempting such radical innovations, as we describe next.

A firm of type θ has a baseline flow rate of radical innovation (regardless of whether

25It may be more plausible to assume that radical innovations also take place over a range of products that
are “technologically close” to the knowledge base of the innovator. Provided that there is a continuum of
products within this range, this would not affect any of our results.

26We model this contribution as an additive element in the revenues of the firm so as not to affect its
monopoly price and quantity choices of the firm via this channel.
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they are pursuing radical or incremental innovations) equal to ψΛθ. In addition, if it

pursues a radical innovation strategy, hires a manager with knowledge q̄b and the current

technology in the economy is q̄t, it will also have a flow rate of radical innovation equal

to

Λθq̄a, (2.4)

where

q̄a ≡ q̄b

q̄t

is the relative average quality of managers of age a, and Λ ∈ (0, 1] (and the superscript,

rather than a subscript, here emphasizes that this is a ratio of two averages). This specifi-

cation implies that low-type firms, with θL = 0, cannot engage in radical innovations—i.e.,

both ψΛθL and ΛθL are equal to zero.

Moreover, since both high- and low-type firms have the same rate of success, at the

rate ξ, when they attempt incremental innovations, our model also implies that θ captures

the comparative advantage of firms for radical innovation. In addition, young managers also

have a comparative advantage in radical innovation—since the contribution of the manager

of age a to cost reductions is the same for all firms, and younger managers contribute to

the flow rate of radical innovation with high-type firms.

The parameter Λ captures the role of institutional or social sanctions on radical in-

novations. Such sanctions may permit only the implementation of certain radical innova-

tions, thus making successful innovations less likely.27

Radical Innovations and Citation Patterns The next example provides more details on

the evolution of technology clusters and the citation pattern for the patents related to the

27In particular, in the context of our modeling of product lines along the circle C, we may assume that
such sanctions permit a firm operating product line j to successfully innovate over technologies that are
sufficiently close to itself. Suppose, for example, that j may be allowed to innovate only on product lines that
are at most a distance Λ from itself. Then the case of no restrictions would correspond to Λ = 1/2, so that
radical innovations over any product lines on the circle C are possible, while Λ < 1/2 would correspond to
restrictions and thus lower the likelihood of successful radical innovations.
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incremental and radical innovations therein.

Example 1. The following chart provides an illustrative example focusing on two product

lines:

First product line:

|

|

|

η0︸︷︷︸
P1

η1︸︷︷︸
P2

η2︸︷︷︸
P6

η3︸︷︷︸
P7︸ ︷︷ ︸

Tech Cluster 1

|

|

|

η0︸︷︷︸
P11

η1︸︷︷︸
P12︸ ︷︷ ︸

Tech Cluster 2

|

|

|

η0︸︷︷︸
P13

η1︸︷︷︸
P14

η2︸︷︷︸
P15︸ ︷︷ ︸

Tech Cluster 3

Second product line:

|

|

|

η0︸︷︷︸
P3

η1︸︷︷︸
P4

η2︸︷︷︸
P5︸ ︷︷ ︸

Tech Cluster 1

|

|

|

η0︸︷︷︸
P8

η1︸︷︷︸
P9

η2︸︷︷︸
P10︸ ︷︷ ︸

Tech Cluster 2

In this example, Pn denotes the nth patent registered at the patent office and ηn denotes

the step size as described in equation (2.3). The first technology cluster starts with a

radical innovation associated with a patent P1. The productivity improvement due to this

patent is η0. Subsequently a new incremental innovation in this technology cluster, with

patent P2, follows on P1, increasing productivity by another η1 < η0. After this innovation,

there is a radical innovation P3 in the second product line, followed by two subsequent

incremental innovations P4 and P5. Since P5 and P6 are second incremental innovations

in their technology clusters, they increase productivity by η2 < η1. Note that P1, P3, P8,

P11 and P13 are radical innovations starting new technology clusters. As described above,

these come from innovations in other product lines operated by high-type firms. Suppose

also that the firm operating technology cluster 1 with patent P7 is a high-type firm, and

successfully undertakes a radical innovation after P7, launching a new technology cluster

on a different product line (shown above as patent P8).

Consider next the patterns of citation resulting from these innovations. It is natural

to assume that each incremental innovation will cite all previous innovations in its tech-

nology cluster, which is the pattern shown in the next table. (Alternatively, such patents

might also cite patterns from previous technology clusters on the same product line, with
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very similar patterns). In addition, it is also plausible that, because a radical innovation is

recombining ideas from its own product line and the product line on which it is building,

it should be citing the fundamental ideas encapsulated in the patents that initiated the

two technology clusters. For this reason, patents P8, P11, and P13 cite the patents initiat-

ing the previous technology cluster in this product line as well as the patent initiating

the most recent technology cluster in their own product line. The next table shows this

citation pattern for the first five patents.

Cited Citing

P1 : P2, P6, P7, P8, P11

P2 : P6, P7

P3 : P4, P5, P8

P4 : P5

P5 : none

For example, P2 builds only on P1 and thus only cites P1, and is in turn cited by P6 and P7.

P1 is cited not only by the patents that build on itself within the same product line, P2, P6,

P7 and P11, but also by P8 because this new patent comes out of recombining ideas based

on this technology cluster and those in some other product line. This pattern then im-

plies that radical innovations will receive more citations and will receive more “general”

citations as well. They will also be heavily overrepresented among “tail innovations,”

meaning among patents receiving the highest number of citations. These are the patterns

we will explore in our empirical work.

We close the model by assuming that new firms enter at the exogenous flow rate

x > 0, and entry corresponds to a (radical) innovation over an existing product line uni-

formly at random, which thus initiates a new technology cluster. We further assume

that immediately after entry, a firm’s type is also drawn at random. In particular, suc-

cessful entrant is high-type, θ = θH, with probability ζ ∈ (0, 1), and is low-type, θ = θL
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(= 0), with the complementary probability, 1− ζ. Thereafter, firm type (corporate culture)

evolves according to the Markov chain described above.

2.2.4 Value Functions and Firm Maximization

Recall that a firm makes the innovation decision in each of its product lines to max-

imize its present discounted value, which we denote by Ws
(−→q f ,−→n f

)
where s ∈ {H, L},

−→q f is the vector of productivities of the firm, −→n f is the vector of the number of incre-

mental innovations in each of these product lines, i.e., −→q f ≡
{

q f ,j1 , q f ,j2 , ..., q f ,jm f

}
, and

−→n f ≡
{

n f ,j1 , n f ,j2 , ..., n f ,jm f

}
, and m f denotes the number of product lines that firm f is

operating.28 The value function for a low-type firm can be written as

rWL
(−→q f ,−→n f

)
−

·
WL

(−→q f ,−→n f
)
=

m f

∑
m=1



maxa
{

πq f ,jm + q̄t f (a)− wa,t
}

+ξ


WL

 −→q f \
{

q f ,jm
}
∪
{

q f ,jm + ηn f ,jm+1

}
,

−→n f \
{

n f ,jm
}
∪
{

n f ,jm + 1
}


−WL

(−→q f ,−→n f
)


+τ
[
WL
(−→q f \

{
q f ,jm

}
,−→n f \

{
n f ,jm

})
− WL

(−→q f ,−→n f
)]


(2.5)

+ φ
[
WH

(−→q f ,−→n f
)
− WL

(−→q f ,−→n f
)]

.

We can explain the right-hand side of this value function as follows: for each prod-

uct line m = 1, ..., m f , the firm receives a revenue stream of πq f ,jm as a function of its

productivity in this product line, q f ,jm . In addition, it has a choice of the age of the man-

ager it will hire to operate this product line (formally choosing a ∈ R+ ∪ {∅}, which is

suppressed to save on notation), and if the manager’s age is a, it will have additional

revenue/cost savings of q̄t f (a) and pay the market price for such a manager of age a at

time t, wa,t. Summing over all of its product lines gives the current revenues of the firm.

28Here and elsewhere, we suppress time as an explicit argument of the value functions to simplify notation.
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In addition, the firm can undertake an innovation on the basis of each of its active prod-

uct lines. Since we are looking at a low-type firm, all innovations will be incremental,

thus arriving at the rate ξ. When such an innovation happens in product line m that has

already undergone n f ,jm incremental innovations, the mth element of −→q f changes from

q f ,jm to q f ,jm + ηn f ,jm+1 and n goes up by one. We represent this with the arguments of

the value function changing to −→q f \
{

q f ,jm
}
∪
{

q f ,jm + ηn f ,jm+1

}
, −→n f \

{
n f ,jm

}
∪
{

n f ,jm + 1
}

(and the firm relinquishes its current value function WL
(−→q f ,−→n f

)
). The firm might also

lose one of its currently active product lines to creative destruction, which happens at

the endogenous rate τ (which will be determined in Section 2.2.6), and in that case, the

firm’s value function changes from WL
(−→q f ,−→n f

)
to WL

(−→q f \
{

q f ,jm
}

,−→n f \
{

n f ,jm
})

(i.e., −→q f

changes −→q f \
{

q f ,jm
}

and −→n f to −→n f \
{

n f ,jm
}

). Finally, the last term is due to the fact that

a low-type firm switches to high-type at the flow rate φ, in which case it relinquishes its

current value function and begets the value function of a high-type firm, WH
(−→q f ,−→n f

)
.

The value function of a high-type firm can be similarly written as

rWH

(−→q f ,−→n f

)
−

·
WH

(−→q f ,−→n f

)
(2.6)

=
m f

∑
m=1

max



πq f ,jm

+maxa

q̄t f (a)− wa,t + ξ


WH

 −→q f \
{

q f ,jm

}
∪
{

q f ,jm + ηn f ,jm+1

}
,

−→n f \
{

n f ,jm

}
∪
{

n f ,jm + 1
}


−WH

(−→q f ,−→n f

)

 ;

πqm + maxa

q̄t f (a) + ΛθH q̄a

 EWH

(−→q f ∪
{

qj′ + η0

}
,−→n f ∪ {0}

)
−WH

(−→q f ,−→n f

)
− wa,t




+

m f

∑
m=1

τ
[
WH

(−→q f \
{

q f ,jm

}
,−→n f \

{
n f ,jm

})
− WH

(−→q f ,−→n f

)]

+
m f

∑
m=1

ψΛθH

EWH

 −→q f ∪
{

qj′ + η0

}
,

−→n f ∪ {0}

− WH

(−→q f ,−→n f

)

The intuition for this value function is very similar to (2.5) except for the possibility

of a radical innovation. In particular, for each product line m, this high-type firm has a

radical innovation at the flow rate ψΛθH regardless of its innovation strategy. In addi-
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tion it has a choice between incremental and radical innovation, represented by the outer

maximization. The first option here is choosing incremental innovation for product line m

and is thus similar to the first line of (2.5). The second option is radical innovation, and in

this case the trade-off involved in the age of the manager is different, since manager age

affects the arrival rate of radical innovations as shown in (2.4). In the case of a success-

ful radical innovation, the value of the firm changes to EWH
(−→q f ∪

{
qj′ + η0

}
,−→n f ∪ {0}

)
,

where the expectation is over a product line drawn uniformly at random upon which the

radical innovation will build.

The next proposition shows that, as in Klette and Kortum (2004) and Acemoglu et al.

(2013), these value functions can be decomposed into sums of value functions defined at

the product-line level.

Proposition 1. The value functions in (2.5) and (2.6) can be written as

Ws
(−→q f ,−→n f

)
=

m f

∑
m=1

Vs
(
qj, n

)
,

where Vs
(
qj, n

)
is the (franchise) value of a product line of productivity qj with n incremental

innovations that belongs to a firm of type s ∈ {H, L} such that

rVL
(
qj, n

)
− V̇L

(
qj, n

)
= max

{
πqj + q̄t f (a)− wa,t

}
+ ξ

[
VL
(
qj + ηn+1, n + 1

)
− VL

(
qj, n

)]
(2.7)

− τVL
(
qj, n

)
+ φ

[
VH
(
qj, n

)
− VL

(
qj, n

)]
,
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and

rVH
(
qj, n

)
− V̇H

(
qj, n

)

= max


πqj + maxa

q̄t f (a)− wa,t + ξ

 VH
(
qj + ηn+1, n + 1

)
−VH

(
qj, n

)

 ;

πqj + maxa {q̄t f (a) + ΛθH q̄aEVH (q̄t)− wa,t}

 (2.8)

− τVH
(
qj, n

)
+ ψΛθHEVH (q̄t) ,

where EVH (q̄t) denotes the expected value of a radical innovation when the aggregate technology

level is q̄t.

Proof. Both of these value functions can be derived straightforwardly by conjecturing the

above forms and verifying the conjecture.

2.2.5 Stationary Equilibrium With κ = 1

We now characterize the stationary equilibrium of this economy in the case where

κ = 1—so that all current innovations build on current technology, q̄t (and not on the

current productivity of the existing technology cluster). This assumption considerably

simplifies the analysis, and we return to the general case where κ < 1 below.

Value Functions in Stationary Equilibrium A stationary equilibrium is defined as an

equilibrium in which aggregate output, Yt, grows at a constant rate g, and the distribu-

tion of product lines between high- and low-type firms and over the prior number of

incremental innovations remains stationary.

As noted above, firms decide the age of the manager to hire for each of the product

lines they are operating and whether to engage in a radical or incremental innovation.
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Let us first consider the value of a product line for a low-type firm. From Proposition 1,

we can focus on the decisions and the value function of such a firm at the product line

level, and the relevant value function is given by (2.7).

Since some firms will not hire managers (as M < 1), all firms not undertaking radical

innovations must be indifferent between hiring and not hiring a manager, which implies

that the equilibrium wage for managers, employed by firms engaged in incremental in-

novations, satisfies the boundary condition:

wa,t = q̄t f (a) . (2.9)

Substituting the equilibrium wage (2.9) into (2.7), we obtain a simplified value function

for low-type firms as

rVL
(
qj, n

)
− V̇L

(
qj, n

)
= πqj + ξ

[
VL

(
qj + q̄tηαn+1, n + 1

)
− VL

(
qj, n

)]
− τVL

(
qj, n

)
+ φ

[
VH
(
qj, n

)
− VL

(
qj, n

)]
.

Solving this value function gives an explicit characterization of the value function of

low-type firms as shown in the next proposition.

Proposition 2. Let us assume that the value function for a high-type firm takes the following form:

VH
(
qj, n

)
= Aqj + B̃ (n) q̄t. Then the value function of a product line operated by a low-type firm,

(2.7) takes the following form

VL
(
qj, n

)
= Aqj + B (n) q̄t (2.10)

where

A ≡ π

r + τ
; [r − g + ξ + τ + φ] B (n) = ξ Aηαn+1 + φB̃ (n) + ξB (n + 1) ;
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and B̃(n) is defined in Proposition 3 below.

Proof. See the Appendix.

The form of the value function in (2.10) is intuitive. It depends linearly on current

productivity, qj, since this determines the current flow of profits. It also depends on

current economy-wide technology, q̄t, since all innovations, including incremental ones,

build on this. Finally, it is decreasing in n (because B(n) is decreasing) since a higher

n implies that the next incremental innovation will increase productivity by less—and

incremental innovation is the only type of innovation that a low-type firm can undertake.

We next turn to the value of a product line operated by a high-type firm, which differs

from (2.7) because high-type firms have to decide whether to engage in incremental or

radical innovation, given by (2.8) above. Because (2.4) implies that younger managers

have comparative advantage in radical innovation, it follows straightforwardly that there

will exist a maximum age a∗ such that only managers below this age will work in firms

attempting radical innovation. Moreover, the maximization over the age of the manager

in (2.8) implies that such a firm must be indifferent between hiring any manager younger

than a∗. This implies:

q̄t f (a∗) + ΛθH q̄a∗EVH(q̄t)− wa∗,t = q̄t f (a) + ΛθH q̄aEVH(q̄t)− wa,t for all a < a∗.

Note that the oldest manager hired for radical innovation earns (from expression (2.9))

wa∗,t = q̄t f (a∗) .

Hence

wa,t =


q̄t f (a) for a > a∗

q̄t f (a) + ΛθH [q̄a − q̄a∗]EVH(q̄t) for a ≤ a∗

. (2.11)
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This wage schedule highlights that, in general, younger or older managers might be paid

more (this will depend on the f function). Younger managers have a comparative ad-

vantage in radical innovation, but older managers might be more productive in operating

firms.29

Now substituting for (2.11) in (2.8), we obtain a simplified form of the value function

of a product line operated by a high-type firm as

rVH
(
qj, n

)
− V̇H

(
qj, n

)
= max

 πqj + ξ
[
VH
(
qj + q̄tηαn+1, n + 1

)
− VH

(
qj, n

)]
;

πqj + ΛθH q̄a∗EVH(q̄t)


− τVH

(
qj, n

)
+ ψΛθHEVH(q̄t).

We next characterize the solution to this value function and also determine the alloca-

tion of managers to different product lines (and to incremental and radical innovations).

Proposition 3. The value function in (2.8) takes the following form

VH
(
qj, n

)
= Aqj + q̄tB̃ (n) , (2.12)

where A and B(n) are as defined in Proposition 2) and B̃ (n) is given by

[r − g + τ] B̃ (n) = ψ
[
A (1 + η) + B̃ (0)

]
(2.13)

+

 ξ
[
Ãηαn+1 + B̃ (n + 1)− B̃ (n)

]
for n < n∗

ΛθH q̄a∗ [(1 + η) Ã + B̃ (0)
]

for n ≥ n∗
,

where n∗ ∈ Z++ is the number of incremental innovations within a technology cluster at which

29The evidence in Galenson and Weinberg (1999), Galenson and Weinberg (2001), Weinberg and Galenson
(2005) and Jones and Weinberg (2011) is consistent with the possibility that either younger or older creative
workers might be more productive.
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there is a switch to radical innovation given by

n∗ =
⌈
n′⌉ such that ξ

[
Aηαn′+1 + B̃

(
n′ + 1

)
− B̃

(
n′)] = ΛθH q̄a∗ [(1 + η) A + B̃ (0)

]
.

(2.14)

Proof. See the Appendix.

The intuition for this high-type value function is similar to that for Proposition 2,

except that the dependence on the number of prior innovations in the current technology

cluster, n, is more complicated since when n exceeds n∗, a high-type firm will switch to

radical innovation (and from that point on n will no longer be relevant). This critical

value n∗ is given by (2.14), which designates the smallest integer after n′ where n′ equates

the value of attempting an additional incremental innovation to the value of attempting

a radical innovation (the notation ⌈n⌉ denotes the next integer after n).

It is also worth noting that this threshold, n∗, is constant in the stationary equilibrium.

This is because the value function increases linearly in q̄t, but the knowledge stock and

wages of managers also increase linearly, and in the stationary equilibrium, these two

forces balance out, ensuring that n∗ is constant while VH increases linearly in q̄t.

Given the form of VH, EVH(q̄t), the value of a new radical innovation, can be written

as

EVH(q̄t) = E
[
Ãqj + Ãηq̄t + q̄tB̃ (0)

]
= [Ã (1 + η) + B̃ (0)]q̄t

≡ vq̄t,
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where the last line defines v. Then the equilibrium wage schedule simplifies to:

wa,t =


f (a) q̄t for a > a∗

[ f (a) + ΛθH(q̄a − q̄a∗)v]q̄t for a ≤ a∗

. (2.15)

and is thus also linear in q̄t.

Equilibrium Characterization The next proposition provides the characterization of the

stationary equilibrium.

Proposition 4. Low-type firms (those with θ = θL) always hire “old” managers (those with

a > a∗ or b < b∗t ), pursue incremental innovations and never generate radical innovations.

High-type firms (those with θ = θH) pursue incremental innovations on product lines less

than n∗ prior incremental innovations, where n∗ is given by (2.14), and hire “old” managers (those

with a > a∗ or b < b∗t ). They pursue radical innovations on product lines with more than n∗ and

hire “young” managers (those with a ≤ a∗ or b ≥ b∗t ).

A lower Λ (corresponding to the society being less permissive to radical innovations) will

increase n∗ (so that a lower fraction of high-type firms will pursue radical innovation), and will

reduce the wages of young managers (because there is less demand for the knowledge of young

managers).

Proof. This result directly follows from Propositions 2 and 3.

Empirical Implications Our empirical work is inspired by Proposition 4. As explained

above, radical innovations will be associated with greater indices of our measures of cre-

ative innovations (innovation quality, tail innovations, superstar fraction, and generality).

We will first investigate the cross-sectional relationship between manager (CEO) age and

creative innovations. In these cross-sectional regressions, manager age is taken to be a
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proxy of a corporate culture that is more open to disruption. Therefore, from Proposition

4, we expect a negative cross-sectional relationship between manager age and creative

innovations. As just stressed, this cross-sectional relationship does not correspond to the

“causal effect” of manager age on creativity of innovations (which would apply if we

varied manager age holding the firm’s corporate culture constant); in particular, it also

reflects the sorting of younger managers to corporate cultures that are open to disruption

(and thus more conducive to creative innovations).

Our model also has longitudinal implications—that is, implications about how man-

ager age and creativity of innovations vary over time at the firm level—which shed further

light on the relative magnitudes of the sorting and the causal effects. To understand these

implications, let us consider the innovation dynamics of firms implied by Proposition 4.

Recall that low-type firms always engage in incremental innovations and never gen-

erate radical innovations. In contrast, high-type firms may attempt a radical innovation

depending on how many prior incremental innovations they have had on a product line.

• For product line with n < n∗, a high-type firm hires an old manager (or keeps

its already existing old manager), and pursues an incremental innovation strategy.

Given the technology specified above, however, such a firm still generates radical

innovations at the rate ψΛθH.

• For a product line with n ≥ n∗, a high-type firm hires a young manager and en-

gages in radical innovation. In this case, the average rate of radical innovation across

product lines with n ≥ n∗ and operated by high-type firms can be computed us-

ing the aforementioned fact that the age distribution of managers is given by the

exponential distribution, as

ψΛθH +
1

F (a∗)

∫ a∗

0
ΛθH q̄adF (a) = ψΛθH +

ΛθHδ

g + δ

[
1 − e−(g+δ)a∗

]
[1 − e−δa∗ ]

. (2.16)
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Now consider a low-type firm that switches to high-type, and to simplify the dis-

cussion, suppose that it has a unique product line. Then, if this product line has had

n < n∗ incremental innovations, the firm will continue to pursue an incremental innova-

tion strategy, keeping its old manager.30 In the process, it will generate radical/creative

innovations at the flow rate ψΛθH as noted above. When it reaches n = n∗, it will hire

a young manager, switch to a radical innovation strategy, and at that point, its rate of

radical/creative innovations will increase, on average, from ψΛθH to the expression in

(2.16). In contrast, if the product line of the firm at the time of switching to high-type has

had n ≥ n∗ incremental innovations, it will immediately hire a young manager, pursue a

radical innovation strategy, and have radical innovations at the flow rate (2.16).

This discussion implies that when we focus on the relationship between within-firm

changes in manager age and creative innovations, we expect to find two regularities. First,

when a firm switches from an older to a younger manager, this should be associated

with an increase in creative innovations. Second, firms that switch from an older to a

younger manager should, on average, experience an increase in creative innovations even

before the switch. Namely, before the actual switch to a younger manager, the increase in

creative innovations approximately corresponds to ψΛθH, whereas following the switch to

a younger manager, there will be a further increase in creative innovations corresponding

to the second term in (2.16). Note, however, that even this further increase following the

switch to a younger manager does not correspond to the causal effect of manager age on

creative innovations for several reasons; first, for firms with n ≥ n∗, both events will be

taking place at the same time; second, even for firms with n < n∗, the impact following

the switch to a younger manager still contains the sorting effect and also depends on the

matching patterns between managers and firms as indicated by the presence of the terms

representing the age distribution of managers; and third, strictly speaking to obtain the

causal effect, we need to keep the firm type and number of prior incremental innovations

30Strictly speaking this is true under an infinitesimal cost of replacing managers. Otherwise, it could fire
its old manager and hire another old manager, with no impact on our results or discussion here.
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constant, and just change (exogenously) manager age—and this is the exercise will will

perform in Section 2.4.4 below.

Finally, though we will not be able to investigate this directly in our empirical work,

the implications of changes in Λ are interesting. A lower value of this parameter nat-

urally reduces radical innovations and, at the same time, decreases the wages of young

managers, thus making it look like the society is discriminating against the young; but in

fact this is a consequence of the society discouraging radical innovations.

2.2.6 General Equilibrium and the Stationary Distribution of Products

We next characterize the stationary distribution of product lines in this economy in

terms of the types of their owners and also in terms of the prior number of incremental

innovations, and then use these distributions to determine the aggregate growth rate of

the economy in the stationary equilibrium.

Let us next denote the fraction of product lines occupied by s-type firms (for s ∈

{L, H}) with n prior incremental innovations by µs
n (these are not functions of time as we

are focusing on a stationary equilibrium). Let us also denote the total creative destruction

from s-type firms by τs. The stationary distribution of product lines is determined by

standard flow equations equating inflows and outflows from each state. For high types,

these take the form

Outflow Inflow(
τL + ξ

)
µH

0 = τH (1 − µH
0
)
+ φµL

0 for n = 0(
τL + τH + ξ

)
µH

n = ξµH
n−1 + φµL

n for n∗ > n > 0(
τL + τH) µH

n = ξµH
n−1 + φµL

n for n = n∗(
τL + τH) µH

n = φµL
n for n > n∗

.

Consider the first line corresponding to n = 0. Outflows from this state, products with
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n = 0 operated by high-type firms, come from two sources. First, there is creative de-

struction coming from low-type firms, which takes place at the rate τL per product line

(and hence multiplied by µH
0 ). Second, the high-type firm operating this product line

has a successful incremental innovation, which takes place at the rate ξ (similarly mul-

tiplied by µH
0 ). Inflows into this state are due to creative destruction coming from the

high-type firm, which takes place at the rate τH (multiplied by the fraction of all product

lines except those that are already in this state, thus
(
1 − µH

0
)
), or due to a low-type firm

operating a product line at n = 0 changing its type to high, which adds the flow rate

φµL
0 . The other lines are explained similarly, except that creative destruction coming from

high-type firms also generates outflows for n > 1, and there is no inflow coming from

incremental innovations for product lines with n > n∗ since high-type firms switch to

radical innovation at n = n∗.31

The flow equations for the low-type product lines can be written similarly and have

a similar intuition

Outflow Inflow(
τH + ξ + φ

)
µL

0 = (1 − µL
0 )τ

L for n = 0(
τL + τH + ξ + φ

)
µL

n = ξµL
n−1 for n > 0

.

The creative destruction rates from low-type and high-type firms, in turn, can be com-

puted as

τL = x (1 − ζ) and τH = xζ + M
∫ a∗

0
ΛθH q̄adF (a) + ψΛθH ∑∞

n=0 µH
n ,

where x is the entry rate, F(a) denotes the stationary distribution of manager age, a∗ is

the threshold below which managers are hired by firms to perform radical innovations,

and ψΛθH ∑∞
n=0 µH

n is the rate of radical innovations for high-type firms which applies

31These equations are written under the assumption that n∗ > 0. When n∗ = 0, high-type firms never
undertake incremental innovations, and thus the flow equations become τLµH

0 = (1 − µH
0 )τH + φµL

0 for
n = n∗ = 0, and

(
τL + τH) µH

n = φµL
n for n > n∗ = 0.
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regardless of whether they pursue a radical innovation strategy. Low-type firms, on the

other hand, generate creative destruction only when they initially enter the economy

(since they do not engage in radical innovation). Given these quantities, the total creative

destruction rate of the economy is given as

τ = τL + τH.

To derive the aggregate growth rate, we combine (2.1) with (2.2) to obtain

Y =
L

1 − β

[
(1 − β)

γ

] 1−β
β

q̄.

The growth rate of the economy is then equal to the growth of the average quality q̄t.

After a time interval ∆t > 0, the average quality is given by

q̄t+∆t = q̄t + ηq̄tτ∆t + q̄tηξ∆t
[
∑n∗−1

n=0 µH
n αn+1 + ∑∞

n=0 µL
nαn+1

]
+ o(∆t),

where we have used the fact that all radical innovations come from creative destruction,

which takes place at the rate τ, and o(∆t) denotes terms that are second order in ∆t. The

growth rate of the economy in the stationary equilibrium can then be computed as

g = ητ + ηξ
[
∑n∗−1

n=0 µH
n αn+1 + ∑∞

n=0 µL
nαn+1

]
. (2.17)

2.2.7 Equilibrium With κ < 1

In this subsection, we turn to the general case with κ < 1. We will show that the

structure of the equilibrium is similar, except that now the switch to radical innovation

for high-type firms will depend both on their current productivity and on their prior

incremental innovations.
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The value of a product line operated by low- and high-type firms can now be written,

respectively, as:

rVL
(
qj, n

)
− V̇L

(
qj, n

)
= maxa

{
πqj + q̄t f (a)− wa,t

}
+ ξ

[
VL
(
qj + ηn+1, n + 1

)
− VL

(
qj, n

)]
− τVL

(
qj, n

)
+ φ

[
VH
(
qj, n

)
− VL

(
qj, n

)]
,

and

rVH
(
qj, n

)
− V̇H

(
qj, n

)
= max


πqj + maxa

q̄t f (a)− wa,t + ξ

 VH
(
qj + ηn+1, n + 1

)
−VH

(
qj, n

)
 ;

πqj + maxa≥0 {q̄t f (a) + ΛθH q̄aEVH(t)− wa,t}


− τVH

(
qj, n

)
+ ψΛθHEVH(t).

Here note that, with a slight abuse of notation, we wrote EVH(t) instead of EVH(q̄t)

for the value of a new radical innovation, since this depends in general not just on average

current productivity in the economy, q̄t, but also on the distribution of product lines across

different states. All the same, in the stationary equilibrium it will clearly grow at the same

rate as q̄t, g. Second, ηn is now a function of both the current productivity of the firm and

the average current productivity in the economy, q̄t.

With an argument similar to that in the previous subsection, the equilibrium wage

schedule for managers will be given by

wa,t =


f (a) q̄t for a > a∗

f (a) q̄t + ΛθH
[
q̄a − q̄a∗]EVH(t) for a ≤ a∗

This enables us to write simplified versions of the value functions as:

rVL
(
qj, n

)
− V̇L

(
qj, n

)
= πqj + ξ

[
VL
(
qj + ηn+1, n + 1

)
− VL

(
qj, n

)]
− τVL

(
qj, n

)
+ φ

[
VH
(
qj, n

)
− VL

(
qj, n

)]
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and

rVH
(
qj, n

)
− V̇H

(
qj, n

)
= max

 πqj + ξ
[
VH
(
qj + ηn+1, n + 1

)
− VH

(
qj, n

)]
;

πqj + ΛθH q̄a∗EVH(t)


− τVH

(
qj, n

)
+ ψΛθHEVH(t).

Proposition 5. Consider the economy with κ < 1. Then, for a product line with current quality

q operated by a high-type firm, the manager will be younger and will pursue radical innovation

when the number of prior incremental innovations is greater than or equal to n∗
t (q), where n∗

t (q)

is increasing in q. That is, a high-type firm is more likely to pursue radical innovation when its

current productivity is lower and the number of its prior innovations in the same cluster is higher.

Proof. See the Appendix.

This proposition thus establishes that in this generalized setup (with κ < 1), the main

results from Proposition 4 continue to hold, but in addition we obtain the result that

radical innovation is more likely when a high-type firm has lower current productivity

(conditional on its prior number of incremental innovations); or conversely, for a given

level of productivity, it is more likely when there has been a greater number of prior

incremental innovations. We will investigate this additional implication in our firm-level

analysis.32

2.3 Data and Variable Construction

In this section, we describe the various datasets we use and our data construction.

We also provide some basic descriptive statistics.

