A Quantitative MRI Protocol for Assessing Matrix and Mineral Densities and Degree of Mineralization of Human Cortical Bone

Alan Charles Seifert
University of Pennsylvania, alan.seifert@gmail.com

Follow this and additional works at: http://repository.upenn.edu/edissertations
Part of the Biomedical Commons, and the Radiology Commons

Recommended Citation
http://repository.upenn.edu/edissertations/1126

This paper is posted at ScholarlyCommons. http://repository.upenn.edu/edissertations/1126
For more information, please contact libraryrepository@pobox.upenn.edu.
A Quantitative MRI Protocol for Assessing Matrix and Mineral Densities and Degree of Mineralization of Human Cortical Bone

Abstract
Two categories of bone disease, osteoporosis and osteomalacia, affect bone in different ways: bone mineral and matrix are lost in roughly equal proportions in osteoporosis, while only mineral is depleted in osteomalacia. The difference between these disorders is in bone mineralization: the mass of mineral per volume of bone matrix, excluding pore spaces.

Standard clinical examinations measure x-ray attenuation to infer mineral density. However, bone mineral density alone cannot fully describe bone health. Advances in solid-state 31P and 1H magnetic resonance imaging (MRI) have enabled quantification of the densities of extremely short-lived bone mineral 31P and matrix-bound water 1H signals as surrogates for bone mineral and matrix densities. The ratio of these two measurements provides the degree of mineralization of bone (DMB).

In this dissertation, the relaxation properties of bone mineral 31P and water 1H were analyzed, the surrogacy of bound water concentration for bone matrix density was established, and measurements of bone mineral 31P and matrix-associated water 1H densities in human bone specimens were designed and implemented on clinical scanners.

Although bone mineral 31P longitudinal relaxation time (T1) increased and effective transverse relaxation time (T2*) decreased with increasing field strength, the predicted signal-to-noise ratio (SNR) increased slightly. Also, the short-T2* fraction of bone water calculated by 1H bi-component fitting was correlated with porosity and matrix density at 1.5 T, but these associations weakened as field strength increased. In contrast, short-transverse relaxation time (T2) fraction was highly correlated with gold-standard measurements, suggesting the superiority of T2-based methods for separation of bound and pore water fractions. Additionally, single adiabatic inversion-recovery zero echo time (SIR-ZTE) 1H density was correlated negatively with porosity and positively with matrix and mineral densities, suggesting that this MRI method provides a surrogate measure of bone matrix density. Finally, both bone mineral 31P and matrix-associated 1H densities in human cortical bone specimens were correlated negatively with porosity and age, and positively with peripheral quantitative computed tomography (pQCT) density. As expected, DMB was uncorrelated with porosity, age, or pQCT density.

This work established the feasibility of image-based quantification of bone mineral and bound water densities using clinical hardware.

Degree Type
Dissertation

Degree Name
Doctor of Philosophy (PhD)

Graduate Group
Bioengineering

This dissertation is available at ScholarlyCommons: http://repository.upenn.edu/edissertations/1126
First Advisor
Felix W. Wehrli

Keywords
bone, bone matrix density, bone mineral density, MRI, ultra-short echo time MRI, zero echo time MRI

Subject Categories
Biomedical | Radiology

This dissertation is available at ScholarlyCommons: http://repository.upenn.edu/edissertations/1126
A QUANTITATIVE MRI PROTOCOL FOR ASSESSING MATRIX AND MINERAL DENSITIES
AND DEGREE OF MINERALIZATION OF HUMAN CORTICAL BONE

Alan C. Seifert

A DISSERTATION

in

Bioengineering

Presented to the Faculties of the University of Pennsylvania in

Partial Fulfillment of the Requirements for the

Degree of Doctor of Philosophy

2015

Supervisor of Dissertation

Felix W. Wehrli, Ph.D.
Professor of Radiology

Graduate Group Chairperson

Jason A. Burdick, Ph.D.
Professor of Bioengineering

Dissertation Committee

James C. Gee, Ph.D., Associate Professor of Bioengineering
E. James Delikatny, Ph.D. Research Associate Professor of Radiology
Ravinder Reddy, Ph.D., Professor of Radiology
Mary B. Leonard, M.D., M.S.C.E., Professor of Pediatrics (Nephrology)
A QUANTITATIVE MRI PROTOCOL FOR ASSESSING MATRIX AND MINERAL DENSITIES
AND DEGREE OF MINERALIZATION OF HUMAN CORTICAL BONE

COPYRIGHT

2015

Alan Charles Seifert
“To my family, especially Dad, for teaching me how to build an RF circuit when I was still in elementary school, and to Steph, for not laughing too hard when I try to do statistics.”
I would like to thank everyone who helped me to reach this point. First and foremost, I thank my advisor, Prof. Felix Wehrli, for his mentorship. He sets a very high bar for each of his students, and we benefit from his patience and dedication in helping us to clear it. I also thank Prof. Alex Wright for bringing me into this lab on a summer rotation and getting me started on this project; Dr. Suzanne Wehrli for her advice and hands-on help in planning and carrying out so many experiments; Dr. Tom Connick for his substantial help with RF hardware; Dr. Henry Ong, Dr. Yusuf Bhagat, Prof. Michael Langham, and Prof. Chamith Rajapakse for their guidance and advice in various parts of this project; Holly Flachs for all the effort she puts into making our lab run smoothly; and my lab mates, Dr. Alvin Tsai, Dr. Varsha Jain, Dr. Cheng Li, Zach Rodgers, Erin Englund, Francisco Contijoch, and Xia Zhao. I especially thank Cheng Li: this project would not have been possible without your patience, dedication, and enormous knowledge.

I also thank my dissertation committee, Professors James Gee, Ravi Reddy, Jim Delikatny, and Mary Leonard, for their guidance in this project. I am also immensely thankful for my experience in the first two years of my graduate work as an HHMI-NIBIB Interfaces Scholar, and I would especially like to thank Dr. Ann Tiao for her help in those two years and beyond.

My thanks also go to my previous advisors and mentors at JHU, NIBIB, and Infinite Biomedical Technologies for giving me the research opportunities to prepare me for this work: Prof. Xiaoqin Wang, Dr. Poppy Crum, Dr. Patrick Brown, Dr. Peter Schuck, Prof. Nitish Thakor, and Dr. Abhishek Rege.

Finally, I thank my family and friends for putting up with my endless studies, and Steph, for your support and encouragement from beginning to end, and for being the light at the end of the tunnel.
ABSTRACT

A QUANTITATIVE MRI PROTOCOL FOR ASSESSING MATRIX AND MINERAL DENSITIES
AND DEGREE OF MINERALIZATION OF HUMAN CORTICAL BONE

Alan C. Seifert
Felix W. Wehrli, Ph.D.

Two categories of bone disease, osteoporosis and osteomalacia, affect bone in different ways: bone mineral and matrix are lost in roughly equal proportions in osteoporosis, while only mineral is depleted in osteomalacia. The difference between these disorders is in bone mineralization: the mass of mineral per volume of bone matrix, excluding pore spaces.

Standard clinical examinations measure x-ray attenuation to infer mineral density. However, bone mineral density alone cannot fully describe bone health. Advances in solid-state 31P and 1H magnetic resonance imaging (MRI) have enabled quantification of the densities of extremely short-lived bone mineral 31P and matrix-bound water 1H signals as surrogates for bone mineral and matrix densities. The ratio of these two measurements provides the degree of mineralization of bone (DMB).

In this dissertation, the relaxation properties of bone mineral 31P and water 1H were analyzed, the surrogacy of bound water concentration for bone matrix density was established, and measurements of bone mineral 31P and matrix-associated water 1H densities in human bone specimens were designed and implemented on clinical scanners.
Although bone mineral 31P longitudinal relaxation time (T_1) increased and effective transverse relaxation time (T_2^*) decreased with increasing field strength, the predicted signal-to-noise ratio (SNR) increased slightly. Also, the short-T_2^* fraction of bone water calculated by 1H bi-component fitting was correlated with porosity and matrix density at 1.5 T, but these associations weakened as field strength increased. In contrast, short-transverse relaxation time (T_2) fraction was highly correlated with gold-standard measurements, suggesting the superiority of T_2-based methods for separation of bound and pore water fractions. Additionally, single adiabatic inversion-recovery zero echo time (SIR-ZTE) 1H density was correlated negatively with porosity and positively with matrix and mineral densities, suggesting that this MRI method provides a surrogate measure of bone matrix density. Finally, both bone mineral 31P and matrix-associated 1H densities in human cortical bone specimens were correlated negatively with porosity and age, and positively with peripheral quantitative computed tomography (pQCT) density. As expected, DMB was uncorrelated with porosity, age, or pQCT density.

This work established the feasibility of image-based quantification of bone mineral and bound water densities using clinical hardware.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acknowledgements</td>
<td>iv</td>
</tr>
<tr>
<td>Abstract</td>
<td>v</td>
</tr>
<tr>
<td>Table of Contents</td>
<td>vii</td>
</tr>
<tr>
<td>List of Tables</td>
<td>xi</td>
</tr>
<tr>
<td>List of Figures</td>
<td>xiii</td>
</tr>
<tr>
<td>Preface</td>
<td>xx</td>
</tr>
<tr>
<td>Chapter 1: Introduction</td>
<td>1</td>
</tr>
<tr>
<td>1.1. Bone Anatomy</td>
<td>1</td>
</tr>
<tr>
<td>1.2. Bone Disease: Osteoporosis and Osteomalacia</td>
<td>5</td>
</tr>
<tr>
<td>1.3. Measurement of Bone Health</td>
<td>7</td>
</tr>
<tr>
<td>1.4. MRI of Bone</td>
<td>12</td>
</tr>
<tr>
<td>1.5. Outline of Thesis Chapters</td>
<td>18</td>
</tr>
<tr>
<td>Chapter 2: 31P NMR Relaxation of Cortical Bone Mineral at Multiple Magnetic Field Strengths and Levels of Demineralization</td>
<td>20</td>
</tr>
<tr>
<td>2.1. Abstract</td>
<td>20</td>
</tr>
<tr>
<td>2.2. Introduction</td>
<td>21</td>
</tr>
<tr>
<td>2.3. Methods</td>
<td>23</td>
</tr>
<tr>
<td>2.3.1. Specimens</td>
<td>23</td>
</tr>
<tr>
<td>2.3.2. MRI Scanners and RF Coils</td>
<td>24</td>
</tr>
<tr>
<td>2.3.3. T_1 Measurements</td>
<td>25</td>
</tr>
<tr>
<td>2.3.4. T_2^* Measurements</td>
<td>27</td>
</tr>
<tr>
<td>2.3.5. Multiple Fields and SNR Estimation</td>
<td>28</td>
</tr>
<tr>
<td>2.3.6. Deuterium Exchange</td>
<td>30</td>
</tr>
<tr>
<td>2.3.7. Partial Demineralization</td>
<td>30</td>
</tr>
<tr>
<td>2.3.8. Spectroscopy Processing Details</td>
<td>32</td>
</tr>
<tr>
<td>2.3.9. Imaging</td>
<td>32</td>
</tr>
</tbody>
</table>
CHAPTER 3: BI-COMPONENT T_2^* ANALYSIS OF BOUND AND PORE BONE WATER FRACTIONS FAILS AT HIGH FIELD STRENGTHS 45

3.1. Abstract ... 45

3.2. Introduction .. 46

3.3. Materials and Methods .. 48
 3.3.1. Specimen Source and Preparation ... 48
 3.3.2. 1H NMR Spectroscopy .. 49
 3.3.3. 2H NMR Spectroscopy .. 52
 3.3.4. μCT Imaging .. 53
 3.3.5. Gravimetry .. 54

3.4. Results .. 54
 3.4.1. 1H NMR Spectroscopy .. 54
 3.4.2. 2H NMR Spectroscopy .. 59
 3.4.3. μCT and Gravimetry ... 60

3.5. Discussion ... 63

3.6. Conclusion ... 70

CHAPTER 4: SINGLE ADIABATIC INVERSION RECOVERY ZERO ECHO TIME MRI IS A SURROGATE MEASURE OF BONE MATRIX DENSITY 71

4.1. Abstract ... 71

4.2. Introduction .. 72

4.3. Materials and Methods .. 74
 4.3.1. Specimens and Scanners .. 74
 4.3.2. NMR Spectroscopy ... 75
CHAPTER 5: BONE MINERAL 31P AND MATRIX-BOUND WATER DENSITIES MEASURED BY SOLID-STATE 1H AND 31P MRI .. 102

5.1. Abstract.. 102

5.2. Introduction ... 103

5.3. Materials and Methods ... 105
 5.3.1. Source of Bone Tissue .. 105
 5.3.2. Hardware .. 107
 5.3.3. MR Imaging ... 107
 5.3.4. B_1 Mapping and Registration .. 111
 5.3.5. Density Quantification .. 112
 5.3.6. X-Ray-Based Porosity and Densitometry ... 116
 5.3.7. Data Analysis ... 117

5.4. Results .. 117

5.5. Discussion .. 122

5.6. Conclusions .. 127
CHAPTER 6: CONCLUSIONS AND FUTURE WORK

6.1. Conclusions ... 128

6.2. Future Work .. 130
 6.2.1. Technical Development .. 130
 6.2.2. Translation to the Clinic .. 131

BIBLIOGRAPHY .. 133
LIST OF TABLES

Table 1.1: Changes in mineral density, matrix density, and mineralization in osteoporosis and osteomalacia. .. 7

Table 2.1: Bone mineral phosphorus relaxation times in solid bone samples before and after D₂O exchange. .. 37

Table 2.2: Bone mineral phosphorus relaxation times at 9.4 T in bone powder samples before and after three stages of demineralization. .. 37

Table 3.1: Bone properties measured by µCT, ³¹H IR, gravimetry, SR-CPMG NMR at 9.4 T, SR-FID NMR at four field strengths, and SIR-FID NMR at three field strengths. Bone labels are composed of the two-digit age and one-letter gender of the donor. .. 55

Table 3.2: Inter-parameter correlations (R²) of measured bone properties. All correlations are statistically significant (p < 0.05) unless italicized.............. 61

Table 4.1: ZTE, SIR-ZTE, and non-exchangeable (i.e., not removed by ²H₂O exchange)
³¹H concentration measurements by MRI, and reference measurements by µCT, gravimetry, and ³¹H and ²H NMR. Sample labels indicate age and gender. 85

Table 4.2: Inter-parameter correlations (R²) of measured bone properties. All correlations are statistically significant unless italicized (*p<0.05, †p<0.005, ‡p<0.0005). .. 91

Table 5.1: Measured bone parameters with means and standard deviations. ³¹P density in mg of hydroxyapatite per cc and bound water volume fraction are inferred from MRI-derived densities based on certain assumptions described in the discussion. Abbreviations: BVF, bone volume fraction; HAp, hydroxyapatite; BMR, bone mineral ratio. .. 120

Table 5.2: Correlation matrix of R² values. All correlations are statistically significant unless italicized (*p<0.05, †p<0.005, ‡p<0.0005). Abbreviations: BMR, bone
mineralization ratio; BWD, bound water density; \(^{31}\)PD, \(^{31}\)P density; BVF, bone volume fraction = 1 - porosity.
LIST OF FIGURES

Figure 1.1: A diagram depicting the osteonal organization and pore structure of cortical bone. Figure adapted from (6). ... 2

Figure 1.2: Structural organization of bone over multiple size scales. Figure from (7).... 3

Figure 1.3: Collagen triple helix (a, in yellow, orange, and red) with multiple hydration layers of adsorbed water molecules (b, c, d, in blue). Internal single- and double-water bridges between collagen molecules are not visible. Figure is taken from (8). .. 4

Figure 1.4: DXA images for measurement of bone mineral density at the proximal femur (a) and lumbar spine (b) in a 53-year-old male (39). .. 8

Figure 1.5: Quantitative computed tomography image of a lumbar vertebra (40). Calibration standards are visible in the table pad below the patient. 9

Figure 1.6: HR-pQCT image of the wrist at 82µm in-plane resolution, showing the distal radius and ulna (40). .. 10

Figure 1.7: Comparison of a synchrotron-radiation µCT image with 7.5-µm isotropic resolution (top) to an HR-pQCT image of the same site with 82-µm isotropic resolution (43,44). .. 11

Figure 1.8: UTE (a) and ZTE (b) imaging pulse sequences and corresponding k-space acquisition schemes. In ZTE, central k-space points are lost during transmit/receive dead time, and this region must be re-filled. The pointwise encoding time reduction with radial acquisition (PETRA) method is shown in panel (b) using dotted lines in G and ADC to indicate single-point acquisitions at lower gradient strengths (57). 14

Figure 1.9: Cartoon T_2 relaxation spectrum diagramming the three major 1H NMR signal pools in bone. Pore water has $T_2 > 1$ ms, while bound water has $T_2 \sim 300$-500 µs. Collagen signal, at $T_2 \sim 40$-60 µs, is below the detection limit at clinical field strengths, but becomes visible using micro-imaging and spectroscopic hardware. As porosity increases, collagen and bound water decrease, while pore water
increases and shifts to longer T_2 values due the smaller surface-to-volume ratio of enlarged pores. This figure is adapted from Li et al. (74).

Figure 2.1: Example standardized RF coil used at field strengths from 1.5 T to 7 T. Coils are transmit/receive parallel dual-conductor solenoids.

Figure 2.2: Saturation-recovery pulse sequence used for bulk T_1 relaxation time measurements.

Figure 2.3: Sample 31P relaxation analysis data in specimen of lamb cortical bone at 7 T: a) lineshape (solid line) with Lorentzian fit (dashed line); b) saturation recovery data (points) with exponential fit (dashed line).

Figure 2.4: Imaging pulse sequences used for SNR comparisons to predicted trends: a) ramp-sampled ultra-short echo time (UTE), and b) zero echo time (ZTE) PETRA, with single-point sampling of k-space center.

Figure 2.5: 31P (a) T_1 (squares) and T_2^* (circles) relaxation times and (b) R_1 (squares) and R_2^* (circles) relaxation rates of bone mineral phosphorus in fully hydrated solid bone samples at six field strengths. Lines connecting points are a visual guide only, and do not represent data or predictions. Error bars are included, but do not extend beyond markers.

Figure 2.6: Predicted (solid markers) relative bone mineral 31P SNR based on measured relaxation times at multiple field strengths at $t_{dead} = 20$ and 40 µs, normalized to the value at 1.5 T for each condition, and power fits (solid lines) at $t_{dead} = 40$ µs. Relative SNR trends calculated from actual UTE and ZTE imaging acquisitions (open markers), also normalized to the value at 1.5 T for each condition.

Figure 2.7: UTE and ZTE images (1.21 mm isotropic voxel resolution) of a longitudinal section through the center of a cylindrical solid cortical bone specimen (7 mm diameter, 30 mm length) at 1.5 T, 3 T, and 7 T, with SNR values. Specimen dimensions are indicated with a dashed line.
Figure 3.1: Cartoon 1H NMR T_2^* relaxation spectrum of bone at multiple field strengths. Note that as field strength increases, the T_2^* of pore water becomes shorter and merges with the short-T_2^* bound water pool. ... 48

Figure 3.2: 1H SR-FID (a), SR-CPMG (b), SIR-FID (c), and 2H IR-FID (d) NMR pulse sequences. In (a) and (b), the saturation-recovery time, T_{SR}, is arrayed logarithmically from 3 ms to 6 s in 12 steps. In (b), the number of refocusing pulses, N, is arrayed logarithmically from 0 to 5000 in 20 steps... 50

Figure 3.3: Bar graphs showing trends in average (a) short-T_2^* relaxation times and (b) long-T_2^* relaxation times by 1D T_2^* bi-component fitting of FIDs, and (c) short-T_2^* fractions by 1D T_2^* and 2D $T_1-T_2^*$ bi-component fitting at four field strengths. Error bars indicate standard deviation... 56

Figure 3.4: 2D T_2^*-T_2 and T_1-T_2 1H relaxation spectra at 9.4 T, and 2D $T_1-T_2^*$ relaxation spectrum at 3 T, generated using the MERA software package (124). Spectra are from a bone specimen taken from a 37 year old male donor. The T_2^*-T_2 spectrum is generated from CPMG data, the T_1-T_2 spectrum from SR-CPMG data, and the $T_1-T_2^*$ spectrum from SR-FID data... 58

Figure 3.5: 2H spectra showing the bound and pore D$_2$O components (inset is magnified vertically and truncated). Pore water (narrow central peak in green) is calculated by subtracting the bound water spectrum obtained by inversion-recovery nulling of pore water (the quadrupolar coupled split peaks shown in red) from the fully relaxed spectrum (shown in blue). This spectrum is taken from a specimen from a 27 year old female donor with the osteonal axis orthogonal to B_0. A splitting of 4.8 kHz is observed, consistent with the orientation-dependent quadrupolar splitting observed by Ong et al. (71)... 59

Figure 3.6: Scatter plots displaying the correlations of the 1D bi-component short-T_2^* 1H signal fraction to organic matrix density measured by gravimetry. Correlations become significantly worse as field strength increases... 62
Figure 3.7: Scatter plots displaying the correlations of 1D bi-component (a) short-T_2^* 1H signal fraction by fitting of FID data and (b) short-T_2 1H signal fraction by fitting of CPMG data at 9.4 T. Short-T_2 fraction is very strongly associated with organic matrix density, while short-T_2^* has no association with matrix density................. 63

Figure 3.8: Log-magnitude FID at 7 T of a cortical bone specimen from a 53 y/o female donor (a). Note the irregular oscillation of the signal, which causes failure of bi-exponential fitting (red line, $R^2 = 0.999592$): 97.4% short-T_2^* signal fraction, versus 86.6% by 2D T_1-T_2 bi-exponential fitting at 9.4 T. Fat at 7 T is 1040 Hz off-resonance. A FID from a 53 y/o male donor (b) not exhibiting these oscillations is also shown for comparison ($R^2 = 0.999901$). Similar plots of fitted CPMG echo amplitudes for the same 53 y/o female (c) and male (d) donors are also shown.... 65

Figure 4.1: Schematic T_2 relaxation spectrum diagramming the three major 1H NMR signal pools in bone. Pore water has $T_2 > 1$ ms and is broadly distributed, while bound water has $T_2 \sim 300-500 \mu$s. Collagen signal, at $T_2 \sim 40-60 \mu$s, is below the detection limit at clinical field strengths, but becomes visible using micro-imaging and spectroscopic hardware. As porosity increases, as shown in the inset µCT images of bone specimens from 27 y/o and 83 y/o female donors (dense and porous bone, respectively) collagen and bound water content decrease while pore water content increases and shifts to longer T_2 values due the smaller surface-to-volume ratio of enlarged pores... 73

Figure 4.2: SR-CPMG pulse sequence. Saturation-recovery times (T_{SR}) were arrayed logarithmically in 12 steps from 3 ms to 6 s, the number of refocusing pulses, N, was arrayed logarithmically from 0 to 5000 in 20 steps, and one signal acquisition was performed... 76

Figure 4.3: NMR data (points) from a bone specimen from a 53-year-old male with bi-component fits (curves). Panel (a) shows a T_1 fit of saturation-recovery data, (b) shows a T_2 fit of CPMG echo amplitudes, and (c) shows a T_2^* fit of a FID. Although only one-dimensional data are shown, fits were performed using the two-dimensional methods given in the methods section (a,b: T_1-T_2; c: T_2-T_2^*)................ 78
Figure 4.4: ZTE (a) and SIR-ZTE (b) imaging pulse sequences. ZTE parameters: 51896 projections, TR = 2 ms, 1 min 43 sec scan time. SIR-ZTE parameters: 6588 projections, TR = 200 ms, 21 min 58 sec scan time. FOV = 64 mm isotropic, resolution = 500 µm isotropic, and 1 signal acquisition for both................................. 79

Figure 4.5: Volume rendering of the pore spaces (in white) within four representative bone specimens. Note the increased number and size of pores in bone specimens from elderly female donors... 86

Figure 4.6: Maps of ZTE, SIR-ZTE, and non-exchangeable ZTE 1H concentrations, in mol/L, in bone specimens from four representative donors. Age and gender of the donors are given within each quadrant, and the endosteal surface of each specimen faces left. Arrows indicate a region of high porosity, which has elevated total water and reduced matrix densities, and correspondingly increased ZTE and decreased SIR-ZTE 1H concentrations. .. 88

Figure 4.7: Scatter plots displaying the correlations of MRI-derived ZTE (a,c,e) and SIR-ZTE (b,d,f) 1H concentrations versus µCT porosity (a,b), gravimetric water density (c,d), and gravimetric organic matrix density (e,f). ZTE 1H concentration is positively correlated with porosity and gravimetric water density and negatively with matrix density, while SIR-ZTE correlations show the opposite behavior. Clustering of data is due to severe bone loss being present in a small subset of bones from post-menopausal female donors).. 90

Figure 4.8: a) The modulation transfer function (MTF) describes the T_2^* decay of the MRI signal over the course of signal acquisition. b) The Fourier transform of the MTF is the point spread function (PSF), which describes how a single infinitesimally small point source of signal is blurred due to attenuation of higher spatial frequencies. Shorter T_2^* results in a more rapid decay of the MTF and a broader PSF. c) A rectangular profile with several gaps, representing a 1D cross-section through a porous bone, is convolved with the PSFs of ZTE, SIR-ZTE, and non-exchangeable ZTE. These gaps are more severely blurred in cases of shorter T_2. 95
Figure 5.1: Cartoon depicting apparent matrix and mineral density changes in osteoporosis and osteomalacia versus healthy bone. Apparent bone mineral density is lower in both osteoporosis and osteomalacia, but bone mineralization is reduced in osteomalacia only. 103

Figure 5.2: Photograph of the 4.5-cm diameter solenoid coil, with three rigidly affixed landmark reference phantoms. A bone specimen, housed in its plastic tube, is also shown. One 1H or two 31P signal intensity reference phantoms are also mounted inside the solenoid, but are not visible in this photograph. 106

Figure 5.3: Imaging pulse sequences used for bone 31P and bound water density quantification: 31P ZTE sequence (a) with PETRA module (b), and 1H Single Adiabatic Inversion Recovery Rapid ZTE (SIR-rZTE) sequence (c) with PETRA module (d). Relevant pulse sequence parameters are shown. 109

Figure 5.4: Simulated response, $f_{HS} = M_z/M_0$, of spins to a 5-ms, 5 kHz bandwidth adiabatic RF pulse with respect to T_2. Ranges of bound and pore water are indicated. While this pulse largely saturates bound water ($M_z \approx 0$), it inverts pore water ($M_z < 0$). ... 115

Figure 5.5: Volume rendering of a 31P ZTE image of a tibial cortical bone specimen from an 83 y/o female donor. Two signal intensity reference phantoms mounted inside the RF coil (right) and three landmark reference phantoms mounted outside the RF coil (top, left, bottom) are visible. .. 118

Figure 5.6: Maps of bone mineral 31P density (a) and bound water density (b) in central slices of 16 human tibial cortical bone specimens. Age and gender of bone specimen donors are indicated. Bone mineral 31P and bound water 1H densities are markedly lower in bones from elderly female donors than from younger females or males. 31P maps also suffer from increased point spread function blurring due to the lower gyromagnetic ratio and shorter T_2^* of 31P. ... 118
Figure 5.7: Correlation plot of bone mineral 31P density to bound water 1H density. The two MRI-derived densities are highly correlated, as expected in a set of equally mineralized bones.
PREFACE

Chapter 2 has been published as: Seifert AC, Wright AC, Wehrli SL, Ong HH, Li C, and Wehrli FW. 31P NMR relaxation of cortical bone mineral at multiple magnetic field strengths and levels of demineralization. NMR Biomed, 2013;26(9):1158-1166. DOI: 10.1002/nbm.2930

Chapter 3 has been accepted for publication in NMR in Biomedicine as: Seifert AC, Wehrli SL, and Wehrli FW. Bi-component T_2^* analysis of bound and pore bone water fractions fails at high field strengths.

