
University of Pennsylvania
ScholarlyCommons

Technical Reports (CIS) Department of Computer & Information Science

1-1-2009

Verifiable Policy-Based Routing With DRIVER
Anduo Wang
University of Pennsylvania

Changbin Liu
University of Pennsylvania

Boon Thau Loo
University of Pennsylvania, boonloo@cis.upenn.edu

Oleg Sokolsky
University of Pennsylvania, sokolsky@cis.upenn.edu

Prithwash Basu
Network Research Group, BBN Technologies

Follow this and additional works at: http://repository.upenn.edu/cis_reports

University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-CIS-09-12.

This paper is posted at ScholarlyCommons. http://repository.upenn.edu/cis_reports/908
For more information, please contact libraryrepository@pobox.upenn.edu.

Recommended Citation
Anduo Wang, Changbin Liu, Boon Thau Loo, Oleg Sokolsky, and Prithwash Basu, "Verifiable Policy-Based Routing With DRIVER", .
January 2009.

http://repository.upenn.edu?utm_source=repository.upenn.edu%2Fcis_reports%2F908&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/cis_reports?utm_source=repository.upenn.edu%2Fcis_reports%2F908&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/cis?utm_source=repository.upenn.edu%2Fcis_reports%2F908&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/cis_reports?utm_source=repository.upenn.edu%2Fcis_reports%2F908&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/cis_reports/908
mailto:libraryrepository@pobox.upenn.edu

Verifiable Policy-Based Routing With DRIVER

Abstract
The Internet today runs on a complex routing protocol called the Border Gateway Protocol (BGP). BGP is a
policy-based protocol, in which autonomous Internet Service Providers (ISPs) impose their local policies on
the propagation of routing information. Over the past few years, there has been a growing consensus on the
complexity and fragility of BGP routing. To address these challenges, we present the DRIVER system for
designing, analyzing and implementing policy-based routing protocols. Our system utilizes a declarative
network verifier (DNV) which leverages declarative networking’s connection to logic programming by
automatically compiling high-level declarativen networking program into formal specifications, which can be
directly used in a theorem prover for verification. In addition to verifying declarative networking programs
using a theorem prover, the DRIVER system enables a similar transformation of verified formal specifications
limited to fragment of second order logic to declarative networking programs for execution. As our main use
case, we demonstrate the verification of a component-based specification of BGP protocol where DRIVER
enables the analysis of convergence properties of Internet routing protocols with customizable policy
configuration components. We show that the properties verified with DRIVER are indeed preserved in the
synthesized implementation by performing experimental evaluation in a local cluster, where the equivalent
declarative networking programs derived from the verified specifications displayed consistent behavior with
regard to DRIVER verification.

Comments
University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-
CIS-09-12.

This technical report is available at ScholarlyCommons: http://repository.upenn.edu/cis_reports/908

http://repository.upenn.edu/cis_reports/908?utm_source=repository.upenn.edu%2Fcis_reports%2F908&utm_medium=PDF&utm_campaign=PDFCoverPages

Verifiable Policy-based Routing with DRIVER

Anduo Wang1 Changbin Liu1 Boon Thau Loo1

Oleg Sokolsky1 Prithwish Basu2

1 Computer and Information Sciences Department, University of Pennsylvania,
3330 Walnut Street, Philadelphia, PA 19104-6389
2 Network Research Group, BBN Technologies,

10 Moulton Street, Cambridge, MA 02138
{anduo,changbl,boonloo,sokolsky}@seas.upenn.edu pbasu@bbn.com

Abstract. The Internet today runs on a complex routing protocol called the Bor-
der Gateway Protocol (BGP). BGP is a policy-based protocol, in which au-
tonomous Internet Service Providers (ISPs) impose their local policies on the
propagation of routing information. Over the past few years, there has been a
growing consensus on the complexity and fragility of BGP routing. To address
these challenges, we present the DRIVER system for designing, analyzing and
implementing policy-based routing protocols. Our system utilizes a declarative
network verifier (DNV) which leverages declarative networking’s connection to
logic programming by automatically compiling high-level declarativen network-
ing program into formal specifications, which can be directly used in a theorem
prover for verification. In addition to verifying declarative networking programs
using a theorem prover, the DRIVER system enables a similar transformation
of verified formal specifications limited to fragment of second order logic to
declarative networking programs for execution. As our main use case, we demon-
strate the verification of a component-based specification of BGP protocol where
DRIVER enables the analysis of convergence properties of Internet routing proto-
cols with customizable policy configuration components. We show that the prop-
erties verified with DRIVER are indeed preserved in the synthesized implemen-
tation by performing experimental evaluation in a local cluster, where the equiv-
alent declarative networking programs derived from the verified specifications
displayed consistent behavior with regard to DRIVER verification.

1 Introduction

The Internet today runs on a complex routing protocol called the Border Gateway Pro-
tocol or BGP in short. BGP enables Internet-service providers (ISP) world-wide to ex-
change reachability information to destinations over the Internet, and simultaneously,
each ISP acts as an autonomous system that imposes its own import and export policies
on route advertisements exchanged among neighboring ISPs.