32This result is related to the idea of “disruptive innovations” proposed in Christensen (1997). This result
also clarifies that our potential answer to the innovator’s dilemma, consistent both with Arrow’s replacement
effect and the results presented below, is that successful firms with higher sales have more to fear from
disruptive innovations and tend to retrench and become less open to new ideas, practices and innovations.
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2.3.1 Data Sources

USPTO Utility Patents Grant Data (PDP) The patent grant data are obtained from the

NBER Patent Database Project (PDP) and contain data for all 3,279,509 utility patents

granted between the years 1976-2006 by the United States Patent and Trademark Office

(USPTO). This dataset contains extensive information on each granted patent, including

the unique patent number, a unique identifier for the assignee, the nationality of the

assignee, the technology class, and backward and forward citations in the sample up to

2006. Following a dynamic assignment procedure, we link this dataset to the Compustat

dataset, which we next describe.33

Compustat North American Fundamentals We draw our main sample from the Com-

pustat data for publicly traded firms in North America. This data set contains balance

sheet items reported by the companies annually between 1974 and 2006. It contains 29,378

different companies, and 390,467 company × year observations. The main variables of in-

terest are net sales, employment, firm age (defined as time since entry into the Compustat

sample), SIC code, R&D expenditures, total liabilities, net income, and plant property and

equipment as a proxy for physical capital.

Executive Compensation Data (Execucomp) Standard and Poor’s Execucomp provides

information on the age of the top executives of a company starting from 1992. We use

information on CEO age or the average age of (top) managers of a company to construct

proxies for openness to disruption at the firm level.34

The Careers and Co-Authorship Networks of U.S. Patent Inventors Extensive infor-

mation on the inventors of patents granted in the United States between years 1975-2008

33Details on the assignment procedure are provided at https://sites.google.com/site/patentdataproject/.
34We drop observations where reported CEO age is less than 26.
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is obtained from the dataset of Lai et al. (2009). These authors use inventor names and

addresses as well as patent characteristics to generate unique inventor identifiers upon

which we heavily draw. Their dataset contains 8,031,908 observations at the patent × in-

ventor level, and 2,229,219 unique inventors, and can be linked to the PDP dataset using

the unique patent number assigned by the USPTO.

Cross-Country Data on Manager Age We also collected data on the age of the CEOs

and CFOs of the 25 largest listed companies for 37 countries. We selected the top 25

companies, when available, according to the Financial Times’ FT-500 list, which ranks

firms according to their market capitalization. We completed the list by using information

from transnationale.org when the FT-500 did not include 25 companies for a country. We

then obtained the age of the CEOs and CFOs from the websites of the companies. Overall,

our dataset has on average 20 companies and 31.6 managers (CEO or CFO) per country.

National Culture Dimensions The Dutch social scientist Geert Hofstede devised five

different indices of national culture: power distance, individualism vs. collectivism, mas-

culinity vs. femininity, uncertainty avoidance, and long-term orientation. The initial sur-

vey was conducted among IBM employees in 30 countries to understand cross-country

differences in corporate culture. This work has been expanded with additional surveys

that have been answered by members of other professions and expanded to 80 coun-

tries (see Hofstede (2001), and Hofstede et al. (2010)).35 We use the individualism and

uncertainty avoidance measures below.

The individualism measure is defined as “a preference for a loosely-knit social frame-

work in which individuals are expected to take care of themselves and their immediate

families only.” A low individualism score is indicative of a more collectivist society, where

social safety networks are more common and individuals are influenced by collective

goals and constraints.

35http://geert-hofstede.com/national-culture.html
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The uncertainty avoidance measure expresses the degree to which the members of a

society seek to avoid uncertainty and ambiguity. Countries with a higher score are more

rigid in terms of belief and behavior and are more intolerant of unorthodox ideas. On

the other end of the spectrum, societies with a low score are more welcoming to new

ideas and value practice above principles. Both the individualism and the uncertainty

avoidance indices are normalized to lie between 0 and 1.

Other Data Sources We use the average years of schooling in secondary education from

the Barro-Lee dataset as a proxy of the human capital of a country.36 We also use real

GDP per capita numbers and R&D intensity from the World Bank’s World Development

Indicators database.

In our baseline analysis, we focus on a balanced panel of firms, with complete infor-

mation on all variables used in our cross-sectional analysis. To maximize the number of

observations in this balanced panel, we focus on the years between 1995 and 2000, so ci-

tation and patents information in our baseline results come from 1995-2000 (with patents

classified according to their year of application). We then extend our analysis to an un-

balanced panel spanning 1992-2004 (we cannot go earlier than 1992 because our manager

age data start at the state, and we cannot go further than 2004 as we need a subsequent

window during which to measure citations). We also use citations from 1995-2000 in our

cross-country analysis.

2.3.2 Variable Construction

Innovation Quality Our baseline measure of innovation quality is the number of cita-

tions a patent received as of 2006. We also use the truncation correction weights devised

by Hall et al. (2001) to correct for systematic citation differences across different technol-

ogy classes and also for the fact that earlier patents will have more years during which

36http://www.barrolee.com/data/dataexp.htm. See Barro and Lee (2013) for details.
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they can receive citations (we also experiment with counting citations during a five-year

window for each patent). Based on this variable, an average innovation quality variable is

generated at the company × year and country × year levels. For our cross-country dataset,

the country of the assignee is used to determine the country to which the patent belongs.

Superstar Fraction A superstar inventor is defined as an inventor who surpasses his or

her peers in the quality of patents generated as observed in the sample. A score for each

unique inventor is generated by calculating the average quality of all the patents in which

the inventor took part. All inventors are ranked according to this score, and the top 5%

are considered to be superstar inventors. The superstar fraction of a company or country

in a given year is calculated as the fraction of patents with superstar inventors in that year

(if a patent has more than one inventor, it gets a fractional superstar designation equal

to the ratio of superstar inventors to the total number of inventors of the patent). The

country of the inventor is determined according to the country of the patent assignee.

Tail Innovations The tail innovation index is defined as the fraction of patents of a

firm or country that receive more than a certain number of citations (once again using

the truncation correction weights of Hall et al. (2001)). Namely, let s f t(p) denote the

number of the patents of a firm (or country) that are above the pth percentile of the year t

distribution according to citations. Then, the tail innovation index is defined as

Tail f t(p) =
s f t(p)

s f t(0.50)
,

where p > 0.50. This is of course also equivalent to the ratio of the number of patents by

firm f at time t with citations above the pth percentile divided by the number of patents

by firm f at time t with citations above the median (and is not defined for firms that have

no patents with citations above the median). For our baseline measure of tail innovations,

we choose p = 0.99, so that our measure is the fraction of patents of a firm or country
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that are at the 99th percentile of citations divided by the fraction of patents that are at the

median of citations. The reason we include s f t(0.50) in the denominator is that we would

like to capture whether, controlling for “average” innovation output, some companies,

innovators or countries have the tendency for generating “tail innovations” with very

high citations.37

Generality and Originality We also use the generality and originality indices devised

by Hall et al. (2001). Let i ∈ I denote a technology class and sij ∈ [0, 1] denote the

share of citations that patent j receives from patents in technology class i (of course with

∑i∈I sij = 1). Then for a patent j with positive citations, we define

generalityj = 1 − ∑
i∈I

s2
ij.

This index thus measures the dispersion of the citations received by a patent in terms of

the technology classes of citing patents. Greater dispersion of citations is interpreted as

a sign of greater generality. The originality index is defined similarly except that we use

the citations it gives to other patents. Both indices are averaged across all of the patents of

a firm or a country to obtain our firm-level and cross-country generality and originality

indices. The patent classes used are the 80 two-digit International Patent Classification

(IPC) classes.

2.3.3 Descriptive Statistics

Panel A of Table 21 provides descriptive statistics for our balanced firm, unbalanced

firm and cross-country samples. Since we focus on regressions weighted by the number

of patents held by a company or country, all statistics are weighted by the number of

patents. We multiply our indices for tail innovation, superstar fraction, generality, and

37If we do not include the correction in the denominator, all of the results reported below continue to hold,
and are in fact stronger. When we turn to patent-level regressions, we will not be able to include such a
correction (since there are no other patents that can be included in the denominator).
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R&D intensity by 100.

The table shows that average manager age is 52.3 in our firm-level (balanced or un-

balanced Compustat) sample and 56.1 in our cross-country sample, while average CEO

age is 55.3 in the balanced sample and 55.5 in the unbalanced sample. The comparison of

our average number of citations per patent, superstar fraction, tail innovation, and gen-

erality indices shows that, as expected, our Compustat firms have higher values than the

average country.

Panels B and C present the firm-level and cross-section country correlations between

our main measures of creativity of innovations, which are quite highly correlated except

for the generality index at the firm level. Panel D of Table 21 presents the correlation

between our three cross-country indices of openness to disruption. These three indices

are also highly correlated.

2.4 Firm-Level and Patent-Level Results

Our main empirical results exploit firm-level variation in manager age across Com-

pustat companies. Recall that in our theory manager age is in part an indicator of a

corporate culture that is open to disruption (because high-type firms that have a compet-

itive advantage in radical innovation select to hire younger managers). But there is also a

causal effect of manager age on creative innovations since, conditional on being employed

by such a firm, a young manager contributes to radical/creative innovations (because of

her more recent knowledge stock). Motivated by this reasoning, in this section we start

with the cross-sectional relationship between firm-level measures of creative innovations

and manager age (emphasizing throughout that our estimates do not necessarily corre-

spond to the causal effect of manager age on creative innovations).38 We then turn to

38Another caveat is that our theoretical results relate manager age at the product-line level to the innovation
strategy and creativity of innovations, while the bulk of our empirical analysis in this section will be at the
firm level focusing on the age of a firm’s CEO (or top managers).
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a more direct investigation of the effect of manager age on creative innovations, focus-

ing on regressions that exploit “within-firm” variation, and also investigate the timing

of increases in creative innovations at the firm level and the relationship of this to our

structural parameters.

2.4.1 Baseline Results

Our baseline results are presented in Table 22. Our estimating equation is

y f = αm f + X′
f fi + δi( f ) + ε f , (2.18)

where y f is one of our measures of creative innovations introduced in the previous section

(innovation quality, superstar fraction, tail innovation, or generality) for firm f , and m f is

our firm-level measure of openness to disruption, the average age of company CEOs over

our sample window. In addition, X f is a vector of controls, in this case, firm age, log of

employment, log of sales, and log of total number of patents during our time window (we

do not have measures of the human capital of the firm’s employees).39 Controlling for

firm age is particularly important to distinguish the correlation of creativity of innovations

with manager age from its correlation with firm age. In addition, δi( f ) denotes a full set

of four-digit main SIC dummies, so that the comparisons are always across firms within

a fairly narrow industry.40 Finally, ε f is the error term.

Our baseline sample comprises 279 firms with complete information on CEO and

positive patents between 1995 and 2000 (as well as information on firm age, sales, and

employment). As noted above, we first exploit only cross-sectional information, so our

regressions have one observation per firm, and are weighted with the total patent count

of the firm, so that they put less weight on observations for which our measures of

39Our log employment and log sales variables in the cross-sectional regressions are computed as averages
of annual log employment and log sales.

40All firms in our baseline sample are in one of 120 four-digit SIC industries.
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creative innovations are computed from only a few patents. All standard errors are robust

against heteroscedasticity. Different columns of Table 22 correspond to our four different

measures of creative innovations.

Column 1 shows an economically sizable correlation between CEO age and our mea-

sure of innovation quality (average number of citations per patent). The coefficient esti-

mate, −0.278 (standard error = 0.088), is statistically significant at 1% and indicates that

companies with a younger CEO have greater innovation quality. We interpret this pattern

as evidence that companies that are more open to disruption tend to be the ones pro-

ducing more creative innovations. The quantitative magnitudes are significant and also

plausible. For example, a one-year increase in CEO age is associated with a 0.278 increase

in average citations, which is approximately 1.3% of the firm-level weighted mean of our

innovation quality variable (20.5).

The pattern of the covariates is also interesting. Firm age is negatively associated

with innovation quality, suggesting that younger firms are more creative (though this

pattern is not as robust as the impact of CEO age in other specifications). Our mea-

sures of creative innovations are also uncorrelated with employment and sales, and are

largely uncorrelated with the number of patents held by the firm (the exception being a

marginally significant relationship for tail innovations). This confirms that our measures

of creativity of innovations are quite distinct from the total number of patents.

Column 2 shows a similar relationship with the superstar fraction (−0.300, standard

error = 0.141). This also suggests that younger CEOs tend to work with higher-quality

innovators (a relationship we directly investigate in Table 29 below). Columns 3 and 4

show even more precisely estimated (significant at 1% or less) and economically large re-

lationships with our measures of tail innovations and generality. The implied quantitative

magnitudes are a little larger with the superstar fraction and tail innovation measures (a

one-year increase in CEO age is associated with, respectively, 2.4% and 5.5% increases

relative to weighted sample means in these two measures).
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Overall, these results suggest that there is a strong statistical and quantitative rela-

tionship between the age of the CEO of a Compustat company and each one of our four

measures of creative innovations. We next investigate the robustness of these patterns.

2.4.2 Robustness

Tables 23 and 24 probe the robustness of our firm-level results in different dimensions.

Table 23 looks at the alternative measures of creative innovations (these are a measure of

innovation quality using average citations per patent computed using only five years of

citations data, a measure of superstar inventors using information on the most highly

cited patent of the inventor, the tail innovation index with p = 0.90, and the originality

index). The results show that the pattern is quite similar to those in Table 22, except that

the relationship is no longer statistically significant with the alternative measure of the

superstar fraction.

Table 24 looks at several different robustness exercises. Panel A replaces the four-

digit SIC dummies with three-digit dummies (a total of 84 in our baseline sample), with

effects very similar to our baseline results.

Panel B goes in the opposite direction and enriches the set of controls. In particular,

this specification, in addition to the four-digit SIC dummies, includes several other firm-

level controls: profitability (income to sales ratio), debt to sales ratio, and log physical

capital of the firm. The results are virtually the same as those in Table 22, but a little more

precisely estimated. For example, CEO age is statistically significant at less than 1% with

all of our measures of creative innovations, except for the superstar fraction, for which it

is significant at 5%.

Panel C, in addition, adds R&D intensity (R&D to sales ratio) to the previous speci-

fication.41 This is intended to verify that our results cannot be explained by some firms

41To deal with outliers in R&D expenditures, we winsorize this variable at its 99th percentile value.
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performing more R&D than others (here the sample declines to 257 companies). The

results are once again very similar to those in our baseline regressions in Table 22.

Panel D uses the average age of the top management team rather than CEO age.

We prefer CEO age as our baseline measure because across companies there is consider-

able variation in the number of managers for which age data are available, making this

measure potentially less comparable across firms. Nevertheless, the relationship is very

similar to this measure as shown in Panel D.

Panels E and F reestimate the specifications in Table 22 for subsamples of high-tech

and low-tech firms, where high-tech firms are those in SIC 35 and 36 (industrial and com-

mercial machinery and equipment and computer equipment; and electronic and other

electrical equipment and components), and low-tech firms are the rest. This is intended

to check whether our results are driven by a subset of firms and whether they are differen-

tial between these two subsamples. The results are fairly similar in these two subsamples,

except for the superstar fraction variable, which shows a considerably stronger relation-

ship for the low-tech sample.

2.4.3 Panel Results

We now show that, though naturally much noisier, the correlation between CEO

age and creative innovations is present when we exploit within-firm variation in the age

of the CEO. We will also document, however, that consistent with our theory, creative

innovations start increasing before there is a decline in CEO age.

With this objective in mind, in Table 25 we start with our baseline balanced sample,

but now we compute our measures of creativity of innovations at an annual frequency.

The covariates we use are also at an annual frequency and include a full set of year

dummies. As a first step, in Panel A, we maintain our key right-hand-side variable,

average CEO age over the sample period, which is thus held constant across years in
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this panel. In this table, standard errors are robust for arbitrary heteroscedasticity at the

firm level (thus allowing for arbitrary dependence across the observations for the same

firm). These specifications are directly comparable to those in Table 22, and indeed, the

coefficient estimates and standard errors are very similar (though they are not identical

since the covariates are now time-varying).42

Panel B extends our sample in two different ways. First, we include firms that were

left out of the balanced panel (i.e., firms for which CEO age or patent information is

available in some but not all years). Second, with the unbalanced panel, we can now

consider a longer sample spanning 1992 − 2004 (we cannot go before 1992 because of

lack of data on manager age, and we prefer not to go beyond 2004, as this would make

the citation window too short and thus our measures much less reliable). The resulting

sample has 7111 observations (or 5803 observations with tail innovation, since we lose

firm-years when no patent is above the median of the citation distribution). Despite the

increase in the number of firms to 1256 (from 279) and the addition of seven more years of

data, the results are remarkably similar to those in Panel A and to our baseline estimates.

Panel C allows CEO age to vary across years but also includes firm fixed effects as

well as year effects (and, of course, in this case, SIC industry dummies and firm age

are dropped). This effectively means that the CEO age variable is being identified from

changes in CEOs.43 Hence, this is a demanding specification investigating whether in

years when a firm has a younger CEO, it tends to have more creative innovations, and

this motivates our choice of focusing on the 1992 − 2004 sample for this exercise. In

addition to throwing away all of the between-firm variation, another challenge to finding

meaningful results in this specification is that patent applications in one year are often

the result of research and product selection from several past years.44 Though these

42The number of observations is now lower in columns 3 and 4 because not all firms have patents with
citations above the median (for tail innovations) or with positive citations (for generality) in all years.

43This specification is related to the famous Bertrand and Schoar (2003) paper on the effect of managers
on corporate policies though, in contrast to our focus on CEOs, their sample includes chief financial and
operating officers as well as lower-level executives.

44Recall, however, that patents are classified according to their year of application, so we are investigating
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considerations stack the cards against finding a significant relationship between CEO age

and creative innovations, the results are generally quite consistent with our cross-sectional

estimates from the balanced panel. All of the coefficient estimates in these within-firm

regressions, except for generality, have the same sign and are statistically significant as in

our baseline results in Table 22. For innovation quality, the magnitude of the estimate is

about 12% larger than the specification without fixed effects in Panel B (e.g., −0.188 vs.

−0.168), whereas for superstar fraction and tail innovations, it is smaller—about 47% to

73% of the magnitude in Panel B.

The current CEO/manager influences the contemporaneous innovation strategy, and

in our model, this has an immediate impact on radical innovations. In practice, some of

the impact is likely to be delayed, since research projects, and even patenting, can take

several years. We may therefore expect the impact of the CEO’s human capital, decisions

and age to influence the creativity of innovations over time. We investigate this issue

in Panel D by including current CEO age and lagged CEO age simultaneously. Our

results show that, with all of our measures of creative innovations (except generality),

both matter with quantitatively similar magnitudes.

A related question concerns separating the impact of the current CEO from the per-

sistent effects of past innovations—in particular, past creativity may spill over into current

creativity in part because patents from the same project may arrive in the course of sev-

eral years. We investigate this issue by including the lagged dependent variable on the

right-hand side. Though such a model, with fixed effects and lagged dependent variable,

is not consistently estimated by the standard within estimator when the coefficient on the

lagged dependent variable is close to 1, the results in Panel E show that its coefficient is

very far from 1 and the estimates are fairly similar to those in Panel C.45

the impact of CEO age not on patents granted when the CEO is in charge but on patents applied for when
the CEO is in charge.

45If we estimate these models using the GMM estimators of Arellano and Bond (1991), the results are
similar with innovation quality and superstar fraction, but weaker with the tail innovation index, partly
because we lose about a quarter of our sample with these GMM models.
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Finally, in Panel F we turn to the more detailed longitudinal implications of our

model—that creativity of innovations should increase, on average, before the firm

switches to a younger manager. The simplest way of investigating this prediction is by in-

cluding the lead of CEO age together with current CEO age (similar to the specification in

Panel D, except that lead CEO age replaces lagged CEO age). The specifications reported

in Panel F show statistically significant negative effects of both current and lead CEO age

on the creativity of innovations (except with the generality measure). Interestingly, and

perhaps somewhat surprisingly, the magnitudes of the lead and the contemporaneous

effects are quite similar. The significant effect of lead CEO age is prima facie evidence of

the importance of sorting of younger CEOs to firms that are firms that are more open to

disruption (more likely to have creative innovations).

Although the results in Panel F suggest that both the sorting and the causal effects

of CEO/manager age are important for the creativity of innovations, they do not di-

rectly translate into an estimate of the impact of CEO/manager age on creative innova-

tions for a given firm (because changes in CEO age are associated with changes in firm

type/corporate culture as well as the firm’s prior number of incremental innovations).

We next turn to an indirect inference procedure utilizing the structure of our model to

obtain an estimate of the size of this causal effect.

2.4.4 The Causal Effect of Manager Age on Creative Innovations

In this subsection, we perform a simple indirect inference exercise in order to shed

further light on the causal effect of manager age on creative innovations. We choose the

parameters of the model presented in Section 2.2 so that the model quantitatively matches

the reduced-form estimates—in particular, the coefficients of lead and current CEO age

for innovation quality. We then use these implied parameters to compute the implied

causal effect of manager age on creative innovations given these parameters.
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The (average) impact of a younger manager on the creativity of innovations for a

given firm type is 1
F(a∗)

∫ a∗

0 ΛθH q̄adF (a) = ΛθHδ
g+δ

[1−e−(g+δ)a∗ ]
[1−e−δa∗ ]

. Because of the sorting of

younger managers to firms that are more open to disruption, we cannot read off this

quantity from our reduced-form empirical exercise. Rather, we need to obtain estimates

of the parameters ψ and ΛθH (the parameters Λ and θH do not matter separately, and

thus in what follows, we will treat ΛθH as a single parameter). The reduced-form coeffi-

cient estimates are functions of these parameters, but they also depend on the transitions

between high-type and low-type firms, the distribution of incremental innovations per

product relative to the threshold for radical innovation, n∗, and the stationary distribu-

tions theoretically characterized above.

Though structurally estimating all of the underlying parameters of our model would

require more information on firm transitions and stationary distributions, we can obtain

estimates of the structural parameters that are relevant for the extent of the causal effect

of CEO age on creative innovations from a simple indirect inference exercise. For this

exercise, we set the discount rate to ρ = 0.02, and normalize the profit flow to π = 1

(which is without loss of any generality). We fit an exponential distribution to the age

distribution of managers in our sample to obtain an estimate of δ in the model. We

take the entry rate to be x = 5% which corresponds to the entry rate in our Compustat

sample. Finally, we take the parameter α, which determines how rapidly the productivity

of incremental innovations declines from Akcigit and Kerr (2015), who estimate a similar

parameter from the patent citation distribution.

This leaves the following parameter vector Ψ ≡ {ψ, φ, ΛθH, ξ, η, ζ} to be determined.

Once these parameter values have also been fixed, optimal innovation decisions and equi-

librium stationary distributions can be computed using the expressions provided in Sec-

tion 2.2. We can then generate simulated firm histories from which the equivalents of the

reduced-form regression coefficients in Table 25 can be computed. Of particular impor-

tance for this exercise are the specifications in Panels C and F of Table 25, where various
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measures of creative innovations were regressed on current CEO age (and lead CEO age

in Panel F), firm fixed effects and controls.

Let us denote the coefficient estimate on current CEO age in column 1, Panel C of

Table 25 by γcurrent, and the coefficient estimates on current and lead CEO age in column

1, Panel F, respectively, by γ′
current and γ′

lead. In our indirect inference procedure, we

will target these three parameters. Specifically, we generate data from the model given

a parameter vector Ψ, and convert the measure of successful radical innovation in the

model, which is a 0-1 variable, into the same units as our innovation quality variable (by

dividing it by its variance and multiplying it with the variance of innovation quality). We

then run the same regression as in Panel C and F of Table 25, and compare the estimates

to the empirical estimates of γcurrent, γ′
current and γ′

lead.

In addition to these three regression coefficients, our indirect inference procedure

targets three central moments in the data: the average annual growth rate of (real) sales

per worker, within-firm coefficient of variation of radical innovations, and the fraction of

incremental innovations, measured as fraction of internal patents which mainly build on

innovating firm’s existing lines (as opposed to innovating on product lines operated by

other firms).46 This implies that we have in total six data moments and six parameters.

Finally, we make two additional assumptions in matching the model to data. First, in

the model managers are employed at the product line level, whereas in the data we only

observe managers/CEO at the level of the company (which comprises several product

lines). We ignore this distinction, and treat the data as if it were generated from one

product firms. Second, in the model, the identity of the manager/CEO is indeterminate

as there are no costs of changing managers, so a firm could change its manager every

instant or at some regular interval even without changing its innovation strategy. To make

the model more comparable to the data, we assume that a firm keeps its manager until

46Following Akcigit and Kerr (2015), we define internal patents as those whose majority of citations are
self cites.

103



it needs to switch from an older to a younger manager in order to change its innovation

strategy.

Table 26 provides the values of the parameters we have selected on the basis of exter-

nal data as well as the values of the parameters in the vector Ψ, which are chosen to match

the six aforementioned moments. Table 27 shows the match between the values of these

moments in the data and those implied by the model. The model-implied numbers are

on the whole very close to the targeted empirical moments. The most important lesson

from Table 27 is that the model is quite consistent with reduced-form regression results,

including the significant and sizable coefficient on lead CEO age, which is generated by

the fact that ψ > 0 and is a non-trivial source of creative innovations.

The implied pattern is also visible in Figures 11 and 12, which plot the probability of

a creative innovation and the average CEO age as a function of time since switching to

high-type. These figures show that firms slowly reduce the average age of their managers

after switching to high-type (if at first they are below n∗, they do not need to change their

CEO). Correspondingly, they also slowly increase their probability of creative innovations.

Because much of this increase in the probability of creative innovations takes place before

firms switch to a younger manager, in the reduced-form regressions it will be captured

by lead CEO age.

It is also useful to gauge whether, at these estimated parameter values, the model

performs well on some other dimensions. One empirical moment we have not used for

estimation is the probability of firms switching to younger managers. At the estimated

parameter values, 6% of all firms attempt a radical innovation (these are high-type firms

with n ≥ n∗). Consequently, “young” managers (defined as those with a < a∗ in Proposi-

tion 4) also make up 6% of the population of managers, implying that a∗ corresponds to

age 43 in our sample of managers/CEOs. Using this information, we can then compare

the annual probability of a firm switching from an old manager (with a > a∗) to a young

manager (with a ≤ a∗) in the data and in the model. Reassuringly, these two numbers are
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very close to each other, respectively 0.62% and 0.63%.

Using these parameter estimates, we next compute the “causal effect” of manager

age on creative innovations. There are several ways in which such a causal effect might

be defined. First, we could define the causal effect in a fashion analogous to “treatment

effect on the treated,” by considering the loss of creative innovation that firms that were

previously hiring young managers and pursuing radical innovations would suffer. Sec-

ond, one could focus on the “average treatment effect,” corresponding to the impact of

having a younger manager for an average firm in our sample. It is intuitive that these two

measures of causal effects will be quite different, since, as just noted, only 6% of firms are

attempting radical innovations in our stationary distribution.

For the first, we start with the equilibrium stationary distribution and reshuffle man-

agers only among firms attempting radical innovation (which are high-types with more

than n∗ incremental innovations and hiring managers younger than a∗), and we repeat

this for 13 periods. Because such firms will continue to attempt radical innovation after

the reshuffling (since the reshuffling involves only managers younger than a∗), the change

in the likelihood of radical innovation of any given firm captures the causal effect of a

younger (or older) manager on a firm attempting radical innovation. We quantify this

effect by running the same regression of the likelihood of radical innovation on the age of

manager for this subsample of firms (corresponding to Panel C) and then comparing it to

the reduced-form relationship between these two variables in the model-generated data,

−0.211 (as reported in Table 27).47 The resulting causal effect is estimated as −0.040. This

effect is thus considerably smaller than the reduced-form regression coefficient of −0.211,

though it should not be directly compared to this number, which applies to the entire

sample, while the causal effect of −0.040 is only for 6% of the entire sample. To obtain a

causal effect estimate more comparable to the reduced-form relationship, we next turn to

47We use the regression coefficient obtained from model-generated data rather than the regression coef-
ficient from Table 25, −0.188, since this will be compared to numbers also obtained from model-generated
data.
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the average treatment effect.

For this second exercise, we again start with the stationary distribution and reshuffle

managers randomly for 13 periods. We assume that after the reshuffling, each firm will

pursue the same innovation strategy.48 We then use the data generated by this thought

experiment to run a regression of the likelihood of a radical innovation on manager age

for the entire sample of firms (including both low-type firms and high-type firms not

attempting a radical innovation). This exercise yields an average causal effect of −0.003,

and thus accounts approximately for 1.5% (≃ 0.003/0.211) of the relationship between

CEO age and creative innovations. The rest of this relationship is explained by sorting

effects—because it is high-type firms that are hiring younger managers.

It is intuitive that the first estimate of the causal effect is much larger than the second,

because it explicitly focuses on the small subsample of firms attempting a radical inno-

vation. But even in this case, especially once we take into account that this causal effect

applies only to 6% of the sample of firms that are attempting a radical innovation, much

of the association between manager age and creative innovations is accounted for by the

sorting of younger managers to firms that are more open to disruption.

Overall, our indirect inference exercise establishes that the model can generate the

patterns we see in the data, and implies that much of the reduced-form relationship

between manager age and creative innovations is due to sorting, but also that there is a

small causal effect of younger managers on creative innovations as well.

48It is possible that some firms would switch their innovation strategy because they end up with much
older or much younger managers. However, whether this is the case or not would also depend on managerial
wages after reshuffling, which in turn depends on a variety of auxiliary assumptions on wage determination
under “mismatch”. Our strategy avoids this complication, but estimates a lower bound on this effect, though
this lower bound is likely to be fairly tight since low-type firms cannot change their innovation strategy and
most high-type firms would be unlikely to alter their innovation strategy unless there is a very large change
in the age of the manager assigned to them.
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2.4.5 Inventor Age and Creativity of Innovations

We next turn to patent-level regressions to investigate the relationship between the

age of inventor—defined as any inventor listed in our patent data—and our various mea-

sures of creativity of innovations. Though in our theoretical model there is no distinction

between managers and inventors, this distinction is of course important in practice. One

might then expect the role of product-line managers in our model to be played partly by

the top management of the firm and partly by inventors (or the lead inventor) working

on a particular R&D project. CEOs, then, not only decide which projects the company

should focus on but also choose the research team. In this subsection, we bring in infor-

mation on the age of inventors in order to investigate the effect of manager/inventor age

on the creativity of innovations once we control for the type of characteristics of the firm.

We use unique inventor identifiers from Lai et al. (2009) described above to create a

proxy for this variable. Our proxy is the number of years since the first innovation of the

inventor, which we will refer to as “inventor age.”

Our main regression in this subsection will be at the patent level and take the form

yi f t = ϕIi f t + αm f t + X′
i f tfi + δ f + γi + dt + ε i f t. (2.19)

Here yi f t is one of our measures of the creativity of innovation for (patent) i granted to

firm f at time t. Our key right-hand-side variable is Ii f t, the age of the inventors named

in patent i (in practice, there is often more than one such inventor listed for a patent). In

addition, m f t is defined as CEO age at time t and will be included in some regressions,

Xi f t is a vector of possible controls, and δ f denotes a full set of firm fixed effects, so that

our specifications here exploit differences in the creativity of innovations of a single firm

as a function of the characteristics of the innovators involved in the relevant patent. In

our core specifications, we also control for a set of dummies, denoted by γi, related to

inventor characteristics as we describe below. All specifications also control for a full set
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of year effects, denoted by dt, and ε i f t is the error term.49

The results from the estimation of (2.19) are reported in Table 28. In Panel A we

focus on a specification similar to the regressions with firm fixed effects reported in Table

25. This is useful for showing that this different frame still replicates the results showing

the impact of CEO age on creativity of innovations. In particular, Panel A focuses on

Compustat firms for the period 1992 − 2004 and includes the same set of controls as in

Table 25 Panel C (firm fixed effects, year fixed effects, log employment, log sales and log

patents of the firm); it does not contain any variables related to inventor characteristics.