Chapter 4 has been submitted to the Journal of Bone and Mineral Research and is currently under review as: Seifert AC, Li C, Wehrli SL, and Wehrli FW. Single adiabatic inversion recovery zero echo time MRI is a surrogate measure of bone matrix density.

Chapter 5 has been published as: Seifert AC, Li C, Rajapakse CS, Bashoor-Zadeh M, Bhagat YA, Wright AC, Zemel BS, Zavaliangos A, and Wehrli FW. Bone mineral 31P and matrix-bound water densities measured by solid-state 31P and 1H MRI. NMR Biomed, 2014;27(7):739-748. DOI: 10.1002/nbm.3107

Alan C. Seifert

April 23, 2015
CHAPTER 1: INTRODUCTION

1.1. Bone Anatomy

Bone is a composite material composed of apatite-like mineral, collagen, water, and several types of cells arranged over multiple size scales. Each constituent contributes uniquely to bone’s mechanical properties; mineral provides rigidity (1), collagen matrix contributes elasticity (2), water stabilizes the collagen matrix, imparting viscoelasticity and increasing toughness (3,4), and cells maintain bone health.

The two main structural types of bone are trabecular and cortical. Trabecular bone is a mesh-like network of interconnected rods and plates, while cortical bone is more compact. On the largest scale, long bones in the appendicular skeleton consist of a shaft, the diaphysis, which widens into the metaphysis, containing the growth plate, and epiphysis at each end. The diaphysis consists of thick cortical bone surrounding the marrow cavity. The epiphysis contains predominantly trabecular bone interspersed with marrow, covered by a thinner shell of cortical bone.

The structure of bone is directly related to its mechanical function. Wolff’s law, a theory developed by the 19th century anatomist Julius Wolff, states that bone adapts its structure to the mechanical demands placed on it. If the stress placed on a certain site is increased, the trabecular bone’s anisotropic structure will re-orient to better bear the load placed on it, the cortical bone at that site will thicken, and overall bone density will increase. The inverse is also true: if less stress is placed on a bone, that bone will lose density to reduce its metabolic cost (for example, during extended immobilization due to injury or exposure to microgravity).
Though cortical bone changes more slowly in response to loading, its importance must not be underestimated. Even at sites of predominantly trabecular bone, such as the femoral neck, approximately half of the bone’s failure load is explained by the cross-sectional area and mineral content of the thin cortical bone layer (5).

Cortical bone tissue is further organized into cylindrical osteons surrounding a central Haversian canal containing blood vessels. Along with the longitudinal Haversian canals and transverse Volkmann’s canals, cortical bone’s pore system also consists of canaliculi, which allow diffusion of nutrients to and waste away from cells, and lacunae, which contain osteocytes, bone cells which reside within the bone tissue. A diagram of the pore system in cortical bone is shown in Figure 1.1.

![Diagram of the pore system in cortical bone](image)

Figure 1.1: A diagram depicting the osteonal organization and pore structure of cortical bone. Figure adapted from (6).

Osteons are in turn composed of wrapped sheet-like layers of bone, or lamellae, 3-7 µm thick. Type-1 collagen fibers within these lamellae are parallel within a layer, but are oriented obliquely to adjacent layers. Each collagen fiber contains many collagen fibrils,
each of which is composed of many individual collagen molecules periodically interrupted by gaps containing mineral crystals. This complex organization is diagrammed in Figure 1.2.

![Diagram of bone structure](image)

Figure 1.2: Structural organization of bone over multiple size scales. Figure from (7).

Collagen molecules are composed of a cross-linked triple-helix structure, which is energetically stabilized by hydrogen-bonded water molecules. Some water molecules reside in the interior of the triple helix, where they form bridges between electrostatic charges on adjacent collagen molecules, while a larger proportion envelops the exterior of the collagen molecule in several hydration layers, shown in Figure 1.3.
Three main types of cells are present in bone: osteocytes, osteoclasts, and osteoblasts. These cells, collectively called the basic multicellular unit (BMU), contribute to the continuous process of bone maintenance and remodeling in complementary ways. Osteocytes, which are embedded throughout bone tissue, monitor the health and structural integrity of their surrounding bone, and signal to initiate a bone remodeling event to replace old, brittle bone with new tissue (9). Osteoclasts, large multi-nucleated cells, resorb this old bone, either stripping it away from the surface of trabeculae or boring outward from the interior of a Haversian canal (10). Osteoblasts follow, laying down new un-mineralized bone matrix, called osteoid. This osteoid is then mineralized in two stages, neither of which require the direct involvement of bone cells (11). First,
primary mineralization occurs over the course of a few days, with 50-70% of bone mineralization being completed (12). Next, secondary mineralization occurs over several weeks to months, in which mineral crystals increase further in number and size until full mineralization is achieved (13). This process occurs continuously to maintain bone homeostasis, with about 10% of the skeleton being replaced each year.

Bone mineral itself is a calcium apatite, most closely resembling calcium hydroxyapatite \((\text{Ca}_{10}(\text{OH})_2(\text{PO}_4)_6)\) (14,15) and carbonatoapatite type B, but bone mineral does not conform to a fixed stoichiometry (16). Several prior studies (17-21) have detected the presence of a protonated phosphate group \((\text{HPO}_4^{2-})\), and identified a deficiency in hydroxyl \((\text{OH}^-)\) groups compared to hydroxyapatite (22). Though the ratio of calcium to phosphorus varies somewhat even within humans (23), the composition of bone mineral is relatively consistent among different mammalian species.

1.2. Bone Disease: Osteoporosis and Osteomalacia

Osteoporosis is a common bone disorder, affecting over 10 million adults in the United States (24). In this disease, bone remodeling increases in frequency, and bone resorption outpaces bone deposition (25,26). Osteoporosis (from Greek, ‘oste’, which means bone, and ‘poros’, which means pore) is particularly prevalent in post-menopausal females, in whom the decrease in estrogen causes more frequent initiation of bone remodeling events (27,28). The result of this dysregulation is thinning of the cortex and enlargement of cortical pores (29), degradation and disconnection of trabecular rods and plates (30), and an overall decrease in the structural and mechanical competence of bone. The increase in bone remodeling frequency also decreases the time available for secondary mineralization to occur, leading to a decrease in the degree
of mineralization of bone (DMB), or mass of bone mineral per unit volume of bone matrix (12,31). Many drug treatments for osteoporosis exist (30), and combinations of drugs can effectively treat this disease in many patients. Bisphosphonates reduce the frequency of initiation of bone remodeling events, and intermittent administration of exogenous parathyroid hormone (PTH) stimulates bone formation by osteoblasts.

Osteomalacia (‘malacia’ being Greek for softness) is a bone-demineralizing disorder in which decreased levels of blood calcium or phosphorus impair the proper mineralization of bone matrix (26). This reduces the stiffness and static strength of bone, making it less mechanically competent (32-34). Vitamin D deficiency, the most common cause of osteomalacia (35), can cause poor intestinal uptake of calcium, leading to low levels in the blood. Vitamin D deficiency may occur in as many as 25% of elderly patients (36). Logically, the main treatment for this type of osteomalacia is vitamin D supplementation. Diseases of the kidneys may also cause osteomalacia due to wasting of phosphorus. In these cases, treatment involves dietary supplementation of phosphate, and may include supplementation of 1,25-dihydroxyvitamin D.

The essential difference between these two disorders is in bone mineralization. As shown in Table 1.1, mineral density is decreased in both osteoporosis and osteomalacia, while matrix is lost only in osteoporosis. This means that in osteomalacia, bone mineralization is severely decreased, while in osteoporosis, mineralization is only slightly decreased due to increased bone turnover and the consequently attenuated secondary mineralization (37).
7

<table>
<thead>
<tr>
<th></th>
<th>Osteoporosis</th>
<th>Osteomalacia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mineral Density</td>
<td>↓↓↓↓</td>
<td>↓↓↓↓</td>
</tr>
<tr>
<td>Matrix Density</td>
<td>↓↓</td>
<td>~~~</td>
</tr>
<tr>
<td>Mineralization</td>
<td>↓</td>
<td>↓↓↓↓</td>
</tr>
</tbody>
</table>

Table 1.1: Changes in mineral density, matrix density, and mineralization in osteoporosis and osteomalacia.

1.3. Measurement of Bone Health

Standard clinical measurement of bone density is performed using dual-energy x-ray absorptiometry (DXA). In this method, projection x-ray images, most commonly at the proximal femur and lumbar spine, are acquired at two different photon energies. This allows the contribution of soft tissue to total x-ray attenuation to be removed, leaving only the attenuation of bone mineral. Example DXA images are shown in Figure 1.4. This method, therefore, measures apparent areal (two-dimensional) bone mineral density (BMD), expressed in grams per cm². DXA BMD measurements are typically expressed as T-scores, the multiple of standard deviations above or below the average BMD of a thirty-year-old female (942 ± 122 mg/cm²) (38). A T-score > -1.0 is considered normal, while a T-score less than -2.5 is defined by the World Health Organization as the diagnostic criterion for osteoporosis.
Figure 1.4: DXA images for measurement of bone mineral density at the proximal femur (a) and lumbar spine (b) in a 53-year-old male (39).

BMD obtained in this manner is ‘apparent’ in that it lacks sufficient spatial resolution to image individual pore spaces, and so the measured density represents mass of bone mineral per unit total bone area (including pore spaces) rather than per unit of matrix. DXA density is therefore affected both by changes in porosity (mesoscopic scale) and tissue mineralization (microscopic scale); the loss of total bone tissue in osteoporosis and demineralization in osteomalacia appear identical on DXA.

Quantitative computed tomography (QCT) is less commonly used as a screening tool, but has one important advantage over DXA: resolution in three dimensions. This method uses a standard x-ray computed tomography (CT) scanner, which is calibrated to allow conversion of x-ray attenuation in Hounsfield Units (HU) to bone mineral density
values in mg/cc. An example of a QCT image, with density calibration standards in the pad below the patient, is shown in Figure 1.5. Resolution in QCT is on the order of several hundred µm.

QCT can also be performed using a scanner designed specifically to measure bone mineral density at a peripheral skeletal site, such as the radius or tibia; the examination is then termed peripheral QCT (pQCT). The effective x-ray dose is a tissue- and organ-weighted measurement of the health risk of exposure to ionizing radiation. By applying QCT to the limbs, where the effective dose for a given absorbed dose of ionizing radiation is lower, resolution can be improved through use of greater x-ray exposure and a specialized high-resolution scanner. In-plane resolution in this high-resolution peripheral QCT (HR-pQCT) method can be improved to better than 100 µm, sufficient for
visualization of individual trabeculae and the largest cortical pores (see Figure 1.6), but still insufficient to quantify DMB. Specialized HR-pQCT scanners are also not in widespread use, and are used mainly for research.

Figure 1.6: HR-pQCT image of the wrist at 82µm in-plane resolution, showing the distal radius and ulna (40).

Full resolution of even the smallest pores in bone is possible only with micro-computed tomography (µCT, Figure 1.7). This ex vivo method uses the same imaging principles as CT, but with much higher exposures necessary to achieve isotropic resolution finer than 10 µm. This method, therefore, can image the pore structure in cortical bone, including individual osteocyte lacunae. Micro-CT is the gold-standard method for analysis of bone structure in specimens and small animals (41,42), but is not applicable in vivo in humans. An analogous two-dimensional method, microradiography, can visualize individual pores in histologically-prepared samples (12), but has fallen out of routine use due to the proliferation of µCT. Accurate quantification of DMB also requires
a monochromatic x-ray source to avoid beam-hardening artifacts; this can be performed using a synchrotron x-ray source, but such facilities are very rare. Synchrotron μCT is therefore not commonly performed, even for research studies.

![Figure 1.7](image)

Figure 1.7: Comparison of a synchrotron-radiation μCT image with 7.5-μm isotropic resolution (top) to an HR-pQCT image of the same site with 82-μm isotropic resolution (43,44).

Double tetracycline-labeled bone biopsy is currently the best qualitative clinical assessment of bone mineralization (45). The antibiotic tetracycline binds reversibly to newly mineralized bone at the bone/osteoid interface, and is permanently incorporated as mineralization progresses. In this examination, the patient receives two doses of tetracycline spaced approximately two weeks apart. Several days after the second dose,
a bone biopsy is taken. Under fluorescent microscopy, areas of active mineralization show two bands of fluorescence, with the distance between them giving the rate of bone mineralization. However, the link between labeling and active bone formation is less reliable in osteomalacic bone, complicating the interpretation of this test (46). For example, the rate of bone mineralization may be so slow that only a single band of tetracycline appears, or tetracycline may bind to areas where no actual mineralization is occurring. Bone biopsy is also an invasive procedure, making this test unsuitable for repeated measurements, and does not provide a quantitative measurement of DMB.

A method for in vivo measurement of DMB could be designed in two ways: a single high-resolution measurement to spatially differentiate bone matrix from pore spaces, or as the ratio of paired measurements of apparent bone mineral and matrix densities. X-ray-based measurements with high resolution rely on high radiation dose, and are not applicable to human subjects. A paired-measurement method may therefore hold more promise for in vivo use.

1.4. MRI of Bone

In magnetic resonance imaging, a strong magnetic field first polarizes the nuclear spins, which are then manipulated in a spatially dependent manner by applied radiofrequency (RF) and magnetic gradient fields (47). The weak RF electromagnetic field produced by the resulting magnetization as it rotates in a plane transverse to the main magnetic field is then recorded and reconstructed into an image. The three basic steps of an MRI imaging experiment, known as a pulse sequence, are to excite, encode, and acquire the nuclear magnetic resonance (NMR) signal.
After signal excitation, however, the NMR signal decays throughout the experiment with a time constant called the effective transverse relaxation time (T_2^*). T_2^* depends on, among other effects, the homogeneity of the internal magnetic field within the sample and the degree of molecular motion, which allows for averaging of the local magnetic field experienced by the spins over the course of the NMR experiment. The portion of this decay due to static field inhomogeneity can be removed using RF pulses to refocus spins in the transverse plane, thus isolating the transverse relaxation time (T_2). MRI of bone is made difficult by the extremely short T_2^* of highly inhomogeneous, motionally restricted bone tissue. The excited NMR signal, therefore, decays to below the noise level before it can be sufficiently encoded and acquired by standard MRI pulse sequences. Bone, therefore, appears dark in standard magnetic resonance images.

Three solid-state pulse sequences have recently been developed for imaging short-T_2^* tissues: ultrashort echo-time (UTE) (48), zero echo-time (ZTE) (49-55), and sweep imaging with Fourier transformation (SWIFT) (56).
Figure 1.8: UTE (a) and ZTE (b) imaging pulse sequences and corresponding k-space acquisition schemes. In ZTE, central k-space points are lost during transmit/receive dead time, and this region must be re-filled. The pointwise encoding time reduction with radial acquisition (PETRA) method is shown in panel (b) using dotted lines in G and ADC to indicate single-point acquisitions at lower gradient strengths (57).

In 3D UTE (Figure 1.8a), the time delay between the end of signal excitation and the beginning of encoding and acquisition is reduced by simultaneously beginning signal acquisition and ramping the gradient to full strength immediately after the MRI system's transmit/receive (T/R) switching dead time (a hardware dependent parameter) has elapsed. K-space is sampled along radial center-out half-projections in all three dimensions. This method is simple to implement, but may be complicated by inevitable deviations from a perfectly trapezoidal gradient profile due to eddy currents. This may
be dealt with by mapping the gradient waveform and relocating the acquired k-space points to their true, rather than assumed, locations (58).

The ZTE pulse sequence (Figure 1.8b) further reduces the delay between signal excitation and acquisition for each k-space point. In this method, the gradient is first ramped up to full strength, and then a short (less than two dwell times) RF excitation pulse is applied. Signal encoding begins simultaneously with excitation, but the time delay to signal acquisition is still dictated by the T/R dead time. This delay results in the loss of one or more data points near the center of k-space. These points can either be inferred by k-space oversampling and extrapolation (59), or recaptured by performing a second set of acquisitions with lower gradient amplitudes either in a radial (60) or single-point Cartesian (57) scheme. The pointwise encoding time reduction with radial acquisition (PETRA, Figure 1.8b) method acquires each and every k-space point, in both the radially sampled outer region and the Cartesian-sampled inner sphere, at the shortest possible delay time after signal excitation. Though ramping the gradient to full strength and allowing it to stabilize before excitation avoids the complications related to eddy currents, it renders any RF pulse slab-selective. The pulse must either be short enough to reasonably assume non-selectivity (limiting this method to small flip angles), or the non-uniform excitation across the imaging field of view (FOV) must be corrected (61,62). Due to the changing slab orientation, depending on the direction of the readout gradient, such correction is not trivial.

While UTE and ZTE can be performed on standard clinical hardware with minor hardware modifications, SWIFT requires more extensive modification to perform signal
excitation, encoding, and acquisition in a finely interleaved or simultaneous manner, and will therefore not be discussed further.

Both 1H, present in bone water, and 31P, a major component of bone mineral, have spin $= \frac{1}{2}$ and are NMR-active. Both components of a paired measurement of apparent bone mineral and matrix densities are therefore possible using solid-state MRI, despite their extremely short T_2^* and, in the case of bone mineral 31P, very long longitudinal relaxation time (T_1).

Wu and Ackerman first performed 31P imaging of bone mineral in animal specimens in 1992 (55). Cao et al. later quantified mineral density in specimens by 31P NMR (63) with separate determination of bone volume. Anumula et al. reported imaging-based quantification of 31P in animal specimens using experimental hardware (64,65). While the feasibility of in vivo 31P MR imaging of human bone mineral has been proven (66-68), quantification using clinical hardware had not been performed prior to the work in Chapter 5 of this thesis.

Bone 1H signal arises from three major pools (69), illustrated in Figure 1.9. Free water within pores has the longest T_2 relaxation times, ranging from 1 ms to 1 s. Within this pool, water in small pores, which have greater surface to volume ratios, experiences greater surface relaxation and thus has shorter T_2 than water in larger pores (70).

Water hydrogen-bonded to bone matrix is more tightly restricted in its movement, and its protons experience less motional averaging of their local magnetic environments. The 1H signal from bound water has a shorter T_2 of approximately 300-400 µs (69,71,72).
A third pool of 1H signal with extremely short $T_2 < 100 \, \mu s$ also exists (73). This pool encompasses protons in matrix collagen molecules, water within bone mineral crystals, and possibly other macromolecules. Clinical MRI equipment is unable to capture signal from this extremely short-T_2 pool, even using specialized solid-state pulse sequences.

![Diagram](image.png)

Figure 1.9: Cartoon T_2 relaxation spectrum diagramming the three major 1H NMR signal pools in bone. Pore water has $T_2 > 1 \, ms$, while bound water has $T_2 \sim 300$-500 μs. Collagen signal, at $T_2 \sim 40$-60 μs, is below the detection limit at clinical field strengths, but becomes visible using micro-imaging and spectroscopic hardware. As porosity increases, collagen and bound water decrease, while pore water increases and shifts to longer T_2 values due to the smaller surface-to-volume ratio of enlarged pores. This figure is adapted from Li et al. (74).

Several groups have also made progress toward imaging and quantification of the fraction of total bone water that is hydrogen-bonded, and therefore is assumed to exist in proportion to bone matrix. There are two classes of methods to isolate this matrix-associated bone water pool. In bi-component fitting methods, signal can be acquired at several TEs and fitted to a sum of two weighted exponential functions. The weights of
these exponential decays have been hypothesized to represent bound and pore water signal amplitudes (75-78).

Alternatively, specifically designed RF pulses can be employed to differentially affect the magnetization of the two pools. A long, low-amplitude T_2^*-selective RF pulse can selectively saturate the long-T_2^* magnetization of pore water while only slightly affecting the short-T_2^* magnetization of bound water (60,63,79). In a similar method, a T_2-selective adiabatic pulse can invert the long-T_2 magnetization of pore water, while largely saturating the short-T_2 magnetization of bound water. After a delay time, the magnetization of pore water will pass through zero, while the magnetization of bound water will have recovered to a positive and measurable value (80-84).

1.5. Outline of Thesis Chapters

In this dissertation, a combined MRI method for quantification of bone mineral and matrix densities, and their ratio, the degree of mineralization of bone, is introduced. In Chapter 2, the uniquely unfavorable relaxation properties of bone mineral 31P are systematically examined at multiple magnetic field strengths and levels of demineralization, and the results are used to predict the magnetic field at which SNR will be optimized. Chapter 3 evaluates the performance of bi-component T_2^* fitting for quantification of bound and pore bone water fractions in comparison to other experimental NMR-based techniques and two gold-standard validation methods. Chapter 4 validates 1H signal density in single adiabatic inversion-recovery-prepared ZTE (SIR-ZTE) MRI as a surrogate measure of bone matrix density in human bone specimens. Finally, in Chapter 5, a combined examination of bone mineral and matrix densities using 31P ZTE and 1H single adiabatic inversion-recovery-prepared rapid ZTE (SIR-rZTE) is introduced, and the
degree of mineralization of bone is quantified in sixteen human tibial cortical bone specimens using a clinical scanner.
CHAPTER 2: 31P NMR RELAXATION OF CORTICAL BONE MINERAL AT MULTIPLE MAGNETIC FIELD STRENGTHS AND LEVELS OF DEMINERALIZATION

2.1. Abstract

Recent work has shown that solid-state 1H and 31P MRI can provide detailed insight into bone matrix and mineral properties, thereby potentially enabling differentiation of osteoporosis from osteomalacia. However, 31P MRI of bone mineral is hampered by unfavorable relaxation properties. Accurate knowledge of these properties is critical to optimizing MRI of bone phosphorus.

In this work, 31P MRI signal-to-noise ratio (SNR) was predicted on the basis of T_1 and T_2^* (effective transverse relaxation time) measured in lamb bone at six field strengths (1.5 – 11.7 T) and subsequently verified by 3D ultra-short echo-time and zero echo-time imaging. Further, T_1 was measured in deuterium-exchanged bone and partially demineralized bone.

31P T_2^* was found to decrease from 220.3 ± 4.3 µs to 98.0 ± 1.4 µs from 1.5 to 11.7 T, and T_1 to increase from 12.8 ± 0.5 s to 97.3 ± 6.4 s with increasing field strength. Deuteron substitution of exchangeable water showed that 76% of the 31P longitudinal relaxation rate is due to 1H-31P dipolar interactions. Lastly, hypomineralization was found to decrease T_1, which may have implications for 31P MRI based mineralization density quantification.
Despite the steep decrease in the T_2^*/T_1 ratio, SNR should increase with field strength as $B_0^{0.4}$ for sample-dominated noise and as $B_0^{1.1}$ for coil-dominated noise. This was confirmed by imaging experiments.

2.2. Introduction

Bone mineral is a nanocrystalline, non-stoichiometric, highly substituted calcium apatite (16), most closely resembling calcium hydroxyapatite ($\text{Ca}_{10}(\text{OH})_2(\text{PO}_4)_6$) (14,15) and carbonatoapatite type B (85-89), in which some phosphate ions are substituted by carbonate. Phosphorus-31 (^{31}P) has spin $I=\frac{1}{2}$ and 100% natural abundance, and as a major component of bone mineral, it therefore should be ideally suited for quantitative evaluation of bone mineral.

Prior ^{31}P NMR studies of bone mineral by magic-angle spinning (MAS) and cross-polarization (CP) from ^1H (17-21) have detected the presence of a protonated phosphate group (HPO_4^{2-}) having an isotropic chemical shift similar to that in octacalcium phosphate ($\text{Ca}_8(\text{HPO}_4)_2(\text{PO}_4)_4\cdot5\text{H}_2\text{O}$), and chemical shift anisotropy similar to brushite ($\text{CaHPO}_4\cdot2\text{H}_2\text{O}$). Wu, et al. argued that this makes HPO_4^{2-} in bone mineral uniquely different from any such groups in synthetic models of bone mineral (21). Using 2D ^1H-^{31}P heteronuclear correlation spectroscopy, Cho, et al. determined that bone mineral is also severely deficient in hydroxyl (OH^-) groups, having approximately 21% of the OH^- content of stoichiometric hydroxyapatite (22).

More recent work has shown that solid-state ^1H and ^{31}P MRI have the potential to quantify bone matrix and mineral densities, thereby providing information that is not available using current x-ray based clinical methods, but may enable differentiation of
osteoporosis from osteomalacia. \(^{31}\)P NMR (63) and MRI (64,65,90) have shown substantial potential for quantification of bone mineral density, and \(^{31}\)P MRI of bone mineral has been proven feasible in vivo (66,68).

However, magnetic resonance imaging of solid-state phosphorus in bone is greatly complicated by unfavorable relaxation parameters. Greater net magnetization and higher Larmor frequency at higher magnetic fields generally increase signal strength, but prolonged \(T_1\) (longitudinal relaxation time) and reduced \(T_2^*\) (effective transverse relaxation time) as field strength increases may outweigh possible gains. Several groups have measured \(T_1\) and \(T_2^*\) of bone mineral \(^{31}\)P (63,64,66,91) under various conditions and selected field strengths, but no systematic study across field strengths has so far been performed.

The purpose of this work was to predict the dependence of bone mineral phosphorus signal-to-noise ratio (SNR) on static magnetic field strength and level of bone mineralization to aid in the design of an in vivo MRI protocol for measurement of bone mineral density. To accomplish this goal, the \(^{31}\)P \(T_1\) and \(T_2^*\) relaxation times were measured using NMR in unmodified, deuterium-exchanged, and partially demineralized lamb tibial cortical bone samples at six magnetic field strengths ranging from 1.5 T to 11.7 T using comparable transmit/receive radiofrequency (RF) coils. Relaxation times of unmodified bones were then used to predict the theoretically achievable image SNR at each field strength, and these predictions were compared with SNR measured in ultra-short echo-time (UTE) and zero echo-time (ZTE) images. Finally, the mechanisms responsible for longitudinal relaxation and the effect of demineralization on bone mineral
\(^{31}\)P \(T_1\) were evaluated using measurements in deuterium-exchanged and partially demineralized bone, respectively.

