
University of Pennsylvania
ScholarlyCommons

Technical Reports (CIS) Department of Computer & Information Science

6-2010

LNgen: Tool Support for Locally Nameless
Representations
Brian Aydemir
University of Pennsylvania

Stephanie Weirich
University of Pennsylvania, sweirich@cis.upenn.edu

Follow this and additional works at: http://repository.upenn.edu/cis_reports

University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-CIS-10-24.

This paper is posted at ScholarlyCommons. http://repository.upenn.edu/cis_reports/933
For more information, please contact libraryrepository@pobox.upenn.edu.

Recommended Citation
Brian Aydemir and Stephanie Weirich, "LNgen: Tool Support for Locally Nameless Representations", . June 2010.

http://repository.upenn.edu?utm_source=repository.upenn.edu%2Fcis_reports%2F933&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/cis_reports?utm_source=repository.upenn.edu%2Fcis_reports%2F933&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/cis?utm_source=repository.upenn.edu%2Fcis_reports%2F933&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/cis_reports?utm_source=repository.upenn.edu%2Fcis_reports%2F933&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/cis_reports/933
mailto:libraryrepository@pobox.upenn.edu

LNgen: Tool Support for Locally Nameless Representations

Abstract
Given the complexity of the metatheoretic reasoning about current programming languages and their type
systems, techniques for mechanical formalization and checking of such metatheory have received much recent
attention. In previous work, we advocated a combination of locally nameless representation and cofinite
quantification as a lightweight style for carrying out such formalizations in the Coq proof assistant. As part of
the presentation of that methodology, we described a number of operations associated with variable binding
and listed a number of properties, called “infrastructure lemmas”, about those operations that needed to be
shown. The proofs of these infrastructure lemmas are straightforward but tedious.

In this work, we present LNgen, a prototype tool for automatically generating statements and proofs of
infrastructure lemmas from Ott language specifications. Furthermore, the tool also generates a recursion
scheme for defining functions over syntax, which was not available in our previous work. LNgen works in
concert with Ott to effectively alleviate much of the tedium of working with locally nameless syntax. For the
case of untyped lambda terms, we show that the combined output from the two tools is sound and complete,
with LNgen automatically proving many of the key lemmas. We prove the soundness of our representation
with respect to a fully concrete representation, and we argue that the representation is complete—that we
generate the right set of lemmas—with respect to Gordon and Melham’s “Five Axioms of Alpha-Conversion.”

Comments
University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-
CIS-10-24.

This technical report is available at ScholarlyCommons: http://repository.upenn.edu/cis_reports/933

http://repository.upenn.edu/cis_reports/933?utm_source=repository.upenn.edu%2Fcis_reports%2F933&utm_medium=PDF&utm_campaign=PDFCoverPages

LNgen: Tool Support for

Locally Nameless Representations

MS-CIS-10-24

Brian Aydemir
University of Pennsylvania
baydemir@cis.upenn.edu

Stephanie Weirich
University of Pennsylvania
sweirich@cis.upenn.edu

June 2010

Abstract

Given the complexity of the metatheoretic reasoning about current programming languages and their
type systems, techniques for mechanical formalization and checking of such metatheory have received
much recent attention. In previous work, we advocated a combination of locally nameless representation
and cofinite quantification as a lightweight style for carrying out such formalizations in the Coq proof
assistant. As part of the presentation of that methodology, we described a number of operations asso-
ciated with variable binding and listed a number of properties, called “infrastructure lemmas”, about
those operations that needed to be shown. The proofs of these infrastructure lemmas are straightforward
but tedious.

In this work, we present LNgen, a prototype tool for automatically generating statements and proofs of
infrastructure lemmas from Ott language specifications. Furthermore, the tool also generates a recursion
scheme for defining functions over syntax, which was not available in our previous work. LNgen works
in concert with Ott to effectively alleviate much of the tedium of working with locally nameless syntax.
For the case of untyped lambda terms, we show that the combined output from the two tools is sound
and complete, with LNgen automatically proving many of the key lemmas. We prove the soundness of
our representation with respect to a fully concrete representation, and we argue that the representation
is complete—that we generate the right set of lemmas—with respect to Gordon and Melham’s “Five
Axioms of Alpha-Conversion.”

1 Introduction

Mechanical formalizations of programming languages have received much recent attention. One question
that is foremost in any mechanization is the treatment of binding. Many tools exist to aid in this practice—
Abella [1], Hybrid [2], Lambda Tamer [3], Nominal Isabelle [4], Twelf [5]—as well as many representation
techniques—de Bruijn indices [6], higher-order abstract syntax (hoas) [7], locally named [8], locally name-
less [9], weak hoas [10], etc.

As a programming language designer, how should we compare these methodologies? What tools should
we use? The PoplMark challenge [11] laid out a number of criteria, which we have come to interpret with
respect to existing technologies, for evaluating potential answers:

1. Transparency. Reasoning should be similar to that done with pencil and paper. For example, de
Bruijn indices are not transparent. Metatheory involving them often includes many lemmas about
shifting—lemmas that have no correspondence to pencil and paper proofs.

2. Logical expressivity. There should be minimal restriction on the logic that we use for formal de-
velopments. For example, the models of Nominal Logic [12] require that all definable relations be
equivariant. To allow similar reasoning in higher-order logic, where this is not the case, Nominal
Isabelle must require equivariance proofs (many of which can be provided automatically).

1

3. Traction. The strategy should draw on the strengths of the proof assistant. For example, in previous
work [13], we explored nominal reasoning in Coq by defining an interface which specified the construc-
tors of a nominal datatype, as well as an induction principal and recursion scheme for that datatype.
We chose not to pursue that line of work because the interface, while usable, prevented users from
taking advantage of Coq’s built-in features. Utilizing distinctness and injectivity of datatype construc-
tors, reasoning by induction, and defining functions by recursion all required the explicit use of special
theorems and combinators. Furthermore, functions defined by the recursion combinator would not
reduce by Coq’s definitional equality—we had to use explicit rewriting.

From these criteria, we draw the following conclusions: We want a representation that involves reasoning
about variable names, not indices, because that is the most transparent. We want to use this representation
in a general purpose logic, such as higher-order logic or the Calculus of Inductive Constructions (cic), but we
want to automate as much of the tedious machinery as possible. And we want our representation of syntax
to use what proof assistants are good at: specifying inductive datatypes and generating their associated
induction principles and recursion schemes.

In previous work [14], we proposed a completely manual scheme for reasoning about binding structure
based on locally nameless representations and defining inference rules with cofinite quantification. We de-
scribed a number of operations associated with variable binding (free variable calculation, index substitution,
free variable substitution, and free variable closing) and listed a number of properties, called “infrastructure
lemmas”, about those operations that needed to be shown. This strategy is lightweight in that the definitions
of the operations are simple structural recursions, so proofs of their properties are straightforward. We have
successfully used this strategy in our own developments and know of its use by others—for example, by Jia
et al. [15], Pratikakis et al. [16], Rossberg et al. [17], and many more.

However, our previous work did not fully explain its own success. Why were the “infrastructure lemmas”
the right set of lemmas to show? Would future formalizations require still more lemmas? Furthermore, if
the proofs of the infrastructure lemmas are so straightforward and mechanical, should it not be possible to
automatically generate those lemma statements and their proofs?