Over the past few years, there has been a growing consensus on the complexity
and fragility of BGP routing. Even when the basic routing protocol convergences, con-
flicting policy decisions among different ISPs have lead to route oscillation and slow
convergence. Several empirical studies such as reference [12] have shown that there are
prolonged periods in which the Internet cannot reliably route data packets to specific

destinations due to routing errors induced by BGP. In response, the networking com-
munity has proposed several Internet architectures and policy mechanisms (e.g. [17, 6])
aimed at addressing these challenges.

Given the proliferation of proposed techniques, there is a growing interest in formal
software tools and programming frameworks that can facilitate the design, implementa-
tion, and verification of routing protocols. These proposals can be broadly classified as:
(1) algebraic and logic frameworks (e.g. [10]) that enable protocol correctness check
in the design phase; (2) runtime debugging platforms that provide mechanisms for run-
time verification and distributed replay, and (3) programming frameworks that enable
network protocols to be specified, implemented, and in the case of the Mace toolkit,
verified via model checking [11].

In this paper, we present the DRIVER (Declarative Routing Implementation and
VERification) system for designing, analyzing and implementing network protocols
within a unified framework. Our work is a significant step towards bridging network
specifications, protocol verification, and implementation within a common language
and system. The DRIVER framework achieves this unified capability via the use of
declarative networking [14, 13], a declarative domain-specific approach for specifying
and implementing network protocols, and theorem proving, a well established verifica-
tion technique based on logical reasoning.

DRIVER leverages our prior work on a declarative network verifier (DNV) [19]
which demonstrates that one can leverages declarative networking’s connection to logic
programming by automatically compiling high-level declarative networking program
written in the Network Datalog (NDlog) query language into formal specifications,
which can be directly used in a theorem prover for verification. The proving process
guided by the user is then carried out in a general-purpose theorem prover and proofs
are mechanically checked. Declarative networking programs that have been verified in
DRIVER can be directly executed as implementations, hence bridging specifications
and implementations within a unified declarative framework.

In addition to verifying declarative networking programs using a theorem prover,
the DRIVER system enables a similar transformation of verified formal specifications
(limited to fragment of second order logic) to NDlog program for execution. This en-
ables a network designer to either directly verify network implementation specified in
NDlog or conceptualize and verify the design of a network in components aided by a
theorem prover prior to implementation.

Theorem proving provides an expressive and powerful verification framework that
is particularly well-suited for analyzing the complexities of BGP policies. We intro-
duce a component-based specification of BGP system that is based on the BGP model
first proposed by Griffin et al. [18]. Components modularize our analysis, enable reuse
of code, hence enable us to study the impact of import and export policies on overall
protocol behavior. For example, we demonstrate the use of DRIVER and component-
based reasoning for detecting instances where policy conflicts may lead to protocol
divergence, a well-known limitation of the existing BGP system. In DRIVER, verified
component-based specifications of specific BGP protocol can be easily translated to
equivalent NDlog programs for execution. We experimentally validate verified proper-
ties based on our BGP analysis in equivalent NDlog programs executed and evaluated
in a local cluster using the P2 declarative networking engine [1].

2 Background
In this section, we will provide a brief overview of declarative networking. Declarative
networks are specified using Network Datalog (NDlog), a distributed logic-based recur-
sive query language first introduced in the database community for querying network
graphs. In prior work, it has been shown that traditional routing protocols can be speci-
fied in a few lines of declarative code [14], and complex protocols such as Chord DHT in
orders of magnitude less code [13] compared to traditional imperative implementations.
This compact and high-level specifications enables rapid prototype development, ease
of customization, optimizability, and the potentiality for protocol verification. When
executed, these declarative networks perform efficiently relative to imperative imple-
mentations, as demonstrated by the P2 declarative networking system [1].

2.1 Datalog Language
NDlog is primarily a distributed variant of Datalog. We first provide a short review
of Datalog, following the conventions in Ramakrishnan and Ullman’s survey [16]. A
Datalog program consists of a set of declarative rules. Each rule has the form p :-
q1, q2, ..., qn., which can be read informally as “q1 and q2 and ... and qn
implies p”. Here, p is the head of the rule, and q1, q2,...,qn is a list of literals that
constitutes the body of the rule. Literals are either predicates with attributes (which
are bound to variables or constants by the query), or boolean expressions that involve
function symbols (including arithmetic) applied to attributes. In Datalog, rule predi-
cates can be defined with other predicates in a cyclic fashion to express recursion. The
order in which the rules are presented in a program is semantically immaterial; like-
wise, the order predicates appear in a rule is not semantically meaningful. Commas are
interpreted as logical conjunctions (AND). The names of predicates, function symbols,
and constants begin with an lowercase letter, while variable names begin with an upper
letter.

2.2 Path-vector Protocol
We present an example NDlog program that implements the path-vector protocol.

p1 path(@S,D,P,C):-link(@S,D,C),p=f_init(S,D).
p2 path(@S,D,P,C):-link(@S,Z,C1), path(@Z,D,P2,C2),C=C1+C2,

P=f_concatPath(S,P2), f_inPath(P2,S)=false.
p3 bestPathCost(@S,D,min<C>):-path(@S,D,P,C).
p4 bestPath(@S,D,P,C):-bestPathCost(@S,D,C), path(@S,D,P,C).