2.3. Methods

2.3.1. Specimens

Lamb tibiae were obtained fresh from a local butcher, cleaned of soft tissue, marrow, and periosteum, wrapped in saline-soaked gauze and aluminum foil, and kept frozen at -20 °C until specimens were cut. Five cylindrical specimens of the tibial cortex (4 mm diameter, 10 mm length) were sectioned such that the specimen axis was parallel to the osteonal axis, and then scanned to determine the dependence of \(T_1\) and \(T_2^*\) relaxation times of bone mineral phosphorus on static magnetic field strengths. These specimens were later subjected to deuterium exchange to investigate the mechanisms responsible for longitudinal relaxation. A sixth, larger cylindrical cortical specimen (7 mm diameter, 30 mm length) was sectioned from a lamb tibia and imaged for comparison with predicted SNR trends. An additional five samples of cortical bone, weighing 300 mg each, were ground from the lamb tibiae in a mortar and pestle under liquid nitrogen. The resulting powders were used to measure the effect of partial demineralization on the relaxation times of bone mineral phosphorus. The initial \(T_1\)s of bone powders (84.97 ± 1.57 \(\mu\)s) were similar to those of intact bone specimens (82.97 ± 2.18 \(\mu\)s), though a slight but statistically significant decrease in \(T_1\) was observed upon addition of saline (79.91 ± 2.44 \(\mu\)s). All specimens were stored in saline until the time of scanning. Intact specimens were gently blotted dry before scanning in a sealed vessel to prevent dehydration. Powder specimens were mixed with saline to facilitate transfer into 5 mm
NMR tubes, centrifuged, the supernatant removed, and the precipitate scanned. All data were acquired at room temperature.

2.3.2. MRI Scanners and RF Coils

Experiments were performed on the following scanners: 1.5 T, 3 T, and 7 T whole-body MRI scanners (Siemens, Erlangen, Germany); a 4.7 T horizontal-bore animal MRI scanner (Varian, Palo Alto, CA); a 9.4 T vertical-bore NMR spectrometer and micro-imaging system (Bruker, Billerica, MA); and a 11.7 T vertical-bore NMR spectrometer (Varian, Palo Alto, CA).

For all except the 9.4 T and 11.7 T systems, a standardized set of transmit/receive (T/R) RF coils were constructed and used (1 cm diameter, 3 cm length, 10 turns per cm, shown in Figure 2.1). Each coil incorporated two interleaved solenoids connected in parallel, each with 5 turns per cm, to reduce the accumulation of phase along the electrical length of the coil. These coils were designed to have sensitivity and homogeneity properties similar to high-resolution NMR probes used in spectrometers. At 9.4 T and 11.7 T, vendor-supplied RF/gradient probes with one gradient axis (for spoiling) were used.
2.3.3. T_1 Measurements

As T_2^* approaches the duration of an RF pulse, spins experience relaxation during the pulse and are rotated by less than the nominal flip angle, $\alpha = \omega_1 \tau_{RF}$. To minimize the duration of RF excitation pulses relative to T_2^*, saturation-recovery rather than inversion-recovery was used for T_1 measurements. A series of six 90-degree rectangular RF saturation pulses were applied, each followed by a spoiler gradient (duration = 2 ms, amplitude = 20 mT/m). Bloch equation simulations show that six repetitions of the saturation pulse-spoiler series saturates longitudinal magnetization to 0.1% of initial magnetization in the presence of a flip angle error of ±20%, and 0.0015% in the
presence of a flip angle error of ±10%. After a saturation-recovery time (t_{SR}) following the final saturation pulse, a 90-degree rectangular RF excitation pulse was applied, and free-induction decay (FID) acquisition was begun 20 µs after the end of this pulse. Transmit/receive dead time was taken into account during reconstruction by dropping points acquired before T/R switching was completed (a typical dead time is 40 µs). All 90-degree pulses were identical within each sequence, and RF pulse durations at 1.5, 3, 4.7, 7, 9.4, and 11.7 T were 20, 10, 12, 10, 7, and 12 µs, respectively. 2048 complex points were read out at a dwell time of 5 µs. After acquisition, a final spoiler gradient (duration = 5.2 ms, amplitude = 20 mT/m) was applied. TR was minimized for each repetition, leaving only 1 ms before the first saturation pulse and 1 ms after the final spoiler gradient. This sequence is diagrammed in Figure 2.2.

Figure 2.2: Saturation-recovery pulse sequence used for bulk T_1 relaxation time measurements.
T_1s were calculated by non-linear least squares fitting of peak amplitudes (processing details are given below) to Equation 2.1, where a, b, and T_1 are fitted parameters:

$$S(t_{SR}) = a - b \exp \left(\frac{-t_{SR}}{T_1} \right)$$

[2.1]

2.3.4. T_2^* Measurements

T_2^* was measured using a pulse-acquire FID acquisition module identical to that of the saturation-recovery sequence used for T_1 measurements. For fully mineralized bone experiments, this sequence was implemented separately from the saturation-recovery sequence. For deuterium exchange and partial demineralization measurements, the FID acquisition after the longest t_{SR} was taken from the saturation-recovery data.

The resulting spectra (processing details are given below) fit a Lorentzian better than a Gaussian function; the quality of fit is shown in Figure 2.3. T_2^* was calculated from the full width at half maximum (FWHM) of the fitted Lorentzian:

$$T_2^* = (\pi \text{FWHM})^{-1}$$

[2.2]
2.3.5. Multiple Fields and SNR Estimation

Each fully hydrated solid bone specimen was gently blotted dry and placed into a 5 mm sealed plastic tube (1.5 T - 7 T) or glass NMR tube (9.4 T, 11.7 T), and T_1 and T_2^* measurements were performed. To estimate achievable spectral SNR, measured relaxation times were incorporated into a signal equation (92), which was modified to account for loss of phase coherence during the RF pulse and to include frequency-dependent sample-dominated and coil-dominated noise terms:

$$SNR_{coil_dom} = \frac{1 - \exp\left(\frac{-1}{T_1}\right)}{1 - f_x(\alpha, \tau_{RF}) \exp\left(\frac{-1}{T_1}\right)} \exp\left(\frac{-t_{dom}}{T_2^*}\right)$$

[2.3]
and

\[SNR_{\text{sample-dom}} = \omega f_{xy}(\alpha, \tau_{RF}) \frac{1 - \exp\left(-\frac{\tau_{RF}}{T_1}\right)}{1 - f_z(\alpha, \tau_{RF}) \exp\left(-\frac{\tau_{RF}}{T_2}\right)} \exp\left(-\frac{t_{\text{dead}}}{T_2}\right) \] \hspace{1cm} [2.4]

where

\[f_{xy}(\alpha, \tau_{RF}) = \exp\left(-\frac{-\tau_{RF}}{2T_2}\right) \cos \left(\sqrt{\alpha^2 - \left(\frac{\tau_{RF}}{2T_2}\right)^2}\right) \] \hspace{1cm} [2.5]

and

\[f_z(\alpha, \tau_{RF}) = \exp\left(-\frac{-\tau_{RF}}{2T_2}\right) \left(\cos \left(\sqrt{\alpha^2 - \left(\frac{\tau_{RF}}{2T_2}\right)^2}\right) + \frac{\tau_{RF}}{2T_2} \sin \left(\sqrt{\alpha^2 - \left(\frac{\tau_{RF}}{2T_2}\right)^2}\right)\right) \] \hspace{1cm} [2.6]

describe the response of transverse and longitudinal magnetization, respectively, to a square, on-resonance RF pulse of nominal flip angle \(\alpha\) and duration \(\tau_{RF}\) (93). These equations represent purely coil- or sample-dominated noise cases; in practice, actual noise dominance falls between these two extremes, and so these equations represent the upper and lower bounds of expected experimental conditions.

The duration of the RF pulse is much less than \(T_2^*\), so \(f_{xy} \approx \sin(\alpha)\) and \(f_z \approx \cos(\alpha)\) and the Ernst angle equation, \(\cos(\alpha) = \exp(-TR/T_1)\), is therefore valid. The optimal flip angle, calculated using \(TR = 250\) ms and the measured \(T_1\), was used as the nominal flip angle at each field strength, and a 10 \(\mu\)s RF pulse duration was assumed. SNR was estimated using dead times \((t_{\text{dead}})\) ranging from 0 to 400 \(\mu\)s. SNR at each dead time was normalized to the value at 1.5 T to allow for comparison across field strengths and fitted to an empirically chosen power law, \(y = aB_0^b\).
2.3.6. Deuterium Exchange

To determine the contribution of $^{1}\text{H}-^{31}\text{P}$ dipolar interaction to the longitudinal relaxation rate ($R_T = T_1^{-1}$) of bone mineral phosphorus, relaxation measurements were repeated on the intact bone specimens at 3 T and 7 T after deuterium oxide (D_2O) exchange. The solid bone specimens were thoroughly blotted dry, immersed in 3 mL of D_2O saline (a 25-fold volume excess) at 4 °C for 72 h, and scanned upon removal from the solution. The fraction of longitudinal relaxation rate attributed to $^{1}\text{H}-^{31}\text{P}$ heteronuclear dipolar interaction was quantified as

$$R_{1;\text{H}^{+31}\text{P}} = \frac{R_{1;\text{H},\text{O}} - R_{1;\text{D},\text{O}}}{(1 - 0.0629) R_{1;\text{H},\text{O}}}$$ [2.7]$$

which follows from the ratio of the strengths of ^{1}H and ^{2}H dipolar coupling (given by the direct dipole-dipole spin Hamiltonian) (94):

$$R_{1;\text{H}^{+31}\text{P}} = \frac{\hbar}{\hbar} \left(\frac{I_{1\text{H}}(I_{1\text{H}} + 1)}{I_{2\text{H}}(I_{2\text{H}} + 1)} \right) \gamma_2^{2\text{H}} = 0.0629 R_{1;\text{H}^{+31}\text{F}}$$ [2.8]$$

where $I_{1\text{H}} = \frac{1}{2}$, $I_{2\text{H}} = 1$, $\gamma_{1\text{H}} = 42.58$ MHz/T, and $\gamma_{2\text{H}} = 6.54$ MHz/T are the spin quantum numbers and gyromagnetic ratios of the two nuclei (47).

2.3.7. Partial Demineralization

A solid piece of lamb tibial cortical bone was immersed in liquid nitrogen and ground to powder with a pestle in a mortar. Five 300 mg portions of the powdered samples were measured and combined with 1.2 mL of saline, transferred to 5 mm NMR tubes, centrifuged to settle the powder, and the supernatant removed. Relaxation
measurements of the precipitate were performed at 9.4 T, and the powder slurries were then transferred back to storage vials.

The slurries were again centrifuged and the saline supernatant was drawn off and saved. 1.2 mL of 1% ethylenediaminetetraacetic acid (EDTA) solution was added to each sample, and the samples were agitated and left at room temperature for three days to allow partial demineralization to occur. After three days, the samples were centrifuged and the EDTA solution was drawn off, saved, and replaced with 1.2 mL of fresh 1% EDTA solution. The samples were again agitated and left for another three days at room temperature, centrifuged, and the EDTA solution again drawn off and saved. The powders were rinsed with three 1.2 mL changes of water to remove any remaining EDTA and liberated phosphates. In each rinse cycle, water was added, the samples were thoroughly agitated, centrifuged, and the rinse water drawn off and saved. Thereafter, the precipitates were combined with 1.2 mL saline, transferred to 5 mm NMR tubes, and centrifuged. Relaxation measurements were performed on the precipitates at 9.4 T, and the saline and powder slurries transferred back to storage vials. All saline, phosphorus-containing EDTA solution, and rinse water which had been in contact with the bone powders was combined, lyophilized, and redissolved in 0.5 mL of water. The resulting solutions were scanned with a calibrated methylene diphosphonate (MDP) capillary using high-resolution 31P NMR to quantify the amount of phosphorus removed from each sample (number of dummy scans = 4, number of scans = 50, flip angle = 90 degrees, number of points = 65536, bandwidth = 13021 Hz, $TR = 47.5$ s).

The cycle comprising removal of saline to re-addition of saline, relaxation measurement, and high-resolution 31P NMR spectroscopy, was repeated two more times for a total of
three levels of demineralization. Subsequently, 7 mL of 1.23M HCl was added to each powder specimen to dissolve all remaining bone mineral. After two days at room temperature, 10 mL of water and 1 mL of D_2O was added to each sample, and high-resolution ^31P NMR spectra were run to quantify the amount of phosphorus remaining in each sample of bone powder after the final round of EDTA demineralization. The sum of this amount and the amount of phosphorus removed during all rounds of partial demineralization is the total amount of bone mineral phosphorus initially present in the bone. The degree of demineralization after each round was quantified as the concentration of phosphorus in the saline, EDTA, and rinse liquids divided by this sum.

2.3.8. Spectroscopy Processing Details

Two signal averages were used for deuterium exchange measurements at 7 T, and four for all other measurements. Data were Fourier transformed and automatically phase-corrected based on peak symmetry. All reconstruction and processing were performed using custom scripts programmed in MATLAB (MathWorks, Natick, MA).

2.3.9. Imaging

To test predicted SNR behavior, a sixth, larger bone sample was imaged using two forms of radial pulse sequences: 3D ramp-sampled UTE (48) and 3D ZTE (49-53), so called in order to specify whether gradients are ramped up before or after RF excitation, respectively (54). These imaging sequences, shown in Figure 2.4, were implemented in SequenceTree (95) at 1.5 T, 3 T, and 7 T using the custom-built solenoidal RF coils described earlier. These clinical scanners all have maximum gradient amplitude of 40 mT/m and slew rate of 180 T/m/s.
Figure 2.4: Imaging pulse sequences used for SNR comparisons to predicted trends: a) ramp-sampled ultra-short echo time (UTE), and b) zero echo time (ZTE) PETRA, with single-point sampling of k-space center.

The UTE imaging sequence started with a 20 µs rectangular RF pulse followed 40 µs later by FID readout begun simultaneously with gradient ramp-up. The gradient direction was varied for each repetition to acquire center-out k-space half-projections distributed uniformly within a sphere using the method described by Wong and Roos (96). This simultaneous readout and gradient ramp-up allows acquisition of the central region of k-space, and the resulting non-uniform sampling density was corrected for during reconstruction. A flip angle equal to the Ernst angle was used at each field strength: 11.3, 7.9, and 5.0 degrees at 1.5 T, 3 T, and 7 T, respectively. Other acquisition parameters were: TR = 250 ms, number of complex points per readout N = 153, dwell time = 5 µs, number of projections = 5000, field of view (FOV) = 310 mm in all dimensions, gradient ramp time = 250 µs, gradient amplitude = 38.69 mT/m, and number of averages = 1.
The ZTE imaging sequence also begins with a 20 µs rectangular RF pulse, though this pulse is applied after gradients have stabilized at their constant maximum value. The gradient direction was again adjusted for each repetition to acquire the same distribution of center-out k-space half-projections as the UTE sequence. TR, dwell time, number and arrangement of projections, FOV, gradient amplitude, and number of averages were also identical to the UTE sequence described above, and the number of points per projection was N = 128. Because the gradient was already ramped up to full strength before excitation, the same portion of k-space is sampled as the 153-point UTE readout begun simultaneously with gradient ramp-up. Due to receiver dead time, FID readout was begun 40 µs after the end of the RF pulse. During this delay between excitation and beginning of readout, several k-space points are lost. These points were recovered after the main ZTE acquisition using the pointwise encoding time reduction with radial acquisition (PETRA) method (57), which involves single-point acquisition on Cartesian coordinates within a central sphere of k-space. Each single-point acquisition occurs at an echo time of 40 µs. This central Cartesian region was merged with the surrounding radial region during reconstruction.

Data from both UTE and ZTE sequences were re-mapped to a 256 x 256 x 256 point Cartesian coordinate grid. To compensate for non-uniform sampling density, the weight assigned to each k-space point during re-gridding was chosen according to the k-space ‘volume’ occupied by that point (48). Data were Fourier transformed using the non-equispaced fast Fourier transform (NFFT) C subroutine library (97). The reconstructed voxel resolution was 1.21 x 1.21 x 1.21 mm³; however, actual resolution is reduced from its nominal value by point spread function (PSF) blurring due to broad spectral line width.
The signal-to-noise ratio of each image was calculated by dividing the mean signal intensity within a volume of interest (VOI) drawn within the center of the bone sample to the mean signal intensity within a VOI drawn in a region of background noise.

2.4. Results

2.4.1. Relaxation Times and SNR

T_1 was found to increase monotonically with field strength from 12.8 ± 0.5 s to 97.3 ± 6.4 s (mean ± standard deviation), and T_2^* to decrease from 220.3 ± 4.3 µs to 98.0 ± 1.4 µs. These results are shown in Figure 2.5. Fitted parameters a and b in Equation 2.1 were observed to be approximately equal, indicating effective saturation.

![Figure 2.5](image)

Figure 2.5: 31P (a) T_1 (squares) and T_2^* (circles) relaxation times and (b) R_1 (squares) and R_2^* (circles) relaxation rates of bone mineral phosphorus in fully hydrated solid bone samples at six field strengths. Lines connecting points are a visual guide only, and do not represent data or predictions. Error bars are included, but do not extend beyond markers.

Predicted spectral SNR for both coil- and sample-dominated noise was normalized to their respective values at 1.5 T to facilitate comparison of field strength dependence between noise scenarios (Figure 2.6). Before normalization, predicted coil-dominated
SNR is greater than sample-dominated SNR by a factor of 11.5 at 1.5 T. In each noise scenario, the field dependence is shown for both a realistic receiver dead time of 40 µs in UTE and ZTE imaging sequences reported in literature (in UTE and ZTE, echo time TE is more accurately described as receiver dead time, as no actual echo is created in these sequences). A clear SNR dependence on field strength is lost at $t_{\text{dead}} = 320$ µs for coil-dominated noise, and $t_{\text{dead}} = 130$ µs for sample-dominated noise. For $t_{\text{dead}} = 40$ µs, SNR is predicted to increase as $B_0^{0.4}$ for sample-dominated noise and $B_0^{1.1}$ for coil-dominated noise.

Figure 2.6: Predicted (solid markers) relative bone mineral 31P SNR based on measured relaxation times at multiple field strengths at $t_{\text{dead}} = 20$ and 40 µs, normalized to the value at 1.5 T for each condition, and power fits (solid lines) at $t_{\text{dead}} = 40$ µs. Relative SNR trends calculated from actual UTE and ZTE imaging acquisitions (open markers), also normalized to the value at 1.5 T for each condition.

2.4.2. Deuterium Exchange and Partial Demineralization

Replacement of exchangeable 1H atoms with 2H caused a substantial increase in T_1, but only a very small, albeit significant, increase in T_2^*, as shown in Table 2.1. Equation 2.7
suggests that 78.6 ± 2.0% of $1/T_1 = R_1$ is due to 1H-31P heteronuclear dipolar interaction at 3 T, and 74.3 ± 2.1% of R_1 at 7 T. At each stage of partial demineralization, T_1 decreased significantly while T_2^* showed no dependence on level of mineralization (Table 2.2).

<table>
<thead>
<tr>
<th>B_0</th>
<th>Condition</th>
<th>T_1 (s)</th>
<th>T_2^* (µs)</th>
<th>R_1 (s$^{-1} \times 10^3$)</th>
<th>R_2^* (s$^{-1} \times 10^3$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 T</td>
<td>Unmodified</td>
<td>26.0 ± 1.4</td>
<td>189 ± 2.2</td>
<td>38.5 ± 2.0</td>
<td>5.29 ± 0.06</td>
</tr>
<tr>
<td></td>
<td>D$_2$O-Exchanged</td>
<td>99.0 ± 10.5</td>
<td>203 ± 2.1</td>
<td>10.2 ± 1.0</td>
<td>4.92 ± 0.05</td>
</tr>
<tr>
<td>7 T</td>
<td>Unmodified</td>
<td>66.0 ± 0.8</td>
<td>119 ± 0.4</td>
<td>15.2 ± 0.2</td>
<td>8.40 ± 0.03</td>
</tr>
<tr>
<td></td>
<td>D$_2$O-Exchanged</td>
<td>218 ± 15</td>
<td>121 ± 1.0</td>
<td>4.6 ± 0.3</td>
<td>8.30 ± 0.07</td>
</tr>
</tbody>
</table>

Table 2.1: Bone mineral phosphorus relaxation times in solid bone samples before and after D$_2$O exchange.

<table>
<thead>
<tr>
<th>% Mineralization</th>
<th>T_1 (s)</th>
<th>T_2^* (µs)</th>
<th>R_1 (s$^{-1} \times 10^3$)</th>
<th>R_2^* (s$^{-1} \times 10^3$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100.0 ± 0.0</td>
<td>79.9 ± 2.4</td>
<td>91.1 ± 0.3</td>
<td>12.5 ± 0.4</td>
<td>11.0 ± 0.03</td>
</tr>
<tr>
<td>97.4 ± 0.1</td>
<td>71.7 ± 1.6</td>
<td>91.8 ± 0.4</td>
<td>13.9 ± 0.3</td>
<td>10.9 ± 0.05</td>
</tr>
<tr>
<td>94.3 ± 0.4</td>
<td>68.5 ± 0.7</td>
<td>90.3 ± 0.5</td>
<td>14.6 ± 0.1</td>
<td>11.1 ± 0.06</td>
</tr>
<tr>
<td>92.0 ± 0.6</td>
<td>65.5 ± 1.2</td>
<td>91.7 ± 0.2</td>
<td>15.3 ± 0.3</td>
<td>10.9 ± 0.03</td>
</tr>
</tbody>
</table>

Table 2.2: Bone mineral phosphorus relaxation times at 9.4 T in bone powder samples before and after three stages of demineralization.

2.4.3. Imaging

UTE and ZTE images of a cylindrical sample of lamb tibial cortical bone (7 mm diameter, 30 mm length) acquired at 1.5 T, 3 T, and 7 T are shown in Figure 2.7. Quality factor ratios ($Q_{\text{loaded}}/Q_{\text{unloaded}}$), which describe noise dominance, were 0.92, 0.74, and 0.21, respectively. Noise is therefore predominantly coil-dominated at 1.5 T and 3 T, and sample-dominated at 7 T. Image SNR is displayed in each panel of Figure 2.7, and relative SNR trends, normalized to the value at 1.5 T, are displayed within Figure 2.6. These trends roughly follow the coil-dominated SNR predictions for 1.5 T and 3 T, but diverge at 7 T.
2.5. Discussion

The main objective of this study was to evaluate the dependence of SNR in solid-state 31P imaging on static magnetic field strength, with the expectation that the findings will have implications on the choice of field strength for \textit{in vivo} 31P MRI studies of bone mineral. Although previous work has cast doubt on the notion that increasing field strength will yield a greater SNR (64,66,98), these prior studies were performed on different sets of bone specimens using disparate hardware and scanning parameters.
and, therefore, are not able to provide conclusive evidence to support or reject this hypothesis. Wu, *et al.* previously reported 31P T_1s of 7 s, 19.8 ± 0.5 s, and 40 s in human cortical bone at 1.5 T (98), lamb cortical bone at 2.0 T (53), and dry rabbit cortical bone at 4.7 T (99), respectively, although the measurement of 51.1 s at 4.7 T by Cao, *et al.* (63) in fully hydrated rat cortical bone is more relevant to the present study. Robson, *et al.* (66) also measured a T_1 of 8.6 ± 3.0 s in human cortical bone *in vivo* at 1.5 T. Anumula, *et al.* (64) found a value 54.1 ± 2.7 s for T_1 in whole rabbit bone *ex vivo* at 9.4 T. Wu, *et al.* also reported 31P T_2^* of 199 µs and 143 µs at 1.5 T and 2.0 T, respectively. These values are similar to those found by Robson, *et al.* (207 ± 12 µs at 1.5 T), but are considerably larger than Anumula’s, *et al.* at 9.4 T (92.8 ± 7.5 µs). In addition to field strength, bone mineral 31P T_1 is affected by the concentration of nearby 1H nuclei, which in turn could depend on species, age, porosity, and hydration state of the bone. Subtle differences in the composition of bone mineral, which is known to vary with age (20), may also affect measured relaxation times.

The present study employed standardized RF coils, acquisition parameters, and analysis, and measurements were performed on a single set of cortical bone specimens from the same species and anatomical location. Our results generally support the field strength behavior implied in these prior studies, although differences in the state of bone specimens have a considerable effect on relaxation times (for example, 31P T_1s of dry rabbit cortical bone and hydrated rat cortical bone at 4.7 T differ by 28%).

Dipolar coupling involving protons, which is independent of B_0, and chemical shift anisotropy, especially of the fraction of 31P in the form of HPO$_4^{2-}$ (104-128 ppm (21)), as well as induced local gradients arising from the difference in magnetic susceptibility
between bone and water, both being linearly dependent on B_0, contribute to the effective transverse relaxation rate (R_2^*) (Figure 2.5b). The near-absence of motional averaging of these interactions in bone mineral leads to extremely short 31P T_2^*, although the fact that the line shape fits best to a Lorentzian (rather than exhibiting a powder pattern) likely means that some degree of motional averaging of chemical shift anisotropy does occur. This restricted motion also means that dipolar interactions with nearby 1H and 31P nuclei contain very little power at the 31P Larmor frequency, leading to a very long 31P T_1.

While a sharp increase in 31P T_1 at high field would not be expected for a small, rapidly tumbling biomolecule such as ATP (1.42 ± 0.21 s, 1.35 s, and 1.24 s at 4 T, 7 T, and 9.4 T, respectively (100-102)), it is reasonable to expect such an increase in a solid due to the long rotational correlation time (103).

Based on the measurements presented in this study, we can conclude that although the relaxation properties of bone phosphorus do become significantly less favorable at higher field strengths, as long as RF pulse duration and receiver dead time are adequately short relative to T_2^* ($\tau_{RF} < 20 \mu s$, $\tau_{dead} < 40 \mu s$), and k-space is traversed rapidly ($t_{dwell} \approx 5 \mu s$, $G > 30$ mT/m), then SNR can be expected to increase with B_0 for both sample-dominated and coil-dominated noise. Solid-state projection imaging pulse sequences implemented on clinical hardware with transmit/receive extremity coils already commonly meet such requirements for pulse duration, dead time, and bandwidth. It is important to note that Equations 2.3 and 2.4 predict spectral SNR, and do not include the effect of k-space apodization due to T_2^* decay during readout. Particularly in UTE where central k-space is traversed slowly during gradient ramping, the low-spatial-frequency signals are attenuated resulting in an SNR penalty (104).
Coil sensitivity and therefore SNR varies inversely with solenoid coil diameter, provided the length-to-diameter ratio is constant (105), so a significant decrease in SNR is expected with a larger solenoid receive coil. Birdcage coils, whose sensitivity is less than a solenoid of the same size, would entail a further SNR decrease. The predicted SNR trends should apply for a single RF coil arrangement, provided RF excitation at all field strengths can be accomplished by transmit pulses of equal duration, while still operating within limits on specific absorption rate (SAR) of RF power.