As in the rest of this table, these regressions are not weighted (since they are at the patent

level) and the standard errors are robust and clustered at the firm level.

Our results using this specification are similar to those of Panel C of Table 25, though

a little smaller. In column 1, for instance, we see an estimate of −0.119 (standard error

= 0.038) compared to −0.188 in Table 25. We cannot define our measure of the superstar

fraction and tail innovations in these patent-level regressions. We can, however, look at a

patent-level measure related to tail innovations, a dummy for the patent in question being

above the pth percentile of the citation distribution. We report results using this measure

for two values, p = 0.99 and p = 0.90, in columns 2 and 3. Both of these measures

are negatively correlated with CEO age, though only marginally significantly in these

specifications.50

Panel B goes in the other direction and reports the estimates of a model that controls

for inventor characteristics and looks at the impact of inventor age, without controlling for

CEO age, for the same sample as in Panel A (thus restricting it to firms with information

on CEO age). As with all of the other models reported in this table, in Panel B we control

49A single patent can appear multiple times in our sample if it belongs to multiple firms, but this is very
rare and applies to less than 0.2% of the patents in our sample.

50For completeness, we also show results with the generality index, even though the results in Table 25
already indicated that, with firm fixed effects included, there is no longer a significant relationship between
CEO age and the generality index, and this lack of relationship persists for all of the estimates we report in
Table 28 (and for this reason, though we do show them for completeness, we will not discuss them in detail).
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for a full set of dummies for the maximum number of patents of any inventor associated

with the patent in question has over our sample period;51 a full set of dummies for the

size of the inventor team (i.e., how many inventors are listed); and a full set of dummies

for the three-digit IPC class.52 The inclusion of this rich set of dummy variables enables us

to compare inventors of similar productivity. It thus approximates a model that includes

a full set of inventor dummies.53 The results show that there is a strong relationship

between inventor age and the creativity of innovations. For example, in column 1, the

coefficient estimate on inventor age is −0.234 (standard error = 0.026), about twice as

large as the CEO age estimate in Panel A.

When we do not control for CEO age, the sample can be extended beyond 1992 −

2004. This is done in Panel C, which expands the sample in two different ways, first by

including Compustat firms without CEO information, and second by broadening the time

period covered to 1985 − 2004. The results are very similar to those in Panel B, indicating

that the focus on Compustat firms with CEO age information is not responsible for the

broad patterns we are documenting.

Panel D extends the sample further to non-Compustat firms, which can also be in-

cluded in our analysis since we are not using information on CEO age. This increases our

sample sixfold (since most patents are held by non-Compustat firms). However, in this

case, we can no longer include the employment and sales controls. Despite the addition of

almost 1.5 million additional patents and the lack of our employment and sales controls,

the results in this panel are again very similar to those in previous panels, and suggest

that, at least in this instance, our results are not driven by our focus on the Compustat

sample.

51In other words, we include a dummy variable for the assignee/inventor of this patent with the highest
number of total patents having k = 1, 2, ..., 89+ patents (where 89+ corresponds to 89 or more patents for the
inventor with the maximum number of patents).

52This corresponds to 374 separate technology classes and is roughly at the same level of disaggregation
as the SIC dummies we used in the firm-level analysis in Tables 22-24.

53We cannot include a full set of inventor fixed effects directly because inventor age would not be identified
in this case since we also have a full set of year dummies.
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Panel E provides our main results in this subsection. It returns to the Compustat

sample over the period 1992-2002 and adds back the CEO age variable; otherwise, the

specification is identical to that in Panel B. The results show precisely estimated impacts

of both CEO age and inventor age. For example, in column 1 with our innovation quality

variable, the coefficient on CEO age is −0.111 (standard error = 0.038) and that on inventor

age is −0.235 (standard error = 0.027); these are very close to the estimates in Panels A and

B, respectively. The pattern is similar in the other columns (except again for generality).

These results provide further evidence that the relationship between manager/CEO

age and the creativity of innovations in the data reflects an important dimension of sort-

ing. In particular, firms appear to make several associated changes—in top management

and innovation teams—around the same time they change their portfolio of innovation

and their innovation strategy (and perhaps their “corporate culture”). Reflecting this sort-

ing, the estimated magnitudes linking CEO age to our indices of creative innovations are

smaller in Table 28 than those in our baseline firm-level regressions. Our next results,

reported in Table 29, provide some direct evidence on this by looking at the relationship

between inventor age and CEO age. In particular, we estimate a regression similar to

equation (2.19) except that now the dependent variable is the average age of the inventors

on the patents granted for that firm in year t and the key right-hand-side variable is the

age of the CEO, and firm fixed effects are again controlled for. The first column of Table

29 reports a regression of the average age of inventors on firm and year fixed effects, log

employment, log sales, log patents, and CEO age, while the second column also adds

dummies for inventor team size and three-digit IPC class as in the specifications in Table

28. The results, which show a positive (though only marginally significant) relationship,

suggest that younger CEOs tend to hire younger inventors, indirectly corroborating the

sorting effect emphasized in our theoretical model.54

54Interestingly, this result disappears when we do not control for firm fixed effects.
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2.4.6 Stock of Knowledge, Opportunity Cost and Creativity of Innovations

Finally, Table 30 turns to an investigation of some additional implications of our ap-

proach already highlighted in our theoretical model (in particular, Proposition 5). We

noted there that we may expect openness to disruption to be more important for com-

panies that are technologically more advanced (as measured by the number of patents),

but also that companies that have more to lose (because of the greater opportunity cost of

disruption in terms of other profitable activities) may shy away from disruptive creative

innovations. The firm-level data enable us to look at this issue by including the interaction

between CEO age and log total patent count (as a proxy for how advanced the technology

of the company is) and also the interaction between CEO age and log sales (as a proxy

for company revenues that may be risked by disruptive innovations). According to the

theoretical ideas suggested above, we expect the interaction with log total patent count

to be negative, and that with sales to be positive (indicating that average manager age

matters more for the creativity of innovations for companies with a significant number of

patents and less for companies with high sales).

This is a demanding, as well as crude, test, since neither proxy is perfect, and more-

over, log sales and log patent counts are positively correlated (the weighted correlation

between the two variables is 0.7 in our sample), thus stacking the cards against finding

an informative set of results.

Nevertheless, Table 30, which uses the same unbalanced sample with annual obser-

vations as in Table 25 Panel C, provides some evidence that our theoretical expectations

are partially borne out. In all of our specifications, the interaction between CEO age and

log total patent count is negative and the interaction with log sales is positive. Moreover,

these interactions are statistically significant except for the log patent interaction for the

innovation quality measure.55 These results thus provide some support for the hypoth-

55As noted above, the main effects are evaluated at the sample mean and are typically close to the estimates
reported in Table 22.
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esis that the stock of knowledge of the company and opportunity cost effects might be

present and might in fact be quite important (at least quantitatively at this correlational

level).

2.5 Cross-Country Correlations

In this section, we provide evidence that the firm-level relationship between man-

ager age and creativity of innovations appears to aggregate up to the national level. In

particular, we document that there is a cross-country relationship between manager age

and creativity of innovations. Moreover, at the cross-country level, we can also use other

indices potentially proxying for openness to disruption, which also show similar results,

thus partially corroborating our interpretation of the manager age variables in our firm-

level and cross-country empirical work.

The interpretation of the cross-country relationships should be somewhat different

than the firm-level ones. At the country level, manager age, like our other measures of

openness to disruption presented below, is likely to have its impact on the creativity of

innovations not just because of its association with— and because of its impact on—firm-

level innovation strategies, but also through economy-wide institutions, attitudes and

values of the society. This suggests that the quantitative magnitudes of the relationships

might be somewhat larger at the country level than at the firm level.

Our main cross-country results are presented in Table 31, which reports OLS regres-

sions of the following form:

yc = αIc + X′
cfi + εc, (2.20)

where yc is one of our measures of creative innovations (innovation quality, superstar

fraction, tail innovation, or generality) for country c, Ic denotes one of our measures

of openness to disruption (the individualism index, the uncertainty avoidance index, or
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average manager age), Xc is a vector of controls (including average log real GDP per

capita of the country, average years of secondary schooling and log of total patents of

the country during this time period), and finally, εc is an error term.56 The coefficient of

interest is α, which will reveal whether there is a cross-country correlation between our

measures of openness to disruption and the creativity of innovations.

All regressions in Table 31 include one observation per country. As with our firm-

level specifications, these regressions are weighted using the total number of patents

as weights, which is again motivated by the fact that countries with more patents are

both more important for their contribution to creative innovations and have much more

precisely estimated measures for our key variables (see Appendix Table 34 for the distri-

bution of total number of patents across countries). All standard errors continue to be

robust against heteroscedasticity.

Panel A of Table 31 focuses on our measure of manager age (which is available for 37

countries). The patterns are very similar to those we obtained in the firm-level analysis,

and show a strong correlation between average manager age and all four of our measures

of creative innovations. For example, in column 1, the estimate of α is −0.484 (standard

error = 0.225). We also see that log GDP per capita and average years of secondary

schooling are not significant correlates of the creativity of innovations, while log patent

count is significant and indicates that countries that have more patents also tend to have

more creative innovations. Consistent with the caveat about the interpretation of the

cross-country results, the quantitative magnitudes are somewhat larger than the firm-

level ones: a one-year change in manager age increases average citations by 0.48 (3.3%

compared to its mean of 14.5), the superstar fraction by 0.96 (14.4% relative to its mean),

tail innovations by 0.23 (11.7% relative to its mean) and generality by 0.28 (1.3% relative

56An additional covariate that might be useful to control for would be the average educational attainment
of managers in a country. Though this number is available in the World Bank dataset that Gennaioli et al.
(2013) use, there is very little overlap between this developing country sample and ours. We have instead
experimented with controlling for the average education of the managers of the companies we have used for
compiling our average manager age variable. This has no effect on the results reported here and is omitted
to save space. The details are available upon request from the authors.
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to its mean). These effects are about 2 to 5 times larger than the firm-level estimates

presented above.57

Panel B is similar to Panel A, except that it uses Hofstede’s individualism index (this

increases the sample from 37 to 50). The results are very similar to those using average

manager age, and the quantitative magnitudes of the correlation between individualism

and innovation quality are again sizable and somewhat larger than those in Panel A.58

Panel C has exactly the same structure, except that the right-hand-side variable is

Hofstede’s uncertainty avoidance index. The patterns are very similar and generally even

more precisely estimated (though, of course, they are now negative, since greater uncer-

tainty avoidance corresponds to less openness to disruption). The quantitative magni-

tudes are similar to those in Panel B.59

Tables 32 and 33 probe the robustness of these cross-country relationships. Table 32

looks at various alternative measures of creative innovations (which we also investigate

at the firm level). These are average citations per patent but now constructed using only a

five-year window (so that we do not have to rely on the correction factors); an alternative

measure of the superstar fraction of patents but now computed using information on the

most highly cited patent to the inventor (rather than lifetime average citations); the tail

innovation index computed with p = 0.90 (instead of p = 0.99); and the originality index

mentioned above. The results in all cases are similar to the baseline (though weaker and

not statistically significant with the alternative measure of superstar fraction).

57If, instead, we look at the quantitative implications of moving from the 75th percentile of the manager age
distribution to the 25th percentile, the magnitudes are more similar to the firm-level estimates. For example,
moving from the country at the 25th percentile of average manager age in our sample to the 75th percentile
(from 51.5 to 54.3) reduces our measure of innovation quality by 9.4% relative to the sample mean (14.5).

58For example, moving from the country at the 25th percentile of individualism in our sample to those
at the 75th percentile (from 0.19 to 0.73) increases our measure of innovation quality by 19% relative to its
weighted sample mean (14.5). Using the same metric for quantitative magnitude for the average manager
age gives an increase in innovation quality by 9.4% relative to the sample mean (14.5).

59We do not run regressions including multiple indices at the same time, since we believe this type of horse
race would not be particularly informative. Instead, we interpret each of these variables as a proxy for the
same underlying tendency for openness to innovation, new practices and ideas.
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Table 33 , on the other hand, investigates whether these results can be explained by

the fact that R&D intensity (defined as total R&D spending divided by GDP at the coun-

try level) differs across countries. Our results largely might be reflecting the fact that

some countries invest more in R&D and as a result generate more creative innovations.

However, in our sample R&D intensity is not systematically related to individualism, un-

certainty avoidance, or average manager age. Moreover, Table 33 shows that controlling

for variation in R&D intensity does not change the basic correlations in our sample. The

parameter estimates do change in some cases, particularly with the individualism vari-

able, but the association between our measures of openness to disruption and creativity

of innovations always remains highly significant.60

2.6 Conclusion

Despite a large theoretical and now a growing empirical literature on innovation,

there is relatively little work on the determinants of the creativity of innovative activity,

and in particular, the likelihood of innovations and patents that contribute most to knowl-

edge. In this paper, building on Schumpeter’s ideas, we suggested that openness to new

ideas, disruptive innovations and unconventional practices—which we called openness

to disruption, for short— may be a key determinant of creative innovations, and likewise,

resistance to such disruptive behavior may hold back some of the most creative innovative

activities.

We provided a simple model drawing a clear distinction between radical (more cre-

ative) innovations and incremental innovations, whereby the former combines ideas from

several different lines of research and creates more significant advances (and contribu-

60We also experimented with using cross-country differences in demographics to instrument for average
manager age differences. Though these results corroborate the patterns shown here, we do not report them
both because demographics could have a direct effect on the creativity of innovations, invalidating the ex-
clusion restriction of such a strategy, and because we view the cross-country results as additional evidence
rather than as our main empirical focus.
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tions to knowledge). These advances can be discouraged or even stopped, either through

pecuniary or non-pecuniary means, preventing radical innovations directly or discourag-

ing cross-fertilization of ideas from different fields.

The bulk of our paper provides illustrative cross-country and firm-level correlations

consistent with the role of openness to disruption. We use several measures to proxy for

creative innovations. These include our proxy for innovation quality, which is the average

number of citations per patent; two indices for creativity of innovations, which are the

fraction of superstar innovators and the likelihood of a very high number of citations (in

particular, tail citations relative to median citations); and the generality index.

Our main proxy for openness to disruption is the age of the CEO or top management

of the company (or the average age of the CEO and CFO of the top 25 publicly listed

companies in a country). This variable is motivated based on the idea that only companies

or societies open to such disruption will allow the young to rise up within the hierarchy.

This is the only variable we have available as a proxy for openness to disruption at the

firm level. At the country level, we augment this variable with the popular indices for

individualism and uncertainty avoidance based on the work by the Dutch social scientist

Geert Hofstede.

Using these proxies, at the firm, patent and country level, we find fairly consistent

and robust correlations between openness to disruption and creative innovations. We also

show that these relationships are generally robust. They do not, however, correspond to

the causal effect of CEO (or manager) age on creative innovations because, as highlighted

by our theoretical model, younger managers tend to be employed by firms that are more

open to disruption and more creative. A simple indirect inference exercise using the

structure of our model suggests that most of the empirical relationship between CEO age

and creative innovations is due to these sorting effects, and the causal impact of CEO age

is quite small.
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Finally, our theoretical model further suggests that the impact of openness to dis-

ruption should be larger for companies that are technologically more advanced (closer

to the technology frontier) and smaller for companies that have a greater opportunity

cost of disruptive innovation. The empirical patterns in our firm-level data support this

prediction.

We view our paper as a first step in the study of the impact of various social and

economic incentives on creative activities and, in particular, on creative innovations. Fu-

ture work investigating the causal effect of manager age on creative innovations using

more systematic structural estimation techniques is an obvious next step. Further study

of various other firm-level or cross-country characteristics on the creativity of innovations

is also a natural direction. Another fruitful direction would be to systematically investi-

gate what types of firms and firm organizations encourage creativity and lead to more

creative innovations. This would involve both theoretical and empirical analyses of the

internal organization of firms and their research strategies and a study of the interplay

between institutional and society-level factors and the internal organization of firms.
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Chapter 3

Does the Cream Always Rise to the
Top? The Misallocation of Talent in
Innovation

Abstract

The misallocation of talent between routine production versus innovation activities is
shown to have a first-order impact on the welfare and growth prospects of an economy.
Surname level empirical analysis combining patent and inventor micro-data with census
data reveals new stylized facts: (1) People from richer backgrounds are more likely to
become inventors; but those from more educated backgrounds are not. (2) People from
more educated backgrounds become more prolific inventors; but those from richer back-
grounds exhibit no such aptitude. Motivated by this discrepancy, a heterogeneous agents
model with production and innovation sectors is developed. Individuals compete against
each other for scarce inventor training in a tournament setting. Those from richer families
can become inventors even if they are of mediocre talent by excessive spending on cre-
dentialing. This is individually rational but socially inefficient. The model is calibrated to
match the new stylized facts via indirect inference. A thought experiment in which the
credentialing spending channel is shut down reveals that the rate of innovation can be
increased by 10% of its value. Optimal progressive bequest taxes serve to increase social
welfare by 6.20% in consumption equivalent terms.
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3.1 Introduction

Albert Einstein was born in Ulm on March 14, 1879. His father was Hermann Einstein,

a rich salesman and engineer, and owned a company called Elektrotechnische Fabrik J.

Einstein & Cie that manufactured electrical equipment based on direct current. Albert

received his education in various high quality schools in Germany, Italy, and Switzerland,

and his alma mater was ETH Zurich. As a scientist and inventor, he produced over 300

scientific papers and 50 patented inventions. His groundbreaking contributions in the

field of physics changed the technological landscape. What would happen, though, if his

parents were poor and he could not receive the education he had? How would a world

look like with Einstein as a factory worker instead of a scientist? Better yet, how do we

know if we are not missing out on potential Einsteins right now?

Allocation of talent—assigning the right people to the right jobs—can have a first-

order effect on the productivity of a society. The susceptibility of the allocation mech-

anism to be distorted away from the socially optimal outcome by private expenditures

might create significant welfare losses in the presence of high levels of inequality in pri-

vate resources. The losses are especially magnified if the best and the brightest of a

society are not allocated to the professions where their social contributions would be the

greatest. This paper aims to quantify the misallocation of talent in the United States due

to economic inequality, with particular emphasis on its effects on innovation, and hence

the long-run prospects of the country.

Parents spend considerable time and resources in order to improve the likelihood

that their children end up with a desired job. The education system serves two main

purposes in this regard: improving human capital, and credentialing people’s talents.61

61Work on education’s role in improving human capital is discussed in detail in the related literature
subsection. For the use of education in credentialing people’s talents (as a “signaling” device), see Spence
(1973), Stiglitz (1975) and Fernandez and Gali (1999).
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The credentialing part can be seen as a tournament in which individuals seek to improve

their overall ranking compared to others in order to improve their job market prospects.

In 2010, the United States spent 7.3% of its gross domestic product on education, and

the share of private spending was 7.7% for non-tertiary and 63.7% for tertiary education

(OECD, 2013). Annual expenditure per student in tertiary education was $25,575, with

total yearly cost going up to $60,000 for elite universities. At the same time, the net wage

of the median worker was $26,364, whereas the median inventor earned above $100,000

per year. In such a high stakes environment where both the rewards and means to achieve

them are unequal, financial frictions can easily prevent the talented children of poor

families from being assigned to jobs suitable to their abilities since they are crowded out

by the less talented children from richer families. Is this actually what happens in reality,

or can we conclude that “the cream always rises to the top” regardless of inefficiencies of

the system?

The first contribution of this paper is to provide empirical evidence on the misallo-

cation of talent in innovation. Information on innovation in the United States is obtained

from inventor and patent level data from United States Patent and Trademark Office

(USPTO). This data includes all patents granted in the United States between 1976 and

2006, as well as all registered inventors of these innovations. Inventors are identified

uniquely throughout their careers, but direct information on their parental backgrounds

is unavailable. In order to overcome this issue, surnames of the inventors are used as a

proxy, and the inventor data is linked to socioeconomic background information at the

surname level from U.S. census data (1930). The stylized facts obtained can be summa-

rized as follows:62

Fact 1: Individuals from richer backgrounds are much more likely to become inventors

(23.9%); whereas those from more educated backgrounds experience no similar ad-

62The numbers in parentheses correspond to how much one standard deviation increase in the independent
variable causes the dependent variable to increase compared to its own standard deviation. The details of
the empirical analysis can be found in Section 3.3.
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vantage (0.1%).

Fact 2: Conditional on becoming an inventor, individuals from more educated back-

grounds turn out to be much more prolific inventors (17.5%); whereas those from

richer backgrounds exhibit no such aptitude (0.1%).

When the two facts are considered together, it appears that the misallocation of talent

is an issue for inventors. Fact 2 shows that it is the education associated with the surname

and not income that predicts higher inventor quality today. This is intuitive, since edu-

cation and (unobserved) innate ability are likely to be complementary (or at least highly

correlated), and in the presence of persistence of innate ability across generations, one

would expect the descendants of the more educated to be better inventors today con-

ditional on becoming one. However, Fact 1 shows that it is income and not education

that predicts higher chances of becoming an inventor today. This can be interpreted as

the allocation system choosing the wrong people as inventors. Those who come from

families that were wealthier but had average education in the past have a higher chance

of becoming inventors, but perform poorly conditional on becoming one. This observed

discrepancy provides the motivation to investigate the issue of misallocation of talent in

innovation quantitatively, so that its impact on the society can be assessed.63

In order to quantify the effects of the misallocation of talent in innovation and to

analyze potential policy changes that might alleviate the inefficiency, a new model which

can accommodate the observed correlation patterns is developed. The firm side exhibits

features found in the models from the endogenous growth literature: Firms undertake

routine production using unskilled labor, and generate productivity-improving innova-

63It is also noteworthy that the family background measures have such a high explanatory power. For
instance, it is found that one standard deviation increase in the income associated with the surname in 1930
increases the relative probability of becoming an inventor by 23.9%. Given that the measures are constructed
at the surname-level, and across two to three generations, just knowing the surname of an individual makes
it possible to predict his or her chances of becoming an inventor to a high degree. This means the intergen-
erational mobility in socioeconomic status as captured by the relative probability of becoming an inventor is
quite low, which is consistent with other recent name and surname level studies [Clark (2014), Olivetti and
Paserman (2013)].
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tions (featuring positive intertemporal spillovers between firms) via research and devel-

opment conducted by hired inventors. The household side is modeled in a detailed

fashion, borrowing from heterogeneous agents models64 in order to make the model ca-

pable of replicating the patterns observed in the data. The households are heterogeneous

in wealth, education, and unobserved innate ability that is persistent across generations.

Parents invest in the education of their offspring and leave bequests. The training nec-

essary to become inventors is scarce; hence individuals compete against each other in a

tournament setting to receive it. Factors that improve inventor productivity such as in-

nate ability and education increase the probability of receiving this training; but so does

private credentialing spending which is unproductive by itself. Thus, individuals who in-

herit generous bequests can become inventors even if they are of mediocre talent through

excessive spending on credentialing, preventing more talented individuals from poorer

backgrounds from becoming one. This is individually rational but socially inefficient;

reducing the quality of the inventor pool used in generating productivity-improving in-

novations that drive economic growth.

The tournament mechanism is the key ingredient that enables the model to replicate

the stylized facts. In an ideal world, a social planner would prefer to allocate the best

and the brightest of the society to the innovation sector, leading to a positive assortative

matching between the talents of individuals and the (social as well as private) produc-

tivity of the jobs. However, if this were the case, the discrepancy between the parental

backgrounds of those who become inventors and those who succeed as inventors would

not be empirically observed. In order to allow the model to generate different correla-

tion patterns at the two margins, individuals receive inventor training based on a score

that depends differentially on innate ability, early childhood education and credentialing

spending. The strength of each component in improving inventor probability as opposed

64This is in the spirit of Aiyagari (1994) since the heterogeneity of households is considered in a general
equilibrium setting, where the time-invariant distributions of household characteristics affect the prices and
the growth rate in the economy.
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to inventor productivity has different implications for the correlations of ancestor educa-

tion and income with the two outcome variables, and this provides the main identification

in the calibration of the model.

The model is calibrated to match the new stylized facts and data moments from

the U.S. economy where an exercise in indirect inference pins down the influence of the

new credentialing spending channel by replicating the two regressions from the empirical

analysis using model-generated data. The calibrated model is then used to measure the

economic importance of the misallocation of talent in innovation. A thought experiment

in which the credentialing spending channel is shut down reveals that the aggregate

growth rate of the economy can be increased by 10% of its value by assigning more

talented and better educated individuals as inventors. As a result, the consumption in-

equality in the economy increases, which is detrimental to overall welfare; however the

gain in output growth rate more than compensates for this loss, resulting in a welfare

gain of 5.96% in consumption equivalent terms.65

Seeking to alleviate the effects of misallocation in a decentralized economy, optimal

progressive bequest taxes are calculated, which are found to increase output growth rate

by 2.5% of its value. This increase is again through the allocation of higher innate ability

individuals as inventors, who are also more educated on average. The progressive nature

of the taxes cause the overall consumption inequality to remain the same. The increase

in the output growth rate and the relatively unchanged consumption inequality lead to a

social welfare gain of 6.20% in consumption equivalent terms. This is higher compared

to the credentialing spending shut-down experiment. The optimal bequest tax policy that

achieves these results is quite progressive: The average bequest tax rate faced by the top

1% is 12.1%, whereas this number falls to 4.2% for the top 10%. The bottom 95% of the

households are net recipients, whereas only the top 5% pay into the system.

65Welfare is defined as expected utility at the steady state.
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Related literature: The paper relates to the growing literature on misallocation (some

examples are Acemoglu et al. (2013), Akcigit et al. (2015), Guner et al. (2008), Hsieh

and Klenow (2009), Hsieh et al. (2013), Jones (2013), Jovanovic (2014), and Restuccia and

Rogerson (2008)). One of the closest papers in this literature is Hsieh et al. (2013) where

the misallocation of talent results from barriers to entry into certain occupations by dis-

tinct demographic groups, like women or non-white individuals. Another close paper is

Jovanovic (2014) where workers and jobs are heterogeneous in quality, and are matched

with each other under search frictions which affects the amount of on-the-job training,

and the transition to the balanced growth path. This paper differs from both works by

its emphasis on the financial frictions channel, and the special interest on how innovation

activities are influenced as a result. Empirically, the closest study is the ongoing work by

Bell et al. (2015) which focuses on the life cycle of inventors using administrative data cov-

ering the population of patent applicants in the U.S. Their finding that individuals from

higher income family backgrounds are more likely to become inventors is in agreement

with the findings of this paper. This paper provides further evidence on the differential

effects of ancestor income and education on becoming an inventor and success condi-

tional on becoming one, as well as build a quantitative model to assess the economic

costs of the misallocation of talent in innovation.

Another closely related field is the modern literature on inequality and economic de-

velopment (see among others: Galor and Zeira (1988, 1994), Banerjee and Newman (1993),

Maoz and Moav (1999), and Galor (2009) for a literature review). This paper differs from

the literature in that it acknowledges the scarce nature of training necessary to become

inventors, and focuses on how competition for this might create a misallocation of talent

between routine production and innovation. In addition, economic growth in this model

is driven by technological change as a result of firms investing in innovative activities,

similar to the literature on endogenous growth with quality improvements pioneered by

Aghion and Howitt (1992), and in the spirit of the broader endogenous growth literature
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[Lucas (1988), Romer (1990), Lucas (2009), Alvarez et al. (2013), Lucas and Moll (2014).

See Aghion and Howitt (2009), Acemoglu (2009) and Aghion et al. (2013) for literature

surveys]. The firm side of the model builds upon Akcigit et al. (2015). Recent work

by Aghion et al. (2015) investigates the relationship between innovation and top income

inequality. The quantitative results of the current paper are in line with their empirical

finding of a positive correlation between the two.

The focus on who become inventors versus who make prolific inventors conditional

on becoming one links this work to the extensive literature on nature versus nurture, hu-

man capital and skill formation [Becker (1964), Ben-Porath (1967), Behrman et al. (1977),

Becker and Tomes (1979), Becker and Tomes (1986), Behrman et al. (1994), Aiyagari et al.

(2002), Heckman et al. (2006), Cunha and Heckman (2007), Dahl and Lochner (2012), Lee

and Seshadri (2014). See Cunha et al. (2006) for a survey]. This literature is quite diverse,

ranging from theoretical work such as the classic Becker and Tomes (1979) model, to em-

pirical estimates exploiting rare datasets such as that on twins (Behrman et al., 1994) to

separate the effects of nature and nurture. This paper investigates a related question, but

focuses on inventors and their productivities in coming up with disruptive inventions as

captured by patents. This enables the use of the two new stylized facts obtained in the

empirical analysis to tease out the persistence of innate ability versus the socioeconomic

status persistence due to intergenerational wealth transmission. The model is close in

spirit to Becker and Tomes (1979) type models, where parents cannot borrow against the

future income of their dynasties, or insure themselves against idiosyncratic risks.

Finally, the policy experiment on optimal taxation of bequests links the paper to the

literature on optimal taxation [Anderberg (2009), Bohacek and Kapicka (2009), Findeisen

and Sachs (2013), Grochulski and Piskorski (2010), Kapicka (2013), Kapicka and Neira

(2013), Krueger and Ludwig (2013), Stantcheva (2014)]. Two close papers in this field

are Krueger and Ludwig (2013) and Stantcheva (2014), where optimal progressive taxa-

tion and education subsidies are calculated in a model with heterogeneous households
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where human capital formation is also endogenous. The model in this paper also in-

cludes the endogenous human capital aspect, but enhances the problem by adding in the

misallocation of talent dimension and its effects on innovation. This naturally affects the

effectiveness of different policies in alleviating the inefficiencies that result from financial

frictions.

Outline: The rest of the paper is organized as follows: Section 3.2 presents the the-

oretical model. Section 3.3 describes the datasets employed and variables constructed in

the empirical analysis, and the resulting stylized facts. Section 3.4 describes the calibra-

tion of the model and the indirect inference. Section 3.5 presents and discusses the results

of the quantitative results. Section 3.6 concludes.

3.2 Model

3.2.1 Environment and preferences

Time is discrete, and denoted by t = 0, 1, 2, ... There is a continuum of households

indexed by m ∈ [0, 1]. The households are modeled in an overlapping generations frame-

work, where each generation lives for three periods: child, young adult and old adult.

The children are born when their parents are young adults. The parents interact with

their children in three ways: Parents (i) choose their consumption before they become

adults, (ii) invest in their education66 and (iii) leave non-negative bequests to them upon

death. The parents care about their children, and the relative weight of the utility of their

offspring is denoted by the altruism parameter α > 0. Preferences over consumption are

time separable with time discount factor β and exhibit constant relative risk aversion with

parameter ω. Thus, lifetime utility of generation born at time t of household m can be

66The education investment of the parents is thought of as pre-tertiary education or early childhood invest-
ment as discussed in Cunha and Heckman (2007). Individuals invest in their own tertiary education when
they become young adults, which is discussed later on.
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expressed as

Um,t (⃗cm,t) = Et

[
c1−ω

c,m,t

1 − ω
+ β

c1−ω
y,m,t

1 − ω
+ β2 c1−ω

o,m,t

1 − ω
+ αβUm,t+1(⃗cm,t+1)

]
(3.1)

where cc,m,t, cy,m,t and co,m,t denote the consumption of generation t of household m at

child, young, and old periods respectively, and c⃗m,t = {cc,m,T, cy,m,T, co,m,T}∞
T=t.

3.2.2 Technology

Production and innovation

The final good is competitively produced by a continuum of firms indexed by i ∈ [0, 1]

which combine capital k and unskilled labor lu according to the formula

o(z, k, lu) = zζkκ lλ
u (3.2)

where z stands for the firm-specific productivity, o denotes final good output, and ζ +

κ + λ = 1. Firms pay r + δ and wu for capital and unskilled labor services respectively.