The program takes as input link(@S,D,C) tuples, where each tuple corresponds
to a copy of an entry in the neighbor table, and represents an edge from the node itself
(S) to one of its neighbors (D) of cost c. NDlog supports a location specifier in each
predicate, expressed with “@” symbol followed by an attribute. This attribute is used to
denote the source location of each corresponding tuple. For example, link tuples are
stored based on the value of the S field.

Rules p1-p2 recursively derive path(@S,D,P,C) tuples, where each tuple rep-
resents the fact that the path from S to D is via the path P with a cost of C. Rule p1 com-
putes one-hop reachability trivially given the neighbor set of S stored in link(@S,D,C).
Rule P2 computes transitive reachability as follows: if there exists a link from S to Z

with cost C1, and Z knows about a shortest path P2 to D with cost C2, then transi-
tively, S can reach D via the path f concatPath(S,P2) with cost C1+C2. Note
that p1-p2 also utilize two list manipulation functions to maintain path vector p:
f init(S,D) initializes a path vector with two elements S and D, while
f concatPath(S,P2) prepends S to path vector P2.

Rules p3-p4 take as input hop tuples generated by rules p1-p2, and then de-
rive the hop along the path with the minimal cost for each source/destination pair. The
output of the program is the set of bestPath(@S,D,Z,C) tuples, where each tuple
stores the next hop Z along the shortest path from S to D. To prevent computing paths
with cycles, an extra predicate f inPath(P, S) = false is used in rule p2, where the
function f inPath(P, S) returns true if node S is in the path vector P.

Event predicates are used to denote transient tables which are used as input to rules
but not stored. For example, utilizing the built-in periodic keyword , the following
rule enables node X to generate a ping event every 10 seconds to its neighbor Y denoted
in the link(@X,Y) predicate: ping(@Y,X) :- periodic(@X,10), link(@X,Y).

3 Overview of DRIVER

Fig. 1. Overview of DRIVER

Figure 1 provides an overview of DRIVER’s basic approach towards unifying spec-
ifications, verification, and implementation within a common declarative framework.
The approach is broken up into the following four phases: design, specification, verifi-
cation, and implementation.

In the initial design phase of DRIVER, a network designer develops a conceptual
model for the routing protocol. In practice, this step may be optional, but having such a
model is often useful both from the implementation standpoint, and for verifying one’s
protocol design, as we will demonstrate in Section 4.

Based on the design, two options are available. First, NDlog networking programs
can be synthesized from the design, and then the NDlog implementations can be directly
verified in an theorem prover. Second, the designer can first verify the design using a
theorem prover and then automatically generate the corresponding NDlog program.

Considering the first option, DRIVER takes as input NDlog program representation
of the routing protocol we are interested in. In order to carry out the formal verifica-

tion process, the NDlog programs are automatically compiled into formal specifications
recognizable by a standard theorem prover (e.g. PVS [2], Coq [3]) using the axiom gen-
erator, as depicted in the left-part of Figure 1.

At the same time, the protocol designer specifies high-level invariant properties of
the protocol to be checked via two mechanisms: invariants can be written directly as
theorems in the theorem prover, or expressed as NDlog rules which can be automati-
cally translated into theorems using the axiom generator. The first approach increases
the expressiveness of invariant properties, where one can reason with invariants that can
be only expressible in higher order logic. The second approach has restricted expres-
siveness based on NDlog’s use of Datalog, but has the added advantage that the same
properties expressed in NDlog can be verified in both theorem prover and checked at
runtime.

From the perspective of network designers, as depicted in the left part of Figure 1,
they reason about their protocols using the high-level protocol specifications and in-
variant properties.The NDlog high-level specifications are directly executed and also
proved within the theorem prover. Any errors detected in the theorem prover can be
corrected by changing the corresponding NDlog programs. Our initial DRIVER proto-
type uses the PVS theorem prover, due to its substantial support for proof strategies
which significantly reduce the time required in the interactive proof process. However,
the techniques describe in this paper are agnostic to other theorem provers. We have
also verified some of the properties presented in this paper using the Coq [3] proof
assistant.

As a second option, DRIVER allows the network designer to first utilize a theorem
prover to check the protocol design. This requires a network designer first develop for-
mal specifications for the routing protocol of interests. Once the formal representation
of the protocol is verified by the prover, corresponding NDlog programs are then gen-
erated for execution. Similar to the first option, this approach is made possible by the
use of NDlog, which is particularly amenable to the translation into formal specification
recognizable by existing theorem provers (and vice versa), due to its logic-based nature.

Reference [19] provides details on the translation process from NDlog programs
into formal specification in theorem prover, as well as several verification use cases for
standard network routing protocols. In the rest of the paper, we focus on the second
approach, using policy-based routing as our driving example.

4 Verifying Policy-based Inter-domain Routing

We present a compositional approach towards the verification of policy-based BGP
routing protocol. Our approach demonstrates the second option in DRIVER verification
as described in Section 3, where we begin with a component-based model of BGP
protocol, then formalize and verify the BGP components in theorem prover PVS, and
finally translate the verified BGP components into NDlog for execution.