The predicted SNR behavior is supported by SNR calculated from images acquired at three field strengths (Figure 2.6). Mirroring findings by Weiger, et al. (104), the ZTE imaging pulse sequence was found to achieve higher SNR than its UTE counterpart at all field strengths (88%, 126%, and 285% at 1.5 T, 3 T, and 7 T, respectively). A possible explanation for this observation is that ZTE traverses k-space much more quickly than UTE (106) and, with PETRA, uses single-point acquisition to sample the central portion of k-space with a uniform, short delay time after excitation (57). Specifically, in ZTE, the time taken to reach $k = 30 \text{ m}^{-1}$, measured from the center of the RF pulse to arrival at that point, is 40 µs, while in UTE, the time taken to reach the same spatial frequency is much longer, approximately 190 µs, during which much more T_2^* signal decay would occur. This loss in relative SNR efficiency for UTE is exacerbated at elevated B_0 due to shortened T_2^*. Noise also becomes sample-dominated at 7 T with a quality factor ratio of 0.21, causing image SNR for both sequences to fall below the predicted coil-dominated SNR trend.

While increasing static field strength does offer an SNR advantage, other important factors in MRI may become more problematic at high field. For example, as field...
strength increases and T_2^* decreases (spectral line width increases), PSF blurring will increase, further limiting intrinsic resolution. The FWHM of the PSF, with the gyromagnetic ratio expressed in MHz/T is given by Equation 2.9:

$$FWMH_{PSF} = (\frac{\pi}{2} \gamma G)^{-1}$$ \[2.9\]

At a gradient strength of 40 mT/m, the width of the PSF can be expected to increase from ~2.1 mm at 1.5 T to ~3.9 mm at 7 T. This effect is qualitatively visible in both UTE and ZTE images in Figure 2.7. Lastly, SAR increases quadratically with frequency, and could become a limiting factor at high field strengths.

While this work proposes that 31P SNR in cortical bone improves with field strength, the SNR of bone phosphorus is still several orders of magnitude lower than for 1H imaging of bone water. Assuming a T_1 of 223 ms and T_2^* of 390 μs for bone water at 3 T (80), TR of 250 ms, flip angle equal to the Ernst angle at this T_1 and TR, pulse duration of 10 μs, receiver dead time of 30 μs, and equal spin density, coil-dominated predicted SNR (Equation 2.3) is 55 times higher for 1H than for 31P of equal spin density. Intrinsic resolution, which depends on gyromagnetic ratio as well as T_2^*, is also finer in bone 1H imaging, achieving a point spread function FWHM of 0.48 mm at 40 mT/m gradient amplitude as opposed to 2.44 mm in 31P imaging.

Due to the different architecture of RF coils between the 1.5 T – 7 T scanners (solenoids) and the 9.4 T – 11.7 T scanners (saddle), the cylindrical axis of the sample must be orthogonal to the main magnetic field at 1.5 T – 7 T and parallel to the main magnetic field at 9.4 T and 11.7 T. Due to the incoherent macroscopic organization of bone mineral (7), we did not expect relaxation properties to depend on orientation with
respect to B_0, as does the collagen water proton signal (8,71). A cursory examination of relaxation times of bone specimens oriented parallel and perpendicular to the main magnetic field did not reveal a significant dependence.

It has been postulated that bone mineralization, and therefore demineralization, proceed under conservation of total bone volume (107). This means that as mineral is lost, it is replaced by water. Deuterium exchange has shown that 1H-31P dipolar interaction is the principal mechanism for T_1 relaxation of phosphorus in bone. Thus, as suggested by Equation 2.10 below, as demineralization progresses, the pool of water protons, N, contributing to 31P relaxation increases:

$$\frac{1}{T_1} = R_1 \propto \gamma_1^2 \gamma_{^{31}P}^2 \sum_i N_i \frac{6}{r_i}$$

Equation 2.10

Although the number of protons, N, increases with distance, it is also possible that these additional water protons may be too far from the remaining 31P nuclei to contribute appreciably to relaxation; however, because the remaining mineral crystals are smaller after partial demineralization, the proportion of 31P nuclei at the surface of these crystals is increased (i.e. the surface-to-volume ratio of the crystals is greater after demineralization), also leading to an increase in longitudinal relaxation via a decrease in the average distance, r, between 31P and 1H nuclei. Because of the significant shortening of T_1 at relatively modest levels of demineralization, use of a single, general value for T_1 of bone mineral 31P across different subjects for eventual bone mineral density quantification may affect the accuracy of such an examination.
While the experimentally observed gains in SNR with field strength are in fair agreement with predictions, the gains in larger objects such as the human extremities are likely more modest. Even using an extremity coil, noise will presumably be sample-dominated, and so the in vivo SNR gain, illustrated in the sample-dominated SNR predictions in Figure 2.6, will likely not exceed a factor of two across the range of clinical field strengths. Lastly, besides diminishing SNR returns with increasing field strength, other criteria, including increased PSF blurring, must be taken into consideration when choosing a field strength for 31P imaging of mineralized tissues.

2.6. Conclusions

In spite of the steep increase in bone mineral 31P T_1 and decrease in T_2^*, SNR is predicted to increase modestly with field strength. These predictions are supported as well by solid-state 31P imaging. This work also shows that 1H-31P dipolar interaction is the dominant longitudinal relaxation mechanism and that T_1 is reduced with decreasing level of mineralization of bone. The results have implications on MRI-based studies of bone mineralization.
CHAPTER 3: BI-COMPONENT T_2^* ANALYSIS OF BOUND AND PORE BONE WATER FRACTIONS FAILS AT HIGH FIELD STRENGTHS

3.1. Abstract

Osteoporosis involves degradation of bone’s trabecular architecture, cortical thinning, and enlargement of cortical pores. Increased cortical porosity is a major cause of the decreased strength of osteoporotic bone. The majority of cortical pores, however, are below the resolution limit of MRI.

Recent work has shown that porosity can be evaluated by MRI-based quantification of bone water. Bi-exponential T_2^* fitting and adiabatic inversion-recovery preparation are the two most common methods purported to distinguish bound and pore water in order to quantify matrix density and porosity.

To assess the viability of T_2^* bi-component analysis as a method for quantifying bound and pore water fractions, we have applied this method to human cortical bone at 1.5 T, 3 T, 7 T, and 9.4 T, and validated the resulting pool fractions against µCT-derived porosity and gravimetrically-determined bone densities. We also investigated alternative methods: 2D T_1-T_2^* bi-component fitting by incorporating saturation-recovery, 1D and 2D fitting of CPMG echo amplitudes, and deuterium inversion recovery.

The short-T_2^* pool fraction was moderately correlated with porosity ($R^2 = 0.70$) and matrix density ($R^2 = 0.63$) at 1.5 T, but the strengths of these associations were found to diminish rapidly as field strength increased, falling below $R^2 = 0.5$ at 3 T. Addition of the
T_1 dimension to bi-component analysis only slightly improved the strengths of these correlations. T_2^*-based bi-component analysis should therefore be used with caution.

The performance of deuterium inversion-recovery at 9.4 T was also poor ($R^2 = 0.50$ versus porosity and $R^2 = 0.46$ versus matrix density). The CPMG-derived short-T_2 fraction at 9.4 T, however, is highly correlated with porosity ($R^2 = 0.87$) and matrix density ($R^2 = 0.88$), confirming the utility of this method for independent validation of bone water pools.

3.2. Introduction

As explained in **Chapter 1**, osteoporosis is a common bone disease which involves deterioration of trabecular bone architecture (30) and enlargement of pores and thinning of cortical bone (29). This increased cortical porosity is a major cause of the impaired strength of osteoporotic bone (108,109). Measurement of cortical porosity is, therefore, of great interest for assessment of bone health.

NMR and MRI methods have recently been used to study bone density and porosity. Unfortunately, the majority of cortical pores are smaller than the spatial resolution achievable by *in vivo* MRI, necessitating other approaches that do not rely on resolution of pore spaces.

The NMR 1H signal in bone arises from three major pools: pore water with relatively long T_2 (1 ms – 1 s) (70), bound water with short T_2 (300 – 400 µs) (69,71,72), and macromolecular and mineral water signal with extremely short T_2 (< 100 µs) (73). These components have been illustrated previously in a schematic T_2 spectrum (**Figure 1.9**).
As bone substance is lost and pore spaces expand, pore water concentration increases (71,72,74,75,81,84,110,111). Bound water concentration, which should parallel collagen density (69), is proportional to bone density and, therefore, is inversely proportional to porosity (60,71,72,75,76,78,79,81,84,112). Total water concentration, the sum of bound and pore water concentrations, is also weakly associated with porosity (33,71,74,81,113-115).

Due to the specific absorption rate (SAR) limitations of clinical MRI scanners, it is not possible to apply the refocusing RF pulses necessary to acquire Carr-Purcell-Meiboom-Gill (CPMG) echo amplitude data reflecting the T_2 components of bone 1H signal. T_2^* bi-component fitting of free induction decay (FID) data or a series of images at different TEs has been investigated as an alternative, due to its relative ease of implementation.

T_2^* of pore water, however, is shortened due to strong internal magnetic field gradients arising from the difference in magnetic susceptibility between water and bone tissue ($\Delta \chi \approx 2.5$ ppm SI) (116). The reduced separation between bound and pore water T_2^* values, illustrated in Figure 3.1, complicates separation via bi-component fitting, which, as a form of inverse Laplace transformation, is an ill-posed problem (117). Because the strength of the induced magnetic fields increases linearly with field strength, this effect becomes more severe at higher field strengths.
To assess the viability of T_2^* bi-component analysis as a method for quantifying bound and pore water fractions in humans, we have scanned a set of human cortical bone specimens at 1.5 T, 3 T, 7 T, and 9.4 T, and validated bi-exponential fitting of the resulting FIDs against µCT-derived porosity and gravimetrically-determined bone densities. These specimens are expected to vary widely in bone density and porosity. We also compared T_2^* bi-component analysis at these four field strengths to T_2 bi-exponential fitting of CPMG echo amplitudes (69) and deuterium inversion-recovery NMR (71) at 9.4 T.

3.3. Materials and Methods

3.3.1. Specimen Source and Preparation
The tissue examined consisted of 15 specimens of cortical bone taken from the previously frozen tibial mid-shafts of male and female human donors, aged 27-97 years (National Disease Research Interchange, NDRI). Donors with bone demineralizing disorders were excluded; only age-related structural bone loss was expected. A 4-mm slice was cut from each thawed tibia with a rotating blade at the region of maximum
cortical bone thickness, 38% of the length of the tibia from the medial malleolus to the medial condyle. A rectangular beam was cut from the longest of the three faces of the roughly triangular bone slice, and trimmed to fit into a 5-mm NMR tube. The direction of the long axis of the bone was indicated on the end of each beam by cutting a notch parallel to the bone’s axis. Specimens were stored individually in phosphate-buffered saline.

3.3.2. 1H NMR Spectroscopy

1.5 T, 3 T, and 7 T experiments were performed on whole-body human MRI scanners (Siemens, Erlangen, Germany) using custom-built 1H-free solenoidal radiofrequency (RF) coils (to eliminate signal contamination from the coil), 10 mm in diameter and 25 mm in length. Each coil was constructed of two parallel six-turn windings of copper wire on a polytetrafluoroethylene (PTFE) tube, mounted to a PTFE board, and tuned and matched capacitively. Coils were connected to the transmit/receive interface box (Stark Contrast, Erlangen, Germany) using PTFE-dielectric and insulated coaxial cable. At 9.4 T, experiments were performed on a vertical-bore NMR spectrometer and micro-imaging system (Avance III, Bruker, Billerica, MA) using a standard commercially-available 5-mm broadband inverse (BBI) probe with a 1-axis gradient.

Each bone was removed from its storage solution, gently blotted dry, placed quickly into a small, air-tight NMR tube with minimum interior air volume to prevent evaporation of free water, and scanned with a saturation-recovery (SR) pulse sequence, shown in Figure 3.2a. Longitudinal magnetization was saturated by a train of 90° pulses followed by spoiler gradients, and the partially-recovered magnetization was measured after each
of 12 saturation recovery times (T_{SR}) arrayed logarithmically from 3 ms to 6 s. 32 signal acquisitions were averaged, and the scan time for this sequence was 6 min.

Figure 3.2: 1H SR-FID (a), SR-CPMG (b), SIR-FID (c), and 2H IR-FID (d) NMR pulse sequences. In (a) and (b), the saturation-recovery time, T_{SR}, is arrayed logarithmically from 3 ms to 6 s in 12 steps. In (b), the number of refocusing pulses, N, is arrayed logarithmically from 0 to 5000 in 20 steps.
An equation consisting of the sum of two decaying exponentials plus a noise offset term,

\[f(t) = M_S \exp\left(-\frac{t}{T_{2S}}\right) + M_L \exp\left(-\frac{t}{T_{2L}}\right) + n, \]

[3.1]

was fitted using non-linear least squares (NLLS) to the magnitude free induction decay (FID) data after the longest \(T_{SR} \). Short-\(T_2^* \) fraction is given by \(M_S/(M_S+M_L) \), and the corresponding short \(T_2^* \) relaxation time by \(T_{2S}^* \). Similarly, long-\(T_2^* \) fraction is given by \(M_L/(M_S+M_L) \) and the long \(T_2^* \) relaxation time by \(T_{2L}^* \).

Two-dimensional bi-component \(T_1\)-\(T_2^* \) fitting, which has been shown to improve accuracy (118), was also performed by fitting a similar equation,

\[f(T_{SR}, t) = M_S \left(1 - \exp\left(-\frac{T_{SR}}{T_{1S}}\right)\right) \exp\left(-\frac{t}{T_{2S}}\right) + M_L \left(1 - \exp\left(-\frac{T_{SR}}{T_{1L}}\right)\right) \exp\left(-\frac{t}{T_{2L}}\right) + n, \]

[3.2]

to the set of saturation recovery-prepared magnitude FIDs. Here, the short-\(T_2^* \) fraction is given by \(M_S/(M_S+M_L) \), the short \(T_2^* \) relaxation time by \(T_{2S}^* \), and the short-\(T_2^* \) pool’s \(T_1 \) relaxation time by \(T_{1S} \); fractions and relaxation times are analogous for the long-\(T_2^* \) pool.

All reconstruction and fitting was performed in Matlab (Mathworks, Natick, MA).

Additionally, taking advantage of the lack of specific absorption rate (SAR) limitations and the availability of high-powered hardware at 9.4 T, each bone was scanned using a SR-prepared Carr-Purcell-Meiboom-Gill (SR-CPMG) pulse sequence (119), shown in **Figure 3.2b**. \(T_{SRs} \) were arrayed identically to the SR-FID sequence, and the number of refocusing pulses, \(N \), was arrayed logarithmically from 0 to 5000 in 20 steps, and one signal acquisition was performed. Scan time for this sequence was 29 min. Analysis
was performed similarly to the 1D and 2D bi-exponential fitting of FIDs, with FIDs simply substituted for arrays of echo amplitudes, using the following equations:

\[f(TE) = M_S \exp\left(\frac{-TE}{T_{2S}}\right) + M_L \exp\left(\frac{-TE}{T_{2L}}\right) + n \]

[3.3]

and

\[f(T_{SR}, TE) = M_S \left(1 - \exp\left(\frac{-T_{SR}}{T_{1S}}\right)\right) \exp\left(\frac{-TE}{T_{2S}}\right) + M_L \left(1 - \exp\left(\frac{-T_{SR}}{T_{1L}}\right)\right) \exp\left(\frac{-TE}{T_{2L}}\right) + n \]

[3.4]

Finally, each bone was scanned with a single adiabatic inversion recovery-prepared FID (SIR-FID) pulse sequence, shown in Figure 3.2c, at all fields. Adiabatic inversion pulses may be designed with both long duration and broad bandwidth, and are thus \(T_2 \)-selective, rather than \(T_2^* \)-selective. Inversion time \((TI) \) was stepped from 10 to 270 ms at \(TR = 300 \text{ ms} \). All other parameters were identical to SR-FID. The magnitude FID from each \(TI \) was processed by fitting a sum of two exponentials in a similar manner as 1D FID data, but with the relaxation times of the two pools instead set as fixed constants equal to the fitted values from 2D \(T_1-T_2^* \) bi-component analysis. The \(TI \) at which the long-\(T_2^* \) pool fraction was minimized was selected for each bone as the optimal inversion-nulling time for pore water signal.

3.3.3. \(^2 \text{H} \) NMR Spectroscopy

Labile protons, consisting predominantly of bound and pore water, were exchanged with \(^2 \text{H} \) by immersion in deuterium oxide (D\(_2\)O). Bones were blotted dry and placed in a 20-fold volume excess of 99.9\% purity D\(_2\)O-saline for six days, and were removed and transferred to a container with the same volume of fresh D\(_2\)O-saline on days two and four to ensure full exchange.
Following full deuterium exchange, specimens were scanned using 2H inversion-recovery (IR) (71). A 2H spectrum of bone at 9.4 T consists of a narrow central peak with $T_1 = 200\pm40$ ms flanked by a doublet with $T_1 = 11\pm2$ ms. The narrow single peak corresponds to bone water residing in the pore system of bone and whose motion is unimpeded by interaction with bone collagen. The doublet peak with splitting of 4.8 kHz results from quadrupole interaction of the deuteron with the electric field gradient along the O-2H bond in bone water that is hydrogen-bonded to matrix collagen (120-122).

The pulse sequence and relevant parameters are shown in Figure 3.2d. T_I was stepped in 10 ms increments in order to capture the null point of the narrow pore water peak, the post-acquisition delay was 1 s to ensure return to equilibrium longitudinal magnetization, and 48 signal acquisitions were averaged. Scan time for this sequence was 21 minutes. A fully relaxed spectrum was also acquired. The integral of the fully-relaxed spectrum represents total bone water, the integral of the spectrum with the narrow pore water signal nulled represents bound water only, and the difference between these two represents pore water only. Bound and pore water fractions were calculated by dividing the integral of the pore water-nulled spectrum or the difference spectrum, respectively, by the integral of the fully relaxed spectrum.

3.3.4. µCT Imaging

Bone specimens were scanned on a Scanco µCT35 scanner (Scanco, Brüttisellen, Switzerland) at 18.5-µm isotropic resolution. Bone exteriors were masked by 3D active snakes using the ITK-SNAP software package (123), and pores were segmented from this masked 3D image by thresholding. Porosity was calculated as pore (segmented) volume divided by total (masked) volume.
3.3.5. Gravimetry

Fully hydrated bone specimens were removed from liquid, gently blotted dry, and weighed to establish their initial mass. The bones were then placed in tared crucibles and dried at 105° C for 110 hr to remove all bound and pore bone water. Completion of drying was verified by no change in mass over a 24-hour period. Bones were again weighed and the dry mass was recorded. The bones were then incinerated at 600° C for 30 hr to burn off all organic matrix, and the residual ash was weighed again. Total water mass was then obtained as the difference between initial and dry mass, total matrix mass was the difference between dry and ash mass, and total mineral mass was equal to the ash mass. These masses, divided by total bone volume obtained from the µCT bone exterior mask, yield total water, matrix, and mineral densities.

3.4. Results

3.4.1. ¹H NMR Spectroscopy

The measured NMR pool fractions by bi-exponential fitting, along with validation measurements by µCT, ²H IR NMR, and gravimetry, are shown in Table 3.1. The short-T_2^* fraction at 1.5 T was 69.6±12.7% (37.7-82.6%) (mean ± standard deviation and range (min-max)). At 3 T, the mean short-T_2^* fraction was similar to 1.5 T at 68.1%, but the standard deviation and range were larger, at 21.9% and 17.0-98.6%, respectively. Short-T_2^* fractions at 7 T and 9.4 T were 82.3±14.0% (49.8-99.9%) and 55.1±28.7% (18.6-98.3%).
Table 3.1: Bone properties measured by µCT, 2H IR, gravimetry, SR-CPMG NMR at 9.4 T, SR-FID NMR at four field strengths, and SIR-FID NMR at three field strengths. Bone labels are composed of the two-digit age and one-letter gender of the donor.

Short-T_2^* pool relaxation times were 401±119 (301-762) µs, 389±116 (249-768) µs, 368±76 (302-613) µs, and 302±150 (125-615) µs at 1.5 T, 3 T, 7 T, and 9.4 T, respectively. Long-T_2^* relaxation times decreased more dramatically at higher field strength: 4110±1230 (1840-7170) µs, 4350±8570 (980-35300) µs, 1300±420 (380-1860) µs, and 886±525 (410-2160) µs at 1.5 T, 3 T, 7 T, and 9.4 T, respectively. Short- and long-T_2^* relaxation times and short-T_2^* pool sizes are plotted in **Figure 3.3**. If one outlier, 35300 µs, is excluded from this mean and standard deviation at 3 T, the long-T_2^* relaxation time becomes 2150±540 (980-2940) µs. This outlier was a result of poor fitting due to oscillations in the magnitude FID; this phenomenon, which appeared in several specimens at multiple fields, will be discussed in detail in the discussion section.
Inclusion of the T_1 dimension reduced the standard deviations of 2D short-T_2^* fractions relative to 1D, particularly at 3 T, but average pool fractions and T_2^* relaxation times were unchanged. The T_1 relaxation times of the short-T_2^* fractions were 82.6±10.4 (62.2-97.3) ms, 145±25 (103-186) ms, 400±68 (206-496) ms, and 358±240 (93-565) ms at 1.5 T, 3 T, 7 T, and 9.4 T, respectively, and T_1s of the long-T_2^* fractions were 651±273 (379-1210) ms, 880±281 (465-1470) ms, 1790±470 (898-2470) ms, and 1300±370 (751-1940) ms.

Short-T_2 fractions by bi-component T_2 fitting of CPMG echo amplitudes at 9.4 T were generally larger than short-T_2^* fractions by FID fitting: the 1D short-T_2 fraction was 78.1±8.5% (59.0-87.4%), and the 2D short-T_2 fraction was 77.0±9.3% (55.4-86.6%). Relaxation times for short- and long-T_2 fractions were 540±150 (430-960) µs and 77±53 (22-220) ms, respectively, for 1D fitting. Short-T_2 relaxation time for 2D fitting was unchanged at 540±150 (430-980) µs, while long-T_2 relaxation time was 55±38 (17-161) ms. The corresponding T_1 relaxation times of short- and long-T_2 fractions obtained by 2D fitting were 480±80 (320-560) ms and 1210±300 (880-1910) ms, respectively.
Average signal to noise ratios (SNRs), defined as the magnitude of the first data point of the FID signal divided by the standard deviation of the magnitude of the final 25 data points, were 4130, 3040, 15600, and 34300 at 1.5 T, 3 T, 7 T, and 9.4 T, respectively. The noise terms, n, in Equations 3.1 and 3.2 for 1D and 2D bi-component T_2^* fitting were on the order of 0.1% of total signal (M_S+M_L) or less at all field strengths, and were therefore inconsequential. In Equations 3.3 and 3.4 for 1D and 2D bi-component T_2 fitting of CPMG data, the noise terms, n, were 2-3% of total signal. This larger value of n is a result of the overly simple assumption of two discrete pools; the presence of a small fraction of signal that has T_2 much longer than the fitted long-T_2 value appears to the bi-component fitting method as a non-zero noise level.

Three example 2D relaxation spectra of a bone specimen taken from a 37 year old male donor are shown in Figure 3.4: $T_2^*-T_2$ and T_1-T_2 spectra at 9.4 T, and a $T_1-T_2^*$ spectrum at 3 T. Relaxation times given in the labels next to each pool represent the centroid of each pool. T_2 values were distributed across three orders of magnitude (horizontal axis in Figure 3.4a and 3.4b), while T_2^* values spanned less than two (vertical axis in Figure 3.4a and horizontal axis in Figure 3.4c).
Figure 3.4: 2D $T_2^*-T_2$ and $T_1-T_2^*$ relaxation spectra at 9.4 T, and 2D $T_1-T_2^*$ relaxation spectrum at 3 T, generated using the MERA software package (124). Spectra are from a bone specimen taken from a 37 year old male donor. The $T_2^*-T_2$ spectrum is generated from CPMG data, the T_1-T_2 spectrum from SR-CPMG data, and the $T_1-T_2^*$ spectrum from SR-FID data.
Optimal inversion times were 91.3±20.3 (60-130) ms at 1.5 T, 81.3±23.3 (50-130) ms at 3 T, and 174±30 (130-240) ms at 7 T. These TIs resulted in short-\(T_2^*\) signal fractions of 99.3±0.6% (97.7-100%) at 1.5 T, 99.2±0.6% (98.1-100%) at 3 T, and 99.7±0.2% (99.3-100%) at 7 T.

3.4.2. \(^2\)H NMR Spectroscopy

The deuterium-exchanged \(^2\)H IR bound water fraction was 62.6±9.6% (48.7-77.9%). Mean \(T_1\) of the bound water pool was 11.2±1.7 (9.8-15.9) ms, and mean \(T_1\) of the pore water pool was 197±42 (129-282) ms. The mean inversion-recovery time to achieve nulling of the central pore water peak was 142±31 (92-206) ms. An example plot in Figure 3.5 shows the fully relaxed, pore water-nulled, and subtracted pore water-only spectra taken from the specimen from a 27 year old female donor.

![Figure 3.5: \(^2\)H spectra showing the bound and pore D\(_2\)O components (inset is magnified vertically and truncated). Pore water (narrow central peak in green) is calculated by subtracting the bound water spectrum obtained by inversion-](image-url)
recovery nulling of pore water (the quadrupolar coupled split peaks shown in red) from the fully relaxed spectrum (shown in blue). This spectrum is taken from a specimen from a 27 year old female donor with the osteonal axis orthogonal to B_0. A splitting of 4.8 kHz is observed, consistent with the orientation-dependent quadrupolar splitting observed by Ong et al. (71).

3.4.3. µCT and Gravimetry

Porosity measured from µCT image segmentation was 8.96±8.61% (3.06-33.53%). Gravimetric mineral density was 1118±130 (751-1219) mg/cc and organic matrix density was 503.7±24.3 (437.0-527.5) mg/cc, consistent with previous observations in porcine femoral cortical bone by Cao et al. (63,79). Total water density, including both bound and pore water, was 326.2±48.4 (281.4-435.6) mg/cc. A matrix of R^2 values for inter-parameter correlations is given in Table 3.2. Porosity and matrix density were highly negatively correlated ($R^2 = 0.91$), supporting the notion that any increase in porosity occurs at the expense of a loss of matrix volume.
Table 3.2: Inter-parameter correlations (R^2) of measured bone properties. All correlations are statistically significant ($p < 0.05$) unless italicized.