In this paper, we describe a prototype tool, LNgen, that we have developed for exactly this last purpose.
LNgen uses the same input language as Ott [18], a tool for translating language specifications written
in an intuitive syntax into output for LATEX and proof assistants. While Ott generates locally nameless
definitions—datatypes for syntax and relations, functions to calculate free variables and substitutions—from
the specification, LNgen provides recursion schemes for defining functions over syntax and a large collection
of infrastructure lemmas. LNgen automates much of the tedium associated with the locally nameless style,
even in our streamlined style, by allowing users to focus on the more interesting aspects of their developments
instead of on infrastructure lemmas. In Sec. 2, we describe in additional detail the input to and output from
LNgen, highlighting the important properties that are automatically proved.

Following the overview of LNgen, we discuss soundness (Sec. 3) and completeness (Sec. 4) in the particular
case of the untyped lambda calculus. For soundness, we prove that the locally nameless definition generated
by Ott is adequate with respect to fully concrete terms identified up to alpha equivalence. The lemmas
proved by LNgen provide many of the key lemmas required in this proof. For completeness, we prove that
even though we use a locally nameless representation, the lemmas generated by LNgen are enough to shield
users from the de Bruijn indices used to represent bound variables. Specifically, we give a model of Gordon
and Melham’s “Five Axioms of Alpha-Conversion” [19]. Although we think that the output of Ott and
LNgen is more convenient to work with than the five axioms, we can implement these five axioms in an
extremely straightforward manner, by using the lemmas proved by LNgen and without reasoning about de
Bruijn indices or by induction on syntax.

We and others have experience with using LNgen in significant developments. Section 5 gives an overview
of the case studies. Our experiences suggest that this tool has the advantages of code generators without
the drawbacks of generating executable code. In particular, the output of LNgen is straightforward for
programmers to effectively understand (definitions and lemma statements must be comprehended, but proofs
do not) and robust to change (lemma statements do not change significantly as the language is modified).

We conclude the paper with related work (Sec. 6), and our conclusions and future work (Sec. 7).

2

metavar expvar, x, y, z ::=
{{ repr-locally-nameless }}

grammar

exp, e, f, g :: ’’ ::=
| x :: :: var
| e1 e2 :: :: app
| \ x . e :: :: abs
(+ bind x in e +)

substitutions
single e x :: subst

freevars
e x :: fv

Definition expvar := var.

Inductive exp : Set :=
| var_b : nat -> exp
| var_f : expvar -> exp
| app : exp -> exp -> exp.
| abs : exp -> exp

Figure 1: Input file (left) and output Coq datatype (right) for lambda terms

2 The LNgen Tool

LNgen is a prototype tool for generating locally nameless definitions and infrastructure for the Coq proof
assistant. While LNgen is still under active development, the current version is available and has been used
for significant developments.1 LNgen relies on Ott [18] to generate the core locally nameless definitions for
a language. It then generates additional definitions and lemmas that are often needed in developments—the
main benefit that it provides to users over using Ott alone.

The input language for LNgen is a proper subset of the Ott specification language. Figure 1 shows
an example input file for untyped lambda terms. The syntax is intended to mimic what one might write
informally. Ott is specifically designed for specifying programming languages in a manner that is both
convenient for people and machines, e.g., proof assistants. Thus, Ott is a natural starting point for the input
language to LNgen. We can take advantage of the work that has gone into the design of Ott, not require
users to learn a new specification language, and allow our tool to work in parallel with Ott, relying on Ott
for the generation of some of the Coq definitions as well as LATEX output.

Below, we use the example to give a brief overview of the subset of Ott that LNgen supports; a detailed
description of the Ott language can be found elsewhere [20]. The first part of an input file for LNgen consists of
a list of metavar declarations. Each declaration defines a new type for object language variables—LNgen and
Ott define binding and substitution for these variables. In Fig. 1, the text repr-locally-nameless indicates
that binding should be represented using a locally nameless encoding. (Ott can also output definitions using a
concrete representation of binding.) The second part, the grammar, consists of a list of context-free grammar
definitions for nonterminals. Each declaration defines a new, inductively defined type for object-language
abstract syntax trees. Binding specifications may be attached to each constructor. For example in the abs
constructor, the metavariable x is a binding occurrence in the nonterminal e. The third part follows the
substitutions keyword and indicates that functions for substituting for free variables should be generated.
The final part follows the freevars keyword and indicates that functions for calculating free variables should
be generated. Anything else in the file is ignored by LNgen but may be processed by Ott, e.g., specifications
of inductively defined relations.

2.1 Generated Definitions

Figure 1 also shows the output representation that Ott produces for the untyped lambda terms. Metavari-
ables are implemented by the type var, which is provided by our metatheory library.2 The constructor names

1LNgen is available from http://www.cis.upenn.edu/∼baydemir/.
2The metatheory library is included with LNgen and also available from http://www.plclub.org/metalib/.

3

for the syntactic forms are determined by the input file, except the constructors for free and bound variables,
where _f and _b are appended to the specified name. The variable in the abs constructor disappears because
the binding specification indicates that this is a binding constructor.

Figure 2 lists the basic operations and predicates generated from the input in Fig. 1. For accessibility
and brevity, we use mathematical notation instead of listing the Coq output directly. Ott generated the
definitions of fv and subst; LNgen generated everything else. In general, the output follows our previously
described style for working with locally nameless representations [14]. The operations include calculating
the free variables of an expression (fv), substituting for an index (openi), replacing a free variable with an
index (closei), and substituting for a free variable (subst). Note that close allows us to construct a concrete
expression without explicitly referring to indices. Using lam x as an abbreviation for abs ◦ close x, we can
transparently write λx.λy.λz.z(xy) as

lam x (lam y (lam z (app (var f z) (app (var f x) (var f y))))) .

Note also that the versions of openi and closei presented here are derived from those of Pollack [9] and are
slightly more general than that of our previous work—they may initially be called with an index other than
zero. Previously, we promoted the absolute simplest definitions to make working by hand easy. Here, we
have tool support, so it makes little difference if these definitions are more complicated. If anything, they
are actually easier for LNgen to work with because they require tracking fewer invariants.

The final definitions in Fig. 2 give the constructors for the inductively defined lc and lc set predicates,
which hold for locally closed lambda terms—those with no unresolved de Bruijn indices. Only expressions
that satisfy these predicates correspond to lambda calculus terms. The only difference between the two
predicates is that the former is in Prop and the latter is in Set; their definitions are otherwise identical.
Because of Coq’s distinction between Prop and Set, their uses are not. An object of type lc e is treated as
a proof and may be analyzed only to produce another proof; an object of type lc set e may be analyzed
freely. The inductive definition of lc provides an induction principle for reasoning about expressions, while
the inductive definition of lc set provides a recursion scheme for defining functions over expressions. The
induction principle and recursion scheme are both shown in Fig. 3.