BGP assumes a network model in which routers are grouped into various Au-
tonomous Systems (AS) administrated by Internet Server Provider (ISP). Individual
ASes exchange route advertisements with neighboring ASes using the path-vector pro-
tocol described in Section 2.2. Upon receiving a route advertisement, an AS may choose
to accept or ignore the advertisement based on its import policy dictated by its business

considerations and peering agreements. Similarly, an AS may choose to export only se-
lected routes that it knows to its neighboring ASes. The route advertisements received
by each node is then used to compute the next hop (neighboring AS) along the best
paths to each destination.

We have selected BGP as one of our main use cases as complex policy interactions
have been known to result in delayed protocol convergence. The problem is exacerbated
by the lack of global knowledge on policies. While DRIVER does not directly address
the lack of global knowledge, our goal here is to demonstrate that DRIVER provides a
clean foundation for network administrators to formally reason about such policy inter-
actions and their impact on protocol convergence. Moreover, the verified specifications
are directly implementable as declarative networks.

Fig. 2. Overview of the BGP model

In our formalization, we adopt Griffin’s BGP model [9, 18], which views BGP pro-
tocol as a series of route transformations, where each transformation is represented as
a component that takes as input received routes, performs internal transformation based
on the component specifications, and generates the output routes.

Figure 5 shows the general structure of a component that takes as m input routes
i1, · · · , im, applies additional transformation constraints, and generates n output routes
o1, o2, · · · , on. This transformation from m inputs to n outputs is captured by a predi-
cate TRANS(i1, i2, · · · , im, o1, o2, · · · , on), such that the predicate is true if the given
m input and n output values satisfies all the constraint predicates specified in TRANS.

Our use of components enables us to modularize our analysis, hence enabling us to
study the impact of import and export policies on overall protocol behavior. This com-
positional approach towards verification is well-explored in the formal methods com-
munity, and has been successfully used in domains such as hardware verification [2]. In
addition, by formalizing BGP protocol in a component-based fashion, it eases the trans-
lation of the verified PVS formalization to the equivalent NDlog rules for execution.

Figure 2 shows an overview of the abstract BGP model, which consists of the fol-
lowing five components: activeAS, export, pvt, import, and bestRoute. The
triggering component activeAS(u,w,t) specifies at time t, AS w advertises its
current best routes r0 to each neighbor AS u. The export policies are imposed by the
export component) where output route r1 is generated. This is followed by route
propagation via the path-vector protocol (pvt) component which transforms route r1
to r2. Upon receiving the route advertisement r2, AS u applies its import policies via
the import component and produces route r3. Finally, in the bestRoute compo-
nent, AS u recomputes/selects its best route based on the all new route advertisement

r3. In the next iteration t+1, the same process repeats itself when triggered by the
activeAS(u,w,t+1) event.

One should view activeAS as a periodic event predicate (see Section 2.2) that is
invoked at each AS node to propagate its routes to neighbors, and all routes propagated
have a lifetime set to the duration of the period. If a current route is no longer valid, it
will no longer be advertised in the next time period.

4.1 Component-based Specification Generation

First consider the peer-transformation component (pt), which consists of three sub-
components (export, pvt, and import). The equivalent PVS specification is as
follows:

pt(u,w,r0,r3,t): INDUCTIVE bool =
EXISTS (r1,r2): activeAS(u,w,t) AND export(u,w,r0,r1,t)
AND pvt(u,w,r1,r2,t) AND import(u,w,r2,r3,t) AND bestRoute(w,t,r0)

The concept of peer-transformation was proposed in the original BGP model, and
involves neighboring ASes exchanging routes and updating their respective routing ta-
bles. pt(u,w,r0,r3,t) represents the route propagation between neighboring AS
u and w, such that AS w advertises its best route r0 to its neighbor AS u at time t. The
advertised route r0 undergoes a series of transformation and eventually is received by
u as route r3.

More specifically, the route propagation is first triggered by activeAS(u,w,t).
The predicate export(u,w,r0,r1,t) is true if w can export route r0 to u at time
t, in which case, the exported route would be r1. Route r1 is then propagated via the
path-vector component pvt, resulting in a new route r2 with u prepended to r1. In the
final transformation, an import policy is applied at u, in which the route r2 is accepted
as r3 based on the policies specified at u. Note that our formalization assumes that
the sub-components are executed within the same time period t before the next round
of route updates. This is consistent with the idealized BGP model described in prior
works.

Given the above pt component, we next proceed to define each sub-component as
follows:

export(u,w,r0,r1,t): INDUCTIVE bool =
activeAS(u,w,t) AND exportPolicy(w,r0,r1) AND bestRoute(w,r0,(t-1))

pvt(u,w,r1,r2,t): INDUCTIVE bool =
(NOT member (u, as_path(r1))) => as_path(r2)=cons(u,as_path(r1))
AND dst(r2)=dst(r1) AND loc_pref(r2)=loc_pref(r1)

import(u,w,r2,r3,t): INDUCTIVE bool =
EXISTS r1: pvt(u,w,r1,r2,t) AND importPolicy(u,r2,r3)

Note that BGP route consists of additional parameters is defined as a record in the
PVS as follows:

routeRecord: TYPE =
[#dst: nat,as_path: list[AS],loc_pref: nat#]

The above type definition indicates that each route record (used as r, r0, ..., r3
variables) has three parameters: dst denotes the destination of the route, as path the
AS path, and loc pref the local preference that are manipulated by export and import
policies3.