1D short-T_2^* pool fraction was moderately negatively correlated with porosity and positively with matrix density at 1.5 T ($R^2 = 0.70$ and 0.63, respectively), but the strengths of these associations diminished rapidly as field strength increased. In fact, at 9.4 T, no statistically significant correlation was observed. Scatter plots displaying 1D
short-T_2^* pool fractions versus matrix density are shown in Figure 3.6. In general, addition of the T_1 dimension improved the strengths of these correlations (except at 7 T), but this improvement still did not raise the correlations at 9.4 T to the level of statistical significance.

Fitted pool fractions by bi-component T_2 fitting of CPMG echo amplitudes at 9.4 T (Figure 3.7a) were generally better correlated with porosity and matrix density than were those derived from T_2^* fitting of FIDs (Figure 3.7b) and 2H IR. Coefficients of determination (R^2) of short-T_2 fraction by 1D fitting of CPMG echo amplitudes to porosity
and matrix density were 0.87 and 0.88, respectively; with the addition of the T_1 dimension, these increased slightly to 0.90 and 0.89, respectively.

Figure 3.7: Scatter plots displaying the correlations of 1D bi-component (a) short-T_2^* 1H signal fraction by fitting of FID data and (b) short-T_2^* 1H signal fraction by fitting of CPMG data at 9.4 T. Short-T_2 fraction is very strongly associated with organic matrix density, while short-T_2^* has no association with matrix density.

Bound water fraction by 2H IR, however, was only moderately correlated with porosity ($R^2 = 0.50$) and matrix density ($R^2 = 0.46$), but correlations of 2H IR bound water fraction with short-T_2^* fraction by 1D FID and 2D SR-FID fitting showed the same trend of reduced association as field strength increases.

3.5. Discussion

Bi-exponential fitting is applicable as long as the time constants representative of the two pools are sufficiently separated from one another. Due to the ill-posed nature of the inverse Laplace transform, significant errors may arise in the fitted pool fractions and time constants once the two time constants become similar. Because T_2^* of pore water is substantially shortened by dephasing due to internal magnetic field gradients arising from the large susceptibility difference between water and bone tissue ($\Delta \chi_v \sim 2.5$ ppm SI) (116), resulting in decreased separation of bound and pore water relaxation times,
T_2^* bi-component fitting of FIDs is inferior to T_2 fitting of CPMG echo amplitudes (69). As field strength increases, these internal magnetic field gradients increase proportionally, and pore water T_2^* further decreases, more severely impacting the ability of bi-component fitting of FIDs to distinguish bound and pore water. This is reflected in the reduced strength of the correlations of short-T_2^* fractions versus porosity and matrix density as field strength increases. While the results are promising at 1.5 T, less than half the variance in matrix density is explained by 1D short-T_2^* fraction at 3 T. The phase dispersion resulting from the static internal field inhomogeneity is refocused in the CPMG sequence, yielding greater separation in T_2 and improved fitting performance.

The measured short-T_2^* component fractions of 69.6% and 68.1% at 1.5 T and 3 T, respectively, are nearly identical to the 68.5% and 69% measured by Li et al. (125) in bovine bone, but are slightly lower than the 74.4% and 75.9% measured in human bone at these same field strengths. The ages and pore volume fractions of the human bones studied by Li et al., however, are unknown. While Li et al. observed decreases in short T_2^* relaxation time from 450 µs to 320 µs, and in long T_2^* relaxation time from 7.17 ms to 3.02 ms, at 1.5 T compared to 3 T, the relaxation times presented here are relatively consistent at these two field strengths. Most importantly, however, no significant differences between 1.5 T and 3 T short-T_2^* fraction are observed in the present results or in either of Li’s measurements.

At 3 T and higher fields, oscillations appear in the magnitude FIDs of several bone specimens, presumably resulting from non-water off-resonant spins. Similar oscillations have previously been observed in bone (81) and tendon (78). In many cases, the amplitude of these oscillations is sufficient to disrupt the monotonic decrease of the FID,
a condition that is not able to be fitted by a sum of monotonically decaying exponentials. An example of such an oscillatory FID at 7 T of a bone specimen from a 53-year-old female donor, with attempted mono-exponential and bi-exponential fits, is shown in Figure 3.8a. These oscillations appear most regularly in bone from old female donors, who have greater porosity. Although care was taken in the preparation of these samples to remove marrow fat, some may remain trapped in the enlarged pore spaces of osteoporotic cortical bone. A small amount of lipid also exists within cortical bone matrix at the cement line surrounding each osteon (126).

![Figure 3.8](image)

Figure 3.8: Log-magnitude FID at 7 T of a cortical bone specimen from a 53 y/o female donor (a). Note the irregular oscillation of the signal, which causes failure of bi-exponential fitting (red line, \(R^2 = 0.999592 \)): 97.4% short-\(T_2^* \) signal fraction, versus 86.6% by 2D \(T_1-T_2 \) bi-exponential fitting at 9.4 T. Fat at 7 T is 1040 Hz off-resonance. A FID from a 53 y/o male donor (b) not exhibiting these oscillations is also shown for comparison (\(R^2 = 0.999901 \)). Similar plots of fitted CPMG echo amplitudes for the same 53 y/o female (c) and male (d) donors are also shown.
Note also that the oscillation in Figure 3.8a does not appear to have a fixed period; rather, its period varies. If this signal were purely from the methylene resonance of fatty acid triglycerides, a frequency of 1040 Hz would be expected at 7 T. After Fourier transform, only the main water peak is visible. Fourier transformation of the fitting residual also yields no insight into the source of this signal; the spectrum consists only of residual signal distributed symmetrically around the main water peak. It is possible that this oscillation arises from fat that exists in a spatially heterogeneous magnetic field due to susceptibility effects, from other non-fat sources within the same environment, or some combination of these effects (all of which would be refocused by the 180° pulses in CPMG), but further experimentation would be necessary to support any of these speculative hypotheses.

If bone specimens exhibiting these problematic oscillations are retrospectively excluded from correlation analyses (four females ages 53-97 years, one male age 83 years), the R^2 values describing the association of short-T_2^* fraction with μCT porosity and matrix density in the remaining 10 specimens are substantially improved. At 1.5 T, 3 T, and 7 T, $R^2 = 0.87$, 0.93, and 0.86, respectively, for correlations with μCT porosity, and 0.83, 0.78, and 0.61 for correlations with matrix density. At 9.4 T, none of the samples yielded data judged suitable for fitting. It must be noted that the specimens removed from this analysis were predominantly from the population to which an MRI study of bone composition would be of greatest benefit, and it is not possible to know in advance of such a study whether the resulting data will be usable.

Short-T_2 fraction by 1D bi-component fitting of CPMG echo amplitudes outperforms bi-component fitting of FIDs at all field strengths. This is likely due to the much greater
separation of bound and pore water T_2 relaxation times. Whereas the two pools are separated by only one order of magnitude in T_2^*, the difference in T_2 is two orders of magnitude. This T_2-based method, however, is not applicable to clinical scanners due to SAR limitations and the requirement of extremely short, high-amplitude 180° refocusing pulses. Nevertheless, the method is suitable for independent determination of bound and pore water fractions.

Addition of a second dimension generally improves the stability and accuracy of bi-component fitting (118). In the present case, addition of T_1 to T_2^* by incorporation of saturation-recovery into the sequence improves the strengths of correlations between fitted short-T_2^* fraction and validation methods, except at 7 T. Though it would be time-prohibitive to incorporate saturation-recovery into a spatially-resolved in vivo bi-component T_2^* scanning protocol, this result suggests that methods which take advantage of differences in both T_1 and T_2 (or T_2^*) may be superior to those relying solely on T_2^*. An example of such an approach is single adiabatic inversion recovery (80,81,83,84,127), which selectively inverts long-T_2 pore water while saturating short-T_2 bound water. As the longitudinal magnetization of pore water (which was also found to have longer T_1 than bound water) passes through its null point, a solid-state imaging readout is performed to selectively image bound water.

The optimal inversion times calculated in this study from SIR-FID experiments are consistent with previous work at 3 T by Li et al. (128), but calculation of these results utilizes the same 1D bi-component T_2^* fitting method that is the main subject of this work. These TI results, therefore, should be interpreted with the same caution as 1D bi-component T_2^* fitting for calculation of bound and pore water fractions in general.
Specifically, the value at 1.5 T is well supported by strong correlations between 1D short-\textit{T}_2^* fraction and both \textmu CT porosity and gravimetric density, while the value at 3 T is somewhat less well supported. Also consistent with Li et al., the long-\textit{T}_2^* fraction is very well-suppressed (to less than ~5\%) in a range of approximately ±20 ms surrounding the optimal value for each bone, suggesting that the effectiveness of adiabatic inversion nulling of long-\textit{T}_2^* signal is not significantly decreased by even moderate deviations from the optimal \textit{TI}.

In addition, note that the optimal inversion time of 174 ms at 7 T is greater than one half of the \textit{TR} = 300 ms used in this experiment. The spin dynamics, as predicted by the Bloch equations, preclude the possibility of a signal pool being nulled by inversion in steady-state at a \textit{TI} greater than half the \textit{TR}. Primarily on the basis of this observation, and secondarily due to the weak correlations between 7 T 1D short-\textit{T}_2^* fraction and the two confirmatory measurements, we have no confidence in this calculated optimal \textit{TI} at 7 T.

2H IR was found to be less effective in separating the two water (i.e. deuterium oxide) pools than bi-component \textit{T}_2 fitting of CPMG data. Bound water fractions obtained by this 2H IR method were considerably less strongly correlated with \textmu CT porosity and matrix density than was short-\textit{T}_2 fraction by fitting of CPMG amplitudes. Correlations of short-\textit{T}_2^* fraction at 1.5 T with these same validation methods were also stronger than those of 2H IR bound water fraction. This unexpectedly inferior performance may be due to a distribution of \textit{T}_1 values within pore D\textsubscript{2}O, thereby preventing complete nulling of the central pore water peak. These results suggest that bi-component fitting of CPMG data
is a more reliable NMR-based method for quantification of bound and pore water fractions than 2H IR.

It is important to keep in mind that bi-component analysis, whether based on T_2^* or T_2, and whether performed in one or two dimensions, involves one major, and incorrect, assumption: the existence of two pools with discrete relaxation times. T_2 values are instead distributed continuously over several orders of magnitude. While deviations from this assumption may not have severe consequences at low field, where relaxation times of bound and pore water are well-separated and, thus, well-approximated by this two-pool model, the results are more severely impacted as the relaxation times converge. Non-negative least squares methods, such as the MERA software package (124), do not require an assumption of the number of pools, but demand careful regularization to generate a valid relaxation spectrum, which may have any number of peaks. As bound and pore water relaxation times converge, this method often fails to distinguish multiple pools, instead returning a single peak containing 100% of 1H signal.

The T_1 values obtained for the long-T_2^* fraction by 2D T_1-T_2^* fitting at 7 T and 9.4 T (1790 ms and 1300 ms, respectively) are greater than 1200 ms and, therefore, greater than $T_{SR}/5$. If these values are accurate, this may cause the magnetization after $T_{SR} = 6$ s to be slightly below the equilibrium magnetization. As a consequence, long-T_2^* longitudinal magnetization at 7 T measured by 1D T_2^* fitting may be attenuated by 3.5%, and the resulting 1D short-T_2^* fraction may be higher than the actual fraction by approximately 1%. It is unlikely that this effect is responsible for the large (>10%) difference in 1D T_2^* pool sizes at 7 T compared to other field strengths. Also, the more
reliable T_1-T_2 results at 9.4 T show a long-T_2 fraction T_1 value of 1210 ms, which is sufficient for assumption of full longitudinal relaxation ($T_{SR} = 5T_1$).

This study has several limitations. First, we focus only on cortical bone, where in vivo examinations will likely target both cortical and trabecular bone. Though we expect our results to be generalizable (the important difference between trabecular and cortical bone being the predominance of pore versus bound water, respectively), this may benefit from further investigation into the effects of marrow fat. Also, we examine bi-component T_2 fitting of CPMG echo amplitudes at only one field strength, 9.4 T. Although this is a widely available field strength for spectroscopic hardware, it would be instructive to examine whether short-T_2 fraction is also sensitive to field strength. Finally, the source of the oscillations in magnitude FIDs remains unclear. Further investigation, possibly by chemical removal of fat or a complementary method to quantify lipid and protein content, would likely yield additional insight into this phenomenon.

3.6. Conclusion

T_2^* bi-component fitting for quantification of bound and pore water fractions performs moderately well at 1.5 T, but becomes less reliable as field strength increases. It should therefore be used with caution, and other methods for distinguishing between bone water fractions, namely those based on adiabatic inversion-recovery or dual-band saturation should be considered for use in in vivo examinations. For validation of bound and pore water fractions, bi-component fitting of CPMG echo amplitudes is superior to ^2H IR, and is on par with μCT as a method of investigating bone porosity within a single specimen.
CHAPTER 4: SINGLE ADIABATIC INVERSION RECOVERY ZERO ECHO TIME MRI IS A SURROGATE MEASURE OF BONE MATRIX DENSITY

4.1. Abstract

Magnetic resonance has the potential to image and quantify two pools of water within bone: free water within the Haversian pore system (transverse relaxation time, $T_2 > 1$ ms), and water hydrogen-bonded to matrix collagen ($T_2 \sim 300-400 \mu$s). While total bone water concentration quantified by MRI has been shown to scale with porosity, greater insight into bone matrix density and porosity may be gained by relaxation-based separation of bound and pore water fractions. The objective of this study was to evaluate a recently developed surrogate measurement for matrix density, single adiabatic inversion recovery (SIR) zero echo-time (ZTE) MRI, in human bone.

Specimens of tibial cortical bone from 15 donors (27-97 y/o, eight female and seven male) were examined at 9.4 T field strength using three methods: (1) 1H ZTE MRI, to capture total 1H signal; (2) 1H SIR-ZTE MRI, to selectively image matrix-associated 1H signal; and (3) 1H ZTE MRI after deuterium exchange, to image only non-labile 1H signal. Total water, bone matrix, and bone mineral densities were also quantified gravimetrically, and porosity was measured by µCT.

ZTE 1H concentration was 32.7 ± 3.2 M (range: 28.5-40.3 M), and was correlated positively with porosity ($R^2 = 0.80$) and negatively with matrix and mineral densities ($R^2 = 0.90$ and 0.82, respectively). SIR-ZTE 1H concentration was 32.9 ± 3.9 M (range: 24.4-
39.8 M), and its correlations were opposite in direction to those of total water: negative with porosity ($R^2 = 0.73$) and positive with matrix density ($R^2 = 0.74$) and mineral density ($R^2 = 0.72$). Porosity was strongly correlated with gravimetric matrix density ($R^2 = 0.91$, negative) and total water density ($R^2 = 0.92$, positive). The strong correlations of SIR-ZTE 1H concentration with ground-truth measurements suggest that this quantitative solid-state MRI method provides a nondestructive surrogate measure of bone matrix density.

4.2. Introduction

Bone water exists in two major pools that are visible to solid-state MRI: water diffusing freely within the Haversian pore system (70), and water that is hydrogen-bonded to matrix collagen (69,71,72). These two pools differ significantly in their 1H nuclear magnetic resonance (NMR) relaxation properties, and are diagrammed in a schematic T_2 spectrum shown in Figure 4.1.
Figure 4.1: Schematic T_2 relaxation spectrum diagramming the three major 1H NMR signal pools in bone. Pore water has $T_2 > 1$ ms and is broadly distributed, while bound water has $T_2 \sim 300-500$ µs. Collagen signal, at $T_2 \sim 40-60$ µs, is below the detection limit at clinical field strengths, but becomes visible using micro-imaging and spectroscopic hardware. As porosity increases, as shown in the inset µCT images of bone specimens from 27 y/o and 83 y/o female donors (dense and porous bone, respectively) collagen and bound water content decrease while pore water content increases and shifts to longer T_2 values due to the smaller surface-to-volume ratio of enlarged pores.

MRI of matrix-bound water has been studied by several groups in recent years as a possible surrogate for collagen bone matrix (60,63,74,75,77-81,84,129). There are two general approaches to long-T_2 suppression taken in prior work: bi-component effective transverse relaxation time (T_2^*) fitting of a free-induction decay (FID) or a series of images obtained at multiple echo times (TE) (75,77,78), and magnetization preparation using either a long, low-amplitude T_2^*-selective radiofrequency (RF) saturation pulse (60,63,79) or a T_2-selective adiabatic inversion pulse followed by an inversion-recovery delay time (TI) (74,80,81,83,84,129).
The single adiabatic inversion-recovery (SIR) method has the potential to outperform other methods of long-T_2^* suppression. While duration and bandwidth are inversely proportional in non-adiabatic pulses, they are less strictly linked in adiabatic RF pulses. Such a pulse can therefore simultaneously possess a long duration and broad bandwidth. The long duration allows it to saturate short-T_2 signal while inverting long-T_2 signal, and the broad bandwidth encompasses the broad frequency distribution of pore water within the complex internal magnetic field environment of bone pores due to the large difference in volume magnetic susceptibility (χ_v) between water ($\chi_v = -8.9$ ppm) and bone ($\chi_v = -11.3$ ppm (116)).

The objective of the present study was to measure zero echo time (ZTE), SIR-ZTE, and non-exchangeable ZTE 1H concentrations in human cortical bone, and validate the proportionality of SIR-ZTE 1H concentration to bone matrix density and its inverse correlation to porosity. The results of this work will establish the surrogacy of SIR-ZTE 1H concentration for matrix density. This would lay a foundation upon which to build a two-part non-invasive in vivo examination of bone matrix and mineral densities, and, therefore, true bone tissue mineralization density (also referred to as ‘degree of mineralization of bone’ (130)).

4.3. Materials and Methods

4.3.1. Specimens and Scanners

The tissue examined consisted of cortical bone specimens taken from the tibial mid-shaft of seven male and eight female human donors, aged 27-97 years (National Disease Research Interchange, NDRI). This set ranges from young, dense bone to severely
porous bone due to age-related bone loss. Donors with bone-demineralizing disorders were excluded. A 4-mm slice was sectioned from each thawed tibia with a rotating blade at the region of maximum cortical bone thickness, 38% of the length of the tibia from the medial malleolus to the medial condyle. Then, a rectangular beam with its long axis perpendicular to the osteonal axis was cut from each slice and trimmed to fit inside a 5-mm NMR tube. Specimens ranged from 15 to 35 mm in length. The direction of the osteonal axis of the bone was indicated on the end of each beam by cutting a notch parallel to the bone’s osteonal axis, and specimens were stored individually in phosphate-buffered saline.

All NMR and MRI scanning was performed in a 9.4 T vertical-bone NMR spectrometer and micro-imaging scanner (Avance III, Bruker, Billerica, MA). For spectroscopy, a broad-band inverse (BBI) probe with a one-axis z-gradient was used, and for imaging, a 20-mm quadrature birdcage probe in a three-axis microimaging gradient set was used. Bones were imaged in the presence of an intensity reference sample consisting of a 20-mm column of 10 mM MnCl₂ in 90% D₂O/10% H₂O in a 5-mm NMR tube. This sample had a ¹H concentration of 11.1 M, T₂ = 530 µs, and T₁ = 12.7 ms.

4.3.2. NMR Spectroscopy

Prior to imaging, all bones were scanned using a saturation recovery (SR)-prepared Carr-Purcell-Meiboom-Gill (CPMG) pulse sequence. Saturation recovery times (Tᵣ) were arrayed logarithmically in 12 steps from 3 ms to 6 s, and the number of refocusing pulses, N, was arrayed logarithmically from 0 to 5000 in 20 steps, resulting in TEs ranging from 60 µs to 1 s. One signal acquisition was performed, and scan time for this
sequence was 29 minutes. All other relevant pulse sequence parameters are given within the pulse sequence diagram in Figure 4.2.

![Pulse sequence diagram](image)

Figure 4.2: SR-CPMG pulse sequence. Saturation-recovery times (T_{SR}) were arrayed logarithmically in 12 steps from 3 ms to 6 s, the number of refocusing pulses, N, was arrayed logarithmically from 0 to 5000 in 20 steps, and one signal acquisition was performed.

Two-dimensional bi-component T_1-T_2 fitting was performed by fitting a sum of two exponential functions in two dimensions,

$$f(T_{SR}, TE) = M_S \left(1 - \exp \left(\frac{-T_{SR}}{T_{1S}}\right)\right) \exp \left(\frac{-TE}{T_{2S}}\right) + M_L \left(1 - \exp \left(\frac{-T_{SR}}{T_{1L}}\right)\right) \exp \left(\frac{-TE}{T_{2L}}\right) + n,$$

[4.1]

to the array of SR-CPMG echo amplitudes. Here, the magnetizations of the short- and long-T_2 components are given by M_S and M_L, respectively. These terms are converted to short- and long-T_2 fractions by dividing by their sum, i.e. $M_S/(M_S+M_L)$ and $M_L/(M_S+M_L)$. Longitudinal (T_1) relaxation times are given by T_{1S} and T_{1L}, T_2 relaxation times by T_{2S} and T_{2L}, and the noise level by n. This fitting process yields the sizes of each of the two pools and their characteristic T_1 and T_2 relaxation times.

T_2^* values for the pools were also obtained by fitting a similar equation,
to the two-dimensional array of FIDs beginning at the center of each CPMG echo. Here, t is the time within the FID after each echo. These data were taken from the SR-CPMG data set after the longest T_{SR} of 6 seconds, which satisfies the condition of full longitudinal relaxation. This process of fitting Equation 4.2 yields two pools characterized by T_2 and T_2^* relaxation times, rather than T_1 and T_2. Fitting was performed in two dimensions, rather than one, for improved accuracy and stability (118). All fitting was performed in Matlab (Mathworks, Natick, MA). Example data from bone from a 53-year-old male donor, along with bi-component fits, are shown in Figure 4.3.

$$f(TE, t) = M_S \exp \left(- \frac{TE}{T_{2S}} \right) \exp \left(- \frac{t}{T_{2S}} \right) + M_L \exp \left(- \frac{TE}{T_{2L}} \right) \exp \left(- \frac{t}{T_{2L}} \right) + n,$$ [4.2]
Figure 4.3: NMR data (points) from a bone specimen from a 53-year-old male with bi-component fits (curves). Panel (a) shows a T_1 fit of saturation-recovery data, (b) shows a T_2 fit of CPMG echo amplitudes, and (c) shows a T_2^* fit of a FID. Although only one-dimensional data are shown, fits were performed using the two-dimensional methods given in the methods section (a,b: T_1-T_2; c: T_2-T_2^*).

4.3.3. Zero Echo-Time Imaging

Imaging and reconstruction were performed using the standard Bruker ZTE pulse sequence (Figure 4.4a), and a modified form of this sequence incorporating a single adiabatic inversion preparation and delay time (SIR-ZTE, Figure 4.4b). ZTE was chosen due to its superior SNR performance to UTE in samples with extremely short T_2^* (131). Gradient amplitude was limited to 73.4 mT/m by two simultaneous requirements
of the reconstruction method (59): (1) that the field of view (FOV) fully enclose all sources of signal, including the plastic support structure of the NMR probe, and (2) that the readout bandwidth be low enough (i.e., that the dwell time be long enough) so as not to lose more than ~2 readout points during the hardware-dependent 6.4 μs transmit/receive switching dead time.

Figure 4.4: ZTE (a) and SIR-ZTE (b) imaging pulse sequences. ZTE parameters: 51896 projections, TR = 2 ms, 1 min 43 sec scan time. SIR-ZTE parameters: 6588 projections, TR = 200 ms, 21 min 58 sec scan time. FOV = 64 mm isotropic, resolution = 500 μm isotropic, and 1 signal acquisition for both.

First, to image total bone \(^1^H\) signal, each specimen was scanned with the reference sample using ZTE without adiabatic inversion recovery. Then, each specimen was immediately scanned again using SIR-ZTE. The adiabatic inversion pulse, with
bandwidth of 5 kHz and duration of 5 ms, selectively saturates the longitudinal magnetization, \(M_z \), of the short-\(T_2 \) protons \((M_z = 0) \) while inverting long-\(T_2 \) signal \((M_z < 0) \) \((81-83,132,133) \). The \(T_2 \) response of \(M_z \) to this pulse was calculated by Bloch equation simulation. Following an appropriately chosen inversion-recovery time, the long-\(T_2 \) magnetization will be nulled as it passes through zero, and the short-\(T_2 \) magnetization will have recovered by longitudinal relaxation to \(M_z > 0 \). A ZTE imaging module applied at this time will thus selectively image short-\(T_2 \) signal. SIR-ZTE was performed with a repetition time \((TR) \) of 200 ms and inversion time \((TI) \) of 50 ms, and in both of these sequences, \(FOV \) was 64 mm and resolution was 500 \(\mu m \) (both isotropic). RF pulse duration was increased in order to allow for a larger excitation flip angle in SIR-ZTE. This modification also necessitated decreases in gradient magnitude and readout bandwidth.

4.3.4. Deuterium Exchange

Finally, all labile protons in the bone specimens, which consist predominantly of bound and pore water, were rendered invisible to \(^1H\) NMR by exchange with heavy water (\(^2H_2O\)). Bones were gently blotted dry and individually placed in a 20-fold volume excess of 99.9% \(^2H_2O\)-saline. At two and four days of immersion, the specimens were removed, blotted dry, and placed into fresh volumes of \(D_2O \)-saline in order to ensure full exchange.

Following exchange, the relaxation times of the remaining \(^1H\) signal in the bone specimens were determined by mono-component exponential fitting of SR-FID and CPMG data sets: \(T_1 = 1650 \) ms, \(T_2 = 87 \) \(\mu s \), and \(T_2^* = 36 \) \(\mu s \). Several scan parameters were changed to optimize the subsequent ZTE scans (Figure 4.4a) for these altered
relaxation times. The dwell time for this sequence was decreased to 3.2 μs, excitation flip angle to 2.8°, and pulse duration to 1 μs. FOV was changed to 32x32x80 mm and resolution to 250x250x625 μm (with the FOV and voxels’ long axes parallel to the long axis of the bone specimen), and 16 signal averages, resulting in a total scan time of 28 minutes. Gradient strength varied from 229 mT/m in the axial plane to 92 mT/m along the long axis of the specimen. The resulting images include only signal from non-exchangeable protons; bound and pore water no longer contribute to image intensity.