Our treatment of local closure departs from our previous work in that we previously did not provide
lc set and the recursion scheme that comes with it. We can use the scheme, for example, to define a function
to perform parallel β-reduction on lambda terms:

beta = lc set rec (λ . exp) fvar fapp fabs where
fvar x = var f x
fapp (abs e ′

1) e ′
2 = open e ′

2 e ′
1

fapp e ′
1 e ′

2 = app e ′
1 e ′

2

fabs e1 f ′ = abs (close x (f ′ x)) for some x /∈ fv e1

(In Coq, one would use this recursion scheme via Fixpoint, writing the function more naturally using explicit
pattern matching on the local closure proof, and explicit recursive calls.) In the variable case, beta simply
returns that variable. In the application case, the result of reducing the first component is examined: if it is
an abstraction (abs e ′

1), beta substitutes the reduced second component e ′
2 for the first index in the body of

the abstraction. Otherwise, reduction continues into both components of the application. In the abstraction
case, beta reduces the body of the abstraction by picking a fresh variable to give to f ′. This argument to
fabs is a function that, when given a name for the variable bound at this location, computes the result of
beta for the body of the abstraction using that name. After this recursive call, the branch removes that fresh
variable from the result with close and creates a new abstraction.

In another departure from our previous work, neither lc nor lc set uses cofinite quantification. Instead,
both use “universal” quantification in the abs case, by requiring that the premise hold for all names. This
choice results in the strongest possible induction principle and recursion scheme. For lc, LNgen generates as
a lemma an “existential” form of the lc abs constructor (lemma lc-abs-exists in Fig. 4) that requires showing
the premise for only one name. This lemma provides the easiest to use introduction principle for proving
lc (abs e). This style of using a “universal” and an “existential” rule is based on the style of McKinna and
Pollack [8]. While cofinite quantification is a good compromise between these two extremes when doing
everything by hand, with tool support, it makes sense to provide these stronger principles. Using universal
quantification also allows us to prove the uniqueness of lc proofs (lemma lc-unique in Fig. 4).

4

fv : exp → expvarset
fv (var f x) = { x }
fv (var b i) = ∅
fv (abs e1) = fv e1

fv (app e1 e2) = fv e1 ∪ fv e2

openi : nat → exp → exp → exp
openi e (var b i1) = (var b i1) when i1 < i
openi e (var b i1) = e when i1 = i
openi e (var b i1) = (var b (i1 − 1)) when i1 > i
openi e (var f x) = var f x
openi e (abs e1) = abs (open(i + 1) e e1)
openi e (app e1 e2) = app (openi e e1) (openi e e2)

open e1 e2 = open0 e1 e2

closei : nat → expvar → exp → exp
closei x (var b i1) = var b i1 when i1 < i
closei x (var b i1) = var b (1 + i1) when i1 ≥ i
closei x (var f y) = var b i when x = y
closei x (var f y) = var f y when x �= y
closei x (abs e1) = abs (close(1 + i) x e1)
closei x (app e1 e2) = app (closei x e1) (closei x e2)

close x e = close0 x e

subst : exp → expvar → exp → exp
subst e x (var b i1) = var b i1
subst e x (var f y) = e when x = y
subst e x (var f y) = var f y when x �= y
subst e x (abs e1) = abs (subst e x e1)
subst e x (app e1 e2) = app (subst e x e1) (subst e x e2)

lc : exp → Prop
lc var : ∀ x , lc (var f x)
lc app : ∀ e1 e2 , lc e1 → lc e2 → lc (app e1 e2)
lc abs : ∀ e1 , (∀ x , lc (open (var f x) e1)) → lc (abs e1)

lc set : exp → Set
lc set var : ∀ x , lc set (var f x)
lc set app : ∀ e1 e2 , lc set e1 → lc set e2 → lc set (app e1 e2)
lc set abs : ∀ e1 , (∀ x , lc set (open (var f x) e1)) → lc set (abs e1)

Convention: The first two arguments to lc app and lc set app are implicit, as are the first arguments to
lc abs and lc set abs.

Figure 2: Definitions generated by Ott and LNgen

5

Induction principle (lc ind)

∀ (P : exp → Prop),
(∀ x , P (var f x)) →
(∀ e1 e2 , lc e1 → P e1 → lc e2 → P e2 → P (app e1 e2)) →
(∀ e1,

(∀ x , lc (open (var f x) e1)) → (∀ x , P (open (var f x) e1)) → P (abs e1)) →
∀ e , lc e → P e

Recursion scheme (lc set rec)

lc set rec has the same type as lc ind, except with Set instead of Prop, and lc set instead of lc. It behaves as
follows: If f = lc set recP fvar fapp fabs, then

f (var f x) (lc var x) = fvar x
f (app e1 e2) (lc app lcp1 lcp2) = fapp e1 e2 lcp1 (f e1 lcp1) lcp2 (f e2 lcp2)
f (abs e1) (lc abs lcp) = fabs e1 lcp (λx. f (open (var f x) e1) (lcp x)) .

Figure 3: Induction principal and recursion scheme

2.2 Generated Lemmas

The main benefit to using LNgen is that it automatically generates a collection of lemmas (with their proofs)
about expressions that are useful in metatheoretic reasoning. We highlight the most important of these in
Fig. 4. The collection shown includes all of the lemmas that we discussed in our previous work [14]. For
convenience, LNgen also generates several variants of the lemmas shown and others besides. Our goal in
picking the set of lemmas to generate was not to determine some minimal “complete” set for working with
metatheory but to generate a set that, from our experience, we know to be useful in formalizations.

Many of the lemmas in Fig. 4 describe the interaction between the various operations. For example, the
first group of lemmas (1–6) describe what happens when fv is applied to expressions built from open, close
and subst.

The next eight lemmas (7–14) are primarily about subst. Lemma subst-spec decomposes substitution into
open composed with close, which was Gordon’s definition of substitution [21]. We prefer our version because
it commutes directly with constructors. (A definition in terms of open and close would need to use openi and
closei once it went under a binder.) Lemma subst-abs lets us reason about how substitution interacts with
abstractions, while making sure that we call subst only on locally closed terms. (The definition of subst just
pushes through an abstraction, calling itself recursively on the body, which may have an unresolved index.)

The remaining lemmas (15–23) describe properties of open, close, and lc. Lemma lc-abs-exists asserts the
existence of an operation that constructs a local closure proof for an abstraction from a proof about a single
variable. (Recall that the definition of local closure required that the body be closed for any name for the
free variable; this one requires only a single name.) Lemma lc-subst asserts the existence of an operation
that shows that local closure proofs are preserved by substitution. Lemma lc-unique shows that all local
closure proofs about the same expression are equivalent.3 Finally, lemmas lc-of-lc-set and lc-set-of-lc show
the equivalence between lc and lc set.

2.3 Generated Proofs

LNgen is able to automatically generate the proofs of each of the lemmas in Fig. 4 because, in general, they
are “boring” infrastructure lemmas whose proofs are straightforward inductions. At any given point in a
proof, there is little choice about what step to take next. Thus, most of the proof scripts start by applying
an induction tactic and then use a “power tactic” to apply a default set of simplifications to the resulting

3The proof of this lemma requires extensional equality on functions, which may safely be asserted in Coq as an axiom.