One of the main takeaways from the prior PVS formalization is its natural com-
posability given the BGP model, where components are defined and expanded in a
top-down fashion. The export and import sub-components are further defined by
their respective policies exportPolicy and importPolicy which are supplied
based on the actual policy configurations.

The path-vector transformation (pvt) component takes as input route r1, and gen-
erates a new route r2 with the same destination address (dst) and local preferences
(loc pref). At the same time, u is prepended to the input route r1.

Finally, we define the bestRoute component, which unlike the earlier transfor-
mations, is a select operation determining the best route for a given destination applied
after aggregation. The PVS specifications are as follows:

bestRoute: AXIOM
route(u,t,r1) <=> (EXISTS r2: (bestRoute(u,t-1,r2) AND r1=r2)
AND (FORALL w: NOT activeAS(u,w,t))) OR

(EXISTS (r2,r4): (pt_best(u,t,r4) AND bestRoute(u,t-1,r2) AND
(EXISTS w: activeAS(u,w,t) AND
NOT conflicting(u,w,t)) AND best(r4,r2,r3)) AND r1=r3) OR

(EXISTS (r3): (pt_best(u,t,r3) AND
(EXISTS w: activeAS(u,w,t) AND conflicting(u,w,t)) AND r3=r1))

The above axiom indicates that an AS can compute its bestRoute under three sce-
narios (connected by the logical OR):
Case 1: If the AS did not receive any route updates from any neighbors in the previous
time period, the bestRoute computed in the previous time period should be retained as
the best route in the current period.
Case 2: If the AS is active and receives route updates from some of its neighbors, then
the new best route is selected from its previous best route and route updates received.
Case 3: Similar to case 2, except that the AS receives a route update that conflicts
(based on policies defined in the conflicting predicate) with its current best route.
In this case, the current best route is invalidated and a new one is computed.

Next, we present the definition of conflicting conflicting in PVS as fol-
lows:
conflicting(u,v,t): INDUCTIVE bool =
EXISTS (w,r1,r2,r3): bestRoute(u,(t-1),r1) AND pt(u,w,r2,r3,t)
AND (member(u,as_path(r3))) AND (member(w,as_path(r1)))

A conflicting situation occurs when the best route at two neighboring ASes both
set their path to go through its neighbor. Such circulated routes should be dropped and
re-computation of best route is required. Note that we have explicitly define conflicting
condition at neighboring ASes that are caused by the importing policies. The circulated
route dropping is implicit in Griffin’s original presentation.

The definition of pt best as follows:
3 Note that the equivalent NDlog program expands each record definition into attributes in the

predicate since it does not support nested tuples.

pt_best(u,t,r4): INDUCTIVE bool = EXISTS (w,r0): pt(u,w,r0,r4,(t-1))
AND (FORALL r3: pt(u,w,r0,r3,(t-1)) => best(r3,r4,r4))

which says at AS u time t, r4 is the best route among all routes received by component
pt, where best is defined as follows:

best(r1,r2,r3): INDUCTIVE bool =
(loc_pref(r1)>loc_pref(r2) => r3=r1) OR
(loc_pref(r2)>loc_pref(r1) => r3=r2) OR
(loc_pref(r1)=loc_pref(r2) =>
(length(as_path(r1)>length(as_path(r1))) => r3=r2)) OR
(length(as_path(r1)<length(as_path(r1))) => r3=r1)) OR
(length(as_path(r1)=length(as_path(r1))) => r3=r2))

which selects the route with higher local preference, or route with shorter path if the
values of local preference are the same.

4.2 Analyzing Policy Conflicts
Figure 3 shows a specific network of three ASes based on the Disagree scenario [9,
18]. This scenario leads to delayed convergence when two neighboring ASes have con-
flicting policies. We demonstrate the use of DRIVER to verify that delayed convergence
indeed occurs, and can be further generalized to an arbitrary network.

Specific Instance of Delayed Convergence Figure 4 shows the sequence of best route
updates that leads to convergence delay. The delay is caused by route propagation se-
quence and the conflicting import policies at AS 1 and 2. These two ASes prefer to
traverse each other to a common destination 0, hence violating conflicting de-
fined in Section 4.1. From time 1 to 3, we note that AS 1 oscillates between two best
paths [1,0] and [1,2,0], and this oscillation can repeat indefinitely.

Fig. 3. Example BGP system: Disagree

time t as path of as path of
best route at 1 best route at 2

0 [] []
1 [1,0] [2,0]
2 [1,2,0] [2,1,0]
3 [1,0] [2,0]
· · · · · · · · ·
T [1,0] [2,0]

T+1 [1,2,0] [2,0]
· · · [1,2,0] [2,0]

Fig. 4. Route Updates over Time

Similarly, AS 2 oscillates between paths [2,0] and [2,1,0] indefinitely. Again
the oscillation is caused by the inherent policy conflict: the best paths of 1,2,0] and
[2,1,0] computed at time 2 contradict each other. The conflict however can be de-
tected and resolved at each AS locally based on route updates. For instance, when AS 1
receives a route update for [2,1,0], it will invalidate its existing best route [1,2,0]
and replace it with [1,0], resulting in the oscillation above. The protocol eventually
convergences at time T given a different ordering of route updates, where only one of
the two ASes sends its route updates to the other but not vice versa.