Bones were also scanned using ²H inversion-recovery (IR) spectroscopy (71). A ²H spectrum of bone at 9.4 T consists of a narrow central peak with long $T_1 \sim 200$ ms pertaining to pore water, flanked by a doublet with short $T_1 \sim 10$ ms and 4.3 kHz splitting, consistent with prior observations by Ong et al. (71). This splitting results from un-averaged quadrupolar interactions between anisotropically-restricted ²H nuclei of ²H₂O molecules bonded to collagen (121,134). Two spectra were acquired: one equilibrium spectrum containing both the central pore water peak and the bound water doublet, and one spectrum in which the pore water peak was nulled by inversion-recovery (individually for each specimen), leaving only the bound water doublet. Bound water fraction was calculated as the ratio of the integral of the pore water-nulled spectrum to that of the equilibrium spectrum.

4.3.5. Density Quantification

To convert raw image intensity to ¹H concentration, each image was corrected for longitudinal and transverse relaxation, including transverse relaxation during RF pulses. The steady-state signal acquired in the ZTE sequence (Figure 4.4a) is given in Equation 4.3:
where ρ is 1H concentration. Because this pulse sequence has an echo time of zero, $\exp(-TE/T_2^*) = 1$. The f_{xy} and f_z terms represent the response of the transverse and longitudinal magnetization, respectively, to rectangular RF pulses in the general case, where the pulse is not infinitesimally short relative to T_2^* (93):

$$f_{xy} = \exp\left(-\frac{\tau}{2T_2}\right)\alpha \text{sinc}\left(\sqrt{\alpha^2 - \left(\frac{\tau}{2T_2}\right)^2}\right)$$

and

$$f_z = \exp\left(-\frac{\tau}{2T_2}\right)\left(\cos\left(\sqrt{\alpha^2 - \left(\frac{\tau}{2T_2}\right)^2}\right) + \frac{\tau}{2T_2} \text{sinc}\left(\sqrt{\alpha^2 - \left(\frac{\tau}{2T_2}\right)^2}\right)\right),$$

where τ is RF pulse duration and $\alpha = \gamma B_1\tau$ is the nominal flip angle.

Each image was imported into Matlab, and volumes of interest (VOIs) were drawn to fully enclose the bone and the reference sample. Then, within each VOI, the image intensity was corrected by solving Equation 4.3 for ρ, using the average relaxation times for the set of bone specimens and the measured relaxation times of the reference sample. Next, the bone and reference VOIs were refined by automatic thresholding (135), and, finally, the 1H concentration ($[^1\text{H}]$) within the bone was calculated as the ratio of the mean corrected intensity within the bone to that of the reference, multiplied by the known 1H concentration, $[^1\text{H}] = 11.1$ M, within the reference sample.
Quantification of ^1H concentration in the SIR-ZTE images is similar, except for two important differences. First, the contribution of the adiabatic inversion pulse was added to Equation 4.3:

$$S(\vec{r}) \propto \rho(\vec{r}) \frac{1 + (f_{\text{HS}} - 1) \exp\left(-\frac{\tau}{T_1}\right) - f_{\text{HS}} \exp\left(-\frac{\tau}{T_1}\right)}{1 - f_{\text{HS}} \exp\left(-\frac{\tau}{T_1}\right)} f_{sv} \exp\left(-\frac{TE}{T_2}\right),$$

where f_{HS}, the response of the longitudinal magnetization to the adiabatic inversion pulse, was calculated for the bone and reference by Bloch equation simulation based on their respective relaxation times. Also, to maintain consistency, the VOIs obtained by automatic thresholding in the ZTE images were carried over for SIR-ZTE correction. Apart from these two changes, quantification is performed in the same manner as in the ZTE images.

4.3.6. Micro-CT Imaging

Bone specimens were imaged using a Scanco µCT35 scanner (Scanco, Brüttisellen, Switzerland) at 18.5-µm isotropic voxel resolution. Bone boundaries were masked by the 3D active snakes method using ITK-SNAP (123). Pores were then segmented within these bone masks by automated thresholding, and porosity was calculated as pore volume divided by total bone volume.

4.3.7. Gravimetry

Bone specimens were removed from phosphate-buffered saline, blotted dry, and weighed to determine their fully hydrated mass. The bones were then placed in tared crucibles and dried at 105°C for 110 hr to remove all bound and pore water. Completion of drying was verified by observing no change in mass over a 24-hour period. The
bones were again weighed, and their dry mass was recorded. Finally, the bones were incinerated at 600°C for 30 hr to burn off all organic material, and the residue was weighed. Total water mass was calculated as the difference between hydrated and dry masses, matrix mass was the difference between dry and ash masses, and mineral mass was equal to the residual ash mass. These masses were divided by total bone volume (the volume of the µCT bone boundary mask) to yield total water, matrix, and mineral densities (63,90).

4.4. Results

4.4.1. Gravimetry and µCT

All bone measurement results, both from MRI and validation methods, are given in Table 4.1. Mean porosity across the 15 donors was 8.96±8.61% (3.06-33.5%); all data expressed in this format are mean ± standard deviation (min-max). Volume renderings of the pore spaces of four representative bone specimens are shown in Figure 4.5. Gravimetric mineral density was 1118±130 mg/cc (751-1219 mg/cc), matrix density was 503.7±24.3 mg/cc (437.0-527.5 mg/cc), and total water density was 326.2±48.4 mg/cc (281.4-345.6 mg/cc) bone tissue (i.e. 32.6% v/v or 36.1 M). The mineralization mass ratio, which is the unitless ratio of gravimetric mineral density to matrix density, was 2.212±0.173 (1.719±2.367), and bone mineralization, which is the bone mineral density normalized by bone volume fraction (1 - porosity), was 1225±36 mg/cc (1130-1286 mg/cc).
<table>
<thead>
<tr>
<th>Bone</th>
<th>ZTE 1H (M)</th>
<th>SIR-ZTE 1H (M)</th>
<th>Non-Exch. ZTE 1H (M)</th>
<th>µCT Porosity (%)</th>
<th>Mineral Density (mg/cc)</th>
<th>Matrix Density (mg/cc)</th>
<th>Water Density (mg/cc)</th>
<th>T_1-T_2 Bound Fraction (%)</th>
<th>2H IR Bound Fraction (%)</th>
<th>Mineralization Mass Ratio</th>
<th>Bone Mineralization (mg/cc)</th>
</tr>
</thead>
<tbody>
<tr>
<td>27F</td>
<td>29.5</td>
<td>39.8</td>
<td>13.1</td>
<td>3.70</td>
<td>1197</td>
<td>525.2</td>
<td>287.4</td>
<td>86.6</td>
<td>72.1</td>
<td>2.280</td>
<td>1243</td>
</tr>
<tr>
<td>30F</td>
<td>28.5</td>
<td>38.0</td>
<td>12.6</td>
<td>3.06</td>
<td>1208</td>
<td>520.7</td>
<td>292.3</td>
<td>86.2</td>
<td>68.8</td>
<td>2.320</td>
<td>1246</td>
</tr>
<tr>
<td>37M</td>
<td>34.6</td>
<td>33.5</td>
<td>12.1</td>
<td>4.77</td>
<td>1163</td>
<td>494.9</td>
<td>316.2</td>
<td>78.4</td>
<td>61.7</td>
<td>2.351</td>
<td>1222</td>
</tr>
<tr>
<td>49M</td>
<td>30.2</td>
<td>34.2</td>
<td>12.7</td>
<td>4.08</td>
<td>1207</td>
<td>514.3</td>
<td>281.4</td>
<td>83.8</td>
<td>77.9</td>
<td>2.346</td>
<td>1258</td>
</tr>
<tr>
<td>53M</td>
<td>31.7</td>
<td>33.4</td>
<td>13.4</td>
<td>5.56</td>
<td>1159</td>
<td>513.1</td>
<td>294.6</td>
<td>82.9</td>
<td>60.7</td>
<td>2.258</td>
<td>1227</td>
</tr>
<tr>
<td>53F</td>
<td>29.6</td>
<td>35.4</td>
<td>11.1</td>
<td>3.78</td>
<td>1192</td>
<td>527.5</td>
<td>294.8</td>
<td>86.6</td>
<td>72.0</td>
<td>2.260</td>
<td>1239</td>
</tr>
<tr>
<td>65F</td>
<td>32.2</td>
<td>34.9</td>
<td>12.9</td>
<td>5.57</td>
<td>1161</td>
<td>513.0</td>
<td>297.3</td>
<td>81.2</td>
<td>75.6</td>
<td>2.263</td>
<td>1229</td>
</tr>
<tr>
<td>69M</td>
<td>32.8</td>
<td>34.7</td>
<td>12.0</td>
<td>5.18</td>
<td>1172</td>
<td>511.2</td>
<td>302.7</td>
<td>79.3</td>
<td>68.9</td>
<td>2.293</td>
<td>1236</td>
</tr>
<tr>
<td>74F</td>
<td>36.7</td>
<td>26.7</td>
<td>12.0</td>
<td>20.4</td>
<td>930.7</td>
<td>472.4</td>
<td>405.0</td>
<td>62.4</td>
<td>50.4</td>
<td>1.970</td>
<td>1169</td>
</tr>
<tr>
<td>75M</td>
<td>33.4</td>
<td>32.2</td>
<td>13.1</td>
<td>4.51</td>
<td>1175</td>
<td>510.3</td>
<td>298.8</td>
<td>80.1</td>
<td>62.1</td>
<td>2.303</td>
<td>1230</td>
</tr>
<tr>
<td>82F</td>
<td>35.5</td>
<td>30.6</td>
<td>9.7</td>
<td>17.3</td>
<td>1015</td>
<td>479.0</td>
<td>394.5</td>
<td>66.4</td>
<td>56.2</td>
<td>2.119</td>
<td>1227</td>
</tr>
<tr>
<td>83F</td>
<td>40.3</td>
<td>24.4</td>
<td>12.3</td>
<td>33.5</td>
<td>751.2</td>
<td>437.0</td>
<td>435.6</td>
<td>55.4</td>
<td>48.7</td>
<td>1.719</td>
<td>1130</td>
</tr>
<tr>
<td>83M</td>
<td>31.0</td>
<td>32.3</td>
<td>12.1</td>
<td>4.94</td>
<td>1159</td>
<td>520.1</td>
<td>317.2</td>
<td>77.3</td>
<td>58.8</td>
<td>2.228</td>
<td>1219</td>
</tr>
<tr>
<td>93M</td>
<td>30.7</td>
<td>31.8</td>
<td>10.7</td>
<td>5.18</td>
<td>1219</td>
<td>515.2</td>
<td>318.7</td>
<td>77.6</td>
<td>56.0</td>
<td>2.367</td>
<td>1286</td>
</tr>
<tr>
<td>97F</td>
<td>34.6</td>
<td>31.0</td>
<td>11.6</td>
<td>12.9</td>
<td>1058</td>
<td>501.2</td>
<td>356.2</td>
<td>71.4</td>
<td>49.4</td>
<td>2.110</td>
<td>1215</td>
</tr>
<tr>
<td>Mean</td>
<td>32.7</td>
<td>32.9</td>
<td>12.1</td>
<td>8.96</td>
<td>1118</td>
<td>503.7</td>
<td>326.2</td>
<td>77.0</td>
<td>62.6</td>
<td>2.212</td>
<td>1225</td>
</tr>
<tr>
<td>StDev</td>
<td>3.2</td>
<td>3.9</td>
<td>1.0</td>
<td>8.61</td>
<td>130</td>
<td>24.3</td>
<td>48.4</td>
<td>9.3</td>
<td>9.6</td>
<td>0.173</td>
<td>36</td>
</tr>
</tbody>
</table>

Table 4.1: ZTE, SIR-ZTE, and non-exchangeable (i.e., not removed by 2H$_2$O exchange) 1H concentration measurements by MRI, and reference measurements by µCT, gravimetry, and 1H and 2H NMR. Sample labels indicate age and gender.
Porosity was strongly correlated with gravimetric mineral density ($R^2 = 0.98$, negative), matrix density ($R^2 = 0.91$, negative), and total water density ($R^2 = 0.92$, positive). Matrix and mineral densities were also strongly positively correlated ($R^2 = 0.91$). The mineralization mass ratio, however, was strongly positively correlated with mineral density ($R^2 = 0.96$) and negatively correlated with porosity ($R^2 = 0.94$).

4.4.2. MRI-Derived Density

ZTE 1H concentration was 32.7 ± 3.2 M (28.5-40.3 M), SIR-ZTE 1H concentration was 32.9 ± 3.9 M (24.4-39.8 M), and non-exchangeable 1H ZTE concentration was 12.1 ± 1.0 M (9.7-13.4 M). MRI quantifies the electromagnetic signal emitted by 1H nuclei within a
voxel, so these measurements are properly expressed in molar concentrations of 1H nuclei, rather than mass densities in mg/cc.

ZTE, SIR-ZTE, and non-exchangeable ZTE 1H concentration maps of four representative bone specimens are given in Figure 4.6. As age and porosity increase, ZTE 1H concentration increases, and SIR-ZTE 1H concentration (in which pore water is suppressed) decreases. Note especially the region of extreme structural degradation (indicated by white arrows), with high ZTE 1H concentration and commensurately lower SIR-ZTE 1H concentration.
Figure 4.6: Maps of ZTE, SIR-ZTE, and non-exchangeable ZTE 1H concentrations, in mol/L, in bone specimens from four representative donors. Age and gender of the donors are given within each quadrant, and the endosteal surface of each specimen faces left. Arrows indicate a region of high porosity, which has elevated total water and reduced matrix densities, and correspondingly increased ZTE and decreased SIR-ZTE 1H concentrations.

ZTE 1H concentration was correlated positively with porosity and gravimetric water density ($R^2 = 0.80$ and 0.79, respectively), and negatively with matrix density and mineral density ($R^2 = 0.90$ and 0.82, respectively). SIR-ZTE correlations were opposite those of ZTE; SIR-ZTE 1H concentration was correlated negatively with porosity and total water density ($R^2 = 0.73$ and 0.76, respectively), and positively with matrix density.
and mineral density ($R^2 = 0.74$ and 0.72, respectively). Scatter plots of ZTE and SiR-ZTE 1H concentration versus porosity, water density, and organic matrix density are given in Figure 4.7. No correlations involving non-exchangeable ZTE 1H concentration reached the level of statistical significance. All relevant correlation coefficients between parameters are given in Table 4.2.
Figure 4.7: Scatter plots displaying the correlations of MRI-derived ZTE (a,c,e) and SIR-ZTE (b,d,f) 1H concentrations versus µCT porosity (a,b), gravimetric water density (c,d), and gravimetric organic matrix density (e,f). ZTE 1H concentration is positively correlated with porosity and gravimetric water density and negatively with matrix density, while SIR-ZTE correlations show the opposite behavior. Clustering of data is due to severe bone loss being present in a small subset of bones from post-menopausal female donors.)
<table>
<thead>
<tr>
<th></th>
<th>µCT Porosity (%)</th>
<th>Matrix Density (mg/cc)</th>
<th>Mineral Density (mg/cc)</th>
<th>Water Density (mg/cc)</th>
<th>Mineralization Mass Ratio</th>
<th>Bone Mineralization (mg/cc)</th>
<th>T$_1$-T$_2$ Bound Fraction (%)</th>
<th>2H-IR Bound Fraction (%)</th>
<th>Non-Exch. ZTE [1H] (M)</th>
<th>SIR-ZTE [1H] (M)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZTE [1H] (M)</td>
<td>0.80± 0.90± 0.82± 0.79± 0.69± 0.71± 0.86± 0.52± 0.04 0.77†</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SIR-ZTE [1H] (M)</td>
<td>0.73± 0.74± 0.72± 0.76± 0.64± 0.54† 0.86± 0.66± 0.09</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-Exch. ZTE [1H] (M)</td>
<td>0.06 0.04 0.03 0.19 0.02 0.01 0.13 0.13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2H-IR Bound Fraction (%)</td>
<td>0.50† 0.46† 0.49† 0.65† 0.44* 0.34* 0.66†</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T$_1$-T$_2$ Bound Fraction (%)</td>
<td>0.90† 0.89† 0.88† 0.96† 0.79† 0.63‡</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bone Mineralization (mg/cc)</td>
<td>0.73† 0.70† 0.84† 0.62‡ 0.84†</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mineralization Mass Ratio</td>
<td>0.94± 0.78± 0.96‡ 0.82‡</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Water Density (mg/cc)</td>
<td>0.92± 0.86† 0.90†</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mineral Density (mg/cc)</td>
<td>0.98± 0.91†</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Matrix Density (mg/cc)</td>
<td>0.91‡</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 4.2: Inter-parameter correlations (R^2) of measured bone properties. All correlations are statistically significant unless italicized (*p<0.05, †p<0.005, ‡p<0.0005).

4.4.3. NMR Spectroscopy

The short-T_2 1H fraction had $T_1 = 480±80$ ms (320-560 ms), $T_2 = 540±150$ µs (430-980 µs), $T_2^* = 400±50$ µs (330-520 µs), and accounted for 77.0±9.3% (55.4-86.6%) of total signal by 2D bi-component T_1-T_2 fitting. The long-T_2 fraction had $T_1 = 1210±300$ ms.
(880-1910 ms), $T_2 = 55000\pm38000 \, \mu\text{s} \, (17000-161000 \, \mu\text{s})$, $T_2^* = 940\pm230 \, \mu\text{s} \, (600-1540 \, \mu\text{s})$, and accounted for 23.0±9.3\% (13.4-44.6\%) of the signal. Short-T_2 fraction by 2D T_1-T_2 bi-component fitting was strongly negatively correlated with ZTE ^1H concentration ($R^2 = 0.86$) and strongly positively correlated with SIR-ZTE ^1H concentration ($R^2 = 0.86$). Short-T_2 fraction was also very strongly correlated with porosity ($R^2 = 0.90$, negative) and gravimetric matrix density ($R^2 = 0.89$, positive).

Bound water fraction by ^2H IR was 62.6±9.6\% (48.7-77.9\%), with $^2\text{H} \, T_1 = 11.2\pm1.7 \, \text{ms}$ (9.8-15.9 ms). Pore water had $^2\text{H} \, T_1 = 197\pm42 \, \text{ms} \, (129-282 \, \text{ms})$, and was nulled at $142\pm31 \, \text{ms} \, (92-206 \, \text{ms})$. ^2H IR bound water fraction was less well correlated with ZTE ^1H concentration ($R^2 = 0.52$, negative), SIR-ZTE ^1H concentration ($R^2 = 0.66$, positive), porosity ($R^2 = 0.50$, negative), and matrix density ($R^2 = 0.46$, positive) than was short-T_2 ^1H fraction.

4.5. Discussion

In this study, we presented non-invasive, non-destructive MRI-based surrogate measurements for total bone water (ZTE), bound water (SIR-ZTE), and non-exchangeable ^1H concentrations in human cortical bone, and compared these results to gravimetric bone density measurements and µCT porosity. The strong correlations of SIR-ZTE ^1H concentration with both gravimetric matrix density and µCT porosity support the applicability of this method as a surrogate measurement of bone matrix density. This measurement may be combined with a previously established ^{31}P MRI-based examination of bone mineral density (63,129) to investigate bone tissue mineralization.
Although ZTE 1H concentration is a surrogate for total bone water concentration and bone porosity (74,92,114), it is not directly related to the density of bone’s collagen matrix; rather, it is more strongly related to the voids within that matrix (i.e. pore volume fraction). As such, ZTE 1H concentration is not a surrogate for bone matrix density. Although the present results do not show a measurable advantage of T_2-selective SIR-ZTE over ZTE for prediction of porosity, previous work (74) suggests that T_2-selective methods correlate more strongly with bone matrix density than do non-selective methods.

ZTE 1H concentration (32.7±3.2 M, 28.5-40.3 M) in this work is greater than the 24 M (115) and 19.3-31.8 M (114) found in previous 1H UTE work at 3 T, but the results are more consistent with the 29-41 M measured more recently by Horch et al. (81) using a 4.7 T micro-imaging system. This may be due to the improved abilities of ZTE and experimental (i.e. non-clinical) hardware to image the shortest-T_2 components in bone. The 1H ZTE image likely contains signal not only from water, but also the extremely short-T_2 signal fraction that remains after deuterium exchange. If non-exchangeable 1H density (12.1±1.0 M, 9.7-13.4 M) is subtracted from total water density measured by 1H ZTE, the result, 20.6±3.2 M (16.4-28.2 M), is closer to measurements using UTE on a 3 T clinical scanner.

Likewise, the SIR-ZTE 1H concentration of 32.9±3.9 M (24.4-39.8 M) found in the present study is also higher than the 12-24 M found by Horch et al. (81) or 12-23 M by Manhard et al. (84) using SIR-UTE, but these differences may also be explained by the greater ability of ZTE to capture the shortest-T_2 signal present in bone. The strengths of the correlations of SIR-ZTE 1H concentration to porosity and matrix density in the
present work, however, are broadly consistent with Horch’s reported correlations versus peak stress (81) and CPMG-derived short-T_2 pool fraction (81,84).

4.5.1. T_2^*-Related Image Blurring

In MRI, signal acquisition occurs in the Fourier domain; that is, the scanner acquires signals that correspond to the prevalence of signal variations at certain spatial frequencies, and the image is reconstructed by taking the inverse Fourier transform of these frequency-domain data. Low spatial frequencies are responsible for variation in image intensity over large distances, while high spatial frequencies represent fine details and sharp edges. In all forms of ZTE, these spatial frequencies are acquired along radial spokes beginning at zero spatial frequency and ending at high spatial frequency, and traversal from zero frequency to high frequency takes a finite amount of time.

In the case of short T_2^*, the signal decays significantly while sampling each spoke, causing attenuation of higher spatial frequencies to an extent depending on the T_2^* of the signal being imaged and the particular scan parameters used. This attenuation is described by the modulation transfer function (MTF); mono-exponential examples of MTFs are shown in Figure 4.8a for ZTE, SIR-ZTE, and non-exchangeable ZTE imaging. This attenuation causes sharp image features to be blurred. This is represented by the point-spread function (PSF, Figure 4.8b), the Fourier transform of the MTF, which describes how a single infinitesimally small point source of signal is blurred due to attenuation of high spatial frequencies. Shorter T_2^* results in a more rapid decay of the MTF and a broader PSF.
Figure 4.8: a) The modulation transfer function (MTF) describes the T_2^* decay of the MRI signal over the course of signal acquisition. b) The Fourier transform of the MTF is the point spread function (PSF), which describes how a single infinitesimally small point source of signal is blurred due to attenuation of higher spatial frequencies. Shorter T_2^* results in a more rapid decay of the MTF and a broader PSF. c) A rectangular profile with several gaps, representing a 1D cross-section through a porous bone, is convolved with the PSFs of ZTE, SIR-ZTE, and non-exchangeable ZTE. These gaps are more severely blurred in cases of shorter T_2.

Blurring in an image can be thought of as the convolution of a perfectly un-blurred image by the point-spread function. In Figure 4.8c, a rectangular profile with several gaps,
representing a 1D cross-section through a porous bone, is convolved with the PSFs of ZTE, SIR-ZTE, and non-exchangeable ZTE. These gaps are less visible in cases of shorter T_2^* and the corresponding rapid decay in MTF and broad PSF. In Figure 4.6, due to the suppression of long-T_2 signal from pore water, the shorter T_2^* of the residual signal in the SIR-ZTE images ($T_2^* \sim 300 \mu s$) causes slightly greater point-spread function blurring than in ZTE images. ZTE images of non-exchangeable 1H are even more severely blurred due to the chemical removal of all exchangeable protons (primarily bone water), leaving only extremely short-T_2^* ($< 60 \mu s$) signal.

4.5.2. Non-Exchangeable 1H Signal
The general categorization of bone 1H signal into long-, short-, and extremely short-T_2 pools, corresponding to pore water, bound water, and matrix collagen, respectively, implies that if bone water is rendered invisible to 1H MRI by exchange with 2H$_2$O, the remaining extremely short-T_2 signal should represent matrix collagen. The weak and statistically insignificant associations of non-exchangeable ZTE 1H concentration with gravimetric and µCT measurements do not support this simple hypothesis; the true composition of this short-T_2 pool and its exchangeability with 2H$_2$O appears to be more complicated.

In 2010, Horch et al. (69) examined the effects of 2H$_2$O exchange on bone NMR spectra. These spectra contained three peaks: an on-resonance long-T_2^* peak consistent with water protons, containing 57.7% of total signal; an off-resonance long-T_2^* peak centered at approximately -4.0 ppm, containing 4.6% of total signal and close to the methylene proton resonance (-3.5 ppm); and a broad peak consistent with the short-T_2^* signal from collagen, containing the remaining 33.7% of total signal. Following 2H$_2$O exchange, the
water peak was completely absent, but the methylene and collagen signal components were relatively unaffected. Complementary results from relaxation spectroscopy showed that only signal with $T_2 \sim 400 \mu s$ was completely removed by exchange, but only 58% of long-T_2 signal was removed, and extremely short-T_2 signal ($T_2 \sim 60 \mu s$) was unaffected. These observations suggest that only a small portion the residual 42% of long-T_2 signal corresponds to the off-resonance long-T_2^+ signal and, therefore, may arise from lipids, whose protons are not labile.

In our work, further spectroscopic experiments were performed on the present set of 15 specimens to partition the non-exchangeable 1H signal into on-resonance and off-resonance fractions. Correlations of the on-resonance portion of non-exchangeable ZTE 1H concentration with porosity and all three gravimetric densities yielded nominally stronger correlations, but still did not reach statistical significance. Furthermore, since the specimens were carefully prepared to exclude bone marrow, it is unlikely that such a large fraction of non-exchangeable 1H signal arises from marrow fat. A small amount of lipid exists surrounding each osteon at the cement line (126), but this is also unlikely to account for such a large amount of non-exchangeable signal. In light of these results, it appears that the non-exchangeable 1H signal component in cortical bone does not arise predominantly from bone matrix collagen, or, if it does, its measured density is affected by a property other than simply the density of collagen in bone.

4.5.3. Sensitivity to Relaxation Times

All conversions of image intensity to density in this work were performed using average relaxation times for the set of 15 bone specimens, rather than individually measured relaxation times for each specimen. This ensures that the strengths of the correlations
observed between the measured MRI 1H concentrations and reference measurements are translatable to eventual *in vivo* use, where measurement of relaxation times in each subject would not be practical. Under this constraint, the correlations of SIR-ZTE 1H concentration with porosity and matrix density remain strong ($R^2 > 0.7$, $p < 0.00005$).

If the T_1 value used in **Equations 4.3-4.6** is longer than the true T_1 in the specimen, 1H concentration will be overestimated. A ±5% deviation in T_1 results in ±3.0% error in calculated ZTE 1H concentration and ±5.2% error in SIR-ZTE 1H concentration. Variation in T_2^* will have very little effect on the calculated ZTE 1H concentration: the same ±5% error in T_2^* results in error of approximately ±0.022%. However, due to the T_2-selectivity of the adiabatic inversion pulse, a ±5% change in T_2^* will cause a noticeable error of ±3.8% in SIR-ZTE 1H concentration.