Firms can engage in risky innovation activities in order to increase their productivity

if successful. Conditional on successful innovation, the productivity of the firm in the

next period evolves according to

z′ = z + γz̄ (3.3)

where z′ and z are the new and old productivities, z̄ is the average productivity in the

economy, and γ > 0 is a scale parameter.67 The firms which fail to innovate retain their

67Note that the z̄ term in (3.3) introduces intertemporal spillover effects between the firms in the economy
which is a salient feature of modern endogenous growth models. The additive structure is chosen over
multiplicative because (i) it allows for solving the firm value functions in closed form and (ii) it ensures the
existence of an invariant firm size distribution in a stationary equilibrium.
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old productivity, z′ = z. In order to increase the probability of successful innovation, firms

must hire skilled labor. For a firm which hires ls amount of skilled labor, the probability

of a successful innovation is given by

i(ls) = χlξ
s (3.4)

where χ > 0 is a scale parameter and ξ ∈ (0, 1) introduces diminishing returns.

Individual productivity, innate ability and early childhood education

Each generation t of each household m is heterogeneous in innate ability a, and early

childhood education h. The individual productivity of generation t of household m is a

constant elasticity of substitution (CES) aggregate of a and h given by

lm,t(hm,t, am,t) =

(
ψh

ϵ−1
ϵ

m,t + (1 − ψ)a
ϵ−1

ϵ
m,t

) ϵ
ϵ−1

(3.5)

where 0 < ψ < 1 is the share of early childhood education, and ϵ is the elasticity of

substitution. Innate ability a and early childhood education h remain constant as an

individual gets older. Individual productivity determines the effective labor supply of

the individual. This labor contributes to the aggregate skilled or unskilled labor supply

in the economy depending on the individual’s job allocation.

The cost of endowing one’s offspring with education level h in terms of the final good

is given by the cost function

ch(h, Θ) = κhhξh z̄ζ/(ζ+λ) (3.6)

where κh > 0 is a scale parameter, ξh > 1 introduces convexity, and z̄ζ/(ζ+λ) ensures the

cost scales up with aggregate output as the economy grows.
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The innate ability of an individual is determined at the transition from childhood to

young adult status, and depends on the innate ability of the parent. It is governed by a

stochastic AR(1) process given by

log a′ = (1 − ρ)µa + ρ log a + ϵa, ϵa ∼ N(0, σ2
a ) (3.7)

which has a mean of one.68 The variables a and a′ denote the innate ability of the par-

ent and the child respectively. The persistence parameter ρ determines how much of

the parental ability the child inherits. The stochastic innate ability shock ϵa is normally

distributed with a mean of zero and variance of σ2
a .

Tertiary education and job allocation

There are two types of jobs j in the economy: skilled/innovation jobs (j = s) and

unskilled/production jobs (j = u). The job of an individual determines which pool his or

her labor supply will contribute to, and hence the wage rate to be received per effective

labor unit supplied (ws if skilled and wu otherwise). Any worker in the economy can

get a production job. However, in order to get an innovation job, the individual needs to

receive tertiary education at a high quality institution. This tertiary education provides

the individual with (i) the training necessary to create innovations and (ii) an increase in

the individual productivity, given by l′ = Λl.69

The ratio of high quality tertiary education available in the economy over total pop-

ulation is denoted by η ∈ (0, 1) and assumed to be fixed.70 Since the innovation jobs

68For a discussion on how well this parsimonious specification fits the intergenerational transmission of
observed abilities, see Clark (2014).

69A good real world example of the described tertiary education would be an MSc or PhD degree in a
STEM field at a high quality institution. Although a PhD is not always necessary to work on innovations,
NSF National Survey of College Graduates (2003) shows that individuals who have invented at least one
patent throughout their lifetime are three times more likely to hold a PhD degree compared to non-inventor
college graduates.

70The opposite of this restriction would be having no restrictions on η, but fixing the score threshold s̄
instead, so that any individual who has a sufficiently high score would get the high quality tertiary education.
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pay better than production jobs in equilibrium,71 individuals would like to get innovation

jobs. Because of this, high quality tertiary education is sought after; and since the supply

is fixed, there is competition amongst individuals to receive it, which is cleared by a score

mechanism described below.

At the beginning of the young adult period and after observing the innate ability a,

each individual receives a score given by

s̃(l(h, a), n) = (1 − ν)l(h, a) + νn + ϵj, ϵj ∼ N(0, σ2
j ) (3.8)

where l(h, a) is individual productivity, n is credentialing spending (a choice variable),

ν ∈ [0, 1] is a parameter that governs the relative power of l versus n in determining

the score, and ϵj is a normally distributed shock. After the scores for each individual

are realized, the fraction η of the individuals with the highest scores receive high quality

tertiary education, and are able to work in the innovation sector. The remaining (1 − η)

fraction of the individuals do not receive high quality tertiary education and cannot create

innovations, and thus have to work in the production sector.

In order to increase score upwards by the amount νn, the individual has to spend

resources given by

cn(n) = κnnξn z̄ζ/(ζ+λ) (3.9)

in terms of the final good, where κn > 0 is a scale parameter, ξn > 1 introduces convexity,

and z̄ζ/(ζ+λ) ensures the costs scale up with aggregate output as the economy grows.

This choice variable n captures any real world spending that increases the chances of

getting a high quality tertiary education, such as hiring private tutors, preparing towards

The quantitative experiments replicated with this alternative model deliver higher growth rate and welfare
responses to parameter and policy changes; so the assumption to fix η puts discipline on the counterfactual
implications of the model. See Appendix C.3.1 for details.

71This is not restriction of the model, but a result of the calibration exercise. See Section 3.4 for the details.
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standardized tests, spending extra money to get into a college without a scholarship, the

opportunity cost of studying as opposed to working in a job, etc.

Since the upper η fraction of the score distribution receives high quality tertiary edu-

cation, there exists a score threshold s̄ such that individuals with s̃ ≥ s̄ receive the educa-

tion, and the rest do not. In equilibrium, individuals with the necessary education always

choose the innovation sector over the production sector, so the probability of getting high

quality tertiary education and that of being a skilled worker are the same. The implied

probability distribution of having job j for an individual is denoted by F(j; l(h, a), n, Θ).

The aggregate state matters, since the score of a worker is only meaningful compared to

the score threshold s̄, as relative rank determines job allocation. The probability of having

a skilled job is increasing in innate ability a, early childhood education h and credentialing

spending n, whereas it is decreasing in the score threshold s̄.

3.2.3 Maximization problems

Timing of events

Before moving on to the decision problems of the firms and the households, the

timing of events within a period are listed below, which are also summarized on Figure

8:

1. The innate ability of young adults ay is observed.

2. Old adults choose their bequests b and consumption co.

3. Young adults decide on credentialing spending n to receive a better score s̃.

4. Scores s̃ are observed, tertiary education is provided, and young adults are assigned

to their jobs j.
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Figure 8: Timing of events within a period.

5. Firms hire capital k and labor lu and ls for production and innovation. Production

takes place and successful innovations are realized. Wages are paid.

6. Young adults choose how much to consume cy, consumption of their children cc,

pre-tertiary education investment in their children h, and savings s.

Firm decision problems

The static profit maximization problem of the firm is given by

Π(z, Θ) = max
k,lu≥0

{zζkκ lλ
u − (r + δ)k − wulu} (3.10)

where the firm pays interest rate plus depreciation (r + δ) and unskilled wage wu for

capital and unskilled labor services respectively. The associated capital and labor demand

policy functions are denoted by k̂(z, Θ) and l̂u(z, Θ).

Given the period profits Π(z, Θ) from the static maximization problem and the inno-

vation technology described in (3.4), the intertemporal maximization problem of a firm

can be written in recursive form as follows:

V(z, Θ) = max
ls≥0

{
Π(z, Θ) +

χlξ
s

1 + r
V(z + γz̄, Θ′) +

(1 − χlξ
s )

1 + r
V(z, Θ′)− wsls

}
(3.11)
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The firm chooses how much skilled labor ls to hire, which increases the likelihood of

successful innovation χlξ
s . If successful, the firm’s productivity next period is increased

by γz̄. The prospect of earning higher profits in the future due to higher productivity

provide incentives for the firm to engage in costly innovation. The skilled labor demand

that solves this problem is denoted by l̂s(z, Θ).

Household decision problems

Given the ingredients of the model, there are three relevant decision problems for

each household in any given period: (i) the bequest decision of old adults, (ii) the cre-

dentialing spending decision of young adults before job allocation, (iii) the consumption,

pre-tertiary education investment and saving decisions of young adults after job alloca-

tion.72 The associated value functions of the problems will be denoted by Vo(.), W(.) and

Vy(.) respectively.

Decision problem of the old

Let subscripts c, y and o stand for child, young and old respectively. Time subscripts

will be suppressed for clarity. Let y denote wealth. Given the wealth of the old yo, the

early childhood education hy and innate ability ay of the young, and the aggregate state

of the economy Θ, the bequest decision problem of the old can be stated as

Vo(yo, hy, ay, Θ) = max
co ,b≥0

{
u(c0) + αW(b, hy, ay, Θ)

}
s.t. (3.12)

co + b ≤ y0

where co is the consumption of the old, b is the bequest left to the descendants and α > 0

is the altruism parameter. Old agents choose how much bequests b to leave to their

72Children in a household have no decision problems to solve. They receive pre-tertiary education chosen
by their parents and consume.
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children who are now young adults, at the cost of reducing the their own consumption

c0. The problem is solved by the choice of a single variable b since preferences ensure

the budget constraint holds with equality. Note the financial restriction that the bequests

must be positive. This disallows agents from borrowing against the future income of their

dynasty to consume today. The associated policy function is denoted by b̂(yo, hy, ay, Θ).

Decision problem of the young before job allocation

Given the bequest amount b, the early childhood education hy and innate ability ay of

the young, and the aggregate state of the economy Θ, the credentialing spending decision

problem of the young before job allocation can be stated as follows:

W(b, hy, ay, Θ) = max
n≥0

{
E
[
Vy(yy, ay, Θ)|·

]}
s.t. (3.13)

yy =

(
wjy +

w′
jy

1 + r′

)
ly(hy, ay) + b − cn(n)

jy ∼ F(j; ly(hy, ay), n, Θ)

where jy is a random variable that denotes job allocation and yy stands for wealth as

a young adult after job allocation. The wealth of the young yy consists of the lifetime

labor income and the bequests b received from parents, minus the cost of improving

the score cn(n). The only choice variable is the resources spent on improving the score,

denoted by n. Spending more resources increases the likelihood of getting a better job

draw jy distributed according to F(j; l, n, Θ) discussed earlier. The optimal n that solves

this optimization problem is referred to as the credentialing spending policy function,

n̂(b, hy, ay, Θ).

Note that the young adults can borrow against their future lifetime labor income, so

the model allows agents to borrow resources at the risk free interest rate r′ to spend on

credentialing which improves their chances of getting a high quality tertiary education.
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On the other hand, they cannot insure themselves against the idiosyncratic risk of not

getting high quality tertiary education, which is always positive due to the shock term ϵj

in (3.8). This forces them to be more prudent in increasing credentialing spending n by

borrowing due to risk aversion.

Decision problem of the young after job allocation

Given the wealth yy and the innate ability ay of the young, and the aggregate state

of the economy Θ, the consumption, early childhood education investment and saving

decision problem of the young after job allocation can be stated as follows:

Vy(yy, ay, Θ) = max
cy,cc,h′y,s≥0

{u(cy) + αu(cc) +

βE[Vo(y′o, h′y, a′y, Θ′)|·]} s.t. (3.14)

yy ≥ cy + cc + ch(h′y) + s

y′o = (1 + r′)s

a′y ∼ g(ay)

Θ′ = T(Θ)

Variables with primes indicate next period’s values. The choice variables are the

consumption of the young and their children, cy and cc, the early childhood educa-

tion investment in the children h′y which costs ch(h′y) in terms of the final good, and

the savings s. The sum of these expenditures must be below the wealth yy. The ex-

pectation is over the innate ability a′y of the child tomorrow, which depends on the in-

nate ability of the parent ay. The aggregate state of the economy evolves according to

the transition function T(.). The policy functions that solve this problem are given by

ĉy(yy, ay, Θ), ĉc(yy, ay, Θ), ĥ′y(yy, ay, Θ) and ŝ(yy, ay, Θ).
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3.2.4 Balanced growth path equilibrium

Let Z(z) denote the distribution of firm productivities in the economy. Labor market

clearing implies

Lu,t ≡
∫ 1

0
l̂u,t(z, Θ)dZ(z) = 2(1 − η)

∫
l(h, a)dΦu,t(h, a), and (3.15)

Ls,t ≡
∫ 1

0
l̂s,t(z, Θ)dZ(z) = 2η

∫
l(h, a)dΦs,t(h, a) (3.16)

where Φu,t(h, a) and Φs,t(h, a) denote the joint distribution of early childhood education

and innate ability at time t for unskilled and skilled workers respectively. The (1 −

η) and η terms in the labor supply expressions are multiplied by average individual

productivity because they designate the fraction of the population working in production

and innovation sectors respectively. The terms are also multiplied by two since in any

period both the young and old adults work. Aggregate savings in the economy is given

by

At+1 ≡
∫

ãm,t−1dÃ(ã) (3.17)

where ãm,t ≡ sm,t − l(hm,t, am,t)wjm,t,t+2/(1 + rt+2) denotes the net savings of the young

adults of household m born at time t.73 There are two kinds of assets in the economy:

physical capital and shares in the bundle of firms i ∈ [0, 1]. Both assets pay the risk-free

interest rate rt.74 The capital market clearing requires the physical capital supply in the

economy to equal the aggregate capital demand of the firms given by

Kt ≡
∫ 1

0
k̂u,t(z, Θ)dZ(z). (3.18)

73In order to calculate ãm,t, the labor income to be earned in the old adult stage is subtracted from sm,t
because it was included in the expression yy in the young agent’s recursive decision problem. This was done
to reduce the number of state variables to keep track of in the associated value function Vy(.).

74Although each firm i ∈ [0, 1] faces idiosyncratic risk, aggregating over i makes profits received from the
whole bundle a deterministic quantity due to the lack of aggregate fluctuations.
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Final good market clearing requires

Ot = Ct + Kt+1 − (1 − δ)Kt + Nt + Ht (3.19)

where Ot denotes aggregate output and Ct, Nt and Ht are aggregate spending on con-

sumption, score distortion and early childhood education investment at time t respec-

tively. Finally, the number of people who receive high quality tertiary education must

equal the exogenous restriction on their measure η. This imposes the condition

η =
∫ ∞

s̄t

s̃dS̃t(s̃) (3.20)

where S̃t(s̃) is the score distribution at time t and s̄t is the score cut-off above which agents

get high quality tertiary education.

Given these ingredients, an equilibrium of this economy is defined as follows:

Definition 2. An equilibrium is described by allocations [{⃗cm,t, bm,t, nm,t, hy,m,t, sm,t}∞
t=0]

1
m=0 for

households, allocations [{zi,t, ki,t, lu,i,t, ls,i,t}∞
t=0]

1
i=0 for firms, prices {rt, wu,t, ws,t}∞

t=0, score cut-off

{s̄t}∞
t=0, firm productivity distribution {Zt(z)}∞

t=0, and joint distribution of jobs, early childhood

education, and innate ability {Φt(j, h, a)}∞
t=0 such that:75

1. Given prices and score cut-off, household allocations maximize Vo(b, hy, ay, Θ),

Vy(yy, ay, Θ), and W(b, hy, ay, Θ).

2. Given prices and the productivity distribution, firm allocations maximize Π(z, Θ) and

V(z, Θ).

3. All markets clear.

Output growth in this economy is driven by improvements in the productivities of

the firms given by the distribution Zt(z). This paper focuses on the balanced growth path

75Arguments of the allocations are suppressed for clarity.
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equilibrium where aggregate variables Ot, Kt, Nt, Ht, and Ct grow at the constant rate

g. Along the balanced growth path, it turns out that the mean of the firm productivity

distribution, z̄ ≡
∫

zdZ(z), is a sufficient statistic to determine the growth rate of the

economy. Let the growth rate of the mean productivity z̄ be denoted by gz. Define

transformed variables ẑ ≡ z/z̄λ/(λ+ζ), z̃ ≡ z̄ζ/(λ+ζ) and w̃s ≡ ws/z̃. The balanced growth

path equilibrium of this economy is described below.

Theorem 3. The balanced growth path equilibrium of the economy has the following form:

1. Aggregate allocations Ot, Kt, Nt, Ht, and Ct, and wages wu,t and ws,t grow at constant rate

g.

2. Aggregate labor allocations Lu and Ls, interest rate r, score cut-off s̄, and joint distribution

of jobs, early childhood education, and innate ability Φ(j, h, a) are time-invariant.

3. Mean of the firm productivity distribution z̄ grows at constant rate gz, where 1 + g =

(1 + gz)ζ/(λ+ζ).

4. Period profits of the firm are linear in ẑ, given by Π(z, Θ) = πẑ.

5. The value function of the firm is linear in ẑ and z̃, given by V(z, Θ) = v1ẑ + v2z̃.

6. The constants v1, v2, π, prices r, wu,t, ws,t, growth rate gz, and aggregate production factors

Kt, Lu and Ls are jointly determined by a system of nonlinear equations given by (C.3),

(C.4), (C.5), (C.7), (C.8), (C.9), and (C.10), and the market clearing conditions.

Proof. See Appendix C.1
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Figure 9: Overview of the empirical analysis

3.3 Empirical Analysis

3.3.1 Overview

In order to assess whether there is any indication of a misallocation of talent in inno-

vation, several different data sources are combined. Figure 9 presents a simple schema of

the baseline empirical analysis. The information on the probability of becoming an inven-

tor, and how well one performs conditional on becoming one are obtained from various

datasets that cover the years 1976-2008. The information on the family backgrounds come

from the IPUMS-USA 5% sample of the U.S. census conducted in 1930. In order to link

the recent patent and inventor micro-data to the older census data, surname informa-

tion is used. Once the links between the families and the descendants are established

at the surname level, the probability of becoming an inventor and the productivity as

an inventor conditional on becoming one are regressed on family income and education.

It is revealed that it is income and not education that predicts a positive probability of

139



becoming an inventor, whereas it is education and not income that predicts the proba-

bility of becoming a prolific inventor. This inconsistency between the extensive and the

intensive margins is the main focus of the empirical analysis. Following sections discuss

the data sources in detail, describe the variables created, present and discuss the baseline

empirical results, and conclude with some robustness checks.

3.3.2 Data Sources

NBER USPTO Utility Patents Grant Data

Patents are exclusionary rights, granted by national patent offices, to protect a patent

holder for a certain amount of time, conditional on sharing the details of the invention.

United States Patent and Trademarks Office (USPTO) is the agency in the U.S. Department

of Commerce that issues patents to inventors and businesses for their inventions. From

the great amount of information available in the files of USPTO, a substantial subsample

has been compiled in an easy-to-use format by a group of researchers from the National

Bureau of Economic Research (NBER) under the name NBER Patent Data Project (PDP).76

This dataset contains detailed information on 3,210,361 utility patents granted by

USPTO between the years 1976 and 2006. Each patent granted in the U.S. is assigned a

unique patent number that makes it possible to link this dataset to many other datasets

that contain information on patents some of which will be described further along. An

important feature of this dataset is to provide citation links between individual patents.

Similar to an academic paper, a new patent has to cite previous patents on which it

builds, or other patents concerned with a similar but different invention, so that proper

boundaries between the new and old patents can be established. The number of citations

a patent receives from other patents is found in the literature to be a good proxy for its

76For more information, please visit https://sites.google.com/site/patentdataproject/
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social and private value.77 Since the citations a patent will receive throughout its lifetime

cannot be known at a fixed point in time, and due to systematic citation differences

between patents that belong to different technology classes, corrections need to be made

to the citation numbers before using them as a proxy for patent quality. Hall et al. (2001)

devise some correction weights to account for these biases, and their correction is used

throughout this paper unless mentioned otherwise.

The Careers and Co-Authorship Networks of U.S. Patent-Holders

Filing a patent application in the U.S. requires providing the names of three types of

individuals in the application form: The assignees who own the patent once granted; the

applicants who are responsible for legal correspondence with USPTO; and the inventors

who actually came up with the innovation.78 Extensive information on the inventors of

patents granted in the U.S. between years 1975-2008 is obtained from a dataset produced

by Lai et al. (2009).79 Unlike the PDP data, this dataset contains the names of every

inventor who has worked on a patent granted in the U.S. between years 1975-2008. This

is crucial, since 55.3% of the patents in the sample were created by a group of inventors.

Another novel feature of this data is the provision of a unique inventor identifier which

makes it possible to track the patent portfolio of individual inventors throughout their

careers.

The dataset contains 8,031,908 observations at the patent × inventor level, and

2,229,219 unique inventors. Among other variables, the dataset contains address infor-

mation of the inventors as well as their names and surnames. The address information is
77For instance, Hall et al. (2005) argue that the citation-weighted patent portfolio of a firm is a plausible in-

dicator of the intangible knowledge stock of a private firm, and that this measure has additional explanatory
power for the market value of the firm beyond the conventional discounted sum of R&D spending.

78Hence, the owner of a patent or the manager in an innovating firm are not listed as inventors unless
they took part in the innovation process. USPTO explicitly states the following: “All inventor(s) named in
the provisional application must have made a contribution, either jointly or individually, to the invention
disclosed in the application.”

79Please visit http://hdl.handle.net/1902.1/12367 to access the data.
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used to determine the country the inventor lives in at the registration date of the patent

so that the analysis can be restricted to U.S. inventors only. The surname information is

used to create a relative representation (among inventors) measure at the surname level

and link the socioeconomic background data from 1930 to inventors today. Both of these

will be discussed in detail.

IPUMS-USA 1930 5% Sample

Integrated Public Use Microdata Series (IPUMS-USA) is a project dedicated to col-

lecting and distributing United States census data, and it consists of more than fifty

high-precision samples of the American population drawn from federal censuses. The

particular sample used in this project is the 1930 sample which contains information on

5% of all Americans who were counted in the 1930 census. The 1930 sample is preferred

over other samples since it is the most recent publicly available sample that contains name

and surname information at the observation level.80

Since the dataset contains census information, the wealth of information at the in-

dividual level is immense. The main information derived from this dataset is on so-

cioeconomic status of people with a particular surname, such as income and education

collapsed at the surname level. Similar to other studies that use the IPUMS samples prior

to 1940 (Olivetti and Paserman, 2013), income associated with a surname is measured

using the OCCSCORE variable measured in hundreds of 1950 U.S. dollars. This variable

includes income from non-wage activities such as interest income and dividends in ad-

dition to earnings. Finally, EDSCOR50 variable is used as the education variable which

measures college attendance. Ruggles et al. (2010) and the project website contain further

details on the dataset and variables.81

80Individual questionnaires of any specific census are not released by the National Archives until 72 years
after that specific census has been taken due to confidentiality requirements. Name and surname information
is also available for other samples spanning the years 1850-1920 in the IPUMS database; however they are
less recent, and most of these samples are at 1% level instead of 5%.

81IPUMS-USA project website can be accessed at https://usa.ipums.org/usa/index.shtml.
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Demographic Aspects of Surnames from Census 2000

This dataset released by the U.S. Census Bureau in 2007 contains information on the

overall frequency of surnames in the U.S. constructed using the 2000 decennial census

of population, based on approximately 270 million individuals with valid surnames.82

It contains 151,671 unique surnames. Combined with the U.S. inventor data previously

discussed, it is possible to create measures of probability of becoming an inventor at the

surname level. This dataset further includes information on the ethnicity distribution for

each surname broken down into six categories (White, Black, Hispanic, Asian or Pacific

Islander, American Indian or Alaskan Native, or mixed). These variables are used to

create dominant race fixed effects for race associated with a surname. One caveat of the

data is that it only includes surnames that have a frequency above hundred, which makes

it unsuitable to use in questions regarding extremely rare surnames. Such rare surnames

are therefore excluded from the following analysis.

3.3.3 Data construction and variables

The summary statistics for the variables used in the empirical analysis are presented

on Table 8. The following subsections describe what they stand for and how they are

generated.

Surname level socioeconomic status variables (1930)

Socioeconomic status variables such as income, earnings, and education are con-

structed at the surname level by taking the averages of observations in the IPUMS-USA

1930 5% sample. In this process, observations without a valid occupation are not in-

82Refer to Word et al. (2008) for a detailed description, and http://www.census.gov/genealogy/www/

data/2000surnames/index.html for the data.
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Panel A. Extensive Margin Analysis
Observation Mean St. Dev

relative representation (1975-2008) 110,290 83.1 68.6
income (1930) 110,290 21.7 3.70
education (1930) 110,290 15.8 17.5
is black 110,290 2.28 14.9
is asian 110,290 1.52 12.2
is native 110,290 .048 2.20
is hispanic 110,290 11.4 31.8
is mixed 110,290 .002 .438

Panel B. Intensive Margin Analysis
log quality weighted total patents (1975-2006) 81,348 3.65 .664
log average patent quality (1975-2006) 81,348 2.53 .387
log maximum patent quality (1975-2006) 81,348 2.95 .455
log total patents (renewed thrice) (1975-2006) 78,438 .695 .287
log total patents (top 10% only) (1975-2006) 81,348 .321 .200
log income (1930) 81,348 3.11 .158
log education (1930) 81,348 2.69 .494
is black 81,348 2.05 14.2
is asian 81,348 1.55 12.3
is native 81,348 .035 1.87
is hispanic 81,348 11.7 32.1
is mixed 81,348 .001 .38

Notes: Relative representation and dominant race indicator variables are multiplied by 100
for clarity. The means and standard deviations reported on the table are weighted by the

share of the surname in the general population obtained from the U.S. decennial census of

population of 2000. Patent quality is measured by the number of patent citations corrected

for truncation using the correction terms from Hall et al. (2001).

Table 8: Summary Statistics
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cluded.83

Relative representation of a surname among inventors (1975-2008)

The extensive margin analysis focuses on the question of how the socioeconomic

background of an individual affects the probability of becoming an inventor – or using

the model’s terminology, the probability of being assigned to a job in the innovation sec-

tor. The Careers and Co-Authorship Networks of U.S. Patent-Holders data contains the

names of all inventors who worked on patents granted in the U.S. between the years 1975

and 2008, from which it is possible to obtain the number of inventors with a particular

surname. However, the fact that there are many inventors with the surname Smith does

not mean that Smiths are more likely to become inventors by itself. In order to create

a measure of the probability, the number of inventors with a particular surname is di-

vided by the number of all people in the U.S. with the same surname obtained from

Demographic Aspects of Surnames from Census 2000; i.e.

inventor probability (surname) =
number of inventors (surname)

number of individuals (surname)

Relative representation of a surname among the inventor sample is then built simply by

dividing the inventor probability associated with the surname with the unconditional

probability of becoming an inventor in the U.S. given by

relative representation (surname) =
inventor probability (surname)

unconditional inventor probability

Thus a relative representation score above unity means that individuals with that surname

are more likely to become inventors than the average person, and vice versa.

83These observations correspond to those with OCC1950 values between 980 and 999. Visit https://usa.
ipums.org/usa-action/variables/OCC1950\#codes_section for a complete list of OCC1950 values.
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Patent and inventor quality metrics (1975-2006)

The intensive margin analysis considers the question of how the socioeconomic back-

ground of an individual affects the productivity as an inventor conditional on becom-

ing one. In order to conduct this analysis, it is necessary to come up with metrics that

measure inventor productivity. The unique inventor variable allows tracking the patent

portfolio of each inventor between the years 1975 and 2008. The productivity of an in-

ventor can be calculated as a function of the information on all the patents he or she has

worked on. This naturally leads to the question of how to assess the value of a patent. In

line with the literature, the quality of a patent is proxied by the citations received by the

patent, corrected for truncation bias and other concerns using the weights devised by Hall

et al. (2001). The patent quality information from the PDP data is linked to the inventor

data using the unique patent numbers granted by USPTO. The inventor quality metric

that is used in the baseline analysis is the total quality weighted patents of an inventor

throughout his or her career. Several additional alternative metrics are considered in the

robustness analysis in Section 3.3.4.

Since the data contains all inventors who worked on patents registered in the U.S.,

it is necessary to separate the foreign inventors from the sample used to create surname

level variables. The address information of an inventor is available for every patent,

and there is considerable variation between the countries. For this study, only inventors

who have stayed in the U.S. throughout their whole career are kept. Average inventor

quality metrics at the surname level are constructed by taking the unweighted average of

individual inventor qualities.
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relative relative relative
representation representation representation

(1975-2008) (1975-2008) (1975-2008)

income (1930) .239∗∗∗ .239∗∗∗

(.010) (.010)
education (1930) .029∗∗∗ .001

(.006) (.005)
Obs. 110,290 110,290 110,290
R2 0.27 0.23 0.27

Notes: Robust standard errors in parentheses. Dominant race fixed effects are included the

coefficients of which are suppressed for brevity. All variables are normalized by subtracting

the mean and dividing by the standard deviation. Observations are weighted by the share of the

surname in the general population obtained from the U.S. decennial census of population (2000).
*, ** and *** denote significance at 10, 5 and 1% levels respectively.

Table 9: Extensive Margin Baseline

3.3.4 Empirical results

Extensive margin analysis

In order to understand whether there is a misallocation of talent in the innovation

sector or not, it is necessary to empirically demonstrate what is correlated with the prob-

ability of having a job in this sector. The surname level probability of being an inventor is

used as a proxy to gauge this, although inventors are not the only individuals who work

in the innovation sector. Socioeconomic background information at the surname level ob-

tained from IPUMS-USA 1930 dataset is connected to these probabilities using surnames.

Standard ordinary least squares estimation is used where the relative representation rate

is regressed on the socioeconomic variables: income and education.84 The three columns

of Table 9 correspond to regressions on income, education, and both variables at the same

time respectively.

84Since all of the variables are averages calculated at the surname level, using an ordinary least squares
estimator is essentially identical to a two-sample two-stage least squares estimator. Alternatively, if an ob-
servation was created for each individual in the Census 2000 sample with an indicator variable for being an
inventor or not, the OLS regression of this indicator variable on background information linked by surnames
would yield the same results as Table 9.
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Looking at the first two columns, it is observed that both income and education as-

sociated with a surname in 1930 are positively correlated with the relative representation

among inventors today (1975-2008) and statistically significant. A standard deviation in-

crease in income increases the relative representation rate by 23.9% compared to its stan-

dard deviation, while a standard deviation increase in education increases it by 2.90%.

Given that there are roughly three generations between 1930 and today, these numbers

are quite substantial ( 3
√

23.9% = 62.1%), and hint towards low intergenerational mobility

in social status, similar to the results in other studies that use surnames (Clark, 2014).

Looking at the third column tells another striking story: It is income and not edu-

cation that is strongly correlated with the over-representation among inventors. In other

words, people with surnames that were richer in the past are more likely to become in-

ventors today; but controlling for income, education has no further prediction power.85

This finding is the motivation behind the inclusion of the credentialing spending in the

model, which enables agents to increase the probability of getting the high quality tertiary

education necessary for innovation sector jobs by spending private resources.

Intensive margin analysis

Having discovered that income associated with the surname is significantly positively

correlated with the probability of being an inventor, the natural next step is to ask whether

these individuals are the individuals who would make the best inventors. In order to

investigate this question, the inventor quality metric described earlier is regressed on

income and education. Table 10 displays the results of three OLS regressions: log inventor

quality on log income, on log education, and on both variables at the same time.