6

1. fv-open-upper:
fv (open e1 e2) ⊆ fv e1 ∪ fv e2

2. fv-open-lower:
fv e2 ⊆ fv (open e1 e2)

3. fv-close:
fv (close x e) = fv e \ { x }

4. fv-subst-upper:
fv (subst e1 x e2) ⊆ fv e1 ∪ (fv e2 \ { x })

5. fv-subst-lower:
(fv e2 \ { x }) ⊆ fv (subst e1 x e2)

6. fv-subst-fresh:
fv (subst e1 x e2) = fv e2

when x /∈ fv e2

7. subst-fresh-eq:
subst e1 x e2 = e2

when x /∈ fv e2.

8. subst-subst:
subst e1 x (subst e2 y e) =
subst (subst e1 x e2) y (subst e1 x e)
when y /∈ fv e1 and y �= x

9. subst-spec:
subst e1 x e2 = open e1 (close x e2)

10. subst-open:
subst e1 x (open e2 e3) =
open (subst e1 x e2) (subst e1 x e3)
when lc e1

15. open-close:
open (var f x) (close x e) = e

16. close-open:
close x (open (var f x) e) = e
when x /∈ fv e

17. open-inj:
open (var f x) e1 = open (var f x) e2

implies e1 = e2

when x /∈ fv e1 ∪ fv e2

18. close-inj:
close x e1 = close x e2

implies e1 = e2

19. lc-abs-exists:
lc abs exists x lcp : lc (abs e)
when lcp : lc (open (var f x) e)

20. lc-subst:
lc subst lcp1 x lcp2 : lc (subst e1 x e2)
when lcp1 : lc e1 and lcp2 : lc e2

21. lc-unique:
If (lcp1 : lc e) and (lcp2 : lc e),
then lcp1 = lcp2

22. lc-of-lc-set:
lc set e implies lc e

23. lc-set-of-lc:
lc e implies lc set e

11. subst-open-var:
subst e1 x (open (var f y) e2) = open (var f y) (subst e1 x e2)
when x �= y and lc e1

12. subst-abs:
subst e1 x (abs e2) = abs (close z (subst e1 x (open (var f z) e2)))
when z /∈ fv e1 ∪ fv e2 ∪ { x } and lc e1

13. subst-close:
subst e1 x (close y e2) = close y (subst e1 x e2)
when x �= y and y /∈ fv e1 and lc e1

14. subst-intro:
open e1 e2 = subst e1 x (open (var f x) e2) when x /∈ fv e2

Figure 4: Some of the lemmas generated by LNgen

7

subgoals. In cases where this is not sufficient, LNgen generates more complex scripts based on our knowledge
of how such proofs normally proceed. There is no worry about the soundness of our reasoning: the scripts
generated by LNgen must be run by Coq to generate proof terms that are then checked.

We favor generating proof scripts over proof terms because it keeps the implementation of LNgen simple.
Proof terms are specific to individual lemmas and vary from language to language. By contrast, our tactics—
which are useful in their own right—apply to multiple lemmas and do not need to vary from language to
language. Unfortunately, because Coq’s tactic language is incompletely specified, it is impossible for us to
guarantee that our scripts will always succeed. These scripts have never failed on any of our case studies.
However, if some proof should fail, the effect is localized. The user may have to do that proof by hand (if
they would like to use that lemma) but other generated definitions, lemmas, and proofs will still be available.

2.4 Input Restrictions

LNgen supports only a subset of the Ott language. List forms (for specifying constructors of variable arity)
and subgrammars (for indicating that, for example, values are a subset of expressions) are both unsupported.
The only binding specifications accepted by LNgen are those where a single metavariable binds in a single
nonterminal. This excludes Ott’s auxiliary functions for computing the set of binders in an object, e.g.,
those introduced by nested record patterns. We see no reason why some future version of LNgen could not
be extended with these forms.

3 Soundness

Since everything generated by Ott and LNgen must be run through Coq, there is no need to worry that
one is building a development on top of an inconsistent foundation—Coq will complain if a definition is
ill-formed or if a proof is incomplete. However, this is not the same as saying that their outputs faithfully
reflect the language that the user specified. Binding specifications in Ott use names (i.e., metavariables)
to indicate binding occurrences of variables, as is common in informal practice. Intuitively, terms in the
specification use a fully concrete encoding of binding: all variables are named, and terms are identified up
to alpha equivalence. On the other hand, we use Ott and LNgen to generate output that uses a locally
nameless representation for binding, where bound variables are represented as de Bruijn indices and where
syntactic equality corresponds to alpha equivalence.

In this section, we prove that the user need not worry about this difference in representations: the locally
nameless representations generated by Ott and LNgen are adequate representations of the fully concrete
ones. Informally, this means that there is a bijection between the terms of the two representations and that
substitution is compositional with respect to this bijection [22]. Terms representable in one representation
are representable in the other, and substitution means the same thing for both representations. Below, we
make these notions precise and carry out the proofs for the specific case of untyped lambda terms (Fig. 1).
By considering adequacy for a particular (and small) language, we keep the proofs below relatively simple,
while still demonstrating the utility of the lemmas generated by LNgen. A language-independent account
of adequacy would require a precise semantics for Ott specifications and a precise specification of how Ott
and LNgen generate their output. We leave developing these for future work. We also leave as future work
formalization in Coq of the proofs below. Ott does not generate a definition of capture avoiding substitution
or of alpha equivalence. Furthermore, mechanized reasoning about these notions is difficult and extremely
tedious—precisely the reasons why we prefer to represent binding in some other way! Without tool support,
we must work out ourselves properties of capture avoiding substitution and alpha equivalence that are
ordinarily taken for granted when writing out proofs by hand.

Fully concrete lambda terms are defined in Fig. 5, along with free variables, capture-avoiding substitution,
and alpha equivalence. Note that capture-avoiding substitution is defined by induction on the height of terms
simultaneously with a proof that substituting a variable preserves the height of terms. (In the second case
for lambda abstractions, the recursive call is not on an immediate subterm.) By assuming that picking a
variable fresh for a finite set is deterministic, we obviate the need to show that the definition of substitution
actually defines a function—this is trivially the case. We find it convenient to work with a definition of

8

Expressions
M ,N ::= x | M1 M2 | λ x .M1

Free variables

fv (x) def= { x }
fv (M1 M2)

def= (fv M1) ∪ (fv M2)
fv (λ x .M1)

def= (fv M1) \ { x }
Capture avoiding substitution

[N / x] (x) def= N
[N / x] (y) def= y when y �= x
[N / x] (M1 M2)

def= ([N / x]M1) ([N / x]M2)
[N / x] (λ x .M1)

def= λ x .M1

[N / x] (λ y .M1)
def= (λ z . [N / x] [z / y]M1)

for some z /∈ fv N ∪ fv M1 and when y �= x

Alpha equivalence

The binary relation =α on expressions is the least congruence closed under

λ x .M1 =α λ y . [y / x]M1 when y /∈ fv M1

Figure 5: Fully concrete lambda terms

capture-avoiding substitution that is total, so the abstraction case always renames the bound variable to
avoid capture.

To show the adequacy of our locally nameless representation, we prove that there is an alpha-equivalence
respecting bijection between concrete terms and locally nameless terms that are locally closed. We give this
bijection by defining functions between the two sets and then proving that they are inverses of each other.
We define the function �−� from concrete terms to locally nameless ones as follows:

�x� def= var f x
�M1 M2� def= app �M1� �M2�
�λ x .M1� def= abs (close x �M1�) .