In **Equations 4.3-4.5**, such errors may artificially amplify the true differences in total water 1H concentration; greater porosity is associated not only with higher total water content, but also longer total water T_1 and T_2^* due to decreased surface interaction and susceptibility effects in larger pores (115). **Equations 4.4-4.6**, however, suggest that these same errors may slightly reduce the sensitivity of SIR-ZTE 1H concentration to true bound water content in the case of perfect long-T_2 suppression, but this possible effect is alleviated by the fact that, while pore water relaxation properties are very strongly affected by bone porosity, bound water relaxation times are relatively constant (69). Only the stable bound water T_1 and T_2^* values are used in quantification.

The assumption of perfect long-T_2 nulling by SIR-ZTE in all specimens, however, is not realistic for a single TI applied to both dense and porous bones. In porous bone,
although bound water relaxation times are stable, pore water T_1 and T_2 are longer than in dense bone. T_1 of long-T_2 pore water (T_{1L}) by bi-component 2D T_1-T_2 fitting (see Equation 4.1) ranges from 880 to 1910 ms, and is positively correlated with porosity ($R^2 = 0.70$, $p < 0.0001$), and the long T_2 relaxation time (T_{2L}) ranges from 17 ms to 161 ms and is strongly positively correlated with porosity ($R^2 = 0.91$, $p < 10^{-7}$). In empirically choosing TI for a set of specimens such that pore water is nulled, TI is biased toward optimal nulling of pore water in more porous bones; these bones have more pore water to be nulled, so proper inversion is more important. In dense bones, with shorter T_{1L} and T_{2L}, pore water magnetization may be incompletely inverted during the adiabatic inversion pulse (i.e., $M_z > -1$) due to transverse relaxation during the pulse, and will undergo significantly faster longitudinal relaxation after inversion, thus overshooting the null point ($M_z > 0$) during the inversion-recovery delay. Some of this pore water magnetization in dense bone will therefore also be imaged, along with bound water magnetization, by SIR-ZTE. This additional contribution of pore water in dense bones is responsible for the overestimation of bound water density (which is 60-80% of total bone water (69,71)) by SIR-ZTE, causing average SIR-ZTE 1H concentration (32.9±3.9 M, 24.4-39.8 M) to be slightly greater than average ZTE 1H concentration (32.7±3.2 M, 28.5-40.3 M). This overestimation, however, does not diminish the strength of the positive correlation of SIR-ZTE 1H concentration with bone matrix density, or the negative correlation with porosity. In fact, this phenomenon may enhance the sensitivity of SIR-ZTE to changes in matrix density and porosity.
4.5.4. Bone Mineralization

The strong positive correlation ($R^2 = 0.91$) between matrix and mineral densities measured by gravimetry confirms that the degree of mineralization in these bones is not the primary determinant of bulk bone mineral density; changes in mineral density are primarily a result of structural degradation rather than a deficit of mineralization. The mineralization mass ratio, which is defined as gravimetric mineral density divided by matrix density, however, was strongly negatively correlated with porosity ($R^2 = 0.94$), consistent with the notion that bone mineralization is decreased due to rapid bone turnover in age-related bone loss.

Tissue mineralization density calculated in this work, $1225\pm36\ \mathrm{mg/cc\ matrix\ (1130-1286\ mg/cc\ matrix)}$, was similar to previous microradiographic measurements by Boivin et al. (136) ($1082\pm17\ \mathrm{mg/cc}$). Gravimetric densities are also consistent with gravimetric measurements performed by Cao et al. (63) in rat bone.

4.5.5. Translatability to the Clinic

This work has established SIR-ZTE $^1\mathrm{H}$ concentration as a surrogate for matrix density. This examination, in combination with a $^{31}\mathrm{P}$ ZTE examination of bone mineral density (129), could be developed into a non-invasive in vivo MRI assessment of bone mineral and matrix densities, and their ratio, the degree of mineralization of bone. If reduced to practice, this MRI method would allow clinicians to discriminate between age-related macroscopic bone loss and impairment of bone mineralization. Such an examination is not possible using standard x-ray-based screening methods.
This work, however, does not support the proportionality of non-exchangeable ZTE 1H concentration to bone matrix density. The presence of both on-resonance and off-resonance components suggests the presence of several sources of signal in ZTE images after 2H exchange. Further experiments, such as chemical manipulations to dissolve and remove lipid, would provide additional insight into the nature of this extremely short-T_2 component.

This study benefitted from the enhanced performance of experimental versus clinical hardware. The 9.4 T scanner used in this work is equipped with much stronger gradients than clinical scanners, narrowing the point spread function and, thus, reducing blurring. This allows for better delineation of bone margins, and even enables visualization of individual pore spaces in severely porous bones (see Figure 4.5, panel 83F). The use of a 20-mm RF probe and very high field strength also yields higher SNR than is achievable using clinical hardware.

4.6. Conclusion

Based on the strong correlations of SIR-ZTE 1H concentration with gravimetric matrix density and porosity, long T_2-suppressed solid-state MRI is a promising surrogate for bone matrix density.
CHAPTER 5: BONE MINERAL 31P AND MATRIX-BOUND WATER DENSITIES MEASURED BY SOLID-STATE 1H AND 31P MRI

5.1. Abstract

Bone is a composite material consisting of mineral and hydrated collagen fractions. MRI of bone is challenging due to extremely short transverse relaxation times, but solid-state imaging sequences exist that can acquire the short-lived signal from bone tissue. Previous work to quantify bone density via MRI used powerful experimental scanners. This work seeks to establish the feasibility of MRI-based measurement of bone mineral and collagen-bound water densities on clinical scanners, the latter as a surrogate of matrix density, and to examine the associations of these parameters with porosity and donors’ age.

Mineral and matrix-bound water images of reference phantoms and cortical bone from 16 human donors, ages 27-97 years, were acquired by zero-echo-time 31P and 1H MRI on whole body 7 T and 3 T scanners, respectively. Images were corrected for relaxation and RF inhomogeneity to obtain density maps. Cortical porosity was measured by μCT, and apparent mineral density by pQCT. MRI-derived densities were compared to x-ray-based measurements by least-squares regression.

Mean bone mineral 31P density was 6.74±1.22 mol/L (corresponding to 1129±204 mg/cc mineral), and mean bound water 1H density was 31.3±4.2 mol/L (corresponding to 28.3±3.7 %v/v). Both 31P and bound water (BW) densities were correlated negatively with porosity (31P: $R^2 = 0.67$, $p < 0.0005$; BW: $R^2 = 0.81$, $p < 0.0001$) and age (31P: $R^2 =$...
0.39, p < 0.05; BW: R^2 = 0.70, p < 0.0001), and positively with pQCT density \(^{31}\)P: R^2 = 0.46, p < 0.05; BW: R^2 = 0.50, p < 0.005). In contrast, the bone mineralization ratio (expressed here as the ratio of \(^{31}\)P density to bound water density), which is proportional to true bone mineralization, was found to be uncorrelated with porosity, age, or pQCT density.

This work establishes the feasibility of image-based quantification of bone mineral and bound water densities using clinical hardware.

5.2. Introduction

As explained in Chapter 1, osteoporosis is a structural bone disorder in which both bone mineral and matrix are lost in roughly equal proportions. In contrast, osteomalacia is a bone-demineralizing disorder in which low blood calcium or phosphorus \(^{31}\)P) levels impair mineralization of bone matrix. The differentiating factor between these disorders is bone mineralization: the mass of mineral in a volume of bone matrix only, excluding pore spaces (see Figure 5.1).

![Figure 5.1](image)

Figure 5.1: Cartoon depicting apparent matrix and mineral density changes in osteoporosis and osteomalacia versus healthy bone. Apparent bone mineral
density is lower in both osteoporosis and osteomalacia, but bone mineralization is reduced in osteomalacia only.

The most common screening test for bone disease is dual energy x-ray absorptiometry (DXA), which provides a measurement of areal (two-dimensional) apparent bone mineral density (BMD), expressed in g/cm². However, because the mechanical properties of bone depend on both mineral and matrix, bone mineral density alone cannot fully describe bone health.

Recent advances in solid-state 31P and 1H magnetic resonance imaging (MRI) have led to the possibility of quantitative measurement of bone mineral 31P and collagen-bound water 1H densities (55,60,63-68,75-84,137,138). These two measurements, taken individually, reflect the apparent densities of bone mineral and matrix, but their ratio can provide insight into bone mineralization. Only Cao et al. (63) have quantified both 31P and bound water in a single set of specimens. In Cao’s study, however, 31P was quantified by non-localized NMR spectroscopy and the work was performed using animal imaging hardware with capabilities far exceeding those of clinical MRI scanners.

The objective of the present work was to quantify bone mineral 31P and matrix-bound water densities in human bone on clinical scanners using solid-state MRI methods. The ratio of these densities, referred to hereafter as the bone mineralization ratio (BMR), can serve as a surrogate measure of mineralization. These measurements were compared with µCT-derived porosity, pQCT-derived apparent BMD, and donor age.
5.3. Materials and Methods

5.3.1. Source of Bone Tissue
The tissue examined consisted of 16 specimens of cortical bone taken from the tibial mid-shaft of male and female human donors, aged 27-97 years (National Disease Research Interchange, NDRI). Donors with bone demineralizing disorders were excluded; only age-related structural bone loss is expected. The tibial cortex is relatively thick, while the bone lies near the surface of the lower leg, making this site uniquely suited for imaging using a small surface or volume radiofrequency (RF) coil. Whole-cross section specimens 36 mm in length were cut from thawed tibiae with a rotating blade from the region of maximum cortical bone thickness, 38% of the length of the tibia from the medial malleolus to the medial condyle. The average cortical thickness of the 16 bone specimens was 4.6±1.4 mm. Thirteen specimens were placed in phosphate-buffered saline ([^31]P = 12 mM; signal contribution is negligible compared to bone[^31]P ~ 7 M) inside plastic tubes (Figure 5.2), immobilized by plastic supports on each end. The tubes were centrifuged to remove air bubbles and then sealed while immersed in phosphate-buffered saline. Due to large size, three specimens were instead sealed inside rubber balloons in phosphate-buffered saline.
Each bone was scanned with solid signal intensity reference phantoms. Two cylindrical phantoms of dry, packed synthetic hydroxyapatite powder (Sigma-Aldrich, USA), with densities of 1108 and 1026 mg/cc, were used as 31P reference signal intensities. These 31P phantoms were encased in plastic cylinders, each 2.5 mm in diameter and 30 mm in length, and sealed on each end with epoxy. The 1108-mg/cc phantom had 31P $T_1 = 93.7$ s and $T_2^* = 159.8$ µs, determined by 31P saturation recovery, and the 1026-mg/cc phantom had 31P $T_1 = 101.7$ s and $T_2^* = 160.0$ µs. One rectangular rubber phantom, 24
x 15 x 5 mm, served as a short-T_2 1H reference signal sample (1H $T_1 = 284$ ms, $T_2^* = 156$ µs). The 31P and 1H nuclear densities of these reference phantoms, in mol/L, were calibrated by scanning them in the presence of liquid calibration standards using the method described below. Pure trioctyl phosphate ($C_{24}H_{51}O_4P$, $T_1 = 709$ ms, $T_2^* = 4560$ µs, $[^{31}\text{P}] = 2.124$ mol/L) and a solution of 90% D$_2$O/10% H$_2$O doped with 28.9 mM MnCl$_2$ ($T_1 = 7.3$ ms, $T_2^* = 272$ µs, $[^1\text{H}] = 11.079$ mol/L) were used for 31P and 1H calibration, respectively.

5.3.2. Hardware
All 31P scanning was performed on a 7 T Magnetom whole-body MRI scanner (Siemens, Erlangen, Germany), and all 1H scanning on a 3 T Magnetom TIM Trio whole-body MRI scanner (Siemens, Erlangen, Germany). Both scanners have 40 mT/m maximum gradient strength. Because the resonance frequencies of 31P at 7 T (120.3 MHz) and 1H at 3 T (123.3 MHz) are similar, a single RF coil was re-tuned and used at both field strengths. This custom 3-turn transmit/receive solenoid coil, 4.5 cm in diameter and 8 cm in length, is shown in Figure 5.2 with a bone specimen. In addition to the previously explained intensity reference phantoms, which are not visible in Figure 5.2, three samples containing trioctyl phosphate were rigidly affixed to the exterior of the coil to serve as fiducial markers in both 31P and 1H images. These landmarks were used to register each image to an RF field map.

5.3.3. MR Imaging
Due to its excellent SNR performance in samples with extremely short T_2^* (131), ZTE with PETRA (57), shown in Figures 5.3a and b, is used in this work. This method collects k-space points on a Cartesian grid to fill the central k-space sphere that is
missing from the radial k-space projection data set collected in ZTE. In the PETRA segment, the gradient magnitude and direction are adjusted in each repetition to collect a single k-space point per repetition at a time delay equal to the transmit/receive switching time. Though the addition of the PETRA segment increases the total scan time, this sequence allows collection of each k-space point at the absolute shortest time delay after excitation, limited either by maximum gradient amplitude (in the ZTE segment) or transmit/receive switching time (in the PETRA segment), without complications due to gradient waveform irregularities or slew rate limitations.
Figure 5.3: Imaging pulse sequences used for bone 31P and bound water density quantification: 31P ZTE sequence (a) with PETRA module (b), and 1H Single Adiabatic Inversion Recovery Rapid ZTE (SIR-rZTE) sequence (c) with PETRA module (d). Relevant pulse sequence parameters are shown.

Each sample was imaged using three sequences, shown in Figure 5.3: 31P ZTE with PETRA (57) (Figures 5.3a,b), 1H ZTE with PETRA (similar to Figures 5.3a,b), and 1H Single Adiabatic Inversion-Recovery Rapid ZTE with PETRA (SIR-rZTE, Figures 5.3c,d) (81,83,84,112).

31P images were acquired with the following parameters: field of view (FOV) = 128 mm isotropic, pulse duration = 12 µs, flip angle = 5.0 degrees, gradient amplitude = 36.7...
mT/m, number of readout points \((N) = 32\), dwell time \(= 12 \mu s\), \(TR = 20\) ms, number of signal averages \((NEx) = 100\), 5000 projections, PETRA radius = 5 k-space points, 100 dummy scans, scan time = 3 hr 3 min. Using this gradient amplitude, the full width at half maximum (FWHM) of the point-spread function (PSF), a measurement of intrinsic image resolution, is 3.84 mm.

These images were acquired with 100 averages and a flip angle above the optimal Ernst angle condition in order to acquire sufficient signal from the three fiducial markers, which were located outside the solenoid in a region of low \(B_1\) field strength. Only a single signal acquisition at the Ernst angle with \(TR = 250\) ms is necessary to achieve sufficient signal-to-noise ratio (SNR) in the interior of the coil for bone signal quantification, but the external landmarks would not be visible. The total scan time for such an image is 23 min 16 s.

\(^1\)H ZTE images were acquired with the following parameters: \(FOV = 80\) mm isotropic, pulse duration = 32 \(\mu s\), flip angle = 8.7 degrees, gradient amplitude = 18.3 mT/m, \(N = 40\), dwell time = 16 \(\mu s\), \(TR = 7\) ms, \(NEx = 1\), 5000 projections, PETRA radius = 4 k-space points, 100 dummy scans, scan time = 37 s. At the chosen gradient amplitude, the PSF FWHM is 1.17 mm.

\(^1\)H SIR-rZTE images were acquired with the following parameters: inversion pulse bandwidth = 5 kHz, inversion pulse duration = 5 ms, \(TI = 100\) ms, \(FOV = 80\) mm isotropic, 7 readouts per inversion (to lower scan time), excitation pulse duration = 32 \(\mu s\), flip angle = 24-40 degrees (set to yield equal transverse magnetization in each of the seven excitations and limited by maximum RF power and pulse duration), gradient
amplitude = 18.3 mT/m, N = 40, dwell time = 16 µs, TR = 300 ms, NEx = 1, 10000 projections, PETRA radius = 4 k-space points, 100 dummy scans, scan time = 26 min 45 s.

A lower than the maximally allowed gradient amplitude was used in 1H SIR-rZTE scans to improve SNR by two routes: a lower readout bandwidth allows for longer dwell time, and also allows the use of a longer-duration (i.e. lower bandwidth) RF excitation pulse with a correspondingly higher flip angle while still avoiding signal loss toward the edge of the field of view (61). Although a lower readout gradient increases PSF broadening, the actual resolution approximately equals the reconstructed voxel resolution.

To compensate for the non-uniform sampling density inherent in radial imaging, each k-space point was multiplied by a weighting factor equal to the ‘volume’ of k-space occupied by that point. The k-space data were then re-mapped onto a Cartesian grid (643 points for 31P, 803 points for 1H), and Fourier transformed using the NFFT C subroutine library (97). Reconstructed isotropic voxel resolutions were 2 mm3 and 1 mm3 in 31P and 1H images, respectively.

5.3.4. B_1 Mapping and Registration

A map of RF amplitude and, by reciprocity, receive sensitivity was acquired by Bloch-Siegert B_1 mapping (139). This sequence was applied on the 1H nucleus at 3 T using a water-filled balloon as a sample. The balloon maximally filled the interior of the RF coil and extended out the ends of the coil’s cylindrical support structure, thus maximizing the mapped volume. The spatial locations of the trioctyl phosphate landmarks were obtained using a 1H ZTE image with voxel resolution and FOV size and location identical
to the bone specimen scans, and were used to register the B_1 map to each 1H and 31P bone specimen image (140).

5.3.5. Density Quantification

MRI signal intensity is proportional to the density of the nucleus being imaged, but also depends on the longitudinal (T_1), transverse (T_2), and effective transverse (T_2^*) relaxation times of the NMR signal and the transmit and receive radiofrequency fields (B_1). The steady-state signal acquired in the plain ZTE pulse sequence shown in Figure 5.3a,b is given in Equation 5.1:

$$S(\vec{r}) \propto \rho(\vec{r}) \frac{1 - \exp(-\frac{TR}{T_1})}{1 - f_z(\vec{r}) \exp(-\frac{TR}{T_2^*})} f_{xy}(\vec{r}) \exp\left(-\frac{TE}{T_2^*}\right) \hat{B}_1(\vec{r})$$

[5.1]

where $\rho(\vec{r})$ is the nuclear density, TR is the pulse repetition time, and $\hat{B}_1(\vec{r})$ is the normalized transmit RF field profile, $B_1(\vec{r})$, of the receive RF coil (representing, by reciprocity of transmit and receive B_1 fields, the reception sensitivity profile of the coil). The f_{xy} and f_z terms are mapping functions, which give the response of transverse and longitudinal magnetization, respectively, to rectangular RF pulses, which have a finite duration relative to T_2 (93):

$$f_{xy}(\vec{r}) = \exp\left(-\frac{\tau}{2T_2}\right)\gamma B_1(\vec{r}) \tau \text{sinc}\left(\sqrt{\left(\gamma B_1(\vec{r}) \tau\right)^2 - \left(\frac{\tau}{2T_2}\right)^2}\right)$$

[5.2]

and
\[I_c(\vec{r}) = \exp \left(-\frac{\tau}{2T_2} \right) \left(\cos \left(\sqrt{\left(\gamma B_1(\vec{r}) \tau \right)^2 - \left(\frac{\tau}{2T_2} \right)^2} \right) + \frac{\tau}{2T_2} \text{sinc} \left(\sqrt{\left(\gamma B_1(\vec{r}) \tau \right)^2 - \left(\frac{\tau}{2T_2} \right)^2} \right) \right), \] [5.3]

where \(\tau \) is the RF pulse duration and \(B_1(\vec{r}) \) is the transmit RF field amplitude.

Once \(T_1, T_2, \) and \(T_2^* \) of the specimen are known, and the \(B_1 \) fields of transmit and receive coils are mapped, then the image can be corrected by solving Equation 5.1 for \(\rho(\vec{r}) \), and density can be quantified relative to a similarly corrected reference sample in the same image field of view (FOV) (64).

\(^{31}\text{P} \) \(T_1 \) of bone mineral is strongly dependent on the level of mineralization and may vary significantly among donors (131). To accurately perform this correction for \(^{31}\text{P} \) density quantification, \(^{31}\text{P} \) relaxation was measured in each individual bone using saturation recovery. \(^1\text{H} \) bound water relaxation times chosen for density computation were population averages from the literature: \(T_1 = 290 \text{ ms} \) (84) and \(T_2^* = 350 \mu\text{s} \) (112).

Unlike bone mineral \(^{31}\text{P} \), \(^1\text{H} \) NMR signal in bone at 3 T arises from several water compartments: long \(T_2 \) > 1 ms, corresponding to free water in Haversian canals and the lacuno-canalicular pore system (also denoted ‘pore water’); short \(T_2 \sim 300-400 \mu\text{s} \), corresponding to motionally restricted water bound to bone matrix collagen (‘bound water’); and extremely short \(T_2 \leq 50 \mu\text{s} \), corresponding to \(^1\text{H} \) nuclei in bone matrix collagen itself (‘collagen’) (69). In practice, the collagen signal is beyond the reach of clinical hardware, even with solid-state pulse sequences. However, bound water and collagen \(^1\text{H} \) signal both are proportional to bone matrix density (60,63,69,71,72,75,76,78,79,81,84,112), while pore water is inversely proportional to...
bone matrix density (71,72,75,81,84,110), and total bone water density is only weakly correlated with bone matrix density (71,81). It is therefore necessary to isolate and image only the 1H signal components that correspond to bone matrix.

Adiabatic RF pulses can have both broad bandwidth and long duration, which enables them to saturate short-T_2 bound water 1H signal while also being able to invert the broad band of long-T_2 pore water spins resonating over a range of frequencies (81,82,141). The response of the equilibrium longitudinal magnetization, $f_{HS} = M_z/M_0$, to a 5-kHz bandwidth, 5-ms duration hyperbolic secant adiabatic RF pulse is shown for a range of T_2s in Figure 5.4. After an appropriate inversion time delay (T_I), pore water longitudinal magnetization will be nulled ($M_z ≈ 0$) as a consequence of partial longitudinal (T_1) recovery of the magnetization, while bound water longitudinal magnetization will have recovered from $M_z = 0$ to $M_z > 0$. At this time, imaging excitation and readout can be performed, yielding an image composed only of bound water signal. Fortuitously, the same reduced molecular motion that causes bound water to have a short T_2 also results in a shorter T_1 than that of pore water, enhancing its signal recovery.
Quantification of bound water density based on an inversion-recovery image must take this adiabatic inversion into account, resulting in a more complex steady-state signal equation:

$$S(\vec{r}) \propto \rho(\vec{r}) \frac{1 + (f_{\text{HS}} - 1) \exp\left(-\frac{TE}{T_2}\right) - f_{\text{HS}} \exp\left(-\frac{TR}{T_2}\right)}{1 - f_{\text{HS}} f_{xy}(\vec{r}) \exp\left(-\frac{TR}{T_2}\right)} f_{xy}(\vec{r}) \exp\left(-\frac{TE}{T_2}\right) B_1(\vec{r}).$$ \[5.4\]

In Equation 5.4, f_x includes the cumulative effect of all seven excitation pulses, and f_{xy} is equal for each excitation.

31P ZTE and 1H SIR-rZTE images were imported into MATLAB, and volumes of interest (VOIs) were drawn to fully enclose the three landmark intensities, reference intensities, and bone, and exclude the endosteal cavity. Each image was then registered to the B_1 map and corrected for transmit and receive B_1 and for differences in relaxation times using Equations 5.1-5.4.
The reference samples and bone specimens were further masked by Otsu automatic
thresholding (135) within the manually drawn VOIs. The mean corrected intensity in a
central 20-mm slab of the thresholded bone was divided by the mean corrected intensity
within the reference phantom, and multiplied by the calibrated ^{31}P or ^1H density of the
reference. This yields a measurement of bone ^{31}P density (proportional to apparent
BMD) or bound water density (proportional to apparent bone matrix density),
respectively, in mol/L. The bone mineralization ratio, which is the ratio of ^{31}P density to
bound water density is a surrogate of bone mineralization.

5.3.6. X-Ray-Based Porosity and Densitometry

For comparison to MRI-derived densities, cortical porosity was measured by micro-
computed tomography (μCT). A 3D μCT image of each cortical bone specimen was
acquired with 9-µm isotropic resolution using a Bruker SkyScan μCT scanner (Bruker,
Kontich, Belgium). The endosteal and periosteal surfaces of each bone were
segmented, and the resulting image was thresholded to distinguish pore spaces from
bone tissue. Porosity was quantified as the ratio of pore space volume to total bone
volume, both excluding the endosteal cavity.

Apparent bone mineral density was also measured by peripheral quantitative computed
tomography (pQCT). A single-slice pQCT image was acquired at the center of each
cortical bone specimen with resolution 0.4 mm x 0.4 mm x 2.3 mm using a Stratec XCT
was quantified in this single slice.
5.3.7. Data Analysis

Correlations were calculated using least squares regression. Significance of each regression was determined using one-way ANOVA, with a threshold of \(p < 0.05 \).

Porosity and pQCT density were regressed versus age to confirm the presence of age-related bone loss. MRI-derived densities were then each regressed versus donor age, pQCT density, and \(\mu \)CT porosity to determine the MRI method's ability to detect changes in bone density. PQCT density normalized by bone volume fraction (1 – porosity), which provides an estimate of bone mineralization, was regressed versus age to verify that no impairment of mineralization exists in the bone specimens, and the MRI-based bone mineralization ratio was also regressed versus donor age, pQCT density, and porosity to confirm this finding. \(^{31}P \) \(T_1 \) relaxation time was also regressed versus pQCT density and porosity to reinforce the dependence of \(T_1 \) on bone mineral density.

5.4. Results

A representative volume rendering of a \(^{31}P \) ZTE image of a specimen taken from an 83-year old female donor is shown in Figure 5.5, and maps of \(^{31}P \) and bound water densities are shown in Figure 5.6. These quantities are proportional to apparent bone mineral and matrix densities, respectively, and their ratio, the bone mineralization ratio, is a surrogate for bone mineralization.
Figure 5.5: Volume rendering of a 31P ZTE image of a tibial cortical bone specimen from an 83 y/o female donor. Two signal intensity reference phantoms mounted inside the RF coil (right) and three landmark reference phantoms mounted outside the RF coil (top, left, bottom) are visible.

Figure 5.6: Maps of bone mineral 31P density (a) and bound water density (b) in central slices of 16 human tibial cortical bone specimens. Age and gender of bone specimen donors are indicated. Bone mineral 31P and bound water 1H densities are markedly lower in bones from elderly female donors than from younger females or males. 31P maps also suffer from increased point spread function blurring due to the lower gyromagnetic ratio and shorter T_2^* of 31P.
Cortical porosity is known to increase with age, particularly in post-menopausal women (29). Bone porosity was correlated positively with age ($R^2 = 0.65$, $p < 0.0005$) and negatively with pQCT density ($R^2 = 0.64$, $p < 0.0005$), confirming that age-related bone mineral loss is present in this set of donors. The data also suggest a negative correlation between pQCT density and age ($R^2 = 0.29$, $p < 0.05$).