85The insignificance of education is not driven by multicollinearity due to high correlation between the
variables. In order to address such concerns, a variance inflation factor test is conducted after each regression
in the paper in which both income and education are included as regressors. None of the tests result in a
VIF large enough to be concerned about (< 3). The results are available upon request.
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log quality wtd. log quality wtd. log quality wtd.
total patents total patents total patents
(1975-2006) (1975-2006) (1975-2006)

log income (1930) .066∗∗∗ .001
(.009) (.009)

log education (1930) .176∗∗∗ .175∗∗∗

(.008) (.009)
Obs. 81,348 81,348 81,348
R2 0.03 0.05 0.05

Notes: Robust standard errors in parentheses. Dominant race fixed effects are included the

coefficients of which are suppressed for brevity. All variables are normalized by subtracting

the mean and dividing by the standard deviation. Observations are weighted by the share of the

surname in the general population obtained from the U.S. decennial census of population (2000).
*, ** and *** denote significance at 10, 5 and 1% levels respectively.

Table 10: Intensive Margin Baseline

Due to the log-log specification, the coefficients can be interpreted as elasticities. By

themselves, both income and education turn out to be positively correlated with inventor

quality, and the associated coefficients are statistically significant. Once again, given that

there are three generations between the samples, the elasticity estimates are considerably

high. However, this time the standard error for education is much smaller than that for

income, the opposite of what was observed in the extensive margin analysis.

The last column regresses inventor quality on both income and education, and the re-

sults are striking. The elasticity of inventor quality with respect to education is very close

to that on column 2, but the elasticity with respect to income vanishes, and is statistically

insignificant. Conditional on becoming an inventor, it is the inventors with “more edu-

cated” surnames who are the most successful in creating new path-breaking innovations.

This is in direct contrast to the extensive margin results, and suggests that the individuals

who would make the best inventors might not be the same as those the society allocates as

inventors. This fact is captured in the model by three ingredients: (i) education increases

individual productivity in the innovation sector, (ii) education and innate ability are com-

plementary in determining individual productivity, (iii) credentialing spending increases
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log avg. patent log max. patent log total patents log total patents
quality quality (renewed thrice) (top 10% only)

(1975-2006) (1975-2006) (1975-2006) (1975-2006)

log income (1930) .000 .013∗ .031∗∗∗ .033∗∗∗

(.008) (.008) (.009) (.008)
log education (1930) .130∗∗∗ .142∗∗∗ .098∗∗∗ .085∗∗∗

(.008) (.008) (.008) (.008)
Obs. 81,348 81,348 78,438 81,348
R2 0.02 0.04 0.05 0.03

Notes: See notes for Table 10.

Table 11: Intensive Margin Robustness - Alternative Measures

the probability of getting in an innovation sector job, but it does not increase individual

productivity compared to other inventors (as opposed to education, which does both).

Alternative inventor quality measures

In the baseline intensive margin analysis, quality weighted total patents of an inven-

tor was used as the inventor quality metric, where patent quality was measured by the

citations a patent receives. This section establishes that the results are robust to using dif-

ferent measures of inventor quality. Results pertaining to additional alternative measures

can be found on Table 35 in the empirical appendix.

Table 11 replicates the regression on column 3 of Table 10 using different inventor

quality metrics.86 The first two columns preserve the same patent quality metric (cita-

tions), but consider the average and maximum patent quality for inventors respectively.

Compared to the baseline measure, the average patent quality measure puts less weight

on inventors who come up with a high number of innovations which are of mediocre

quality. Similarly, the maximum patent quality measure only considers the best invention

of a given inventor, comparing inventors according to the best ideas they came up with

86Results for replicating columns 1 and 2 are also very similar, but excluded to conserve space. These are
available upon request from the author.
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and ignoring everything else. The results are very similar to the baseline analysis: log ed-

ucation dominates in both regressions, and log income is either statistically insignificant,

or significant at the 10% level and economically insignificant.

On column 3, a new patent quality metric is introduced: patent renewal status.

USPTO requires the patent holders to renew their patents on the 4th, 8th and 12th years

after the patent grant date by paying a small fee. If the patent holders do not renew their

patents on these dates, they lose the monopoly rights on their invention. There is signifi-

cant variation about how many times patents are renewed. The patent quality metric used

on column 3 assigns a quality of 1 if the patent was renewed three times throughout its

duration, and 0 otherwise. Hence only patents which were seen sufficiently valuable by

their holders to renew three times are counted.87 The results with this metric are similar

in that education dominates income, but this time the effect of income is not statistically

insignificant.

Last column does the opposite, and focuses on a patent quality measure that only

puts weight on the best inventions produced in a year. For each year, the patents are

ranked according to the citations they receive. Only the top 10% of the inventions in a

given year are assigned a quality of 1, whereas the remaining 90% are assigned a quality

of 0. Using the inventor quality measure derived from this new measure of patent quality,

the results are similar to column 3: education is found to dominate income once again.

Controlling for demographic changes and immigration between samples

The Unites States is a country of immigrants, and it has received significant immi-

gration during the time period from 1930 to 2008. Many surnames that were very rare

87Note that although this quality metric is very reliable in weeding out patents that turn out to be worthless
over time, it provides no quality variation between patents which are sufficiently valuable to be renewed
every single time. Hence it should be thought of as a quality measure that is more informative in the lower
tail of the unobserved quality distribution as opposed to the upper tail.
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in the 1930s are now quite common. In contrast, some surnames are now less frequent,

either due to being crowded out by the new or existing surnames, or due to low num-

ber of offspring or higher mortality rates. Could any of these demographic changes bias

the obtained estimates in a particular direction, potentially causing wrong conclusions to

be drawn? Recognizing this possible problem, this section is dedicated to investigating

whether this is true.

In order to tackle this issue, a simple variable called population share ratio is con-

structed. The share of a surname in the population in 2000 is divided by that in 1930.

This ratio is larger than unity if the surname has increased in frequency, which is the

case for many immigrant surnames. Conversely it is smaller than unity for surnames

which actually lost their prominence over time. Using this ratio as an additional explana-

tory variable, Table 12 repeats the extensive margin regression on column 3 of Table 9.

Columns 1 and 2 repeat the regression after dropping the top and bottom 25% of the

sample according to population share ratio. Hence they drop the extremely over- and

under-achieving surnames from the sample respectively. Columns 3 and 4 repeat the

same exercise keeping only the top and bottom halves of the sample respectively, i.e.

looking at over- and under-achievers within their own groups. The last column retains

the whole sample, but includes the population share ratio as a linear regressor. Although

the magnitudes change, income is found to be dominant in all cases, whereas education

is found to be either insignificant, or significant but negatively correlated. In addition,

when included as a linear regressor, the population share ratio turns out to be insignifi-

cant. Consequently, the findings of the extensive margin analysis are found to be robust.

Table 13 repeats the same analysis done in Table 12 for column 3 of Table 10. The

results are quite similar: Although the exact quantitative magnitudes may vary, the effect

of education is always quite large and positive, dominating that of income. The effect of

income is found to be either statistically or economically insignificant in all cases. The

only difference is observed when population share ratio is added as a linear regressor:
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relative representation (1975-2008)
(1) (2) (3) (4) (5)

income (1930) .341∗∗∗ .249∗∗∗ .232∗∗∗ .158∗∗∗ .239∗∗∗

(.009) (.011) (.013) (.006) (.010)
education (1930) −0.021∗∗∗ .003 .005 −.002 .001

(.004) (.005) (.006) (.004) (.005)
pop. share(2000)/pop. share(1930) −.025

(.032)
Obs. 82,718 82,735 55,148 55,210 110,290
R2 0.13 0.30 0.34 0.04 0.27

Notes: Columns 1 and 2 repeat the regression in the last column of Table 9 after dropping the

top and bottom 25% of the sample according to population share ratio respectively. Columns 3
and 4 repeat the same exercise for the top and bottom halves of the sample respectively. Column 5
repeats the same regression with the whole sample while introducing the population share ratio

linearly as a regressor in addition to income and education. All notes for Table 9 apply.

Table 12: Immigration Robustness (1930-2000) - Extensive Margin

log quality wtd. total patents (1975-2006)
(1) (2) (3) (4) (5)

log income (1930) −.015∗ .011 .011 .037∗∗∗ .001
(.009) (.010) (.012) (.008) (.009)

log education (1930) .162∗∗∗ .173∗∗∗ .177∗∗∗ .145∗∗∗ .177∗∗∗

(.006) (.010) (.012) (.008) (.009)
pop. share(2000)/pop. share(1930) .016∗∗

(.032)
Obs. 61,013 61,011 40,684 40,676 81,348
R2 0.03 0.06 0.07 0.03 0.05

Notes: Columns 1 and 2 repeat the regression in the last column of Table 10 after dropping the

top and bottom 25% of the sample according to population share ratio respectively. Columns 3
and 4 repeat the same exercise for the top and bottom halves of the sample respectively. Column 5
repeats the same regression with the whole sample while introducing the population share ratio

linearly as a regressor in addition to income and education. All notes for Table 10 apply.

Table 13: Immigration Robustness (1930-2000) - Intensive Margin
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Its coefficient turns out to be significant at the 5% level and positive. However, estimated

at 1.6%, its coefficient is much smaller compared to the coefficient of education (17.7%).

Hence, it is once again concluded that the findings in the intensive margin analysis are

robust.

One could also be worried about another issue: It is possible that a surname the fre-

quency of which is stable over the 1930-2008 time period actually belonged to people who

were recent immigrants in 1930. Systematic differences between such surnames and those

who were already largely stable in frequency prior to 1930 could lead to potential biases

similar to those discussed earlier. Luckily, it is possible to construct a similar population

share ratio using surname frequencies in 1930 and 1880, using an earlier IPUMS-USA

sample. The cost of doing so is losing observations that belong to surnames which do not

exist in the 1880 census sample. The results of this robustness analysis are qualitatively

very similar, and can be found on Tables 36 and 37 in the empirical appendix.

Summary of empirical results

The two stylized facts obtained in the empirical analysis can be summarized as fol-

lows:

Fact 1: Individuals from richer backgrounds are much more likely to become inventors

(23.9%); whereas those from more educated backgrounds experience no similar ad-

vantage (0.1%).

Fact 2: Conditional on becoming an inventor, individuals from more educated back-

grounds turn out to be much more prolific inventors (17.5%); whereas those from

richer backgrounds exhibit no such aptitude (0.1%).

However, these results by themselves would be insufficient to establish whether there

is an economically significant misallocation of talent or not, given that innate ability is
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unobserved in the data. This is important, since (i) innate ability is likely to play a large

role in determining the probability of becoming an inventor as well as success conditional

on becoming one, (ii) innate ability is found to be very persistent across generations

by other studies (Clark, 2014), and this might be causing the observed strong positive

correlations. In order to measure the extent of the misallocation of talent in innovation, the

model developed in Section 3.2 is employed, where the regressions run here are replicated

within the model, targeting the empirical coefficient estimates. The next section describes

this calibration exercise.

3.4 Calibration

3.4.1 Solution method

Computation of the solution requires value function iteration to solve for

Vo(yo, h, a; Θ), W(b, h, a; Θ) and Vy(yy, a; Θ) and the associated policy functions

b̂(yo, h, a; Θ), n̂(b, h, a; Θ), ĥ(yy, a; Θ) and ŝ(yy, a; Θ). Simulation of the joint stationary dis-

tribution of jobs, innate ability, and early childhood education as well as the stationary

distribution of normalized savings are necessary to calculate the aggregate supplies as

well as the cut-off score threshold s̄. The results of the firm’s maximization problem and

the market clearing conditions boil down to analytical non-linear equations in K, Lu and

Ls as discussed in Section 3.2. Then these are solved to obtain the balanced growth path

equilibrium. The pseudo-code for the algorithm used to solve for the BGP equilibrium

can be found in Appendix C.1.

3.4.2 Identification

The simulation of the model requires the assignment of values to several parameters.

There are nineteen parameters to pick: β, ω, α, κ, λ, δ, Γ, ξ, ψ, ϵ, ρ, ν, σa, η, κh, ξh, κn, ξn, σj. In
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Parameter Description Identification
External Calibration

ω = 2.00 CRRA parameter Kaplow (2005)
α = 0.50 Parental altruism Aiyagari et al. (2002)
κ = 0.25 Capital’s share in production Corrado et al. (2009)
λ = 0.60 Labor’s share in production Corrado et al. (2009)
δ = 0.82 Depreciation rate U.S. NIPA
ξ = 0.50 Concavity of innovation production Hall and Ziedonis (2001)
σa = 0.70 St. dev. of innate ability shock Knowles (1999)
η = 11.6% Fraction of skilled jobs U.S. Census (2013)

Internal Calibration
β = 0.28 Discount factor Real interest rate
Γ = 0.92 Innovation productivity increase GDP growth rate
ρ = 0.70 Persistence of innate ability IG corr. of earnings
κh = 0.04 Cost of pre-tertiary education investment Education spending/GDP
κn = 0.05 Cost of score distortion investment Inequality targets
ξh = 1.30 Convexity of pre-tertiary education inv. Inequality targets
ξn = 2.50 Convexity of score distortion inv. Inequality targets
ψ = 0.40 Education share of ind. productivity Regression targets
ϵ = 1.90 Ind. productivity elasticity Regression targets
ν = 0.89 Influence of credentialing spending Regression targets
σj = 0.80 St. dev. of job shock Regression targets

Notes: All internally calibrated parameters are identified jointly; the moments in the internal

calibration panel are provided for intuition.

Table 14: Parameter Values

order to select values for the parameters, a set of empirical targets are specified for the

model to match. Some common parameters are chosen from existing studies, and the

rest are internally calibrated by employing a minimization routine that seeks to match

the data targets with the associated model-generated counterparts. In particular, some of

the regressions found on Section 3.3 are replicated in the model, and the minimization

algorithm attempts to achieve the same coefficients (“betas”) with regressions run on

model-simulated data, where the variables are normalized in the same manner. The

summary of the calibration exercise is presented on Table 14. The details are as follows:

1. CRRA parameter: This parameter is taken to be ω = 2.00, consistent with the esti-

mates listed in Kaplow (2005).
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Target U.S. Data Model
Aggregate targets

Yearly real interest rate 4.00% 4.00%
Yearly GDP growth rate 2.00% 2.00%
Education spending/GDP 7.30% 8.55%

Intergenerational correlation targets
IG corr. of earnings 0.70 0.70
IG corr. of wealth 0.37 0.33

Inequality targets
Wage income Gini index 0.48 0.52
Log 90/10 ratio 1.08 1.17
Log 90/50 ratio 0.46 0.52
Log 50/10 ratio 0.62 0.65

Regression targets
Extensive margin, income effect 0.24 0.19
Extensive margin, education effect 0.00 0.07
Intensive margin, income effect 0.00 0.08
Intensive margin, education effect 0.18 0.22

Table 15: Calibration Targets

2. Parental altruism parameter: This variable is chosen to be α = 0.50, following Aiyagari

et al. (2002).

3. Capital’s and labor’s share of income: Corrado et al. (2009) calculate the shares of tan-

gible capital, labor, and intangible capital to be κ = 0.25, λ = 0.60 and ζ = 0.15

respectively. The share of intangible capital they calculate is mapped to the share of

productivity of a firm in generating output in the model.

4. Depreciation rate for capital: The annual depreciation rate of physical capital is chosen

as 6.9% which is consistent with the U.S. National Income and Product Accounts.

Since each period lasts 25 years, δ = 0.82.

5. Concavity of innovation production: Following Hall and Ziedonis (2001), the concavity

parameter of the innovation production function is chosen as ξ = 0.50. This is the

most widely used value in the literature.

6. Standard deviation of innate ability shock: This parameter is chosen to be σa = 0.70, in
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line with findings on empirical income distributions reported in Knowles (1999).

7. Fraction of skilled jobs: This parameter is chosen such that it equals the percentage of

individuals in the U.S. with graduate degrees, which is 11.6% (U.S. Census, 2013).

8. Long-run interest rate: The long-run interest rate of 4.0% is targeted, which deter-

mines the discount factor β.

9. Long-run output growth: Since 1945, the the aggregate output in the U.S. grew at circa

2% per year. The parameter Γ determines the increase in productivity innovation

generates, and hence it plays the foremost role in determining the output growth

rate in the model.

10. The ratio of education spending to GDP: The ratio of the aggregate spending on edu-

cation to GDP in the U.S. is around 7.30% (OECD, 2013).The model counterpart of

this ratio is the aggregate resources spent on education over total output.

11. Intergenerational correlation of earnings: The persistence of earnings across generations

is an important statistic for the model to replicate, since it puts discipline on the

persistence of innate ability which is unobserved. The value of 70% is targeted in

the baseline analysis (Knowles (1999)).88

12. Intergenerational correlation of wealth: The persistence of wealth across generations

is also an important statistic to replicate, since the mechanism that generates the

misallocation of talent in the model works through the wealth inequality between

households. This value is estimated to be 37% in Charles and Hurst (2003).

13. Inequality targets: The calibration procedure aims to generate a realistic income dis-

tribution. To this end, various inequality metrics are calculated using the model-

generated distribution, and matched with their empirical counterparts. These are

88Since there are also estimates of intergenerational correlation of earnings as low as 40% in the literature,
the model is re-estimated with a lower target as a robustness check in Section 3.5.4.
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the Gini index, and log 90/10, 90/50 and 50/10 ratios.89

14. Indirect inference: The baseline extensive and intensive margin regressions in Section

3.3 are replicated in the model. Income is proxied by the income of the agents in the

model, and education is proxied by pre-tertiary education. Relative representation

among inventors in the data is mapped to relative representation in the innovation

sector jobs. Inventor quality in the data is mapped to individual productivity con-

ditional on having an innovation job. As in the empirical analysis, all variables are

normalized by subtracting the mean and dividing by the standard deviation. The

coefficients of income end education in both margins are then targeted.

The success of the calibration exercise in matching the data targets is presented on

Table 15. The interest rate and the yearly GDP growth rate are hit very precisely, and

they determine the values of β and Γ respectively. The model generates an education

spending to GDP ratio somewhat higher than what is observed in the U.S. data. Given

that the number taken from the data does not include the opportunity cost of time spent

by parents in order to nurture their children, overshooting might not be a significant

problem.

The intergenerational correlation of earnings is hit precisely, which disciplines the

persistence of (unobserved) innate ability ρ (positively related), but is also influenced by

the standard deviation of the idiosyncratic job shock σj (negatively related). The intergen-

erational correlation of wealth the model produces is 0.33, which is somewhat lower than

the value of 0.37 observed in the data, but still within a reasonable range.

The model generates a wage income distribution slightly more unequal compared

to the U.S. economy. For instance, the Gini index is calculated to be 0.52 as opposed to

0.48 observed in the data. However, the remaining inequality targets that measure the

89Note that one of these three ratios is a deterministic function of the other two; so it provides no additional
information.
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Figure 10: Changes in Income and Education Effects with Varying Values of ν

inequality in different sections of the distribution show that the model is successful in

matching the shape. Log 90/10, log 90/50 and log 50/10 ratios are all slightly higher

than their data counterparts by similar percentages.

The model is able to replicate the dominance of income on the extensive margin (the

probability of getting an innovation sector job) and the dominance of education on the

intensive margin (the success conditional on getting an innovation job). The coefficients

of the dominated effects (education on the extensive margin, and income on the intensive

margin) are not precisely zero, so the starkness of the differences are more similar to

those observed in the regressions on Columns 3 and 4 of Table 11, as opposed to that on

Column 3 of Table 10 on the intensive margin.

Generating the discrepancy between the effects of income and education on the two

margins is made possible by the credentialing spending channel. Figure 10 plots the

effects of income (red) and education (blue) while varying the influence of credentialing

spending ν in the range of values it can take (ν ∈ [0, 1]). The left panel plots the effects

on the extensive margin, and the right panel plots the same on the intensive margin. As

ν increases from 0 to 1, the predictive power of ancestor income on the probability of

becoming an inventor increases, whereas that of education decreases. On the other hand,
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increasing ν from 0 to 1 does not change the predictive power of ancestor income and

education in opposite directions, slightly increasing both at the same time.90 This makes

it possible to change the value of ν such that the dominance pattern observed in the data

can be hit in the model generated regressions. This differential effect of ν on the two

margins provides the intuition on how targeting the dominance pattern helps pin down

its value.91

3.5 Quantitative Results

In this section, using the parameter values estimated in Section 3.4, several quanti-

tative experiments are conducted to better understand the mechanism of the model, to

assess the welfare costs associated with the misallocation of talent due to the credentialing

spending channel, and to determine socially optimal progressive bequest tax schedules.

The first subsection describes the social welfare function used in the study, and how

two different steady-state economies are compared with each other. The following sub-

section conducts a hypothetical thought experiment where the credentialing spending

channel is completely shut down, which results in an increase in the aggregate output

growth rate as well as social welfare through a reduction in the misallocation of talent.

The third subsection focuses on how a benevolent government can increase social

welfare and economic growth in a decentralized market economy through the policy tool

90Whether income or education dominates on the intensive margin (i.e. inventor productivity) is deter-
mined by other parameters of the model. The model is able to generate any correlation pattern, including
the exact opposite of the empirically observed pattern of dominance, by changing the parameter values.

91One could be worried about whether other parameters that play a part in the determination of the
individual score could generate a similar differential effect on the two margins. The prime candidates are the
elasticity of substitution between innate ability and early childhood education ϵ, and the share of education
in individual productivity ψ. It is found out that this is not the case. In particular, if the credentialing
spending channel is shut down (ν = 0), both ϵ and ψ change the effects of income and education in the same
direction on both margins at the same time. Therefore if the credentialing spending channel is removed from
the model without introducing any other mechanisms, the model is unable to mimic the domination patterns
observed in the data.
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of progressive bequest taxation. Although the growth effect is found to be around 25% of

what can be achieved by shutting down the credentialing spending channel, the welfare

increase is found to be larger and quite significant: 6.20% in consumption equivalent

terms

In Section 3.5.4, the model is recalibrated with a lower intergenerational correlation of

earnings target of 0.45 in order to check whether the model generates similar quantitative

implications. Repeating the credentialing spending shut-down experiment with the new

calibration leads to higher growth and welfare effects, however the increase in magnitudes

are not too large.

3.5.1 Welfare comparisons

In order to measure welfare, a utilitarian social welfare function is employed where

each household is weighed equally. The social planner is assumed to assign equal value

to the utility from consumption of all members of a household at a given time. The utility

in the future is discounted by the discount factor β of the household. Hence, the social

welfare in a balanced growth path equilibrium with output growth rate g is given by

W =
∞

∑
t=0

βt
∫ 1

m=0

(
c1−ω

c,m,t

1 − ω
+

c1−ω
y,m,t−1

1 − ω
+

c1−ω
o,m,t−2

1 − ω

)
dm

=

∫ 1
m=0

(
c1−ω

c,m,0 + c1−ω
y,m,−1 + c1−ω

o,m,−2

)
dm

(1 − ω)(1 − β(1 + g)1−ω)
(3.21)

The welfare comparisons between different economies will be conducted by comparing

the balanced growth path equilibria.92 In order to make two different economies A and

B comparable, both economies will be started at the same aggregate productivity level

z̄A
0 = z̄B

0 = 1. Let ν > 0 be the scalar such that multiplying every agent’s consumption

in economy A with ν results in a welfare number equivalent to the one in economy B.

92Hence this analysis ignores the welfare effects of the transition to the new steady state.
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Simple algebra reveals that ν is given by

ν = (WB/WA)1/(1−ω) (3.22)

where WA and WB denote the welfare in economies A and B respectively. The welfare

gain or loss a move from economy A to economy B provides in consumption equivalent

terms is given by ν − 1. This welfare measure is used in all quantitative exercises.

3.5.2 Shutting down the credentialing spending channel

How does the misallocation of talent affect economic growth and social welfare? In

order to address this question, a simple hypothetical thought experiment will be con-

ducted. Recall that individuals heterogeneous in innate ability, early childhood education

and wealth are able to receive high quality tertiary education if they can achieve a high

enough score given by

s̃(l(h, a), n) = (1 − ν)l(h, a) + νn + ϵj.

The score of an individual is partially influenced by the actual individual productivity

l(h, a), partially by the credentialing spending n, and partially by the random shock ϵj.

Given the scarcity of high quality tertiary education, increasing the growth rate of the

economy is only possible through improving the composition of the individuals who get

high quality tertiary education in terms of individual productivity. If the influence of

credentialing spending could be diminished such that ν = 0, the scores of the individuals

would be perfectly correlated with their actual individual productivity sans the random

shock. This would result in highly talented individuals ending up in the innovation

sector, where they can contribute to the aggregate productivity growth. Following this

line of thought, the economy calibrated in Section 3.4 is taken, and the parameter ν is set

to 0. This hypothetical economy is then compared to the baseline economy.
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Variable Baseline ν = 0 Change
Extensive margin, income effect 0.19 0.05 -73.7%
Extensive margin, education effect 0.07 0.15 114%
Intensive margin, income effect 0.08 0.06 -25.0%
Intensive margin, education effect 0.22 0.20 -9.09%
Yearly GDP growth rate 2.00% 2.21% 10.4%
Education spending/GDP 8.55% 10.2% 19.1%
Aggregate skilled labor, Ls 0.48 0.62 28.4%
Aggregate unskilled labor, Lu 1.91 2.00 4.69%
Mean innate ability of skilled workers, a 2.08 2.57 23.4%
Mean early childhood education of skilled workers, h 2.27 2.96 30.1%
Mean parental wealth of skilled workers, yo 0.87 0.84 -4.32%
Mean bequests received of skilled workers, b 0.49 0.25 -49.5%
Wage income Gini index 0.52 0.56 6.61%
Log 90/10 ratio 1.17 1.20 3.10%
Log 90/50 ratio 0.52 0.57 9.30%
Log 50/10 ratio 0.65 0.64 -1.88%

Table 16: Shutting down the credentialing spending channel

Table 16 displays the values of several statistics of interest in the baseline and hypo-

thetical economies and how much they change in percentage terms. The first four rows

display how the effects of income and education in the extensive and intensive margins

change. In the baseline economy, income effect dominated in the determination of the

chances of getting an innovation job, whereas education effect dominated in the predic-

tion of productivity conditional on becoming an inventor. Now that the credentialing

channel has been shut down, education effect dominates in both the extensive and inten-

sive margins. Thus the people who would perform better as inventors and those who

actually become inventors largely coincide.

The annual GDP growth rate changes from 2.00% to 2.21%, a large increase. This

is caused by a 28.4% increase in the aggregate skilled labor supply Ls. Investigating the

changes in the characteristics of the people who become inventors reveals that this is

driven by higher quality individuals in terms of both innate ability and early childhood

education. The mean innate ability a of inventors increases by 23.4%, indicating a bet-
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ter allocation of naturally talented individuals to where their contribution would be the

greatest. Furthermore, these individuals also receive more early childhood education in-

vestment when they are children, further increasing the average individual productivity

of inventors.

Looking at the parental backgrounds of the inventors, it is observed that the mean

parental wealth is slightly lower by -4.32%. However the mean bequests received fall

tremendously by 49.5%. This is driven by two effects working in the same direction:

(1) since ν = 0, it is no longer possible for less talented children with wealthier parents

to outperform the more talented but less wealthy competitors in score by outspending

them in credentialing, (2) given that their children do not need to spend any money on

credentialing; the parents do not deem it necessary to leave large bequests, spending some

of the extra windfall for their own consumption, and the rest on the productive early

childhood education investment which improves individual productivity l and score s̃

simultaneously.

The inequality measures tell a different story: The decrease in the misallocation of

talent is beneficial for economic growth, but it also leads to a more unequal society in

terms of income. The Gini index increases from 0.52 to 0.57. Examining the income ratios

is more revealing: Log 90/10 ratio increases by 3.10%, exhibiting an increase in the gap

between the rich and the poor. However log 90/50 ratio increases at a much higher rate

of 9.30%, whereas log 50/10 ratio decreases by 1.88%. These results indicate that the

increase in inequality is largely driven by the upper tail of the income distribution. As

more naturally talented individuals have better chances at becoming inventors, they are

also able to earn higher incomes, drifting away from the rest of the workers.

As a combined result of all of these changes, the welfare in the hypothetical economy

is 5.93% higher than the baseline economy in consumption equivalent terms. However, it

is important to keep in mind that the hypothetical economy is still far away from the first
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best. Although the misallocation of talent in the tertiary education stage is reduced to

the effect of the randomness inherent in the allocation process only, the early childhood

education investment in children is still a function of parental wealth. Thus there is still

room for improvement. In addition, the egalitarian social welfare function assigns impor-

tance into equalizing outcomes between households in terms of consumption, so holding

everything constant, there are also potential gains from redistribution of resources. The

following subsection discusses a potential government policy which can address a com-

bination of the listed concerns simultaneously.

3.5.3 Progressive bequest taxation

The previous thought experiment shows that reducing the misallocation of talent in

the economy by shutting down the credentialing spending channel can lead to signifi-

cant gains in growth and welfare. Can a benevolent government achieve similar gains

by utilizing available policy options in a decentralized economy? To this end, socially

optimal progressive bequest taxes will now considered. In order to reduce the cost of

computation, a particular functional form is assumed with the scale parameter τs and

the progressivity parameter τp such that the budget constraint of the old adults in the

decision problem given in (3.12) becomes

co +

(
b

1 − τs

) 1
1−τp

≤ yo

which is equivalent to the old budget constraint if τs = τp = 0. All the collected taxes

are then transferred to the young adults as a type-independent lump sum transfer Tr,

changing the equation that determines yy in (3.13) to

yy =

(
wjy +

w′
jy

1 + r′

)
ly(hy, ay) + b − cn(n) + Tr.
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Variable Baseline Optimal b tax Change
Extensive margin, income effect 0.19 0.17 -10.5%
Extensive margin, education effect 0.07 0.08 14.3%
Intensive margin, income effect 0.08 0.02 -75.0%
Intensive margin, education effect 0.22 0.27 22.7%
Yearly GDP growth rate 2.00% 2.05% 2.50%
Education spending/GDP 8.55% 9.13% 6.85%
Aggregate skilled labor, Ls 0.48 0.51 6.29%
Aggregate unskilled labor, Lu 1.91 1.93 0.94%
Mean innate ability of skilled workers, a 2.08 2.15 3.33%
Mean early childhood education of skilled workers, h 2.27 2.47 8.90%
Mean parental wealth of skilled workers, yo 0.87 0.85 -3.05%
Mean bequests received of skilled workers, b 0.49 0.43 -10.6%
Wage income Gini index 0.52 0.53 1.92%
Log 90/10 ratio 1.17 1.17 0.54%
Log 90/50 ratio 0.52 0.52 0.00%
Log 50/10 ratio 0.65 0.66 0.01%

Table 17: Optimal progressive bequest taxation results

In order to prevent lump sum taxes, Tr ≥ 0 is imposed, and the government must balance

its budget every period.

The welfare maximizing values of τs and τp are found to be 0.125 and 0.171 respec-

tively. The bequest tax schedule implied by these two values is quite progressive: The

average bequest tax rate faced by the top 1% is 12.1%, whereas this number falls to 9.70%

for the top 5%, and 4.18% for the top 10%. In fact, when the transfers are also taken into

account, the bottom 95% of the households are net recipients, whereas only the top 5%

pay into the system. Furthermore, as it will be demonstrated later on, this progressive

taxation scheme does not result in a less productive society: the aggregate productivity of

the inventors and the growth rate of output are higher in this alternative economy. Hence

the increased equity does not come at the cost of reducing efficiency.

Table 17 shows how the statistics of interest change compared to the baseline under

the optimal progressive bequest taxation policy. Looking at the regression targets, and the

extensive margin in particular, income loses its explanatory power by 10.5% of its value,
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whereas that of education increases by 14.3%. The effects on the intensive margin are

much more pronounced, where income loses 75% of its explanatory power, and education

completely dominates. All of these targets point towards a decrease in the misallocation

of talent.