The fact that this function yields only locally closed terms follows by structural induction on its argument,
using lemmas lc-abs-exists and open-close in the case for abstractions. We define the function
−� from
locally nameless terms that are locally closed to concrete terms using the recursion principle in Fig. 3. Note
that this definition is also a function, again because we assume that picking a fresh variable not in a particular
set is deterministic.

var f x� def= x

app e1 e2� def=
e1�
e2�

abs e1� def= λ x .
open (var f x) e1� for some x /∈ fv e1

In the remainder of this section, we sketch out the proof of adequacy; additional details can be found in
the appendix. The proofs below are straightforward given the lemmas generated by LNgen. We need only
to be careful about ordering properly the lemmas and theorems.

We first need to show that both �−� and
−� preserve free variables. These proofs also serve as basic
sanity checks: it would be odd for corresponding terms in the two representations to have different sets of
free variables.

9

Lemma 1 fv (M) = fv (�M �) for any M .

Proof

By induction on the structure of M . In the case for abstractions, we need lemma fv-close. � �

Lemma 2 fv (
e�) = fv (e) for any locally closed e.

Proof

By induction on the proof that e is locally closed. In the case for abstractions, we need lemmas fv-close and
close-open. � �

Next, we prove simultaneously that �−� commutes with substitution and that it preserves alpha equiva-
lence. For
−�, we prove that it commutes with substitution; it trivially preserves alpha equivalence.

Theorem 3 For all M ,

1. Substitution commutes with �−�. That is, for any N and x,

�[N / x]M � = subst �N � x �M � .

2. �−� respects alpha-equivalence. That is, for any N such that N =α M,

�M � = �N � .

Proof

We prove these two results simultaneously by induction on the height of M , observing that substituting a
variable does not change the height of a term. We need lemmas fv-close, subst-fresh-eq, subst-spec, subst-
close, and close-open. �
�

Theorem 4
−� commutes with substitution. That is,

subst g x e� =α [
g� / x]
e�
for all locally closed e and g, and for all x .

Proof

By induction on the proof that e is locally closed. In the case for abstractions, we need lemmas subst-fresh-eq,
subst-spec, subst-abs, open-close, and close-open. � �

Finally, we prove that �−� and
−� are inverses of each other. It follows that each function defines a
bijection.

Theorem 5
�M �� =α M for any M .

Proof

By induction on the structure of M . In the case for abstractions, we need theorem 4, and lemmas fv-close
and subst-spec. � �

Theorem 6 �
e�� = e for any locally closed e.

Proof

By induction on the proof that e is locally closed. In the case for abstractions, we need lemma close-open.
� �

Taken together, theorems 3–6 suffice to prove that the locally nameless representation generated by Ott
and LNgen is adequate with respect to the fully concrete interpretation of the original Ott specification.

10

4 Completeness

Does LNgen generate enough definitions and properties to get work done? Of course, this is an impossible
question to answer because the tool cannot possibly generate proofs of every property that one could need
or want. However, we can limit the scope of the question by showing that LNgen trivially models some
specification of binding. By choosing a specification that makes no mention of de Bruijn indices, this result
implies that the user need only work with locally-closed terms and never reason explicitly about de Bruijn
indices.

We make our claim by showing that the output of Ott and LNgen for untyped lambda terms (Fig. 1)
is not very far from Gordon and Melham’s “Five Axioms of Alpha-Conversion” [19]. In fact, we can derive
these axioms with only currying, uncurrying, and applications of lemmas generated by LNgen. This work is
a bit tedious, but none of it includes reasoning about de Bruijn indices, doing induction on raw expressions,
or doing induction on local closure derivations. Thus, it substantiates our claim that the output of our
tool provides users with enough machinery to reason about binding. The LNgen distribution includes a
straightforward, mechanical formalization in Coq of the results of this section.

Gordon and Melham’s five axioms are defined in terms of a type Term, three constructors for that type,

Var : expvar → Term
App : Term → Term → Term
Lam : expvar → Term → Term ,

and three operations for that type,

Fv : Term → expvarset
Subst : Term → (Term × expvar) → Term
Abs : (expvar → Term) → Term .

Our implementation starts by defining Term as a dependent pair of a raw expression and a proof that it
is locally closed.

Definition 7 (Term)

Term
def= Σ e : exp. lc e .

The definitions of the three constructors simply construct and propagate local closure proofs. In the
definition of Lam, we explicitly use the “existential” version of lc abs (i.e., lc abs exists) and implicitly use
lemma open-close to show that the local closure proof applies to first component of the tuple.

Definition 8 (Gordon-Melham Constructors)

Var x def= (var f x , lc var x)
App (e1, lcp1) (e2, lcp2)

def= (app e1 e2, lc app lcp1 lcp2)
Lam x (e1, lcp1)

def= (abs (close x e1), lc abs exists x lcp1)

The definitions for free variables (Fv) and substitution (Subst) simply push the operations on raw terms
through the dependent pair. For substitution, we rely on the fact that substitution preserves local closure.

Definition 9 (Fv and Subst)

Fv (e1, lcp1)
def= fv e1

Subst (e1, lcp1) ((e2, lcp2), x) def= (subst e2 x e1, lc subst lcp2 x lcp1)

The final operation, Abs, reifies a function from variable names to terms into a lambda term. We defer
its definition until later, when we discuss the last of the five axioms.

With the model above, we can derive Gordon and Melham’s five axioms. The proofs of their five axioms
involve little more than projecting out components of dependent pairs and applying lemmas generated by

11

LNgen to construct local closure derivations. In fact, the only interesting aspect of these proofs is that they
are so uninteresting. Below, we only mention the lemmas that the proofs depend on; additional details can
be found in the appendix.

The first three axioms are basic facts about free variables, capture-avoiding substitution, and alpha
conversion.

Theorem 10 (Axiom 1: Free variables)

1. Fv (Var x) = { x }
2. Fv (App t1 t2) = Fv t1 ∪ Fv t2

3. Fv (Lam x t1) = Fv t1 \ { x }

Proof

By unfolding definitions. Part 3 requires lemma fv-close. � �

Theorem 11 (Axiom 2: Substitution)

1. Subst (Var x) (u, x) = u

2. x �= y implies Subst (Var y) (u, x) = Var y

3. Subst (App t1 t2) (u, x) = App (Subst t1 (u, x)) (Subst t2 (u, x))

4. Subst (Lam x t) (u, x) = Lam x t

5. x �= y and y /∈ (Fv u) imply Subst (Lam y t) (u, x) = Lam y (Subst t (u, x))

Proof

By unfolding definitions. All parts require lemma lc-unique. Part 4 also requires lemmas fv-close and subst-
fresh-eq. Part 5 also requires lemma subst-close. �
�

Theorem 12 (Axiom 3: Alpha conversion)

y /∈ Fv (Lam x t) implies
Lam x t = Lam y (Subst t (Var y , x))

Proof

By unfolding definitions. The proof requires lemmas fv-close, subst-spec, close-open, and lc-unique. � �

To support the definition of functions over lambda-calculus expressions, Gordon and Melham’s work
states an iteration axiom and uses it to derive a recursion scheme through pairing. However, because Coq
produces recursion schemes already, we define the recursion scheme directly. The iterative version follows as
a simple corollary.