Because MRI and pQCT cannot resolve individual pores (for this reason, we refer to these densities as 'apparent'), an increase in porosity manifests as a net reduction of mineral 31P and bound water density, in equal proportions, within each voxel. As expected, densities are visibly lower in bone from elderly females than in bone from younger or male donors (Figure 5.6).
<table>
<thead>
<tr>
<th>Age (yr)</th>
<th>Gender</th>
<th>Age (yr)</th>
<th>Gender</th>
<th>pCT Porosity (% Pores)</th>
<th>pQCT Density (mg/cc)</th>
<th>pQCT Density/ BVF (mg/cc)</th>
<th>$[^{31}\text{P}] T_1$ (s)</th>
<th>$[^{31}\text{P}]$ Density (mg HAp/cc)</th>
<th>Bound $[^{1}\text{H}]$ Density (mol $[^{1}\text{H}]/$L)</th>
<th>Bound H$_2$O (v/v)</th>
<th>BMR ($[^{31}\text{P}]/[^{1}\text{H}]$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>27</td>
<td>F</td>
<td>10.4</td>
<td>1245</td>
<td>1337</td>
<td>93.2</td>
<td>6.88</td>
<td>1152</td>
<td>35.9</td>
<td>32.4</td>
<td>1.57</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>F</td>
<td>8.6</td>
<td>1236</td>
<td>1326</td>
<td>95.0</td>
<td>7.40</td>
<td>1238</td>
<td>38.1</td>
<td>34.4</td>
<td>1.59</td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>M</td>
<td>14.2</td>
<td>1129</td>
<td>1238</td>
<td>92.2</td>
<td>7.98</td>
<td>1335</td>
<td>35.4</td>
<td>31.9</td>
<td>1.85</td>
<td></td>
</tr>
<tr>
<td>49</td>
<td>M</td>
<td>11.2</td>
<td>1232</td>
<td>1334</td>
<td>111.3</td>
<td>7.82</td>
<td>1308</td>
<td>33.9</td>
<td>30.6</td>
<td>1.89</td>
<td></td>
</tr>
<tr>
<td>53</td>
<td>M</td>
<td>18.4</td>
<td>1172</td>
<td>1339</td>
<td>101.2</td>
<td>8.07</td>
<td>1351</td>
<td>32.9</td>
<td>29.7</td>
<td>2.01</td>
<td></td>
</tr>
<tr>
<td>53</td>
<td>F</td>
<td>8.1</td>
<td>1242</td>
<td>1298</td>
<td>99.2</td>
<td>7.96</td>
<td>1332</td>
<td>34.9</td>
<td>31.5</td>
<td>1.87</td>
<td></td>
</tr>
<tr>
<td>65</td>
<td>F</td>
<td>16.2</td>
<td>1209</td>
<td>1356</td>
<td>108.9</td>
<td>7.88</td>
<td>1319</td>
<td>32.7</td>
<td>29.5</td>
<td>1.98</td>
<td></td>
</tr>
<tr>
<td>65</td>
<td>F</td>
<td>15.7</td>
<td>1128</td>
<td>1232</td>
<td>95.7</td>
<td>6.39</td>
<td>1069</td>
<td>32.7</td>
<td>29.5</td>
<td>1.61</td>
<td></td>
</tr>
<tr>
<td>69</td>
<td>M</td>
<td>16.9</td>
<td>1182</td>
<td>1296</td>
<td>102.7</td>
<td>7.88</td>
<td>1319</td>
<td>30.4</td>
<td>27.5</td>
<td>2.13</td>
<td></td>
</tr>
<tr>
<td>74</td>
<td>F</td>
<td>39.3</td>
<td>1084</td>
<td>1233</td>
<td>78.4</td>
<td>4.55</td>
<td>761</td>
<td>27.5</td>
<td>24.9</td>
<td>1.36</td>
<td></td>
</tr>
<tr>
<td>75</td>
<td>M</td>
<td>27.6</td>
<td>1165</td>
<td>1334</td>
<td>103.3</td>
<td>6.79</td>
<td>1137</td>
<td>32.6</td>
<td>29.4</td>
<td>1.71</td>
<td></td>
</tr>
<tr>
<td>82</td>
<td>F</td>
<td>32.1</td>
<td>1167</td>
<td>1339</td>
<td>99.1</td>
<td>5.28</td>
<td>884</td>
<td>24.4</td>
<td>22.0</td>
<td>1.78</td>
<td></td>
</tr>
<tr>
<td>83</td>
<td>F</td>
<td>50.8</td>
<td>1030</td>
<td>1245</td>
<td>70.7</td>
<td>4.81</td>
<td>806</td>
<td>23.3</td>
<td>21.1</td>
<td>1.69</td>
<td></td>
</tr>
<tr>
<td>83</td>
<td>M</td>
<td>33.2</td>
<td>1168</td>
<td>1361</td>
<td>109.8</td>
<td>6.47</td>
<td>1084</td>
<td>30.1</td>
<td>27.2</td>
<td>1.76</td>
<td></td>
</tr>
<tr>
<td>93</td>
<td>M</td>
<td>37.7</td>
<td>1159</td>
<td>1380</td>
<td>95.9</td>
<td>6.56</td>
<td>1099</td>
<td>27.7</td>
<td>25.0</td>
<td>1.94</td>
<td></td>
</tr>
<tr>
<td>97</td>
<td>F</td>
<td>32.2</td>
<td>1149</td>
<td>1294</td>
<td>90.3</td>
<td>5.20</td>
<td>870</td>
<td>28.8</td>
<td>26.0</td>
<td>1.48</td>
<td></td>
</tr>
</tbody>
</table>

Table 5.1: Measured bone parameters with means and standard deviations. $[^{31}\text{P}]$ density in mg of hydroxyapatite per cc and bound water volume fraction are inferred from MRI-derived densities based on certain assumptions described in the discussion. Abbreviations: BVF, bone volume fraction; HAp, hydroxyapatite; BMR, bone mineral ratio.

Various measures for MRI-derived densities and x-ray-based measurements are given in Table 5.1. Mean bone mineral $[^{31}\text{P}]$ density was 6.7±1.2 mol/L (corresponding to 1129±204 mg/cc mineral), and mean bound water $[^{1}\text{H}]$ density was 31.4±4.2 mol/L (corresponding to 28.3±3.8 %v/v). Coefficients of determination for correlations between measured parameters are given in Table 5.2. Both $[^{31}\text{P}]$ and bound water (BW) densities were correlated negatively with porosity ($[^{31}\text{P}]$: $R^2 = 0.67$, $p < 0.0005$; BW: $R^2 = 0.81$, $p < 0.0001$) and age ($[^{31}\text{P}]$: $R^2 = 0.39$, $p < 0.05$; BW: $R^2 = 0.70$, $p < 0.0001$), and positively with pQCT density ($[^{31}\text{P}]$: $R^2 = 0.46$, $p < 0.05$; BW: $R^2 = 0.50$, $p < 0.005$). These findings indicate that the MRI-based measurements are able to detect inter-subject variations in apparent mineral and osteoid density in human cortical bone.
The true density of bone mineral in the collagen matrix, variably termed ‘bone mineralization’ or ‘degree of mineralization of bone’ (12), can be inferred from apparent pQCT bone mineral density divided by the bone volume fraction (BVF), expressed as (1 – porosity). The tight range of volume fraction-normalized pQCT density (1213-1311 mg/cc matrix) and its lack of correlation with age (p > 0.5) lend support to the notion that the remaining bone tissue, even in the presence of severe bone loss, is not significantly deficient in mineral (recall that the bone studied in this work were taken from donors unaffected by bone-demineralizing disorders), as previously noted, for example, by Yeni et al. (142). As expected in fully mineralized bone, the MRI-measured ^{31}P and bound water densities (the latter scaling with matrix density) were highly correlated ($R^2 = 0.59$, $p < 0.005$, Figure 5.7), and the density ratio was not correlated with age, porosity, or pQCT density.

Table 5.2: Correlation matrix of R^2 values. All correlations are statistically significant unless italicized (*$p<0.05$, †$p<0.005$, ‡$p<0.0005$). Abbreviations: BMR, bone mineralization ratio; BWD, bound water density; 31PD, 31P density; BVF, bone volume fraction = 1 - porosity.

<table>
<thead>
<tr>
<th></th>
<th>Age</th>
<th>Porosity</th>
<th>pQCT</th>
<th>pQCT/BVF</th>
<th>31P T_1</th>
<th>31PD</th>
<th>31PD/BVF</th>
<th>BWD</th>
<th>BWD/BVF</th>
</tr>
</thead>
<tbody>
<tr>
<td>BMR</td>
<td>2.5x10^{-3}</td>
<td>0.08</td>
<td>0.09</td>
<td>0.06</td>
<td>0.33†</td>
<td>0.50†</td>
<td>0.53†</td>
<td>8.8x10^{-3}</td>
<td>0.19</td>
</tr>
<tr>
<td>BWD/BVF</td>
<td>0.13</td>
<td>0.48†</td>
<td>0.35*</td>
<td>0.48†</td>
<td>0.27*</td>
<td>0.25*</td>
<td>0.09</td>
<td>0.09</td>
<td>0.10</td>
</tr>
<tr>
<td>BWD</td>
<td>0.70‡</td>
<td>0.81‡</td>
<td>0.50†</td>
<td>0.77‡</td>
<td>0.19</td>
<td>0.59†</td>
<td>0.02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>31PD/BVF</td>
<td>0.05</td>
<td>0.05</td>
<td>0.01</td>
<td>0.06</td>
<td>0.05</td>
<td>0.14</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>31PD</td>
<td>0.39*</td>
<td>0.67‡</td>
<td>0.46†</td>
<td>0.62‡</td>
<td>0.45‡</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>31P T_1</td>
<td>0.02</td>
<td>0.30*</td>
<td>0.51†</td>
<td>0.27*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pQCT/BVF</td>
<td>0.59‡</td>
<td>0.95‡</td>
<td>0.47†</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pQCT</td>
<td>0.29*</td>
<td>0.64‡</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Porosity</td>
<td>0.65‡</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Figure 5.7: Correlation plot of bone mineral ^{31}P density to bound water ^1H density. The two MRI-derived densities are highly correlated, as expected in a set of equally mineralized bones.

Point‐spread function (PSF) blurring is more severe in the ^{31}P maps than ^1H (Figure 5.6), due to the lower gyromagnetic ratio ($\gamma = 17.24$ MHz/T) and shorter T_2^* of bone mineral ^{31}P. Average image SNR was 12.5 in ^{31}P ZTE images, and 20.2 in ^1H SIR-ZTE images. Finally, bone mineral ^{31}P T_1 relaxation time was positively correlated with pQCT density ($R^2 = 0.51$, $p < 0.005$) and negatively with porosity ($R^2 = 0.30$, $p < 0.05$). ^{31}P T_2^* relaxation time was 130.8 ± 1.2 µs, and was not correlated with pQCT density or porosity.

5.5. Discussion

The adiabatic inversion recovery method takes advantage of differences in transverse relaxation between bound and pore water spins to isolate bound water signal (81). In general, the effective transverse relaxation rate, $1/T_2^*$, is composed of reversible ($1/T_2'$) and irreversible ($1/T_2$) components, such that $1/T_2^* = 1/T_2 + 1/T_2'$. Because bound water is restricted by hydrogen bonding to collagen, its transverse relaxation is chiefly due to incomplete motional averaging of dipolar interactions, such that $1/T_2^* \approx 1/T_2 >> 1/T_2'$. In contrast, the pore water signal is the superposition of the signals from many isochromats
within a single voxel, with long T_2 individually, but distributed over a broad range of resonance frequencies due to static field inhomogeneities arising from susceptibility boundaries between bone ($\chi_v = -11.3$, SI) and water ($\chi_v = -8.9$, SI) (116). This causes inhomogeneous broadening resulting in reduced pore water T_2^*, such that $1/T_2^* \approx 1/T_2'$ >> $1/T_2$, with the reduction being more severe at higher field strengths. Although several other T_2^*-selective methods for distinguishing bound and pore water exist, such as bi- or multi-exponential fitting of multiple echoes or free-induction decays (FIDs) (75-78,110) or suppression of long-T_2^* signal using long, low-amplitude pulses (60,63,79,92), this work uses adiabatic inversion recovery (76,81,83,84,112), a T_2 (and partially T_1) selective method shown in Figures 5.2c,d, to null pore water signal.

In the presence of various degrees of either osteoporosis or osteomalacia, negative correlations would be expected between bound water density and porosity, and between 31P density and pQCT density. More importantly, the bone mineralization ratio – a measurement which, based on the present work, is anticipated to be achievable in vivo – would be expected to correlate with bone mineralization, a parameter which is beyond the reach of standard clinical bone densitometry. Further studies in experimentally demineralized or osteomalacic bone (obtained, for example, from animal models of osteomalacia (64)) will be required to evaluate the performance of this MRI-derived bone mineralization measurement.

The 31P and bound water densities given in this work were calculated using reference phantoms calibrated against standard solutions, and are therefore expressed in nuclear densities (i.e. moles of 31P or 1H per liter). To translate these measurements into bone density figures in the conventional units of mg/cc would require certain assumptions that
may introduce error. For example, to convert mol 31P/L to mg/cc mineral, one would have to assume constant chemical composition of bone mineral. Stoichiometric calcium hydroxyapatite, which has a formula mass of 502 g/mol, contains three 31P atoms per molecule. This stoichiometry would yield a conversion factor of 167 g of bone mineral per mole of 31P nuclei. The mean inferred mineral density of 1129 mg/cc using this conversion factor compares well to the mean bone mineral density of 1169 mg/cc by pQCT. Individual inferred values are included in Table 5.1.

The stoichiometry of bone mineral approaches that of calcium hydroxyapatite, but significant deviations from this composition do exist (21,22). The Ca/P ratio of bone mineral is also known to vary somewhat in bone disease (23), so the utility of this method in distinguishing between normal, osteoporotic, and osteomalacic bone in human subjects must be independently ascertained.

Similarly, conversion of bound water density to matrix density would require even more tenuous assumptions regarding the hydration of bone matrix collagen. The term ‘bound water density’ itself already implicitly assumes that collagen contributes no 1H signal. Under this assumption, however, it is straightforward to convert the density in mol 1H/L to water density in mg/cc or volume percentage using the density (1 g/mL) and molar concentration (55.3 mol/L) of pure H$_2$O. The average value of the inferred bound water volume fraction is 28±4%, somewhat greater than the total bone water volume fractions of 17% and 29% for pre- and post-menopausal women measured in vivo by Techawiboonwong, et al. (114). This discrepancy could be the result of either additional signal from protons in bone matrix collagen, or systematic errors resulting from the relaxation correction or calibration of the reference phantom.
We have previously demonstrated a reduction in T_1 after experimental removal of mineral from bone to mimic osteomalacia (131). The present work finds decreased $^{31}\text{P} T_1$ with increased bone porosity as well. Bone mineral ^{31}P longitudinal relaxation is primarily due to dipolar interactions with nearby protons. As bone is mineralized, mineral crystals displace water (107), causing the ^{31}P nuclei to be surrounded by a decreased number of water protons and thus experience reduced dipolar coupling. Conversely, as bone mineral is lost from the matrix, each remaining ^{31}P nucleus interacts with a greater number of protons (33), both in its immediate vicinity and at a distance, and as a result the T_1 relaxation time is reduced.

There are two possible explanations for the observed decrease in T_1. First, the increase in bone water content occurs chiefly in the pore spaces. Most ^{31}P nuclei in bone are distant (in NMR terms) from these pores. The power of dipolar interaction scales with the inverse sixth power of distance, rendering the contribution of any single distant ^1H nucleus to a ^{31}P nucleus vanishingly small. However, the number of these ^1H nuclei at a given distance increases as the square of distance; therefore, the aggregate contribution of distant ^1H dipolar interactions to ^{31}P longitudinal relaxation is not negligible, and the increase in the number of distant pore water ^1H nuclei may contribute to the observed decrease in $^{31}\text{P} T_1$.

In addition, age-related bone loss is most commonly due to an increase in bone turnover. Although primary mineralization occurs only days after new bone matrix is deposited in a remodeling event, it is known that enhanced bone turnover reduces the time available for bone to undergo secondary mineralization (31), in which more mineral is slowly added over many months. It is therefore possible that mineralization in more
porous bone is decreased to such an extent that the slightly increased concentration of nearby 1H nuclei manifests in increased longitudinal relaxation rate of bone mineral 31P, but not so much that this decreased mineralization can be directly quantified by any of the x-ray-based methods used in this work. Nevertheless, it is interesting to note that a statistically significant correlation exists between 31P T_1 and the bone mineralization ratio ($R^2 = 0.33, p < 0.05$).

As expected, image SNR is higher in 1H images than in 31P images, even despite an eight-fold reduction in voxel volume. The shorter T_2^*, nearly three orders of magnitude-longer T_1, and lower gyromagnetic ratio impose serious SNR limitations on solid-state 31P images of bone mineral. In general, under Ernst angle conditions, SNR efficiency is maximized at the shortest possible TR; however, in this work, TR is many orders of magnitude shorter than T_1, and further reduction of TR and increased averaging yields diminishing returns in SNR per unit scan time. The choice of ZTE-PETRA over UTE results in higher image SNR and a narrower PSF. ZTE imaging is also not limited to gradient isocenter as is UTE with ramp-sampling.

The goal of this study was to evaluate the feasibility of MRI-based bone mineral and matrix density measurements on a clinical scanner. Gradient strength is limited on most human scanners to 40 mT/m for patient safety and comfort. Most previous work in quantifying bone mineral density via solid-state 31P imaging has taken advantage of the high gradient strengths (1000 mT/m) and rapid gradient slew rates of animal and micro-imaging scanners (64). Because the PSF FWHM is inversely proportional to gradient strength, this non-clinical hardware provides an enormous advantage in intrinsic image resolution.
This work used a single small, tightly fitting solenoidal RF coil to optimize image SNR, similar to animal or micro-imaging hardware. *In vivo* examination would necessarily require a larger RF coil sized to enclose a human limb, thereby imposing a significant SNR penalty. A double-tuned RF coil or a combination of 31P and 1H coils, necessary to perform both density measurements in a single scanning session, would also negatively impact SNR, though SNR efficiency can be regained by reconstruction with anisotropic voxel resolution and FOV, taking advantage of the long bones’ small cross section but relatively constant distribution of bone material in axial direction.

5.6. Conclusions

In summary, solid-state 31P and bound water-selective 1H MRI measurements reflecting apparent bone mineral 31P and matrix-bound water densities correlate with porosity, age, and pQCT apparent bone mineral density in human cortical bone specimens. This work demonstrates the feasibility of image-based quantification of bone mineral and matrix densities and their ratio, the bone mineralization ratio, in whole-body scanners.
6.1. Conclusions

The main results of this thesis research are summarized as follows:

31P NMR Relaxation of Cortical Bone Mineral at Multiple Magnetic Field Strengths and Levels of Demineralization: The T_1 and T_2^* relaxation times of bone mineral 31P were systematically measured in lamb cortical bone at six magnetic field strengths ranging from 1.5 T to 11.7 T. Although T_1 increases from 12.8 ± 0.5 s to 97.3 ± 6.4 s, and T_2^* decreases from 220.3 ± 4.3 µs to 98.0 ± 1.4 µs, predicted SNR under both coil-dominated and sample-dominated noise conditions increases with field strength. SNR trends in UTE and ZTE images at 1.5 T, 3 T, and 7 T using a standardized set of custom solenoidal RF coils parallel these predictions. Despite the predicted and observed SNR advantage of imaging at high field, other issues must be considered in an ultimate choice of field strength. PSF blurring becomes more severe as field strength increases due to the decrease in T_2^*, and SAR is greater at higher Larmor frequencies. These tradeoffs can, and we believe do, justify the choice of 3 T as the optimal field strength for an examination of bone mineral 31P and matrix-associated 1H.

Bi-Component T_2^* Analysis of Bound and Pore Bone Water Fractions Fails at High Field Strengths: The viability of bi-component T_2^* fitting for quantification of bound and pore bone water fractions was assessed at 1.5 T, 3 T, 7 T, and 9.4 T against bone mineral, matrix, and water densities obtained gravimetrically, and bone volume fraction calculated from high-resolution µCT images. Short-T_2^* pool fraction is moderately correlated with porosity ($R^2 = 0.70$) and matrix density ($R^2 = 0.63$) at 1.5 T, but the
strengths of these associations diminish rapidly as field strength increases. In contrast, CPMG-derived short-T_2 fraction at 9.4 T is highly correlated with porosity ($R^2 = 0.87$) and matrix density ($R^2 = 0.88$), confirming the utility of this method for experimental validation of bone water pools. Based on these results, we advise caution in using T_2^*-based relaxometry methods to analyze bone 1H signal, and instead suggest T_2-based methods.

Single Adiabatic Inversion Recovery Zero Echo Time MRI is a Surrogate Measure of Bone Matrix Density: 1H single adiabatic inversion recovery (SIR) zero echo-time (ZTE) MRI was evaluated as a surrogate measure of matrix density in human cortical bone. SIR-ZTE 1H density was correlated negatively with porosity ($R^2 = 0.73$) and positively with matrix density ($R^2 = 0.74$) and mineral density ($R^2 = 0.72$). These strong correlations with ground-truth measurements suggest that this quantitative solid-state MRI method provides a nondestructive surrogate measure of bone matrix density, a property that is not measurable using standard x-ray-based techniques.

Bone Mineral 31P and Matrix-Bound Water Densities Measured by Solid-State 1H and 31P MRI: Bone mineral 31P and matrix-associated 1H densities were acquired by 31P ZTE and 1H SIR-rZTE MRI at 7 T and 3 T, respectively. These measurements were compared to cortical porosity measured by µCT and apparent mineral density by pQCT. Both 31P and SIR-rZTE 1H densities were correlated negatively with porosity (31P: $R^2 = 0.67, p < 0.0005$; 1H: $R^2 = 0.81, p < 0.0001$) and age (31P: $R^2 = 0.39, p < 0.05$; 1H: $R^2 = 0.70, p < 0.0001$), and positively with pQCT density (31P: $R^2 = 0.46, p < 0.05$; 1H: $R^2 = 0.50, p < 0.005$). As expected in the absence of bone-demineralizing disorders, the bone mineralization ratio (the ratio of 31P density to SIR-rZTE 1H density), which is proportional to true bone mineralization, was found to be uncorrelated with porosity, age,
or pQCT density. This work establishes the feasibility of image-based quantification of bone mineral and bound water densities using clinical hardware.

6.2. Future Work

Based on the results presented in this dissertation, several issues could benefit from further investigation:

6.2.1. Technical Development

Rapid \(T_1 \) measurement of bone mineral \(^{31}\text{P} \): As explained in Chapter 2, the \(T_1 \) of bone mineral \(^{31}\text{P} \) is strongly dependent on the level of demineralization. This means that, for best performance, an eventual *in vivo* examination of bone mineral density must include measurement of \(^{31}\text{P} \ T_1 \). Many methods exist for \(T_1 \) quantification, but not all are suitable for the extremely long \(T_1 \) values, up to 100 seconds, of bone mineral \(^{31}\text{P} \). A systematic comparison of multiple methods, including dual-\(TR \), dual-flip angle, saturation-recovery and inversion-recovery Look-Locker, and other methods is necessary to choose the best candidate for an *in vivo* examination of bone mineral density.

Theoretical investigation of the performance of the inverse Laplace transform using synthetic data and noise: Chapter 3 experimentally evaluates the performance of \(T_2^* \) bi-component fitting for quantification of bound and pore bone water fractions. A further theoretical evaluation of this topic based on synthetic data and noise would complement this work. Specific questions to be answered would include:

1. At what point does the separation of time constants become too small to be recovered by bi-component fitting?
2. What is the SNR required for accurate bi-component fitting of data with time constants separated by a given factor?

3. How does the number of fitted components (two, three, or unconstrained) affect requirements on separation of time constants and SNR?

4. What methods could feasibly handle fitting of components with both different relaxation times and frequency offsets?

Comparison of 1H bi-component T_2^* fitting at 1.5 T to SiR-rZTE at 3 T: Most prior work by other groups on bi-component T_2^* fitting in bone was performed at 3 T. As shown in Chapter 3, this method performs poorly at high field, but may be suitable at lower field. Though the SNR of 31P ZTE of bone mineral at 1.5 T is not optimal, the greater separation in 1H T_2^* values at low field will certainly allow for better quantification of bound and pore water fractions by bi-component fitting at 1.5 T than at 3 T, but further investigation is needed to determine if this method can outperform 1H SiR-rZTE at 3 T.

Examination of the source of off-resonance 1H signal: The signal oscillations visible in Figure 3.8 complicate bi-component T_2^* fitting of 1H signal, but their origin is unknown. They do not have a fixed period, so it is not possible to assign a chemical shift to this component. It has been hypothesized that this signal may arise from marrow fat. This may be tested by acquiring and analyzing spectroscopic data from specimens before and after chemical removal of fat by immersion in chloroform.

6.2.2. Translation to the Clinic

Anisotropic FOV and resolution for ZTE SNR enhancement: As mentioned briefly in Chapter 5, bones in the appendicular skeleton are long and narrow. Voxel size can
therefore be sacrificed along the long axis of the bone in favor of higher SNR, and the alias-free FOV can be reduced orthogonal to this axis to reduce scan time. This method has already been developed (143) and implemented on phantoms in our lab, and could easily be incorporated into an in vivo scan protocol.

Scaling of the combined 31P and 1H method to human subjects: The work outlined in Chapter 5 was performed on clinical scanners, but used a small solenoidal RF coil. Scaling this method to a larger volume coil, sized to fit the human leg, would entail an SNR penalty. This loss of SNR must be quantified, particularly in 31P, and appropriate pulse sequence modifications should be implemented to regain this lost SNR.

Tracking of response of mineral density, matrix density, and DMB to anti-resorptive treatment in post-menopausal osteoporotic women: The ultimate test of this method for paired measurement of bone mineral and matrix densities is its ability to measure a response to treatment of post-menopausal osteoporotic female subjects with standard anti-resorptive therapy. Accuracy and reproducibility should first be assessed in healthy control subjects, and then this method should be applied to a group of post-menopausal osteoporotic women undergoing treatment with bisphosphonates, and a group of matched healthy control subjects, to track the recovery of bone mineral and matrix densities and DMB.
BIBLIOGRAPHY

37. Boivin G, Farlay D, Bala Y, Doublier A, Meunier PJ, Delmas PD. Influence of

85. Kaflik A, Kolodziejski W. Kinetics of $^{1}H \rightarrow ^{31}P$ NMR cross-polarization in bone.

124. Does MD. Multi-Exponential Relaxation Analysis (MERA) Toolbox.