The growth rate of the economy increases to 2.05% from its baseline value of 2.00%,

which corresponds to one quarter of the effect observed in the case of ν = 0. This is

caused by the increase in the aggregate skilled labor supply Ls by 6.29%. Examining

the mean innate ability a and early childhood education h of inventors, the increase of

quality in the composition is driven more by early childhood education (8.90%) rather

than innate ability (3.33%). So it can be argued that the optimal bequest taxes contribute

to the growth rate of the economy more through reducing the suboptimal investment

in early childhood education rather than allocating higher innate ability people to the

innovation sector. However, both channels have a positive contribution regardless of their

relative power.

In contrast to the thought experiment where credentialing spending is shut down, the

increase in the growth rate of the economy is not accompanied by a significant increase

in income inequality. The inequality metrics under the optimal taxation policy have very

similar values to their baseline values. This is caused by the redistributive nature of the

optimal tax policy. As a result of this, even though the growth gain is one quarter of the

ν = 0 case, the welfare gain is calculated to be slightly higher: 6.20% in consumption

equivalent terms.

3.5.4 Recalibration with lower intergenerational earnings persistence

The intergenerational persistence of innate ability ρ is an important parameter of the

model, the value of which has an important bearing on quantitative counterfactuals. Since

innate ability is not directly observable, the value of ρ is indirectly inferred by trying to
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Variable Baseline ν = 0 Change
Extensive margin, income effect 0.05 0.03 -40.0%
Extensive margin, education effect 0.03 0.05 66.7%
Intensive margin, income effect 0.05 0.07 40.0%
Intensive margin, education effect 0.06 0.09 50.0%
Yearly GDP growth rate 2.00% 2.29% 14.5%
Education spending/GDP 7.09% 10.7% 51.5%
Aggregate skilled labor, Ls 0.37 0.52 42.5%
Aggregate unskilled labor, Lu 1.72 1.92 11.9%
Mean innate ability of skilled workers, a 1.85 2.45 32.5%
Mean early childhood education of skilled workers, h 1.43 2.18 52.7%
Mean parental wealth of skilled workers, yo 0.70 0.74 5.34%
Mean bequests received of skilled workers, b 0.45 0.28 -38.3%
Wage income Gini index 0.49 0.52 6.37%
Log 90/10 ratio 1.03 1.00 -3.11%
Log 90/50 ratio 0.48 0.46 -3.71%
Log 50/10 ratio 0.56 0.54 -2.59%

Table 18: Shutting down the credentialing spending channel - Low earnings persistence

match the intergenerational correlation of earnings (IGE) generated in the model with

that found in the data. However, the exact value of IGE in the U.S. over the time period

is not a settled topic in the literature.93 Although consistent with the highly persistent

effects of income and education discovered in Section 3.3, the value of 0.70 targeted in

the baseline analysis is on the higher end of the estimates found in the literature. This

section repeats the calibration exercise in Section 3.4 with a lower IGE target of 0.45, and

assesses its effects.

The calibrated values of most parameters remain very similar to the results in Table

14, with the exception of intergenerational persistence of innate ability, ρ. This falls from

0.70 to 0.40, a very significant decrease. As a result, the effects of income and education

on both margins fall, as well as the differences between the effects for a given regression.

The earnings inequality in the steady state is also lower.

93See the seminal work of Solon (1999) on the issue, and Black and Devereux (2010), Chetty et al. (2014)
and the references therein for a recent survey of the literature.
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How does the lower value of ρ effect the counterfactual experiments? In order to

answer this question, the hypothetical thought experiment in Section 3.5.2 is repeated un-

der the new calibration. Table 18 summarizes the results of shutting down credentialing

spending by setting ν = 0. The output growth rate of the economy increases from 2.00%

to 2.29%, driven by a huge 42.5% increase in aggregate skilled labor supply. Compared

to the baseline economy, the welfare gain is found to be 6.63% in consumption equivalent

terms.

These values are slightly higher compared to those found in Section 3.5.2. Why is this

the case? Inspection reveals that this is caused by a higher degree of initial misallocation

of talent in the low IGE economy. Under the baseline calibration, due to the higher

persistence of innate ability ρ at 0.70, the rich and the talented largely coincide in the

stationary equilibrium. When this persistence is lower at 0.40, the chances of a genius

being born to a comparatively poor household are higher. As a result of this, the mean

innate ability a of inventors is lower before the shutdown of the credentialing channel.

Hence, the growth and welfare implications are amplified when ρ is lower.

3.6 Conclusions

This paper develops a model of misallocation of talent in the innovation sector. Work-

ers in the economy are finitely-lived, and heterogeneous in terms of wealth, early child-

hood education, and innate ability. The sectors in the economy are separated into pro-

duction and innovation, where the latter serves to improve the productivity of the prior.

The training necessary to become a worker in the innovation sector is scarce. Agents

compete against each other in order to acquire this scarce training so that they can get

innovation sector jobs that pay more. They use productive early childhood education

investment as well as (socially) unproductive credentialing spending in order to increase

their chances. Financial frictions in the form of a non-negative bequest constraint and the
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inability to insure against idiosyncratic risk, coupled with the misalignment of private

and social incentives result in a misallocation of talent across the two sectors. The nature

and magnitude of this misallocation of talent are examined.

Empirical analysis makes use of three sets of micro-data—NBER USPTO Utility

Patents Grant Database, The Careers and Co-Authorship Networks of U.S. Patent-

Holders, and IPUMS-USA 1930 5% Sample—that were previously unlinked in order to

establish two new stylized facts: (1) People from richer backgrounds are more likely to

become inventors; but those from more educated backgrounds are not. (2) People from

more educated backgrounds become more prolific inventors; but those from richer back-

grounds exhibit no such aptitude. This discrepancy suggests a misallocation of talent in

the innovation sector, which motivates the development of a model that can generate the

correlation patterns observed in the data. The results are robust to the use of alternative

patent and inventor quality measures, as well as potential biases that might be caused by

immigration and similar demographic changes.

The developed model is calibrated to match data targets including aggregate mo-

ments of the U.S. economy such as the yearly long-run output growth and real interest

rates and the ratio of education spending to GDP; moments obtained using micro data

such as intergenerational correlation of earnings and wealth and various inequality mea-

sures regarding the earnings distribution; as well as data targets taken from the original

empirical analysis such as the effect of income and education on the probability of getting

an innovation sector job, and the productivity conditional on having one. The calibrated

model is then used to explore how the misallocation of talent between the production and

innovation sectors is generated, and the findings suggest that the welfare effects of this

misallocation might be substantial.

The quantitative analysis reveals that if the credentialing spending channel could

be shut down, the aggregate output growth rate would increase from 2.00% to 2.21%,

171



leading to a welfare gain of 5.93% in consumption equivalent terms. Another quantitative

experiment that seeks to calculate the socially optimal bequest taxation policy reveals that

the growth rate could be increased to 2.05% even in a decentralized market economy by

leveling the playing field and reducing the effect of suboptimal early childhood education

spending due to financial frictions. The resulting welfare gain is quite significant at 6.20%.

A robustness analysis is conducted to show how the model performs when different

calibration targets are chosen, and the quantitative results remain largely similar.

The stylized facts established in the empirical analysis are quite provoking, and the

model suggests that reducing the existing misallocation of talent in the economy might

yield significant welfare gains through an increase in the long-run output growth rate.

Given how important the upper tail of the talent distribution is in generating the ideas that

drive economic progress, it is likely that policies that alleviate the misallocation through

reducing wealth inequality or financial frictions might be desirable. Future research is

needed to establish more detailed policy responses that take additional life-cycle elements

into account, as well as the welfare implications of the transition to the new steady-state.

The empirical methodology used in the paper can also be applied in any other sector

where surname-level information is available, which would considerably expand our un-

derstanding of the allocation of talent in other sectors, as well as the intergenerational

dynamics of socioeconomic status.
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Appendix A

Appendix to Chapter 1

The appendix contains two sections, namely Sections A.1 and A.2. Section A.1 deals

with theoretical aspects of the analysis. In particular, the full solution for the symmetric

balanced growth is provided. Section A.2 pertains to the empirical work. This section

describes the databases that are used and discusses how they are cleaned and linked

together. The construction of the distance metrics and patent stock measures used in the

analysis are then detailed. The empirical section also repeats the panel data regression

analysis reported in Table 3 when the licensing intensity of a sector is included. Last, the

Jacobian associated with the calibration procedure is presented.

A.1 Theory Appendix

A.1.1 Balanced Growth

The analysis is restricted to studying a symmetric balanced growth path. The solution

to the economy along a balanced growth path will now be characterized. Suppose that

mean level of productivity for firms, z, grows at the constant gross rate g. Specify the
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variables z and z in transformed form so that z̃ = zζ/(ζ+λ) and z̃ = z/zλ/(ζ+λ). Thus, z̃

grows at rate gζ/(ζ+λ) and, on average, so will z̃. It turns out that z̃ (or equivalently z)

is sufficient to characterize the aggregate state of the economy along a balanced growth

path. It also turns out that the form of the distribution for d-type patent buyers, or G,

does not matter.

Proposition 6. (Balanced Growth) There exists a symmetric balanced growth path of the following

form:

1. The interest factor, r, and rental rate on capital, r̃, are given by (1.22) and (1.23).

2. The value functions for buying, keeping and selling firms have linear forms in the state

variables z̃ and z̃. Specifically, B(z; z) = b1z̃ + b2z̃, K(z + γdxz; z) = k1z̃ + k2(x)z̃, and

S(z; z) = s1z̃ + s2z̃.

3. The indicator function for an innovator specifies a threshold rule such that Ik(z, x; z) = 1,

whenever x > xk, and is zero otherwise. I.e., an innovating firm keeps its d-type idea when

x > xk and sells otherwise.

4. The indicator function for a sale between a buyer and the patent agent for a d-type idea

specifies a threshold rule such that Ia(z, x; z) = 1, whenever x > xa, and is zero otherwise.

I.e., a sale between a buyer and a patent agents occurs if and only if x > xa.

5. The value function for a patent agent has the linear form A(z) = az̃.

6. The beginning-of-period value function for a firm has the linear form V(z; z) = v1z̃ + v2z̃.

The constant rate of innovation for a d-type idea by a firm is

i = i =
{

1
χ

[
X(xk)s2 +

∫ 1

xk

k2(x)dX(x)− b2

]}1/ρ

. (A.1)
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7. The constant net rate of growth for aggregate productivity, g − 1, is implicitly given by

g − 1 = γd

[
i
∫ 1

xk

xdX(x) + (1 − i)mb(
na

nb
)
∫ 1

xa

xdx
]
+ γnp, (A.2)

with the aggregate law of motion (1.3) taking the simple form

z′ = gz.

8. The prices for selling and buying d-type patents are

q = az̃,

and

P(z, x; z) =
[
(1 − ω)σrgζ/(ζ+λ)a+ ω(π + rv1/gλ/(ζ+λ))γdx

]
z̃,

where π is a constant.

9. The matching probabilities for sellers and buyers of d-type patents are constant and implicitly

defined by

ma(
na

nb
) = η

{
{1 − σ[1 − ma(

na
nb
)(1 − xa)]}(1 − i)

σiX(xk)

}1−µ

, (A.3)

and

mb(
na

nb
) = η

{
σiX(xk)

{1 − σ[1 − ma(
na
nb
)(1 − xa)]}(1 − i)

}µ

. (A.4)

10. The constants a, b1, b2, k1, π, s1, s2, v1, v2, xa and xk, as well as the linear term

k2(x), are determined by a nonlinear equation system, in conjunction with the 5 equations

(1.22), (A.1), (A.2), (A.3) and (A.4) that determine the 5 variables g, i, r, ma(na/nb), and

mb(na/nb). This system of nonlinear equations does not involve either z̃ or z̃.

Along a balanced growth path, wages grow at the constant gross rate gζ/(ζ+λ), a fact

evident from equation (1.20). So will aggregate output and profits, as can be seen from
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(1.7). The gross interest rate, 1/r, will remain constant along a balanced growth path.

Point 2 implies that on average the values of the firm at the buying, selling, and keeping

stages also grow at the rate of growth of output. So, the relative values of a firm at these

stages remain constant in a balanced growth equilibrium. Thus, it is not surprising then

that the decisions to buy, sell or keep d-type patents in terms of propinquity, x, do not

change over time. Hence, the function Ik(z, x; z) does not depend on z. It may seem

surprising that the decision doesn’t depend on z, either. This transpires because a firm’s

profits are linear in z, as equation (1.7) shows. It turns out that k1 = s1, which implies

that only x is relevant [when comparing k1z̃ + k2(x)z̃ with s1z̃ + s2z̃]. Likewise, the value

of a patent agent also increases at rate gζ/(ζ+λ)–point 3. Hence, equation (1.21) dictates

that the price, q, at which a firm can sell a d-type patent must also grow at this rate.

Additionally, it is easy to see from (1.16) that the price at which the agent sells a d-type

patent to firms, p, will appreciate at this rate too. Note that this price does not depend on

z, because given the linear form of the value function, V, only x will be relevant (when

comparing v1z′ with v1z). Additionally, using (1.17) it should now not be too difficult to

see that the function Ia(z, x; z) will only depend on x. It’s easy to deduce from equation

(1.14) that the rate of innovation, i, will be constant over time if B, K, and S grow at

the same rate as aggregate productivity. Since the decisions to buy and sell patents only

depend on x, it is straightforward that the number of buyers and sellers on the patent

market are fixed along a balanced growth path. To see that the form for the distribution

function over buyers, G(z), does not matter note that this function only enters value

function for the patent agent (1.15). But, by points (4) and (8), the functions Ia(z, x; z) and

P(z, x; z) do not depend on z. Thus, G(z) is irrelevant in (1.15). Last, the evolution of

shape of the distribution function Z over time does not matter for the analysis. Its mean

grows at the gross rate g, independently of any transformation in shape.

Proof of the Existence of a Balanced Growth Path. The proof proceeds using a guess and ver-

ify procedure (or the method of undetermined coefficients).
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Point (1). To derive the interest factor and rental rate, r and r̃, imagine the problem of

a consumer/worker who can invest in one period bonds that pay a gross interest rate of

1/r. The Euler equation for asset accumulation will read

c−ε = (β/r)(c′)−ε.

Along a balanced growth path, if the mean level of productivity grows at rate g then

consumption, the capital stock and output must grow at rate gζ/(ζ+λ). This fact can be

gleaned from the production function (1.1), by assuming z grows at rate g, that capital

and output grow at another common rate, and that labor remains constant. Therefore,

r = β/gεζ/(ζ+λ). In standard fashion, the rental rate on capital is given by r̃ = 1/r − 1 +

δ = gεζ/(ζ+λ)/β − 1 + δ.

Point (4). The form of the threshold rule for buying a d-type patent follows from

the fact the sum of the surplus (sans price) accruing to a firm that buys a patent and

the surplus (sans price) to the patent agent must be greater than zero; otherwise, a non-

negative sale price, p, for the d-type patent would not exist. First, plug the solutions for

w and r̃, or (1.20) and (1.23), into the profit function (1.7) to obtain

e′Π(z, z) = π
e′z

zλ/(ζ+λ)
= πe′ z̃, (A.5)

and

E[e′Π(z, z)] = πz̃, since E[e′] = 1,

with

π ≡ ζ

gλ/(ζ+λ)

(
κ

gεζ/(ζ+λ)/β + δ − 1

)κ/(ζ+λ)

. (A.6)

Second, conjecture that the value functions V(z; z) and A(s) have the forms V(z; z) =

v1z̃ + v2z̃ and A(s) = az̃. Third, given the above, note that the (sans price) surpluses for
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a buying firm and the patent agent are given by

π(z̃ + γdxz̃)− πz̃ + rE[V
(
z + γdxz, z′

)
]− rE[V

(
z, z′

)
] = (π +

rv1

gλ/(ζ+λ)
)γdxz̃,

and

−σrA(z′) = −σrgζ/(ζ+λ)az̃ [cf. (1.17)].

It is easy to deduce from (1.16) and (1.17) that sum of these two quantities must be

positive for a trade to take place. Note that whether or not the sum of the above two

equations is nonnegative does not depend on z̃. This sum is also increasing in x. Solving

for the value of x that sets the sum to zero yields

xa =
σrgζ/(ζ+λ)a

(π + rv1/gλ/(ζ+λ))γd
. (A.7)

Thus, xa is a constant.

Point (8). The solutions for d-type patent prices, q and P(z, x; z), are easy to obtain.

Insert the above formulae for the (sans price) surplus for a buying firm and the (sans

price) surplus for a patent agent into expression (1.16) to get

P(z, x; z) =
[
ω(π + rv1/gλ/(ζ+λ))γdx + (1 − ω)σrgζ/(ζ+λ)a

]
z̃.

It is immediate from (1.21) that q = az̃, predicated upon the guess A(s) = az̃.

Point (5). It will now be shown that the value function for the patent agent, A(z),

has the conjectured linear form. Focus on equation (1.15), which specifies the solution

for A. The price for a d-type patent does not depend on z, given Point (8). Additionally,

D(x) = U[0, 1]. Furthermore, Ia = 1 for x > xa and is zero otherwise. Thus,

A(z) = az̃ = ma(na/nb)
∫ 1

xa

P(z, x; z)dx + [1 − ma(na/nb)Pr(x ≥ xa)]σrA(z′),
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from which it follows that

a = σrgζ/(ζ+λ)a− ma(na/nb)(1 − xa)ωσrgζ/(ζ+λ)a (A.8)

+ma(na/nb)ω(π + rv1/gλ/(ζ+λ))γd(1 − xa)(1 + xa)/2.

Point (2). The value function for a buying firm, B(z; z), can be determined in a manner

similar to that for A in Point (5). Here

B(z; z) = b1z̃ + b2z̃,

with

b1 = π + rv1/gλ/(ζ+λ), (A.9)

and

b2 = −mb(na/nb)(1 − xa)(1 − ω)σrgζ/(ζ+λ)a+ rv2gζ/(ζ+λ) (A.10)

+mb(na/nb)(1 − ω)(π + rv1/gλ/(ζ+λ))γd(1 − xa)(1 + xa)/2

+(π + rv1/gλ/(ζ+λ))γnp.

To derive this solution, the results in Points (4) and (8), along with the conjectured solution

for V, are used in equation (1.8). Similarly, using equation (1.11) it can be shown that the

value function for a seller, S(z; z), is given by

S(z; z) = s1z̃ + s2z̃,

with

s1 = π + rv1/gλ/(ζ+λ), (A.11)

and

s2 = σa+ rv2gζ/(ζ+λ) + (π + rv1/gλ/(ζ+λ))γnp. (A.12)
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Last, following from (1.10), a keeper’s value function can be written as

K(z + γdxz; z) = k1z̃ + k2(x)z̃,

with

k1 = π + rv1/gλ/(ζ+λ), (A.13)

and

k2(x) = (π + rv1/gλ/(ζ+λ))γdx + rv2gζ/(ζ+λ) + (π + rv1/gλ/(ζ+λ))γnp. (A.14)

Point (3). The threshold rule for keeping or selling a d-type patent is determined by

the condition

k1z̃ + k2(xk)z̃=s1z̃ + s2z̃;

that is, at the threshold a firm is indifferent between keeping or selling the patent. Now,

s1 = k1 so that

(π + rv1/gλ/(ζ+λ))γdxk + rv2gζ/(ζ+λ) + (π + rv1/gλ/(ζ+λ))γnp = σa+ rv2gζ/(ζ+λ)

+(π + rv1/gλ/(ζ+λ))γnp.

Hence,

xk =
σa[

π + rv1/gλ/(ζ+λ)
]

γd
, (A.15)

a constant.

Point (6). Turn now to the beginning-of-period value function for the firm, V(z; z),

and the rate of innovation, i, that it will choose. By using the linear forms for the value

functions B(z; z), K(z + γdxz; z), and S(z; z), the fact that b1 = k1 = s1, and the property

that the threshold rule takes the form Ik = 1 for x > xk and Ik = 0 otherwise, the firm’s
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dynamic programming problem (1.13) can be rewritten as

V(z; z) = z̃ max
i∈[0,1]

{[X(xk)s2 +
∫ 1

xk

k2(x)dX(x)− b2]i −
χ

1 + ρ
i1+ρ}

+ (π + rv1/gλ/(ζ+λ))z̃ + b2z̃.

Differentiating with respect to i then gives

X(xk)s2 +
∫ 1

xk

k2(x)dX(x)− b2 = χiρ,

from which (A.1) follows. Using the solution for i, as given by (A.1), in the above pro-

gramming problem yields

V(z; z) =
ρ

(1 + ρ)χ1/ρ
[X(xk)s2 +

∫ 1

xk

k2(x)dX(x)− b2]
1+ 1

ρ z̃ + (π + rv1/gλ/(ζ+λ))z̃ + b2z̃.

It then follows that

v1 =
gλ/(ζ+λ)

gλ/(ζ+λ) − r
π, (A.16)

and

v2 = b2 +
ρ

(1 + ρ)χ1/ρ
[X(xk)s2 +

∫ 1

xk

k2(x)dX(x)− b2]
1+ 1

ρ . (A.17)

Point (7). The gross rate of growth for aggregate productivity, g, will now be cal-

culated. Suppose that aggregate productivity is currently z. A fraction i of firms will

innovate today. Those firms that draw x > xk will keep their good patent. The produc-

tivity for these firms will increase. The fraction 1 − i of firms will fail to innovate. Out of

these firms the proportion mb(na/nb) will find a seller on the market for d-type patents.

They will buy a d-type patent when x > xa. Thus, z will evolve according to

z′ = z + i
∫ 1

xk

γdxzdX(x) + mb(na/nb)(1 − i)
∫ 1

xa

γdxzdx + γnpz.

This implies (A.2).
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Point (9). The number of buyers on the market for d-type patents is given by nb =

1 − i; all firms that fail to innovate will try to buy a d-type patent. Along a symmetric

balanced growth path, the number of patent agents, na, must satisfy the equation

na = σna[1 − ma(na/nb)(1 − xa)] + σiX(xk).

Focus on the right-hand side. Take the first term. Suppose that there are na patent agents

at the beginning of the period. A fraction σ of these agents will survive into next period.

Out of these, mb(na/nb)(1 − xa) will find a buyer. Thus, they will not be around these

next period. Move to the second term. A mass of iX(xk) new firms will decide to sell

their patents Out of this, the fraction σ will survive. The sum of these two terms equals

the new stock of patent for sale, na. Solving yields

na =
σiX(xk)

1 − σ[1 − ma(na/nb)(1 − xa)]
and

na

nb
=

σiX(xk)

(1 − i){1 − σ[1 − ma(na/nb)(1 − xa)]}
.

Equations (A.3) and (A.4) follow immediately.

Point (10). The 12 constants, viz a, b1, b2, k1, π, s1, s2, v1, v2, xa and xk, in conjunction

with the linear term k2(x), are specified by the 12 non-linear equation (A.6) to (A.17). The

equations include the variables g, i, r, ma(na/nb), and mb(na/nb). So, equations (1.22),

(A.1), (A.2), (A.3) and (A.4) must be appended to the system to obtain a system of 17

equations in 17 unknowns. This system does not depend on either z̃ or z̃.

A.1.2 More on Tacking on a Market for n-type Patents

The discussion in Section 1.3.4 is completed here. An n-type idea is worth (π +

rv1/gλ/(ζ+λ))γnz̃ in production value to a firm.94 Specifically, it will increase z′ by γnz.

94In Section A.1.1 it is shown that the value functions for buying, keeping, selling and innovating firms are
linear in the expected value of a new n-type idea, as can be seen by examining the coefficients, b2, k2(x), s2,
and v2. The terms in question have the all form (π + rv1/gλ/(ζ+λ))np, implying that the production value of
an n-type idea is (π + rv1/gλ/(ζ+λ))n–see (A.10), (A.12), (A.14) and (A.17).
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This will lead to increase in current profits in the amount πγnz̃ and discounted expected

future profits by rv1/gλ/(ζ+λ)γnz̃. Any price, qb, in the interval [0, (π + rv1/gλ/(ζ+λ))γnz̃]

can be an equilibrium market price on the market for n-type patents. The exact value for

qb doesn’t matter though. At the time of all decision making, the expected discounted

present value of profits arising from an n-type patent is p[(1 − ps)(π + rv1/gλ/(ζ+λ))γnz̃

+psqb]+(1− p)pb[(π + rv1/gλ/(ζ+λ))γnz̃ − qb], which takes into account the keeping, sell-

ing and buying events, respectively. This expression reduces to p(π + rv1/gλ/(ζ+λ))γnz̃,

using the fact that pps = (1− p)pb. Thus, the expected discounted present value of profits

associated with an n-type patent does not involve the equilibrium market price, qb, or the

buying and selling probabilities, pb and ps. Therefore, adding a market for n-type patents

does not alter the solution for the balanced growth path presented in Proposition 6.

A.2 Empirical Appendix

The brunt of the analysis relies on data from three sources: USPTO, NBER Patent

Database Project (PDP), and Compustat. The first source contains data on the patents that

are reassigned across firms. The second is used to retrieve information on the technology

classes for patents and the stocks of patents for firms. Facts about the employments and

stock market values for firms are obtained from the third source.

A.2.1 Patent Reassignment Data (PRD)

The patent assignment data is obtained from the publicly available U.S. Patent and

Trademark Office (USPTO) patent assignment files hosted by Google Patents Beta. These

files contain all records of changes made to U.S. patents for the years 1980-2011. The files

are parsed and combined to create the dataset. The following variables are kept:

• Patent number: The unique patent number assigned to each patent granted by the
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USPTO.

• Record date: Date of creation for the record.

• Execution date: Date for the legal execution of the record.

• Conveyance text: A text variable describing the reason for the creation of the record.

Examples are: “Assignment of assignor’s interest”, “Security Agreement”,

“Merger”, etc.

• Assignee: The name of the entity assigning the patent (i.e., the seller if the patent is

being sold).

• Assignor: The name of the entity to which the patent is being assigned (i.e., the

buyer if the patent is being sold).

• Patent application date: Date of application for the patent.

• Patent grant date: Date of grant for the patent.

• Patent technology class: The technology class assigned to the patent by the USPTO

according to its internal classification system.95

The entries for which this information are inaccessible are dropped from the sample.

During the parsing process, the following are done:

• Only transfer agreements between companies are kept.

• Only utility patents are kept; entries regarding design patents are dropped.

This cleaning process leaves 966,427 observations. Using the string variable that states the

reason for the record, all reassignments that are not directly related to sales are dropped

(for instance, mergers, license grants, splits, mortgages, court orders, etc.)

95This variable is not used, however, to represent the technology class for a patent, as is discussed below.
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In order to create an even more conservative indicator of patent reassignments, a

company name-matching algorithm is employed, so that marking internal transfers as

reassignments can be avoided, where patents are moved within the same firm, or between

the subsidiaries of the firm. The idea behind the company name-matching algorithm is to

clean the string variables for the assignor and the assignee of all unnecessary indicators

and company type abbreviations. If the cleaned assignor and assignee strings are equal,

the type of the record is changed to internal transfer, provided that it was identified as a

reassignment before.

The pseudo-code for the algorithm, an enhanced version of Kerr and Fu (2006), is as

follows:

1. All letters are made upper case.

2. The portion of the string after the first comma is deleted. (e.g., AMF INCORPO-

RATED, A CORP OF N.J. becomes AMF INCORPORATED)

3. If the string starts with “THE ”, the first 4 characters are deleted.

4. All non-alphanumeric characters are removed.

5. Trailing company identifiers are deleted if found. The string goes through this pro-

cess 5 times. The company identifiers are the following: B, AG, BV, CENTER, CO,

COMPANY, COMPANIES, CORP, CORPORATION, DIV, GMBH, GROUP, INC, IN-

CORPORATED, KG, LC, LIMITED, LIMITED PARTNERSHIP, LLC, LP, LTD NV,

PLC, SA, SARL, SNC, SPA, SRL, TRUST, USA, KABUSHIKI, KAISHA, AKTIENGE-

SELLSCHAFT, AKTIEBOLAG, SE, CORPORATIN, CORPORATON, TRUST,

GROUP, GRP, HLDGS, HOLDINGS, COMM, INDS, HLDG, TECH, and GAISHA.

6. If the resulting string has length zero, that string is declared as needing protection.

Some examples that are protected by this procedure: “CORPORATION, ORACLE”,

“KAISHA, ASAHI KAISEI KABUSHIKI”, “LIMITED, ZELLWEGER ANALYTICS”.

185



7. The algorithm is re-run from the beginning on the original strings with one differ-

ence: The strings that are declared as needing protection skip the second step.

A.2.2 USPTO Utility Patents Grant Data (PDP)

The patent grant data comes from the NBER Patent Database Project (PDP), and

contains data for all the utility patents granted between the years 1976-2006. How the

PDP and PRD are linked to each other is discussed later on.

A.2.3 Compustat North American Fundamentals (Annual)

The Compustat data for publicly traded firms in North America between the years

1974-2006 is retrieved from Wharton Research Data Services. The Compustat database

and the NBER PDP database are connected using the matching procedure provided

alongside the PDP data. Extensive information on how the matching is done can be

found on the project website.

A.2.4 Connecting PRD and PDP Data

There are two different questions of interest, which require combining the Patent

Database Project data with the Patent Reassignment Data. The first analysis is on whether

a patent is ever reassigned (i.e. sold) over its entire lifetime, and what determines the

probability of this event. For this purpose, it is only necessary to connect the information

from PRD to the firm which applied for the patent. This is easily done by using the

unique patent number each patent is given by USPTO.

The second question involves the change in match quality of the patent when it is

traded between two firms. In this case, one needs to know the characteristics of both the

assignor and the assignee firm for each reassignment record in the PRD dataset. However,
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there is no existing connection established between the PRD and PDP datasets. To connect

these datasets, the company name-matching algorithm described earlier is employed.

A.2.5 Variable Construction

Patent-to-Patent Distance Metric

In order to construct a topology on the technology space empirically, it is necessary

to create a distance metric between different technology classes. Such a metric enables

one to speak about the distance between two patents in the technology space, and leads

to the construction of more advanced metrics.

The first 2 digits of the IPC (International Patent Classification) codes of a patent are

chosen to indicate its technology class. The IPC code used for a patent is taken from the

PDP data and differs from the classification scheme employed in the PRD data. It should

be noted that the PDP data actually contain more than a single IPC class for a single

patent in some cases, since the IPC codes were assigned using a concordance between the

IPC and the internal classification system of USPTO. The IPC code provided in the PDP

file with assignees is used in such cases, which is unique for each patent.

As discussed in the main text, a plausible distance metric between patent classes can

be generated by looking at how often two different technology classes are cited together.

Formally:

d(X, Y) ≡ 1 − #(X ∩ Y)
#(X ∪ Y)

, with 0 ≤ d(X, Y) ≤ 1.

where #(X ∩ Y) denotes the number of patents that cite technology classes X and Y

together, and #(X ∪ Y) denotes the number of patents which either cite X or Y or both.
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Definition of a Firm in the Data

There are four different entity identifiers in the NBER PDP dataset. The USPTO

assignee number is the identifier provided by USPTO itself, but the creators of the PDP

have found that it is not very accurate. A single assignee might have many different

USPTO assignee numbers. The PDP uses some matching algorithms on the names of

the assignees to create a more accurate assignee identifier, called PDPASS. They also link

the patent data to Compustat data. Compustat has an identifier called GVKEY. However,

these refer to securities rather than firms. So a single firm might be represented by many

GVKEY’s. For this reason, they use a dynamic matching algorithm again to link all

GVKEY’s to certain PDPCO’s, where the latter is a unique firm identifier that is created

for the NBER PDP database project. The project creates this identifier in order to be able

to account for name changes, mergers & acquisitions, etc. This paper follows the same

procedure.