Formally Verifying Route Oscillation Due to the compositional structure of our BGP
specifications, The verification of the above behavior in PVS only requires the specifi-
cation of conflicting policies at AS 1 and AS 2. More specifically, the policies at AS 1
are defined as follows:
importPolicy(u, r1, r2): INDUCTIVE bool =
(u=1 AND as_path(r1)=[1,0] AND dst(r2)=dst(r1)

AND as_path(r2)=as_path(r1) AND loc_pref(r2)=dlp) OR
(u=1 AND as_path(r1)=[1,2,0] AND dst(r2)=dst(r1)

AND as_path(r2)=as_path(r1) AND loc_pref(r2)=dlp+1)

Where AS 1 assigns higher local preference to route received from 2 (those with
as path=[1,2,0]), i.e. AS 1 prefers route going through its neighbor 2. The con-
flicting policies at AS 2 that prefers route via neighbor 1 is defined similarly.

To demonstrate delayed convergence, first we need to show that route oscillation
such as that shown in time 1 to 3 in Figure 4 occurs. This is captured by the follows
PVS theorem:

route_oscillate_1: THEOREM
FORALL t:
(t>=1) AND route(1,t,r1) AND route(2,t,r2) AND
as_path=(r1)=[1,0] AND as_path(r2)=[2,0]
=> (route(1,(t+1),r3) => as_path(r3)=[1,2,0])

which says at time t ASes 1 and 2 have routes [1,0] and [2,0] respectively implies
that at the next time t+1, AS 1’s route would be set to [1,2,0]. This theorem can be
proven easily in PVS by expanding import definition introduced in Section 4.1. Sim-
ilarly, we prove a similar theorem that the best route at 2 will revert back to [2,1,0]
in the next period, hence resulting in the oscillation.

With these two theorems, we further prove the general divergence theorem at AS 1
as follows:

route_diverge_1: THEOREM
FORALL t: t>=1 AND route(1,t,r1) AND route(1,(t+1),r2)
=> NOT (r1=r2)

The theorem states that at any time t, the route r1 stored at AS 1 will be replaced
by a different route r2 in the next round of route exchange at time (t+1). We can
specify and prove divergence at AS 2 in a similar way.

Formally Verifying Delayed Convergence The Disagree scenario eventually con-
verges once an alternative sequence of route updates occurs. For instance, in one time
period, either AS 1 or 2 receives neighbor updates but not both. Under this circum-
stances, the following convergence theorem can be proved:

route_converge: THEOREM
EXIST T: (FORALL t: t>=T =>

(EXISTS r1: route(1,t,r1)=>route(1,t+1,r1)))

which states that there exists an initialization time T for Disagree to reach conver-
gence state such that best route at AS 1 will reach r1 and keep r1 as its best route from
then on.

Note that, due to the componentized nature of our formalization, the BGP axioms
specified in Section 4.1 are reused in its entirety.

4.3 Generalizing the Conflict Analysis
Our earlier analysis demonstrates that delayed convergence due to route oscillation oc-
curred in a three-AS network. In this section, we demonstrates the strength of theorem
proving to scale to large and even infinite large network. Interestingly, while such a
generalization proof is simple to achieve in theorem prover, it would be much harder to
perform such checks using a model checker due to the state explosion problem. We also
benefit from the formal argument by adopting component-based specification of BGP.

The basic observation is that route oscillation phenomenon that causes convergence
delay can be generalized to arbitrary large network given the Disagree-like topology
depicted in Figure 3 occurs: two connected ASes 1 and 2 have their paths p1,p2 to
reach a third AS 0, and both 1 and 2 prefers routes via each other. By using component-
based specification generation, we can reuse all the codes we present in 4.1, and modify
the policy conflicts in Section 4.2 as follows. We show the generalized policy at AS 1
as example:

importPolicy(u, r1, r2): INDUCTIVE bool =
(u=1 AND (NOT member(2,as_path(r1))) AND dst(r2)=dst(r1)
AND as_path(r2)=as_path(r1) AND loc_pref(r2)=dlp) OR

(u=1 AND member(2,as_path(r1)) AND dst(r2) = dst(r1)
AND as_path(r2)=as_path(r1) AND loc_pref(r2)=dlp+1)

The above definition states that AS 1 would assign a higher local preference to
routes that includes AS 2 in the path. It is essentially a more general version of the ear-
lier import policy, because there is no restrictions that 1 and 2 be immediate neighbors
as long as they are connected.

Based on this generalized import policy, we show route oscillation by prove the
route diverge 1 theorem we have seen in Section 4.2. Not surprising, the proof
also follows exactly the same structure as the one for Disagree. Our experience in
proving route oscillations on a generalized network demonstrates the strength of theo-
rem proving in formal argument and formal proof reuse.

4.4 Verifying a BGP Alternative
To demonstrate the flexibility and expressiveness of DRIVER, we outline an additional
use case based on a BGP alternative called Hybrid Link-state and Path-vector Protocol
(HLP) [17]. As its name suggests, HLP is a variant of link-state and path-vector proto-
col. Intuitively, in HLP, the network is organized into domains of ASes, where within
each domain, ASes maintain a customer-provider hierarchy and execute the link-state
(LS) protocol. Across domains, peer nodes run the fragmented path vector (FPV) pro-
tocol to exchange routes, where the internal structure of each domain is hidden.