Theorem 13 (Axiom 4: Recursion scheme) For all result types R and all

(fvar : expvar → R)
(fapp : R → R → Term → Term → R)
(fabs : (expvar → R) → (expvar → Term) → R) ,

there exists a unique f of type Term → R such that

1. f (Var x) = fvar x

2. f (App t1 t2) = fapp (f t1) (f t2) t1 t2

12

3. f (Lam x t) = fabs (λy. f(Subst t (Var y , x))) (λy. Subst t (Var y , x)).

Proof

By unfolding definitions. All parts require lemma lc-unique. Part 3 also requires lemma subst-spec. � �

The final axiom concerns Abs, an operation for turning functions from expvars to Terms into lambda
abstractions. This operation allows the Gordon-Melham recursion combinator to create a new term in the
lambda case. The trickiest part of the definition of Abs is picking a variable name to use for the binder
that is fresh for the body of the abstraction. We do this in two stages: We first access the body with an
arbitrary variable x0 (which may already appear in the body), and then we use the resulting term to pick a
variable certain to be fresh for body. We use lc abs exists and lemma open-close similarly to how we did in
the definition of Lam.

Definition 14 (Abs)
Abs f = (abs (close y e2), lc abs exists y lcp2)

where (e1,) = f x0

y /∈ (fv e1)
(e2, lcp2) = f y

With Abs defined, we can now state and derive the final axiom.

Theorem 15 (Axiom 5: Abstraction)

Abs (λy. Subst t (Var y , x)) = Lam x t

Proof

By unfolding definitions. The proof requires lemmas fv-close, fv-subst-lower, subst-spec, close-open, and lc-
unique. �
�

The abstraction operation is the only definition that is not trivial in that it first must calculate a fresh
variable for the term. The advantage of axiom 5 is that it lets one have a lambda expression without naming
its binder. However, in some sense, Abs is not necessary for our style of reasoning. Certainly, all of this effort
is not required to define functions with lc set rec, e.g., beta in Sec. 2.1.

5 Case Studies

We have used LNgen to streamline proofs of type safety for the simply-typed lambda calculus and for System
F with subtyping, i.e., parts 1A and 2A of the PoplMark challenge. In both cases, the only proofs that
needed to be mechanized by hand were lemmas about the relations of their respective systems. (Because
LNgen works only with syntax, it cannot be expected to generate these proofs.) Every necessary lemma
concerning only the calculation of free variables, substitution, and local closure was automatically proved by
LNgen.

Others have used LNgen for far more substantial developments than the two above. Greenberg et al. [23]
used LNgen to help formalize a proof of confluence for parallel reduction in dependent λh, a language with
manifest contracts. Greenberg reports4 that, “All in all, LNgen was great—it covered most of the stupid
facts I needed.” The tool failed to generate only one set of lemmas, which concerned how substitution
maintains invariants about the free variables of terms. Jia et al. [24] used LNgen when they proved type
soundness for a dependently-typed language with strong eliminators and an abstract definition of program
equivalence. The authors report5 that without the 9000 lines of lemmas and proofs that LNgen generated
for their language, they would have been unable to complete their formalization in a timely fashion. Because
the tool provided every infrastructure lemma they needed, they were able to focus their efforts on the novel

4By personal communication.
5Again, by personal communication.

13

aspects of their language’s design and complete their formalization in about nine days—an impressive feat
given the complexity of their design and the fact that they were tweaking the design in the process. Taken
together, these two non-trivial developments provide a compelling story about the effectiveness of LNgen in
eliminating the tedium associated with locally nameless encodings.

6 Related Work

Much work has been done in the area of representing binding. For example, we have already discussed the
“Five Axioms of Alpha-Conversion.” In previous work [14], we also gave an extensive survey of first-order
representation techniques. Thus, we focus this section on work that is specifically related to the issues
described in this paper.

Logical frameworks—such as Abella [1], Hybrid [2], and Twelf [5]—are specifically designed to represent
and reason about logics and programming languages. Their specialized meta-logics encourage the use of
higher-order abstract syntax (hoas), which represents binding in an object language using binding in the
framework’s meta-logic. Thus, when reasoning about an object language, one gets facts about alpha equiv-
alence, substitution, and free variables “for free.” Unfortunately, the generality of Coq’s logic precludes
traditional hoas encodings, and first-order representations (e.g., locally nameless) require that one explicitly
deal with free variable calculation and substitution. LNgen steps in here to recover the benefits to working
in a traditional logical framework by automatically proving properties about syntax that one expects to have
“for free.”

The Lambda Tamer project [3] also automatically proves a variety of facts about programming languages
encoded in Coq. Compared to LNgen, Lambda Tamer favors the use of dependent types when representing
syntax, ensuring that only well-typed syntax, according to the type system of the object language, can
be represented. It uses generic programming techniques to ensure that generated proofs are correct by
construction. As mentioned previously (Sec. 2.3), we prefer to generate proof scripts because of the approach’s
simplicity—writing generic proofs directly is a non-trivial exercise and would have slowed the development
of LNgen.

Parametric higher-order abstract syntax (phoas) [25] is a representation technique that allows one to
use hoas-like approach to represent binding, thus obtaining “for free” facts about syntax that LNgen has
to prove about locally nameless encodings. The key idea is to represent the body of an abstraction not as
a function from expression to expressions, as with hoas, but as a function from variables to expressions,
an approach reminiscent of weak hoas [10]. Ill-formed terms are ruled out by by universally quantifying
over the type of variables and appealing to parametricity to ensure that the type for variables is treated
abstractly. Without a general proof of parametricity for Coq, one must assert that parametricity holds for
particular terms as needed or as an axiom.

7 Conclusions and Future Work

Since LNgen is currently only a prototype, there are a number of promising avenues for future development
and research. We developed LNgen independently from Ott in order to make it easier to experiment with its
output: which definitions to generate, which lemmas to generate, how to generate proofs, etc. But, it might
be beneficial to add such support to Ott directly. The ideas we have presented here are not particular to
Coq, and we expect that they can be generalized to the full spectrum of Ott’s binding forms. We also believe
that it is possible to automatically generate theorems about some judgements: equivariance (invariance
under swappings of variables), weakening, and substitution, for example. Support for defining functions
directly in Ott specifications and having them translated into locally nameless definitions, using schemes
such as lc set rec, would also be useful. In particular, one would like to know that something similar to the
“freshness condition for binders” from Nominal Isabelle holds whenever a function is defined. In the case of
binding constructors, this would allow one to conclude that the behavior of the function does not depend on
the particular choice of name for the bound variable (recall the definition of beta in Sec. 2.1). On a more
theoretical note, we envision giving a general account of how to transform a fully concrete representation
into a locally nameless one, thus making it possible to give a general account of soundness for LNgen.

14

In the end, what we provide now is a usable prototype tool for taking our locally nameless style—already
a lightweight representation technique—and making it even lighter weight. We have shown that Ott and
LNgen are sound and complete in the specific case of untyped lambda terms. Compared to our previous
work, we now provide a recursion scheme for defining functions, and it comes “for free” from our definitions.
On a day to day basis, the benefit of our work is simple: no more boring infrastructure proofs.