Patent-to-Firm Distance Metric

In order to measure how close a patent is to a firm in the technology spectrum, a

metric is necessary. However, throughout their lifetimes firms register patents in multiple

technology classes. Hence the patent-to-patent distance metric is insufficient for this

purpose. One possible way to construct a patent-to-firm distance metric is to compare

a patent to the past patent portfolio of the firm. The distance measure between each

patent a firm registered in the past, and the new patent in question can be calculated

using the patent-to-patent distance metric offered earlier. The distance between the firm

and the patent should be a function of these separate distances. Equation (1.24) defines

a parametric family of distance measures indexed by ι. The analysis is conducted for

several values of ι.
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Creating the Patent Stock Variable for Compustat Firms

As argued in Hall et al. (2005), the citation-weighted patent portfolio of a firm is a

plausible indicator of the intangible knowledge stock of a firm. The authors demonstrate

that this measure has additional explanatory power for the market value of a firm above

and beyond the conventional discounted sum of R&D spending of a firm, since R&D is a

stochastic process which can succeed or fail; whereas patents are quantifiable products of

this process when it is successful. Furthermore, it is revealed that the number of citations

a patent receives is a fine indicator of the patent’s worth, increasing the market value of a

firm at an increasing rate as the number of citations go higher.

Since all the future citations to a patent cannot be observed at any given date, the

citations variable suffers from a truncation problem. There are also technology class and

year fixed effects to consider. All of these issues are thoroughly investigated by Hall et al.

(2005); they provide a variable called hjtwt in order to correct the citation number of

each patent in the PDP dataset. This study uses their correction method. In the end, a

corrected citations number for each patent is obtained. In order to create the patent stock

variable of a firm (PDPCO), the corrected citations number across all the patents of a firm

are added together at each year. This variable is called patent stock.

In addition to the patent stock, the corrected citations number across all the patents

of a firm, multiplied by the patent-to-firm distance generated at the date of the patent’s

inclusion into the portfolio are also added together to create a new variable. This variable

quantifies the overall waste in the patent stock caused by the mismatch between the

technology class of the patents and the firm. This variable is expected to have a negative

effect on market value of equity for a firm. The variable is called the distance-adjusted

patent stock.
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Patent Sale Decision

(Compustat Sample with Licensing Intensity)

Dependent Variable (=1, if sold, 0 otherwise)
(1) (2) (3) (4) (5) (6)

distance 3.737*** 3.728*** 3.741*** 4.125*** 4.123*** 4.413***
(0.138) (0.138) (0.138) (0.142) (0.142) (0.157)

tech-class litigation intensity no yes no no yes no
patent litigation dummy no no yes no yes no
sector licensing intensity no no no yes yes no
only renewed patents no no no no no yes
Obs 1,151,348 1,151,348 1,151,348 1,078,735 1,078,735 919,421
R2 0.32 0.32 0.32 0.32 0.32 0.34

Table 19: Patent Sale Decision with Licensing Intensity

A.2.6 Patent Sale Decision with Licensing Intensity

Table 19 introduces the licensing intensity of the sector. This variable is available only

for Compustat firms. Therefore the sample is reduced by half. Because of this sizable

change, columns 1-3 repeat the same exercises as their counterparts in Table 3. One major

difference to note is that the association between the distance and sale indicators becomes

more pronounced, almost doubled. Column 4 introduces licensing intensity and column

5 includes the litigation and licensing controls simultaneously. The last column redoes

the regression in column 1 while purging the patents that were not renewed once.

A.2.7 The Impact of Parameter Values on the Data Targets

Table 20 presents the Jacobian associated with the calibration/estimation. This Jaco-

bian provides useful information about how the parameters influence the model’s ability

to hit the data targets. By moving along a row, one can see how a parameter in question

influences the various data targets. Alternatively, by going down a column one can gauge

what parameters are important for hitting the data target of concern.
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Calibration/Estimation Jacobian (Elasticities, %)

Param Growth R&D/GDP Frac. sold Avg. Dur. Dur. CV daps/ps ps/emp dist red, all

γd 74.39 47.39 -8.64 0.36 -0.18 15.71 -4.64 -4.12

χ -17.18 -10.55 23.06 -4.81 2.42 -7.68 -23.37 4.67

µ 0.86 -1.41 9.63 -4.22 2.12 -4.27 -2.03 18.87

η 3.32 -5.45 37.25 -16.34 8.21 13.00 -8.60 73.06

γn 22.46 -24.81 5.66 -1.75 0.88 -17.79 -98.84 0.21

p 22.46 -24.81 47.46 -1.75 0.88 -3.74 -51.07 -71.53

ps 0 0 64.57 0 0 18.55 -36.70 -71.74

STD(ln e) 0 0 0 0 0 -3.84 225.95 0

Table 20: Calibration/Estimation Jacobian
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Appendix B

Appendix to Chapter 2

B.1 Omitted Proofs

Proof of Proposition 2. We conjecture that the value function for low-type firms takes the

form in (2.10) . Substituting this conjecture into (2.7), we get

r
[
Aqj + B (n) q̄t

]
− B (n) gq̄t = πqj + ξ Aq̄tηαn+1 + ξ [B (n + 1) q̄t − B (n) q̄t]

− τAqj − τB (n) q̄t + φ
[
Aqj + q̄tB̃ (n)− Aqj − B (n) q̄t

]
.

Equating the coefficients on qj and q̄t, we obtain

rAqj = πqj − τAqj,

and

rB (n) q̄t − B (n) gq̄t = ξ Aq̄tηαn+1 + q̄tξ [B (n + 1)− B (n)]− τB (n) q̄t

+ q̄t φ
[
B̃ (n)− B (n)

]
.
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Solving these equations for A and B (n), while taking B̃ (n) as given and to be determined

in Proposition 3, completes the proof.

Proof of Proposition 3. Following the same steps, we conjecture that the value function for

high-type firms takes the form in (2.12), and substitute this into (2.8) to get

r
[
Aqj + q̄tB̃ (n)

]
− gq̄tB̃ (n) = max

 πqj + ξ
[
Aq̄tηαn+1 + q̄tB̃ (n + 1)− q̄tB̃ (n)

]
;

πqj + ΛθH q̄a∗ [Aq̄t + Aηq̄t + q̄tB̃ (0)
]


+ ψΛθH

[
Aq̄t + Aηq̄t + q̄tB̃ (0)

]
− τ

[
Aqj + q̄tB̃ (n)

]
,

which implies

(r + τ)
[
Aqj + q̄tB̃ (n)

]
− gq̄tB̃ (n) = πqj + ψΛθH

[
Aq̄t + Aηq̄t + q̄tB̃ (0)

]
+ max

 q̄tξ
[
Aηαn+1 + B̃ (n + 1)− B̃ (n)

]
;

ΛθH q̄a∗ [Aq̄t + Aηq̄t + q̄tB̃ (0)
]

 .

Once again equating coefficients, we obtain A = π
r+τ and

(r − g + τ) B̃ (n) = ψΛθH
[
A (1 + η) + B̃ (0)

]
+ max

 ξ
[
Aηαn+1 + B̃ (n + 1)− B̃ (n)

]
;

ΛθH q̄a∗ [(1 + η) A + B̃ (0)
]

 . (B.1)

Let us next define B̂ (n) as the solution to the equation:

(r − g + τ) B̂ (n) = ψΛθH
[
A (1 + η) + B̃ (0)

]
+ ξ

[
Ãηαn+1 + B̂ (n + 1)− B̂ (n)

]
.

Under the hypothetical scenario where the max operator in (B.1) always picks the first
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term, we have B̃ (n) = B̂ (n). Collecting terms, we can write

B̂ (n) = βψ̂/ξ + βÃηαn+1 + βB̂ (n + 1)

where β = ξ
(r−g+τ+ξ)

and ψ̂ = ψΛθH
[
A (1 + η) + B̃ (0)

]
. From standard dynamic pro-

gramming arguments (e.g., Theorem 4.7 in Stokey and Lucas Jr. (1989)), B̂ (n) is strictly

decreasing and limits to ψ̂
r−g+τ . Now note that if n∗ = ∞ (meaning that incremental inno-

vations were always optimal), then we would have B̃ (n) = B̂ (n).

The other option in the max operator, ΛθH q̄a∗ [(1 + η) A + B̃ (0)
]
, does not depend

on n and is strictly positive, which implies that switching to radical innovation for n

sufficiently high would yield B̃ (n) =
ψ̂+ΛθH q̄a∗ [(1+η)A+B̃(0)]

r−g+τ > ψ̂
r−g+τ . Hence, there must

exist n∗ such that firms with n < n∗ undertake incremental innovation and switch to

radical innovation at n∗. The expression for n∗ follows by equating the value of pursuing

radical and incremental innovations at n′ and setting n∗ as the smallest integer greater

than n′.

Proof of Proposition 5. Recall that

(r + τ)VH (qn,t, n)− V̇H (qn,t, n) = πqn,t + ψΛθHEVH(t)

+ max

 ξ [VH (qn,t + ηn+1,t(qn,t), n + 1)− VH (qn,t, n)] ;

ΛθH q̄aEVH(t)

 ,

where we have written explicitly ηn+1,t(qn,t) as the incremental improvement in produc-

tivity starting from quality qn,t that has been improved n times already and average qual-

ity in the economy is q̄t (subsumed in the time argument t).

The threshold number of incremental innovations as a function of current productiv-

ity, n∗
t (q) equivalently defines a threshold value of productivity q∗n,t as a function of the

number of incremental innovations. Clearly this threshold productivity level is defined
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as the value that sets the two terms in the max operator equal to each other. Thus

VH
(
q∗n,t + ηn+1,t(q∗n,t), n + 1

)
− VH

(
q∗n,t, n

)
=

ΛθH q̄a

ξ
EVH(t), (B.2)

and at this value, we also have

(r + τ)VH
(
q∗n,t, n

)
− V̇H

(
q∗n,t, n

)
= πq∗n,t + ΛθH q̄aEVH(t) + ψΛθHEVH(t). (B.3)

Now we will consider two alternative cases:

Case 1:

q∗n+1,t ≥ q∗n,t + ηn+1,t(q∗n,t). (B.4)

This condition implies that if a particular high-type firm finds it optimal to switch to

radical innovation today, but instead undertakes a successful incremental innovation (as

a deviation off-the-equilibrium path), then subsequently it will still want to immediately

switch to radical innovation.

Under this case, we have

(r + τ)VH
(
q∗n,t + ηn+1,t(q∗n,t), n + 1

)
− V̇H

(
q∗n,t + ηn+1,t(q∗n,t), n + 1

)
(B.5)

= πq∗n,t + πηn+1,t(q∗n,t) + ΛθH q̄aEVH(t) + ψΛθHEVH(t).

This follows from the fact that, by definition, in this case, at q∗n,t + ηn+1,t(q∗n,t), the firm

will want to switch to radical innovation.

Now differentiating (B.2) with respect to time, we have

V̇H
(
q∗n,t + ηn+1,t(q∗n,t), n + 1

)
− V̇H

(
q∗n,t, n

)
=

ΛθH q̄a

ξ
∂EVH(t)/∂t

=
ΛθH q̄a

ξ
gEVH(t), (B.6)
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where, in the second line, we have used the fact that in a stationary equilibrium EVH(t)

grows at the rate g. Subtracting (B.3) from (B.5) and using (B.6), we obtain:

(r + τ)[VH
(
q∗n,t + ηn+1,t(q∗n,t), n + 1

)
− VH

(
q∗n,t, n

)
] = πηn+1,t(q∗n,t) +

ΛθH q̄a

ξ
gEVH(t).

(B.7)

Then, combining (B.2) and (B.7) we can derive

πηn+1,t(q∗n,t) =
r − g + τ

ξ
ΛθH q̄aEVH(t). (B.8)

In this case, for all q less than q∗n,t, it is optimal to switch to radical innovation.

Now let us define

vt ≡
r − g + τ

πξ
ΛθH q̄aEVH(t), (B.9)

which is independent of both q and n. Using (B.9) equation (B.8) can be written as

[κq̄t + (1 − κ)q∗n,t]ηαn+1 = vt, (B.10)

or

q∗n,t =
vt/ηαn+1 − κq̄t

1 − κ
. (B.11)

This equation immediately implies that q∗n,t is increasing in n or equivalently that n∗
t (q) is

increasing in q.

We next derive the condition under which (B.4) indeed applies. For this reason, note

that from (B.10) written for n + 2 incremental innovations, we have

q∗n+1,t =
vt/ηαn+2 − κq̄t

1 − κ
. (B.12)

Combining equations (B.11) and (B.12), we obtain that (B.4) is satisfied if

(1 − κ)ηαn+2 + α ≤ 1. (B.13)
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Thus whenever (B.13) holds (and we are in Case 1), we have the desired result that

n∗
t (q) is increasing in q. We next establish that whenever the converse of (B.13) holds, the

same result applies.

Case 2:

q∗n+1,t − ηn+1,t(q∗n,t) < q∗n,t. (B.14)

This implies that if a high-type firm is indifferent between radical and incremental inno-

vation at n + 1st prior incremental innovations at time t, then it would have preferred to

switch to radical innovation at nth prior incremental innovations. This condition is clearly

the complement of (B.4).

In this case, start with q∗n+1,t, which satisfies (B.5). Under condition (B.14), q∗n,t satisfies

(B.3), so we again arrive at (B.2), (B.8) and (B.11). But then from (B.11) q∗n,t is increasing in

n or n∗
t (q) is increasing in q.

We next verify that Case 2 applies for the complement of the parameter values for

which (B.13) holds. Note that the same expressions for q∗n+1,t as in (B.12) again applies

under Case 2. Thus the condition for (B.14) to be satisfied, with an identical argument, is

(1 − κ)ηαn+2 + α > 1,

which is indeed the complement of (B.13).

Consequently, regardless of whether (B.13) or its converse holds, equation (B.11) ap-

plies, and q∗n,t is increasing in n (or equivalently, n∗
t (q) is increasing in q). This completes

the proof of the proposition.
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B.2 Tables and Figures

Summary Statistics

Panel A: Descriptive Statistics

Variable Observations Mean Standard Deviation

Balanced Firm Sample (Firm Averages, 1995-2000)

CEO age 279 55.3 6.47

average manager age 279 52.3 4.32

innovation quality 279 20.5 8.76

superstar fraction 279 12.3 10.1

tail innovation 279 2.72 2.56

generality 279 21.5 5.53

log patents 279 5.86 1.51

log employment 279 3.84 1.38

log sale 279 4.34 1.47

firm age 279 37.3 14.4

R&D intensity 257 8.52 17.0

Unbalanced Firm Sample (Annual Firm Observations, 1992-2004)

CEO age 7111 55.3 6.84

average manager age 7111 52.3 4.38

innovation quality 7111 15.9 10.9

superstar fraction 7111 9.91 10.7

tail innovation 5803 3.41 5.42

generality 6232 18.5 9.96

log patents 7111 5.61 1.60

log employment 7111 3.71 1.51

log sale 7111 4.12 1.61

firm age 7111 35.1 16.3

Cross-Country Sample (Country Averages, 1995-2000)

individualism 50 .813 .263

uncertainty aversion 50 .492 .195

average manager age 37 56.1 2.98

innovation quality 50 14.5 3.26

superstar fraction 50 6.68 3.65

tail innovation 50 1.92 .945

generality 50 21.0 1.81

log patents 50 10.5 1.52

log income per capita 50 10.3 .305

secondary years of schooling 50 4.84 .827

R&D intensity 44 2.59 .363

- Table continued on next page -
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Panel B: Correlation Matrix of Firm-Level Innovation Variables
innovation quality superstar fraction tail innovation generality

innovation quality 1.000
superstar fraction 0.925 1.000
tail innovation 0.893 0.829 1.000
generality -0.177 -0.204 -0.145 1.000

Panel C: Correlation Matrix of Cross-Country Innovation Variables
innovation quality superstar fraction tail innovation generality

innovation quality 1.000
superstar fraction 0.932 1.000
tail innovation 0.945 0.990 1.000
generality 0.902 0.880 0.906 1.000

Panel D: Correlation Matrix of Openness to Disruption Variables
individualism uncertainty aversion average manager age

individualism 1.000
uncertainty aversion -0.884 1.000
average manager age -0.770 0.844 1.000

Notes: All statistics in this table are weighted by the number of patents (of the country or the firm). Individualism and uncertainty
aversion are Hofstede’s indices of national cultures (and are normalized to lie between 0 and 1), and country average manager age
is the average manager of CEOs and CFOs of up to the 25 largest firms in the country. Innovation quality is the average number
of citations per patent (using the truncation correction weights devised by Hall et al. (2001)); superstar fraction is the fraction of
patents accounted for by superstar researchers (those above the 95th percentile of the citation distribution); tail innovation is the
fraction of patents of a country or firm above the 99th percentile of the citation distribution divided by the fraction of patents
above the median of the distribution; and generality index measures the dispersion of citations received across two-digit IPC
technology classes. Log income per capita at the country level, and log employment, log sales at the firm level are computed
as the average of, respectively, annual log income per capita, log employment and log sale between 1995 and 2000. CEO age is
the age of the CEO and average manager age is the average age of the top management, both from the Execucomp dataset. The
balanced firm panel is the sample of firms from Compustat with complete data on CEO age, employment, sales, and firm age and
positive patents in each year between 1995 and 2000. The unbalanced firm panel is a sample of firms from Compustat with at
least one year of complete data between 1992 and 2002. See text for the definition of other variables and further details.

Table 21: Summary Statistics

Baseline Firm-Level Regressions

Innovation Quality Superstar Fraction Tail Innovation Generality

CEO age -0.278 -0.300 -0.151 -0.183
(0.088) (0.141) (0.054) (0.055)

firm age -0.219 -0.238 -0.063 0.029
(0.078) (0.106) (0.029) (0.046)

log employment -1.599 -4.813 -0.908 -4.574
(1.937) (3.376) (0.793) (1.500)

log sales 1.833 5.215 0.743 4.421
(1.425) (2.645) (0.650) (1.331)

log patent 1.073 0.093 0.662 -0.696
(0.769) (1.336) (0.356) (0.633)

R2 0.88 0.81 0.79 0.83
N 279 279 279 279

Notes: Weighted cross-sectional regressions with total number of patents as weights. The sample is the balanced firm panel and each observation is

the sample average between 1995-2000 as described in the notes to Table 1. The dependent variables are innovation quality, superstar fraction, tail

innovation, and generality (the last three are multiplied by 100 to ease legibility). In addition, all regressions control for a full set of dummies for

four-digit SIC industries. See text and notes to Table 1 for variable definitions. Robust standard errors are in parentheses.

Table 22: Baseline Firm-Level Regressions
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Firm-Level Regressions (Alternative Measures)

Innovation Quality Superstar Fraction Tail Innovation Originality
(5 years) (Best Patent) (90/50)

CEO age -0.129 -0.497 -0.299 -0.285
(0.041) (0.332) (0.094) (0.075)

R2 0.87 0.87 0.83 0.87
N 279 279 279 279

Notes: Weighted cross-sectional regressions with total number of patents as weights. The sample is the balanced firm panel and each observation

is the sample average between 1995-2000 as described in the notes to Table 1. The dependent variables are alternative measures of innovation

quality (computed over the next five years), superstar fraction (with superstars defined according to the best patent), tail innovation (with share of

the patents of the firm among all the patents above the 90th percentile of the citation distribution in the numerator), and the originality index (the

last three are multiplied by 100 to ease legibility). All regressions control for firm age, log employment, log sales, log total patents, and a full set

of dummies for four-digit SIC industries. See text and notes to Table 1 for variable definitions. Robust standard errors are in parentheses.

Table 23: Firm-Level Regressions (Alternative Measures)
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Firm-Level Regressions (Robustness)

Innovation Quality Superstar Fraction Tail Innovation Generality

Panel A: With SIC3 Dummies
CEO age -0.257 -0.284 -0.126 -0.086

(0.070) (0.123) (0.050) (0.091)

R2 0.77 0.72 0.64 0.70
N 279 279 279 279

Panel B: With Additional Controls
CEO age -0.270 -0.282 -0.150 -0.194

(0.090) (0.140) (0.052) (0.054)

R2 0.88 0.82 0.79 0.83
N 279 279 279 279

Panel C: With Additional Controls Plus R&D Intensity
CEO age -0.258 -0.295 -0.142 -0.184

(0.088) (0.149) (0.048) (0.053)

R2 0.89 0.82 0.81 0.84
N 257 257 257 257

Panel D: With Average Manager Age
average manager age -0.418 -0.467 -0.224 -0.339

(0.163) (0.206) (0.094) (0.084)

R2 0.87 0.81 0.77 0.83
N 279 279 279 279

Panel E: High-Tech Subsample
CEO age -0.227 -0.191 -0.145 -0.189

(0.068) (0.157) (0.045) (0.043)

R2 0.92 0.84 0.86 0.81
N 87 87 87 87

Panel F: Low-Tech Subsample
CEO age -0.439 -0.704 -0.143 -0.153

(0.200) (0.252) (0.085) (0.146)

R2 0.85 0.82 0.72 0.86
N 192 192 192 192

Notes: Weighted cross-sectional regressions with total number of patents as weights. The sample is the balanced firm panel and each of the

ratios is the sample average 1995-2000 as described in the notes to Table 1.The dependent variables are innovation quality, superstar fraction, tail

innovation, and generality (the last three are multiplied by 100 to ease legibility). Each panel is for a different specification. Unless otherwise

stated, all regressions control for firm age, log employment, log sales, log total patents, and four-digit SIC dummies (see text and notes to Table

1 for variable definitions). Robust standard errors are in parentheses. Panel A controls for three-digit SIC dummies instead of the four-digit

dummies. Panel B adds to the specification of Table 2 profitability (profit over sales), indebtedness (debt over sales) and log physical capital.

Panel C adds to the specification of Panel B R&D intensity (R&D expenditure over sales). Panel D uses average manager age instead of CEO

age. Panels E and F are for the high-tech and low-tech subsamples. High-tech sample includes all firms with a primary industry classification of

SIC 35 (industrial and commercial machinery and equipment and computer equipment) and 36 (electronic and other electrical equipment and

components), while the low-tech sample includes the rest.

Table 24: Firm-Level Regressions (Robustness)
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Firm-Level Panel Regressions
Innovation Quality Superstar Fraction Tail Innovation Generality

Panel A: Average CEO Age (No Fixed Effects), Balanced, 1995-2000
average CEO age -0.227 -0.336 -0.132 -0.183

(0.068) (0.103) (0.041) (0.044)

R2 0.70 0.69 0.47 0.75
N 1,674 1,674 1,594 1,655

Panel B: Average CEO Age (No Fixed Effects), Unbalanced, 1992-2004
average CEO age -0.168 -0.319 -0.104 -0.171

(0.075) (0.133) (0.045) (0.044)

R2 0.66 0.54 0.31 0.77
N 7,111 7,111 5,803 6,232

Panel C: CEO Age (Fixed Effects), Unbalanced, 1992-2004
CEO age -0.188 -0.149 -0.076 0.036

(0.044) (0.051) (0.023) (0.029)

R2 0.78 0.80 0.44 0.85
N 7,111 7,111 5,803 6,232

Panel D: CEO Age and Lagged CEO Age (Fixed Effects), Unbalanced, 1993-2004
CEO age -0.131 -0.098 -0.052 0.031

(0.041) (0.039) (0.023) (0.026)

lagged CEO age -0.123 -0.100 -0.055 0.020
(0.051) (0.049) (0.029) (0.035)

R2 0.80 0.81 0.46 0.85
N 5,407 5,407 4,562 4,780

Panel E: CEO Age and Lagged Dependent Var (Fixed Effects), Unbalanced, 1993-2004
CEO age -0.096 -0.075 -0.065 0.037

(0.026) (0.030) (0.019) (0.024)

lagged dependent variable 0.472 0.452 0.194 0.200
(0.034) (0.046) (0.051) (0.042)

R2 0.86 0.86 0.46 0.86
N 5,985 5,985 4,772 5,207

Panel F: CEO Age and Lead CEO Age (Fixed Effects), Unbalanced, 1992-2003
CEO age -0.113 -0.084 -0.042 0.042

(0.042) (0.048) (0.019) (0.029)

lead CEO age -0.125 -0.109 -0.043 -0.007
(0.049) (0.044) (0.022) (0.028)

R2 0.78 0.81 0.48 0.85
N 5,409 5,409 4,849 5,097

Notes: Weighted firm-level panel regressions with annual observations with number of patents (in that year) as weights. The dependent variables

are innovation quality, superstar fraction, tail innovation, and generality (the last three are multiplied by 100 to ease legibility). Robust standard

errors clustered at the firm level are in parentheses. Panel A is for our balanced firm sample 1995-2000, and controls for firm age, log employment,

log sales, log patents, a full set of four-digit SIC dummies, and year dummies (and thus no firm dummies), and the key right-hand side variable is

average CEO age (constant over time). Panel B is identical to Panel A except that the sample is extended to the unbalanced firm panel 1992-2002.

In Panel C, the key right-hand side variable is CEO age (in that year), and the regression also includes a full set of firm fixed effects (and thus firm

age and the four-digit SIC dummies are no longer included). Panel D is identical to Panel C except that it also includes a one year lag of CEO

age as well as current CEO age, and Panel E is identical to Panel C except that it also includes a one year lag of the dependent variable on the

right-hand side. See text and notes to Table 1 for variable definitions.

Table 25: Firm-Level Panel Regressions
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Structural Parameters g
Parameter Description Identification

External Calibration

x = 0.05 Entry rate Compustat sample
ρ = 0.02 Discount rate Standard value
δ = 0.04 Manager death rate Compustat sample
α = 0.93 Reduction rate of innovation size Akcigit and Kerr (2015)

Indirect Inference

ψ = 10.2 Baseline radical innovation rate for high type Estimate
ΛθH = 0.005 High-type innovation parameter Estimate

φ = 0.149 Transition rate from low type to high type Estimate
ξ = 0.031 Incremental innovation rate Estimate
η = 0.449 Initial innovation size Estimate
ζ = 0.254 Probability of high-type entrant Estimate

Notes: Parameter choices and estimates. See Section 4.4 for details.

Table 26: Structural Parameters

Empirical and Model-Generated Moments
Target U.S. Data Model

Current manager age coefficient of Table 5 Panel C −0.188 −0.211
Lead manager age coefficient of Table 5 Panel F −0.125 −0.129
Current manager age coefficient of Table 5 Panel F −0.113 −0.111
Annual growth rate 5.75% 5.39%
Within-firm coefficient of variation of radical innovations 1.99 2.17
Fraction of internal patents 21.5% 23.8%

Notes: Empirical and model-generated moments for the indirect inference procedure. See Section 4.4 for details.

Table 27: Empirical and Model-Generated Moments
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Patent-Level Panel Regressions

Innovation Quality Tail Innovation Tail Innovation Generality

(Above 99) (Above 90)

Panel A: CEO Age, Unbalanced Firm Sample, 1992-2004
CEO age -0.119 -0.314 -1.239 0.028

(0.038) (0.132) (0.413) (0.025)

R2 0.11 0.03 0.07 0.11
N 316,516 316,516 316,516 263,641

Panel B: Inventor Age, Unbalanced Firm Sample, 1992-2004
inventor age -0.234 -0.440 -2.883 -0.019

(0.026) (0.121) (0.321) (0.022)

R2 0.14 0.03 0.09 0.15
N 316,516 316,516 316,516 263,641

Panel C: Inventor Age, Extended Sample, 1985-2004
inventor age -0.226 -0.377 -2.842 -0.017

(0.022) (0.075) (0.293) (0.017)

R2 0.16 0.05 0.10 0.15
N 572,169 572,169 572,169 466,378

Panel D: Inventor Age, Extended Sample, 1985-2004
inventor age -0.201 -0.327 -2.359 -0.046

(0.010) (0.036) (0.134) (0.011)

R2 0.27 0.15 0.19 0.25
N 1,855,887 1,855,887 1,855,887 1,550,825

Panel E: CEO Age and Inventor Age, Unbalanced Firm Sample, 1992-2004
inventor age -0.233 -0.438 -2.876 -0.019

(0.026) (0.121) (0.321) (0.022)

CEO age -0.119 -0.317 -1.218 0.028
(0.036) (0.126) (0.388) (0.022)

R2 0.14 0.03 0.09 0.15
N 316,516 316,516 316,516 263,641

Notes: Patent-level panel regressions with annual observations. The dependent variables are innovation quality at the patent level; a dummy for the

patent being above the 99th percentile of the citation distribution; dummy for the patent being above the 90th percentile of the citation distribution;

and generality index at the patent level (the last three are multiplied by 100 to ease legibility). Robust standard errors clustered at the firm level

are in parentheses. Panel A is for our unbalanced firm sample 1992-2002 and controls for log employment, log sales, log patents, a full set of firm

fixed effects, and application year dummies, and the key right-and side variable is CEO age. Panel B is for our unbalanced firm sample 1992-2002

and controls for log employment, log sales, log patents, application year dummies, a full set of firm fixed effects, a full set of dummies for inventor

team size, a full set of dummies for three-digit IPC technology class dummies, and a full set of dummies for the total number of patents of the

inventor within the team with the highest number of patents, and the key right-and side variable is average inventor age. Panel C expands the

sample of Panel B to 1985-2002 and also adds Compustat ÂĚfirms without CEO information into the sample. Panel D extends the sample of Panel

C to include non-Compustat firms as well (hence excludes log sales and log employment, and still includes a full set of firm fixed effects). Panel

E is for our unbalanced firm sample 1992-2002 and adds CEO age to the specification of Panel B. See text and notes to Table 1 for variable definitions.

Table 28: Patent-Level Panel Regressions
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Inventor Age and CEO Age
Unbalanced Firm Sample, 1992-2004

Inventor age Inventor age

(1) (2)

CEO age 0.014 0.013
(0.006) (0.002)

R2 0.11 0.13
N 316,516 316,516

Notes: Patent-level panel regressions with annual observations for the unbalanced firm sample 1992-2002.

The dependent variable is the average age of inventors. The first column controls for log employment, log

sales, log patents, application year dummies, and a full set of firm fixed effects, and the second column

adds to this a full set of team size dummies and a full set of dummies for three-digit IPC technology class

dummies. See text and notes to Table 1 for variable definitions.

Table 29: Inventor Age and CEO Age

Stock of Knowledge, Opportunity Cost, and Creative Innovations,
Unbalanced Firm Sample, 1992-2004

Innovation Quality Superstar Fraction Tail Innovation Generality

CEO age -0.180 -0.216 -0.087 -0.044
(0.027) (0.027) (0.017) (0.016)

log sales 1.465 2.081 0.285 1.201
(0.449) (0.611) (0.272) (0.328)

log patent -0.394 -0.072 0.391 -0.020
(0.193) (0.257) (0.136) (0.151)

CEO age × log patent -0.005 -0.071 -0.016 -0.037
(0.014) (0.021) (0.011) (0.011)

CEO age × log sales 0.024 0.079 0.009 0.044
(0.017) (0.021) (0.012) (0.011)

R2 0.67 0.55 0.31 0.77
N 7,111 7,111 5,803 6,232

Notes: Weighted firm-level panel regressions with annual observations for the unbalanced firm panel, 1992-2002, with number of

patents (in that year) as weights. The dependent variables are innovation quality, superstar fraction, tail innovation, and generality

(the last three are multiplied by 100 to ease legibility). Robust standard errors clustered at the firm level are in parentheses. All

regressions also include log employment, application year dummies and a full set of dummies for four-digit SIC industries. See

text and notes to Table 1 for variable definitions.