Due to the compositional nature of our specifications, given LS and PV sub-components,
HLP can be specified with minimal changes as follows:

FPV(u, p, c): INDUCTIVE bool =
(EXISTS (p1,w): AND PEERS(u,w) AND (LSA(w, p1, (c-1))
AND p=[u,w]) OR (FPV(w,p1,(c-1)) AND p=cons(u,p1))) OR

(EXISTS (p1,w): FPV(w, p1, (c-1)) AND
DirectCP(w,u) and not member(u,p1) AND p= cons(u,p1))

LSA(w,p,c) says the path p computed by link state protocol which is used by node
w to reach d.

FPV(w,p,c) says that path p computed by fragmented path vector protocol is used
by w to reach d. The above definition therefore states that a HLP path p used to reach
d at node u can be derived in the following two ways as connected by the logical OR:
Peer AS updates: AS u receives a route advertisement from its immediate neighbor
(peer) in the form of a link state update (LSA) or a fragmented path vector update
(FPV). AS u can then conclude that path (u,p1) with cost c can be used to reach d,
i.e. FPV(u,p,c) can be derived.
Provider updates: AS u received a HLP route advertisement in the form of a frag-
mented path vector update FPV(w,p1,(c-1)) from its provider w, then u can con-
clude that it would be able to reach d with path (u,p1) with cost c.

Based on this definitions, we can then verify HLP is loop-free by proving the fol-
lowing PVS theorems:
export_guideline: THEOREM
FPV(u,p,c) => NOT (exists (p1,w): FPV(w,p1,(c-1))

AND p=cons(u,p1) and DirectCP(u,w))

which states that if u can derive a new route FPV(u,p,c) by receiving advertisement
FPV(w,p1,(c-1)) from w, u cannot be w’s provider, i.e. w cannot advertise to its
provider u. By unfolding HLP definitions in PVS, the proof process can be carried out
easily within DRIVER. Note that this theorem shows HLP adheres to the following route
export guideline: at any node u, route advertised by its peer or provider is not forward
to another provider.

5 NDlog Program Generation and Experimental Validation
Reference [19] demonstrates a natural translation from NDlog programs to formal spec-
ification recognizable by PVS based on the proof-theoretic semantics of Datalog. Inter-
estingly, by adopting a component-based approach, as we have done in Section 4 for
the BGP system, there is a straightforward translation from PVS formalization to NDlog
programs. This section briefly outlines the basic translation, which serves as the basis
for generating equivalent NDlog programs from verified PVS formalization. We vali-
date the translation based on an actual experimental validation of the generated NDlog
programs in a local cluster testbed.

5.1 PVS to NDlog Translation

Fig. 5. Component with n inputs and m outputs

Fig. 6. PVS Components to NDlog

To illustrate the translation, we make use of an example component T shown in
Figure 6 (a) with input i and output o. The PVS axiom is as follows:

T(i,o):INDUCTIVE bool = Constraint C(o,i)

The above definition specifies T as a relation over i,o in terms of constraint C.
Note that C itself may be a conjunction of predicates that denote sub-components.

The equivalent NDlog rule is as follows:

T T_out(o) :- T_in(i), Constraint C(o,i)

The above rule specifies component T as a rule T that take T in(i) as input and
output T out(o) if constraint c is also satisfied. Obviously, this equivalent translation
can be easily generalized to components with multiple inputs and outputs.

Next, consider a component consists of several sub-components, as depicted in Fig-
ure 6 (b). Example component Tc is built from sub-components T1,T2,T3. The PVS
representations are as follows:

T1(i,o): INDUCTIVE bool = Constraint C1(i,o)
T2(i,o): INDUCTIVE bool = Constraint C2(i,o)
T3(i,i’,o): INDUCTIVE bool = Constraint C3(i,i’,o)

Tc(i1,i2,o3): INDUCTIVE bool = EXISTS (o1,o2):
T1(i1,o1) AND T2(i2,o2) AND T3(o1,o2,o3)

The above PVS definition specifies component Tc as a relation Tc in terms of
T1,T2,T3, where C1,C2,C3 are constraints imposed by the sub-components. This
composition can be compiled into the following equivalent NDlog rules:

t1 T1_out(o1) :- T1_in(i1), C1(i1,o1).
t2 T2_out(o2) :- T2_in(i2), C2(i2,o2).
t3 T3_out(o3) :- T3_in(o1,o2), C3(o1,o2,o3).

The above rules t1-t3 specifies the sub-components as three NDlog rules. Note
that the predicates C1, C2, and C3 may themselves be a set of conjunctive predicates
used to denote sub-components. And the notion of component Tc is implicitly implied
in the three rules where T1, T2 takes input i1,i2, and T3 outputs o3.

To annotate the above NDlog program with the appropriate location specifiers and
materialized lifetimes, additional predicate schema information is required as input for
the translation process.

5.2 Experimental Evaluation
We perform an experimental evaluation of equivalent NDlog declarative networking
programs that implement the BGP system verified in Sections 4.1-4.3. As noted earlier,
our component-based approach enables a straightforward mapping from PVS specifi-
cations to NDlog rules for execution.