Acknowledgements

This work was funded by DARPA, CSSG Phase II: Machine Checked Metatheory for Security-Oriented
Languages.

References

[1] Gacek, A.: The Abella interactive theorem prover (system description). In Armando, A., Baumgart-
ner, P., Dowek, G., eds.: Automated Reasoning: Fourth International Joint Conference, IJCAR 2008.
Volume 5195 of Lecture Notes in Artificial Intelligence. Springer (2008) 154–161

[2] Momigliano, A., Martin, A.J., Felty, A.P.: Two-level Hybrid: A system for reasoning using higher-order
abstract syntax. In Abel, A., Urban, C., eds.: Proceedings of the International Workshop on Logical
Frameworks and Meta-Languages: Theory and Practice (LFMTP 2008). Volume 228 of Electronic Notes
in Theoretical Computer Science. Elsevier (2009) 85–93

[3] Chlipala, A.: Generic programming and proving for programming language metatheory. Technical
Report UCB/EECS-2007-147, University of California, Berkeley (2007)

[4] Urban, C.: Nominal techniques in Isabelle/HOL. Journal of Automated Reasoning 40(4) (2008) 327–356

[5] Pfenning, F., Schürmann, C.: System description: Twelf — A meta-logical framework for deductive
systems. In Ganzinger, H., ed.: Automated Deduction, CADE 16: 16th International Conference on
Automated Deduction. Volume 1632 of Lecture Notes in Artificial Intelligence. Springer (1999) 202–206

[6] de Bruijn, N.G.: Lambda calculus notation with nameless dummies, a tool for automatic formula
manipulation, with application to the Church-Rosser theorem. Indagationes Mathematicae 34(5) (1972)
381–392

[7] Pfenning, F., Elliot, C.: Higher-order abstract syntax. In: PLDI ’88: Proceedings of the ACM SIGPLAN
1988 Conference on Programming Language Design and Implementation. ACM (1988) 199–208

[8] McKinna, J., Pollack, R.: Some lambda calculus and type theory formalized. Journal of Automated
Reasoning 23(3–4) (1999) 373–409

[9] Pollack, R.: Closure under alpha-conversion. In Barendregt, H., Nipkow, T., eds.: Types for Proofs and
Programs: International Workshop, TYPES 1993. Volume 806 of Lecture Notes in Computer Science.
Springer (1994) 313–332

[10] Despeyroux, J., Felty, A., Hirschowitz, A.: Higher-order abstract syntax in Coq. In: Typed Lambda
Calculi and Applications, Second International Conference on Typed Lambda Calculi and Applications,
TLCA ’95. Volume 902 of Lecture Notes in Computer Science. Springer (1995) 124–138. Also available
as INRIA Research report 2556

[11] Aydemir, B.E., Bohannon, A., Fairbairn, M., Foster, J.N., Pierce, B.C., Sewell, P., Vytiniotis, D.,
Washburn, G., Weirich, S., Zdancewic, S.: Mechanized metatheory for the masses: The PoplMark
challenge. In Hurd, J., Melham, T., eds.: Theorem Proving in Higher Order Logics: 18th International
Conference, TPHOLs 2005. Volume 3603 of Lecture Notes in Computer Science. Springer (2005) 50–65

[12] Pitts, A.M.: Nominal logic, a first order theory of names and binding. Information and Computation
186 (2003) 165–193

15

[13] Aydemir, B., Bohannon, A., Weirich, S.: Nominal reasoning techniques in Coq (extended abstract).
In Momigliano, A., Pientka, B., eds.: Proceedings of the First International Workshop on Logical
Frameworks and Meta-Languages: Theory and Practice (LFMTP 2006). Volume 174 of Electronic
Notes in Theoretical Computer Science. Elsevier (2007) 69–77

[14] Aydemir, B., Charguéraud, A., Pierce, B.C., Pollack, R., Weirich, S.: Engineering formal metatheory.
In: POPL ’08: Proceedings of the 35th Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages. ACM (2008) 3–15

[15] Jia, L., Vaughan, J.A., Mazurak, K., Zhao, J., Zarko, L., Schorr, J., Zdancewic, S.: Aura: A program-
ming language for authorization and audit. In: ICFP ’08: Proceedings of the 13th ACM SIGPLAN
International Conference on Functional Programming. ACM (2008) 27–38

[16] Pratikakis, P., Foster, J.S., Hicks, M., Neamtiu, I.: Formalizing soundness of contextual effects. In
Ait Mohamed, O., Muñoz, C., Tahar, S., eds.: Theorem Proving in Higher Order Logics: 21st Interna-
tional Conference, TPHOLs 2008. Volume 5170 of Lecture Notes in Computer Science. Springer (2008)
262–277

[17] Rossberg, A., Russo, C., Dreyer, D.: F-ing modules. Submitted for publication (October 2010)

[18] Sewell, P., Zappa Nardelli, F., Owens, S., Peskine, G., Ridge, T., Sarkar, S., Strnǐsa, R.: Ott: Effective
tool support for the working semanticist. In: ICFP ’07: Proceedings of the 2007 ACM SIGPLAN
International Conference on Functional Programming. ACM (2007) 1–12

[19] Gordon, A.D., Melham, T.: Five axioms of alpha-conversion. In von Wright, J., Grundy, J., Harrison,
J., eds.: Theorem Proving in Higher Order Logics: 9th International Conference, TPHOLs ’96. Volume
1125 of Lecture Notes in Computer Science. Springer (1996) 173–190

[20] Sewell, P., Zappa Nardelli, F.: Ott. Available from http://www.cl.cam.ac.uk/∼pes20/ott/ (2009)

[21] Gordon, A.D.: A mechanisation of name-carrying syntax up to alpha-conversion. In Joyce, J.J., Seger,
C.J.H., eds.: Higher-order Logic Theorem Proving And Its Applications, Proceedings, 1993. Volume
780 of Lecture Notes in Computer Science. Springer (1994) 414–426

[22] Harper, R., Honsell, F., Plotkin, G.: A framework for defining logics. Journal of the ACM 40(1) (1993)
143–184

[23] Greenberg, M., Pierce, B., Weirich, S.: Contracts made manifest. In: POPL ’10: Proceedings of the
37th ACM SIGACT-SIGPLAN Symposium on Principles of Programming Languages, Madrid, Spain,
ACM (January 2010). To appear.

[24] Jia, L., Zhao, J., Sjöberg, V., Weirich, S.: Dependent types and program equivalence. In: POPL ’10:
Proceedings of the 37th ACM SIGACT-SIGPLAN Symposium on Principles of Programming Languages,
Madrid, Spain, ACM (January 2010). To appear.

[25] Chlipala, A.: Parametric higher-order abstract syntax for mechanized semantics. In: ICFP ’08: Proceed-
ings of the 13th ACM SIGPLAN International Conference on Functional Programming. ACM (2008)
143–156

16

A Proofs

A.1 Proof of Theorem 3

We prove these two results simultaneously by induction on the height of M , observing that substituting a
variable does not change the height of a term. We need lemmas fv-close, subst-fresh-eq, subst-spec, subst-close,
and close-open. For example, the abstraction case of the second part is shown below, where M = (λ x .M1)
and N = λ y . [y / x]M1, with y /∈ fv M1.