Table 30: Stock of Knowledge, Opportunity Cost, and Creative Innovations
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Baseline Cross-Country Regressions

Innovation Quality Superstar Fraction Tail Innovation Generality

Panel A: Average Manager Age
manager age -0.484 -0.960 -0.225 -0.278

(0.225) (0.221) (0.058) (0.056)

log income per capita -0.491 -0.702 -0.136 0.211
(1.153) (1.066) (0.291) (0.468)

secondary years of schooling -1.000 -1.359 -0.291 -0.231
(1.481) (1.462) (0.396) (0.341)

log patent 2.232 2.331 0.591 1.072
(0.706) (0.695) (0.193) (0.222)

R2 0.74 0.82 0.80 0.80
N 37 37 37 37

Panel B: Individualism
individualism 4.965 9.929 2.369 3.420

(2.461) (2.393) (0.640) (0.487)

log income per capita -1.233 -2.130 -0.472 -0.252
(1.195) (1.270) (0.334) (0.373)

secondary years of schooling -0.467 -0.317 -0.056 -0.051
(1.229) (1.174) (0.323) (0.227)

log patents 1.622 1.125 0.308 0.725
(0.490) (0.472) (0.129) (0.164)

R2 0.73 0.81 0.79 0.83
N 50 50 50 50

Panel C: Uncertainty Avoidance
uncertainty avoidance -8.354 -13.528 -3.174 -4.242

(2.946) (2.715) (0.722) (0.798)

log income per capita -0.408 -0.657 -0.124 0.232
(0.957) (0.600) (0.177) (0.558)

secondary years of schooling -0.745 -0.346 -0.054 0.008
(1.149) (1.108) (0.307) (0.208)

log patent 1.708 1.257 0.339 0.765
(0.439) (0.424) (0.125) (0.189)

R2 0.80 0.86 0.84 0.84
N 50 50 50 50

Notes: Weighted cross-country regressions with total number of patents as weights. The dependent variables are innovation quality,

superstar fraction, tail innovation, and generality (the last three are multiplied by 100 to ease legibility). See text and notes to Table 1 for

variable definitions. Each country observation is the sample average between 1995-2000 as described in the text and the notes to Table 1.

Robust standard errors are in parentheses.

Table 31: Baseline Cross-Country Regressions
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Cross-Country Regressions (Alternative Measures)

Innovation Quality Superstar Fraction Tail Innovation Originality

(5 years) (Best Patent) (90/50)

Panel A: Average Manager Age
manager age -0.203 -0.005 -1.002 -0.713

(0.092) (0.004) (0.372) (0.083)

R2 0.75 0.80 0.70 0.88
N 37 37 37 37

Panel B: Individualism
individualism 2.039 0.052 9.966 8.015

(1.009) (0.045) (4.028) (0.653)

R2 0.74 0.80 0.68 0.91
N 50 50 50 50

Panel C: Uncertainty Avoidance
uncertainty avoidance -3.461 -0.106 -15.964 -9.084

(1.215) (0.057) (4.689) (1.336)

R2 0.81 0.83 0.78 0.87
N 50 50 50 50

Notes: Weighted cross-country regressions with total number of patents as weights. The dependent variables are alternative measures of innovation

quality (computed over the next five years), superstar fraction (with superstars defined according to the best patent), tail innovation (with fraction of

patents above the 90th percentile of the citation distribution in the numerator), and the originality index (the last three are multiplied by 100 to ease

legibility). Each regression also controls for log income per capita, average years of secondary schooling, and log total patents. See text and notes to Table

1 for variable definitions. Each country observation is the sample average between 1995-2000 as described in the text and the notes to Table 1. Robust

standard errors are in parentheses.

Table 32: Cross-Country Regressions (Alternative Measures)
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Cross-Country Regressions (Controlling for R&D Intensity)

Innovation Quality Superstar Fraction Tail Innovation Generality

Panel A: Average Manager Age
manager age -0.636 -1.096 -0.257 -0.622

(0.255) (0.253) (0.066) (0.105)

R2 0.76 0.83 0.81 0.91
N 33 33 33 33

Panel B: Individualism
individualism 8.245 13.786 3.291 2.932

(2.821) (2.602) (0.725) (0.778)

R2 0.78 0.85 0.83 0.83
N 44 44 44 44

Panel C: Uncertainty Avoidance
uncertainty avoidance -9.589 -14.173 -3.305 -3.452

(2.747) (2.753) (0.754) (0.915)

R2 0.82 0.86 0.83 0.85
N 44 44 44 44

Notes: Weighted cross-country regressions with total number of patents as weights. The dependent variables are innovation quality, superstar fraction,

tail innovation, and generality (the last three are multiplied by 100 to ease legibility). Each regression also controls for log income per capita, average years

of secondary schooling, log total patents, and R&D intensity defined as total R&D expenditure divided by GDP. See text and notes to Table 1 for variable

definitions. Each country observation is the sample average between 1995-2000 as described in the text and the notes to Table 1. Robust standard errors

are in parentheses.

Table 33: Cross-Country Regressions (Controlling for R&D Intensity)
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Average Annual Patent Counts by Country, 1995-2000

Country Abbreviation Patent Count Country Abbreviation Patent Count

Argentina AR 9.2 India IN 90.3

Austria AT 365.0 Italy IT 1439.8

Australia AU 744.0 Japan JP 33954.8

Belgium BE 522.8 South Korea KR 3581.5

Bulgaria BG 3.8 Luxemburg LU 62.8

Brazil BR 69.7 Malta MT 2.0

Canada CA 2433.2 Mexico MX 59.2

Switzerland CH 1588.7 Malaysia MY 14.5

Chile CL 8.8 Netherlands NL 1236.7

China CN 109.5 Norway NO 239.2

Colombia CO 2.0 New Zealand NZ 104.7

Czech Republic CZ 17.7 Poland PL 10.0

Germany DE 9257.0 Portugal PT 8.7

Denmark DK 448.5 Romania RO 2.7

Spain ES 193.8 Russia RU 88.2

Finland FI 910.3 Saudi Arabia SA 18.2

France FR 3877.5 Sweden SE 1691.3

Great Britain GB 2869.5 Singapore SG 191.2

Greece GR 15.7 Slovenia SI 13.7

Hong Kong HK 171.8 Slovakia SK 4.0

Croatia HR 7.7 Thailand TH 10.7

Hungary HU 33.3 Turkey TR 5.3

Indonesia ID 3.0 United States US 93722.5

Ireland IE 111.3 Venezuela VE 24.3

Israel IL 580.7 South Africa ZA 88.7

Notes: This table shows the average annual patent counts between 1995-2000, registered at the USPTO from that country.

Table 34: Average Annual Patent Counts by Country, 1995-2000
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Figure 11: Evolution of creative innovations for high-type firms.
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Figure 12: Evolution of CEO age for high-type firms.
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Appendix C

Appendix to Chapter 3

C.1 Theory Appendix

C.1.1 Proof of Theorem 1:

The static profit maximization of a firm is stated as follows:

Π(z, Θ) = max
k,lu≥0

{zζkκ lλ
u − (r + δ)k − wulu} (C.1)

First order conditions imply l∗u = λo∗
wu

and k∗ = κo∗
r+δ , hence we have

o∗ = zζ

(
κo∗

r + δ

)κ (λo∗

wu

)λ

o∗ =

[(
κ

r + δ

)κ ( λ

wu

)λ
]1/ζ

z (C.2)
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and the profits are simply equal to Π(z, Θ) = ζo∗. From the unskilled labor market

clearing condition, we get

Lu =
∫

l∗u(z)dZ(z)

Lu =
λ

wu

[(
κ

r + δ

)κ ( λ

wu

)λ
]1/ζ ∫

zdZ(z)

(wu

λ

) λ+ζ
ζ

=

(
κ

r + δ

)κ/ζ z̄
Lu

wu = λ

(
κ

r + δ

) κ
λ+ζ

L
− ζ

λ+ζ
u z̄

ζ
λ+ζ (C.3)

where z̄ ≡
∫

zdZ(z). Note that since Lu is constant along the balanced growth path, the

unskilled wage rate grows with gross rate (1 + gz)ζ/(λ+ζ). Similarly, the capital market

clearing condition yields

K =
∫

k∗(z)dZ(z)

K =
κ

r + δ

[(
κ

r + δ

)κ ( λ

wu

)λ
]1/ζ ∫

zdZ(z)

(
r + δ

κ

) κ+ζ
ζ

=

(
λ

wu

)λ/ζ z̄
K

r = κ

(
λ

wu

) λ
κ+ζ

K− ζ
κ+ζ z̄

ζ
κ+ζ − δ (C.4)

This time since wu, K and z̄ grow over time at gross rates (1 + gz)ζ/(λ+ζ), (1 + gz)ζ/(λ+ζ),

and (1 + gz) respectively, the interest rate will be constant along the balanced growth

path. Define K̃ = K/z̄
ζ

λ+ζ as relative aggregate capital stock. Combining equations (C.3)

and (C.4) yields the simplified expressions:

wu = λK̃κ Lλ−1
u z̄

ζ
λ+ζ

r + δ = κK̃κ−1Lλ
u
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Plugging the expressions for the unskilled wage rate and the interest rate into the profits

yields

Π(z, Θ) = ζK̃κ Lλ
u

z
z̄λ/(λ+ζ)

≡ π
z

z̄λ/(λ+ζ)
(C.5)

where π is a time invariant constant.

Define ẑ ≡ z/z̄λ/(λ+ζ), z̃ ≡ z̄ζ/(λ+ζ) and w̃s ≡ ws/z̃. The guess and verify method

will be used to solve the value function of the firm in the innovation decision problem.

Assume the value function of the firm has the form V(z, Θ) = v1ẑ + v2z̃ where v1 and v2

are scalars. Plugging the solution into the problem, we get:

V(z, Θ) = max
ls≥0

{
Π(z, Θ) +

χlξ
s

1 + r
V(z + γz̄, Θ′) +

(1 − χlξ
s )

1 + r
V(z, Θ′)− wsls

}

= πẑ +
v1ẑ

(1 + r)(1 + gz)λ/(ζ+λ)
+

v2(1 + gz)ζ/(λ+ζ)z̃
(1 + r)

+max
ls≥0

{
χlξ

s

1 + r
v1γ

(1 + gz)λ/(ζ+λ)
− w̃sls

}
z̃

(C.6)

= πẑ +
v1ẑ

(1 + r)(1 + gz)λ/(ζ+λ)
+

v2(1 + gz)ζ/(λ+ζ)z̃
(1 + r)

+

(
ξ

w̃s

) ξ
1−ξ
[

χγv1

(1 + r)(1 + gz)λ/(ζ+λ)

] 1
1−ξ

(1 − ξ)z̃

= v1ẑ + v2z̃
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where

v1 =
(1 + r)(1 + gz)λ/(ζ+λ)

(1 + r)(1 + gz)λ/(ζ+λ) − 1
π (C.7)

v2 =
(1 + r)

(1 + r)− (1 + gz)ζ/(λ+ζ)

[(
ξ

w̃s

) ξ
1−ξ
[

χγv1

(1 + r)(1 + gz)λ/(ζ+λ)

] 1
1−ξ

(1 − ξ)

]
(C.8)

l∗s =

[
ξ

w̃s

χγv1

(1 + r)(1 + gz)λ/(ζ+λ)

] 1
1−ξ

It is required to verify that ws grows at gross rate (1 + gz)ζ/(λ+ζ). Without loss of gener-

ality, assume Λ = 1. Market clearing for skilled labor requires

Ls =
∫

l∗s dZ(z)

Ls =

[
ξ

ws

χγv1z̃
(1 + r)(1 + gz)λ/(ζ+λ)

] 1
1−ξ

ws =
ξχγv1z̃

(1 + r)(1 + gz)λ/(ζ+λ)L1−ξ
s

ws =
ξχγπz̃

((1 + r)(1 + gz)λ/(ζ+λ) − 1)L1−ξ
s

(C.9)

proving the statement. Also notice that Ls = l∗s . The aggregate productivity evolves

according to

z̄′ = z̄ + γχLξ
s z̄

⇒ gz = ΓLξ
s (C.10)

where Γ ≡ γχ. This concludes the proof.

C.1.2 Computational algorithm

Given closed-form solutions for the firm’s maximization problem and the resulting

system of nonlinear equations in Theorem 1, the following computational algorithm is

used to solve for the BGP equilibrium of the model:
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1. Create grids for yo, h, b, yy, a.

2. Guess initial Vo(yo, h, a), W(b, h, a), Vy(yy, a).

3. Guess initial wu, ws, r, g, s̄.

4. Until convergence in value functions according to the sup-norm is achieved, do:

(a) Solve:

Vo(yo, hy, ay, Θ) = max
co ,b≥0

{
u(c0) + αW(b, hy, ay, Θ)

}
s.t.

co + b ≤ y0

Details: Single variable maximization where b ∈ [0, yo]. One dimensional in-

terpolation is required for evaluation.

(b) Solve:

W(b, hy, ay, Θ) = max
n≥0

{
E
[
Vy(yy, ay, Θ)|·

]}
s.t.

yy =

(
wjy +

w′
jy

1 + r′

)
ly(hy, ay) + b − cn(n)

jy ∼ F(j; ly(hy, ay), n, Θ)

Details: Single variable maximization where n ∈ [o, n̄], where n̄ assures posi-

tive yy in the worst case scenario. One dimensional interpolation is required

for evaluation. Normal cumulative distribution function is required for calcu-

lations. Expectation is calculated over j realization.
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(c) Solve:

Vy(yy, ay, Θ) = max
cy,cc,h′y,s≥0

{u(cy) + αu(cc) +

βE[Vo(y′o, h′y, a′y, Θ′)|·]} s.t.

yy ≥ cy + cc + ch(h′y) + s

y′o = (1 + r′)s

a′y ∼ g(ay)

Θ′ = T(Θ)

Two variable maximization where s ∈ [0, yy], h ∈ [0, (yy/κh)
1/xih ], and resulting

cy, cc must be positive. Two dimensional interpolation is required for evalua-

tion. Expectation is calculated over a′ realization.

5. Simulate to calculate capital, skilled and unskilled labor, and fraction of population

in each job. One uniform and one normal draw are required for each household

and period.

6. Update wu, ws, r, g, s̄ using simulation results, and go back to (4) up until they are

consistent with the market clearing equations and η.

C.1.3 Aggregate factor demand equations

For computational purposes, it is useful to characterize aggregate factor demands in

terms of only factor prices, and factor prices only in terms of aggregate factor demands.

This section derives these algebraically using the equations from Appendix C.1.

In a stationary equilibrium, the aggregate demand for skilled and unskilled labor, Ls

and Lu, and the capital rental rate r are constants. The aggregate demand for capital,

K, and the wage rates for skilled and unskilled labor, ws and wu, grow at the same
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rate as aggregate output, in proportion to z̃ = z̄ζ/(λ+ζ). Define normalized aggregate

capital stock, skilled and unskilled wage rates as K̃ = K/z̃, w̃s = ws/z̃ and w̃u = wu/z̃

respectively. First, notice that by only using the definition for w̃u and Equation C.2, the

following identity for π is obtained:

π = ζ

[(
κ

r + δ

)κ ( λ

w̃u

)λ
]1/ζ

(C.11)

Then we have:

Lu =

(
κ

r + δ

)κ/ζ ( λ

w̃u

) λ+ζ
ζ

(C.12)

K̃ =

(
κ

r + δ

) κ+ζ
ζ
(

λ

w̃u

) λ
ζ

(C.13)

Ls =

[
ξ

w̃s

χγπ

((1 + r)(1 + gz)λ/(ζ+λ) − 1)

] 1
1−ξ

(C.14)

Given these equations, it can be verified that:

π = ζK̃κ Lλ
u (C.15)

Then we have:

w̃u = λK̃κ Lλ−1
u (C.16)

r + δ = κK̃κ−1Lλ
u (C.17)

w̃s =
ξχγπ

((1 + r)(1 + gz)λ/(ζ+λ) − 1)L1−ξ
s

(C.18)
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log total patents log total patents log total patents log total patents
(renewed once) (renewed twice) (top 5% only) (top 20% only)

(1975-2006) (1975-2006) (1975-2006) (1975-2006)

log income (1930) .037∗∗∗ .033∗∗∗ .029∗∗∗ .033∗∗∗

(.009) (.009) (.008) (.009)
log education (1930) .099∗∗∗ .099∗∗∗ .075∗∗∗ .096∗∗∗

(.008) (.008) (.008) (.008)
Obs. 78,438 78,438 81,348 81,348
R2 0.05 0.05 0.03 0.04

Notes: Robust standard errors in parentheses. Dominant race fixed effects are included the

coefficients of which are suppressed for brevity. All variables are normalized by subtracting

the mean and dividing by the standard deviation. Observations are weighted by the share of the

surname in the general population obtained from the U.S. decennial census of population (2000).
*, ** and *** denote significance at 10, 5 and 1% levels respectively.

Table 35: Intensive Margin Robustness - Alternative Measures II

C.2 Empirical Appendix
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relative representation (1975-2008)
(1) (2) (3) (4) (5) (6)

income (1930) .296∗∗∗ .304∗∗∗ .323∗∗∗ .223∗∗∗ .307∗∗∗ .293∗∗∗

(.014) (.014) (.015) (.017) (.017) (.013)
education (1930) .004 .008 −.003 .003 .021∗ .005

(.007) (.009) (.010) (.005) (.012) (.007)
pop. share(1930)/pop. share(1880) .053∗∗∗

(.032)
Obs. 64,308 48,282 48,289 32,168 32,159 64,308
R2 0.35 0.33 0.38 0.46 0.30 0.35

Notes: Column 1 repeats the last column of Table 9 for surnames which population share ratio

is not missing. Columns 2 and 3 repeat the same regression after dropping the top and bottom

25% of the sample according to population share ratio respectively. Columns 4 and 5 repeat the

same exercise for the top and bottom halves of the sample respectively. Column 6 repeats the same

regression with the whole sample while introducing the population share ratio linearly as a

regressor in addition to income and education. Robust standard errors in parentheses. Dominant

race fixed effects are included the coefficients of which are suppressed for brevity. All variables

are normalized by subtracting the mean and dividing by the standard deviation. Observations are

weighted by the share of the surname in the general population obtained from the U.S. decennial

census of population (2000). *, ** and *** denote significance at 10, 5 and 1% levels respectively.

Table 36: Immigration Robustness (1880-1930) - Extensive Margin
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log quality wtd. total patents (1975-2006)
(1) (2) (3) (4) (5) (6)

log income (1930) .022∗ .009 .045∗∗∗ .106∗∗∗ −.005 .022∗

(.012) (.012) (.014) (.019) (.017) (.012)
log education (1930) .142∗∗∗ .138∗∗∗ .141∗∗∗ .089∗∗∗ .140∗∗∗ .141∗∗∗

(.011) (.011) (.013) (.018) (.011) (.011)
pop. share(1930)/pop. share(1880) −.003

(.005)
Obs. 50,529 37,921 37,897 25,269 25,265 64,308
R2 0.05 0.05 0.05 0.04 0.04 0.35

Notes: Column 1 repeats the last column of Table 10 for surnames which population share ratio

is not missing. Columns 2 and 3 repeat the same regression after dropping the top and bottom

25% of the sample according to population share ratio respectively. Columns 4 and 5 repeat the

same exercise for the top and bottom halves of the sample respectively. Column 6 repeats the same

regression with the whole sample while introducing the population share ratio linearly as a

regressor in addition to income and education. Robust standard errors in parentheses. Dominant

race fixed effects are included the coefficients of which are suppressed for brevity. All variables

are normalized by subtracting the mean and dividing by the standard deviation. Observations are

weighted by the share of the surname in the general population obtained from the U.S. decennial

census of population (2000). *, ** and *** denote significance at 10, 5 and 1% levels respectively.

Table 37: Immigration Robustness (1880-1930) - Intensive Margin

relative relative relative
representation representation representation

(1975-2008) (1975-2008) (1975-2008)

income (1930) .259∗∗∗ .259∗∗∗

(.008) (.008)
education (1930) .024∗∗∗ .000

(.004) (.003)
Obs. 107,613 107,613 107,613
R2 0.24 0.18 0.24

Notes: Data is obtained exclusively from the males in all samples. Robust standard errors in

parentheses. Dominant race fixed effects are included the coefficients of which are suppressed

for brevity. All variables are normalized by subtracting the mean and dividing by the standard

deviation. Observations are weighted by the share of the surname in the general population ob-
tained from the U.S. decennial census of population (2000). *, ** and *** denote significance at 10, 5
and 1% levels respectively.

Table 38: Extensive Margin - Male Only
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log quality wtd. log quality wtd. log quality wtd.
total patents total patents total patents
(1975-2006) (1975-2006) (1975-2006)

log income (1930) .072∗∗∗ .006
(.008) (.009)

log education (1930) .176∗∗∗ .173∗∗∗

(.009) (.010)
Obs. 76,265 76,265 76,265
R2 0.02 0.05 0.05

Notes: Data is obtained exclusively from the males in all samples. Robust standard errors in

parentheses. Dominant race fixed effects are included the coefficients of which are suppressed

for brevity. All variables are normalized by subtracting the mean and dividing by the standard

deviation. Observations are weighted by the share of the surname in the general population ob-
tained from the U.S. decennial census of population (2000). *, ** and *** denote significance at 10, 5
and 1% levels respectively.

Table 39: Intensive Margin - Male Only

relative relative relative
representation representation representation

(1975-2008) (1975-2008) (1975-2008)

income (1930) .075∗∗∗ .082∗∗∗

(.013) (.015)
education (1930) .024∗ −.015

(.013) (.014)
Obs. 67,240 67,240 67,240
R2 0.16 0.15 0.16

Notes: Data is obtained exclusively from the females in all samples. Robust standard errors in

parentheses. Dominant race fixed effects are included the coefficients of which are suppressed

for brevity. All variables are normalized by subtracting the mean and dividing by the standard

deviation. Observations are weighted by the share of the surname in the general population ob-
tained from the U.S. decennial census of population (2000). *, ** and *** denote significance at 10, 5
and 1% levels respectively.

Table 40: Extensive Margin - Female Only
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log quality wtd. log quality wtd. log quality wtd.
total patents total patents total patents
(1975-2006) (1975-2006) (1975-2006)

log income (1930) −.025 −.072∗∗∗

(.016) (.019)
log education (1930) .061∗∗∗ .103∗∗∗

(.016) (.019)
Obs. 16,117 16,117 16,117
R2 0.02 0.02 0.02

Notes: Data is obtained exclusively from the females in all samples. Robust standard errors in

parentheses. Dominant race fixed effects are included the coefficients of which are suppressed

for brevity. All variables are normalized by subtracting the mean and dividing by the standard

deviation. Observations are weighted by the share of the surname in the general population ob-
tained from the U.S. decennial census of population (2000). *, ** and *** denote significance at 10, 5
and 1% levels respectively.

Table 41: Intensive Margin - Female Only

relative relative relative relative
representation representation representation representation

(1975-2008) (1975-2008) (1975-2008) (1975-2008)

income (1930) .239∗∗∗ .230∗∗∗ .202∗∗∗ .179∗∗∗

(.010) (.011) (.010) (.011)
education (1930) .001 −.001 .012∗∗ .008

(.005) (.005) (.005) (.005)
household size (1930) .012∗∗ .006

(.006) (.006)
literacy rate (1930) .049∗∗∗ .108∗∗∗

(.010) (.012)
non-native origin (1930) .246∗∗∗ .267∗∗∗

(.013) (.014)
Obs. 110,290 110,289 110,290 110,289
R2 0.27 0.27 0.31 0.32

Notes: Household size and literacy rates are averages at the surname level. Non-native origin

is the fraction of people with the surname whose parents (at least one) were of foreign origin.
Robust standard errors in parentheses. Dominant race fixed effects are included the coefficients

of which are suppressed for brevity. All variables are normalized by subtracting the mean and

dividing by the standard deviation. Observations are weighted by the share of the surname in

the general population obtained from the U.S. decennial census of population (2000). *, ** and ***
denote significance at 10, 5 and 1% levels respectively.

Table 42: Additional Robustness Checks - Extensive Margin
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log quality wtd. log quality wtd. log quality wtd. log quality wtd.
total patents total patents total patents total patents
(1975-2006) (1975-2006) (1975-2006) (1975-2006)

log income (1930) .001 −.001 .013 .013
(.009) (.009) (.010) (.010)

log education (1930) .175∗∗∗ .174∗∗∗ .162∗∗∗ .162∗∗∗

(.009) (.009) (.009) (.009)
household size (1930) −.008 −.007

(.006) (.006)
literacy rate (1930) .009 −.001

(.011) (.011)
non-native origin (1930) −.052∗∗∗ −.052∗∗∗

(.010) (.010)
Obs. 81,348 81,347 81,348 81,347
R2 0.05 0.05 0.05 0.05

Notes: Household size and literacy rates are averages at the surname level. Non-native origin

is the fraction of people with the surname whose parents (at least one) were of foreign origin.
Robust standard errors in parentheses. Dominant race fixed effects are included the coefficients

of which are suppressed for brevity. All variables are normalized by subtracting the mean and

dividing by the standard deviation. Observations are weighted by the share of the surname in

the general population obtained from the U.S. decennial census of population (2000). *, ** and ***
denote significance at 10, 5 and 1% levels respectively.

Table 43: Additional Robustness Checks - Intensive Margin

relative relative relative
representation representation representation

(1975-2008) (1975-2008) (1975-2008)

income (1930) .269∗∗∗ .269∗∗∗

(.012) (.012)
education (1930) .030∗∗∗ −.003

(.007) (.006)
Obs. 81,348 81,348 81,348
R2 0.30 0.24 0.30

Notes: The regressions on Table 9 are replicated while restricting the sample of surnames to those

on Table 10. Robust standard errors in parentheses. Dominant race fixed effects are included the

coefficients of which are suppressed for brevity. All variables are normalized by subtracting

the mean and dividing by the standard deviation. Observations are weighted by the share of the

surname in the general population obtained from the U.S. decennial census of population (2000).
*, ** and *** denote significance at 10, 5 and 1% levels respectively.

Table 44: Extensive Margin Regressions with Intensive Margin Subsample
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(unweighted) (without frequent surnames) (inverse standard dev. wtd.)
relative log quality wtd. relative log quality wtd. relative log quality wtd.

represent. total patents represent. log patents represent. total patents
income (1930) .072∗∗∗ .181∗∗∗ .080∗∗∗

(.004) (.006) (.006)
education (1930) .005 .000 .004

(.003) (.003) (.003)
log income (1930) .012∗∗∗ .049∗∗∗ .004

(.004) (.007) (.008)
log education (1930) .061∗∗∗ .118∗∗∗ .068∗∗∗

(.004) (.018) (.008)
Obs. 110,290 81,348 109,052 80,243 89,099 69,160
R2 0.03 0.01 0.16 0.04 0.03 0.01

Notes: Columns 1 and 2 repeat the regressions on the last columns of Tables 9 and 10 without

using any weights. Columns 3 and 4 repeat the same regressions in a reduced sample where sur-
names that are more frequent than the median surname are dropped. Columns 5 and 6 repeat the

same regressions where the inverse of the standard deviation in income and education (geometric

average) is used as weight. Robust standard errors in parentheses. Dominant race fixed effects

are included the coefficients of which are suppressed for brevity. All variables are normalized by

subtracting the mean and dividing by the standard deviation. *, ** and *** denote significance at

10, 5 and 1% levels respectively.

Table 45: Rare Surnames - Intensive and Extensive Margins

relative relative relative
representation representation representation

(1975-1995) (1975-1995) (1975-1995)

income (1930) .245∗∗∗ .245∗∗∗

(.008) (.008)
education (1930) .028∗∗∗ −.000

(.005) (.003)
Obs. 110,290 110,290 110,290
R2 0.21 0.16 0.21

Notes: Inventor data is obtained exclusively from the 1975-1995 period. Robust standard errors in

parentheses. Dominant race fixed effects are included the coefficients of which are suppressed

for brevity. All variables are normalized by subtracting the mean and dividing by the standard

deviation. Observations are weighted by the share of the surname in the general population ob-
tained from the U.S. decennial census of population (2000). *, ** and *** denote significance at 10, 5
and 1% levels respectively.

Table 46: Extensive Margin - 1975-1995 Only
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log quality wtd. log quality wtd. log quality wtd.
total patents total patents total patents
(1975-1995) (1975-1995) (1975-1995)

log income (1930) .060∗∗∗ .006
(.009) (.010)

log education (1930) .151∗∗∗ .149∗∗∗

(.009) (.009)
Obs. 70,032 70,032 70,032
R2 0.03 0.04 0.04

Notes: Inventor data is obtained exclusively from the 1975-1995 period. Robust standard errors in

parentheses. Dominant race fixed effects are included the coefficients of which are suppressed

for brevity. All variables are normalized by subtracting the mean and dividing by the standard

deviation. Observations are weighted by the share of the surname in the general population ob-
tained from the U.S. decennial census of population (2000). *, ** and *** denote significance at 10, 5
and 1% levels respectively.

Table 47: Intensive Margin - 1975-1995 Only
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C.3 Quantitative Appendix

C.3.1 Relaxing the scarce high quality tertiary education assumption

The fraction of high quality tertiary education available in the society η is assumed

to be exogenously fixed in the model. This means that only a fraction η of the population

can receive the education necessary to produce ideas and become inventors. As a result,

this assumption implies that the output growth rate of the economy can only be increased

by allocating more productive individuals as inventors rather than increasing the share

of inventors in the population. How would the counterfactual exercises look like if this

assumption was relaxed?

In order to answer this question, the opposite extreme will be considered. Recall that

the score threshold s̄t was chosen such that

η =
∫ ∞

s̄t

s̃dS̃t(s̃)

held. Consider setting the fraction η free and fixing s̄t instead. In this alternative spec-

ification s̄t denotes a fixed achievement rating in score. Individuals who go have scores

greater than this threshold get high quality tertiary education, and the rest do not. The

calibration of this alternative model is trivial: The parameter η which was externally

calibrated becomes an additional targeted moment, and s̄ becomes a parameter.

Table 48 presents the results of repeating the credentialing spending shut down ex-

periment executed in Section 3.5.2 under this alternative model specification. The changes

are quite significant: Now that η is freely chosen, its value increases from 11.6% to 44.9%.

This means nearly half of the population is now allocated to the innovation sector. As a

result, the skilled labor supply is quadrupled, and the output growth rate is nearly dou-

bled, increasing from 2.00% to 3.45%. As one would expect, the welfare gain from this
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Variable Baseline ν = 0 Change
Extensive margin, income effect 0.19 0.11 -42.1%
Extensive margin, education effect 0.07 0.09 28.6%
Intensive margin, income effect 0.08 0.16 100%
Intensive margin, education effect 0.22 0.13 -40.9%
Yearly GDP growth rate 2.00% 3.45% 72.3%
Education spending/GDP 8.55% 11.8% 37.9%
Aggregate skilled labor, Ls 0.48 2.09 332%
Aggregate unskilled labor, Lu 1.91 1.39 -27.3%
Mean innate ability of skilled workers, a 2.08 1.78 -14.5%
Mean early childhood education of skilled workers, h 2.27 3.45 51.9%
Mean parental wealth of skilled workers, yo 0.87 0.96 9.68%
Mean bequests received of skilled workers, b 0.49 0.46 -5.37%
Wage income Gini index 0.52 0.50 -4.91%
Log 90/10 ratio 1.17 1.82 55.5%
Log 90/50 ratio 0.52 1.17 125%
Log 50/10 ratio 0.65 0.65 -0.06%

Table 48: Shutting down the credentialing spending channel - Free η

increase is also calculated to be huge at 107%.

Naturally, these numbers are not to be taken seriously, since the specification does

not impose any additional cost on the society for quadrupling the amount of high qual-

ity tertiary education provided. Rather, these should be viewed as the extreme upper

bound on the growth and welfare numbers that could be achieved by relaxing the fixed

η assumption. This example also serves to illustrate the fact that exogenously fixing η

is a conservative assumption in terms of putting a discipline on the growth and welfare

numbers produced by the model in the counterfactual experiments.
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