�λ x .M1�
by definition of �−�

= abs (close x �M1�)
by lemma close-open

= abs (close y (open (var f y) (close x �M1�)))
by lemma subst-spec

= abs (close y (subst (var f y) x �M1�))
by IH(1)

= abs (close y �[y / x]M1�)
by definition of �−�

= �λ y . [y / x]M1�

A.2 Proof of Theorem 4

By induction on the proof that e is locally closed. The only interesting case is when e = abs e1, for some e1.
Let y /∈ fv e1 and w /∈ fv g ∪ { x } ∪ fv e1 ∪ { y }. We consider two cases for x and y . First, suppose that
x �= y .

[
g� / x]
abs e1�
for some y /∈ fv e1

= [
g� / x] (λ y .
open (var f y) e1�)
by alpha conversion

=α [
g� / x] (λw . [w / y]
open (var f y) e1�)
by property of substitution

=α λw . [
g� / x] [w / y] (
open (var f y) e1�)
by IH

=α λw . [
g� / x] (
subst (var f w) y (open (var f y) e1)�)
by lemmas subst-spec and close-open

= λw . [
g� / x] (
open (var f w) e1�)
by IH

=α λw .
subst g x (open (var f w) e1)�
by lemma open-close

= λw .
open (var f w) (closew (subst g x (open (var f w) e1)))�
by the definition of
−�

=
abs (closew (subst g x (open (var f w) e1)))�
by lemma subst-abs

=
subst g x (abs e1)�

17

Second, suppose that x = y . Since y /∈ fv e1, it is also the case that x /∈ fv e1.

[
g� / x]
abs e1�
for some y /∈ fv e1

= [
g� / x] (λ y .
open (var f y) e1�)
by definition of substitution

= λ y .
open (var f y) e1�
by definition of
−�

=
abs e1�
by lemma subst-fresh-eq

=
subst g x (abs e1)�

A.3 Proof of Theorem 5

By induction on the structure of M . The only interesting case is when M = λ x .M1, for some M1.

�λ x .M1��
by definition of �−�

=
abs (close x �M1�)�
for some y /∈ fv (close x �M1�)

= λ y .
open (var f y) (close x �M1�)�
by lemma subst-spec

= λ y .
subst (var f y) x �M1��
by theorem 4

= λ y . [y / x]
�M1��
by alpha conversion and lemma fv-close

=α λ x .
�M1��
by IH

=α λ x .M1

Note that in the alpha conversion step, we assumed that x �= y . When x = y , the result follows trivially.

A.4 Proof of Theorem 6

By induction on the proof that e is locally closed. The only interesting case is when e = abs e1, for some e1.

�
abs e1��
for some y /∈ fv e1

= �λ y .
open (var f y) e1��
by definition of �−�

= abs (close y �
open (var f y) e1��)
by IH

= abs (close y (open (var f y) e1))
by lemma close-open

= abs e1

A.5 Proof of Theorem 11

We first observe that for any e, any two derivations of lc e are equal by lc-unique. Therefore, to show that
each equality holds, it suffices to show that the first components of each side of the equality are equal. In
the proofs below, we use as a place holder for the second components.

After unfolding definitions, parts 1, 2, and 3 are trivial.

18

For part 4, we have:
Subst (Lam x t) (u, x)

decomposing t and u as (e1,) and (e2,)
= Subst (Lam x (e1,)) ((e2,), x)

by definition
= (subst e2 x (abs (close x e1)),)

by lemmas fv-close and subst-fresh-eq
= (abs (close x e1),)

by lemma lc-unique
= Lam x t .

For part 5, we have:
Subst (Lam y t) (u, x)

decomposing t and u as (e1,) and (e2,)
= Subst (Lam y (e1,)) ((e2,), x)

by definition
= (subst e2 x (abs (close y e1)),)

by definition of subst
= (abs (subst e2 x (close y e1)),)

by lemma subst-close
= (abs (close y (subst e2 x e1)),)

by lemma lc-unique
= Lam y (Subst t (u, x)) .

A.6 Proof of Theorem 12

We first decompose t as (e, lcp). By unfolding definitions and making use of lemma lc-unique, as we did in
the proof of theorem 11, we must show that

abs (close x e) = abs (close y (subst (var f y) x e))

under the assumption that y /∈ (fv e) \ { x }, i.e., that y /∈ fv (close x e) (recall lemma close-fv). Starting
with the right-hand side of the conclusion, we have the following chain of equalities:

abs (close y (subst (var f y) x e))
by lemma subst-spec

= abs (close y (open (var f y) (close x e)))
by lemma close-open

= abs (close x e) .

A.7 Proof of Theorem 13

The function f is derived from the recursion scheme given to use by lc set—recall Fig. 3. We define f by
instantiating P with (λ .R) and by rearranging the arguments of the Gordon-Melham cases:

f (e, lcp) = lc set rec fvar fapp′ fabs ′ e lcp
where fapp′ = λe1, e2, lcp1, r1, lcp2, r2. fapp r1 r2 (e1, lcp1) (e2, lcp2)

fabs ′ = λe1, lcp1, r1. fabs r1 (λx. (open (var f x) e1, lcp1 x))

The uniqueness of this operator is by definition. Furthermore, suppose f is an operator defined as above.
Showing the equalities in the Var and App cases is straightforward. For the Lam case, suppose the body of
the Term is t = (e1, lcp1), and let f ′ be lc set rec fvar fapp′ fabs ′. Using lc-unique to ignore local closure

19

proofs, much as we did in the proof of theorem 11, we have the following:

f (Lam x (e1,))
by definition

= f ′ (abs (close x e1))
by property of lc set rec

= fabs ′ (close x e1) (λy.f (open (var f y) (close x e1),))
by definition of fabs ′

= fabs (λy.f (open (var f y) (close x e1),)) (λy.(open (var f y) (close x e1),))
by lemma subst-spec

= fabs (λy.f (subst (var f y) x e1,)) (λy.(subst (var f y) x e1,))
by definition of Subst

= fabs(λy.f (Subst t (Var y , x)))(λy.(Subst t (Var y , x)))

A.8 Proof of Theorem 15

We decompose t as (e1,) and make use of lemma lc-unique in the same way we did as in the proof of
theorem 11.

Abs (λy. Subst t (Var y , x))
by definition of Abs and Subst
for some y /∈ Fv (Subst t (Var x0, x))

= (abs (close y (subst (var f y) x e1)),)
by lemma subst-spec

= (abs (close y (open (var f y) (close x e1))),)
by lemma close-open,
discharging the side condition by lemmas fv-close and fv-subst-lower

= (abs (close x e1),)
by definition of Lam and lemma lc-unique

= Lam x t

20

	University of Pennsylvania
	ScholarlyCommons
	6-2010

	LNgen: Tool Support for Locally Nameless Representations
	Brian Aydemir
	Stephanie Weirich
	Recommended Citation

	LNgen: Tool Support for Locally Nameless Representations
	Abstract
	Comments

	MS-CIS-10-24.pdf