Our evaluation setup is based on execution of the NDlog program in a local cluster.
It consists of 15 Pentium IV 2.8GHz PCs with 2GB RAM running Fedora 9 with ker-
nel version 2.6.23, which are interconnected by high-speed Gigabit Ethernet. For our
experiments, we emulate a 60-node network, where each node is an instance of the P2
declarative networking engine [1] executing the NDlog programs. Each one of these 60
nodes runs an instance of the P2 system, and is deployed on one of the 15 physical
machines in the cluster (i.e. each physical machine executes 4 P2 instances).

The main goal of our evaluation is to validate that divergence due to route oscil-
lation can happen in practice in the presence of policy conflicts, as we have verified

with DRIVER in Section 4.2. Our equivalent NDlog program mapped from the PVS
specifications consists of 13 NDlog rules.

Our input network consists of a 60-node network with 90 random bi-directional
links (i.e. the average degree of each node is 3). Given this topology, our experimen-
tal setup executes the NDlog program such that all paths are computed (i.e. protocol
converges). To measure bandwidth utilization required for convergence, each NDlog
program executed in a distributed fashion given the input topology until all routes have
been computed.

We experiment with two policy configurations: 25%-conflict and 50%-conflict, mean-
ing that 25% and 50% respectively of all best paths are a result of policy conflicts (when
two neighboring nodes prefer each other to a common destination as opposed to select-
ing the shortest paths). Our baseline (best case convergence) for comparison is No-
conflict, where all-pairs shortest paths are computed without any conflicting policies.

In our experiments, we measure the bandwidth utilization over time (sampled at
0.1s interval) when executing the NDlog program to compute all routes until the pro-
tocol converges (i.e. no more route changes in the network). We make the following
observations. First, as the percentage of conflicts increases, the protocol takes longer
time to converge. While No-conflict converges in 0.3 seconds, 25%-conflict and 50%-
conflict require 3.2 seconds and 3.9 seconds respectively to converge. Moreover, the
protocols that involve such conflicts utilize significantly more bandwidth. The aggre-
gate bandwidth utilization for No-conflict , 25%-conflict and 50%-conflict is 6 MB, 38
MB and 55 MB, respectively. In the extreme case where all computed routes are a re-
sult of policy conflicts, the convergence time is even longer, at 5.5 seconds, requiring
122MB in bandwidth.

In general, our experimental evaluation demonstrates that the delayed convergence
proved formally in Section 4.2 is indeed observed in the actual NDlog implementation.
This matched behavior suggests the utility of the overall DRIVER system: formally
verified BGP protocols can be easily synthesized into implementations that preserve
the verified properties. Furthermore, one can measure the performance implications
(e.g. bandwidth utilization and actual convergence time) with regard to the properties
that have been formally verified.

6 Related Work
We briefly compare DRIVER with existing works on network protocol verification and
recent development of declarative networks.

Model checking is a collection of algorithmic techniques for checking temporal
properties of system instances based on exhaustive state space exploration. Recent ad-
vances in model checking network protocol implementations include MaceMC [11] and
CMC [7]. Compared to DRIVER’s use of theorem proving, these approaches are sound
as well, but not complete in the sense that the large state space persistent in network pro-
tocols often prevents complete exploration of the huge system states. They are typically
inconclusive and restricted to small network instances and temporal properties.

Classical theorem proving has been used in the past few decades for verification
of network protocols (e.g. [2, 5, 8]). Despite extensive work, this approach is generally
restricted to protocol design and standards, and cannot be directly applied to protocol
implementation. A high initial investment based on domain expert knowledge is often
required to develop the system specifications acceptable by some theorem prover (up to

several man-months). Therefore, even after successful proofs in the theorem prover, the
actual implementation is not guaranteed to be error-free. DRIVER is hence a significant
improvement over existing usage of theorem proving which typically require several
man-months to develop the system specifications, a step that is reduced to a few hours
through the use of declarative networking.

Runtime verification techniques provide a mechanism for checking at runtime that
a system does not violate expected properties. Since declarative networks utilize a dis-
tributed query engine to execute its protocols, these checks can be expressed as monitor-
ing queries in NDlog. However, any runtime verification scheme will incur additional
runtime overheads, and subtle bugs may require a long time to be encountered. More-
over, the properties can be checked in this case are restricted to those can be expressed
in NDlog.

The recently proposed cardinality abstraction technique [15] introduces an abstrac-
tion based on the operational semantics of the P2 declarative networking implemen-
tation. It is used to perform the checking of counting-based invariants of a Byzantine
fault tolerant protocol written as P2 declarative network. Our DRIVER system has sev-
eral advantages over cardinality abstraction. First, by adopting proof-theoretic seman-
tics of Datalog, we have a natural translation to formal specifications that does not rely
on any particular interpretation of the operational semantics of P2. Second, by utiliz-
ing theorem proving and higher-order logic, DRIVER is more expressive and flexible,
while verification based on cardinality abstractions are limited to counting-based in-
variants. Finally, given the flexibility and generality of DRIVER, to our best knowledge,
DRIVER is the first verification framework that enables complex policy based routing
protocol deployed among autonomous ISPs to be formally analyzed, and in addition,
verified specifications can be directly translated into declarative networking programs
for execution.

In summary, compared with existing tools, by adopting a theorem-proving based
approach that can be integrated with component-based declarative protocol develop-
ment, DRIVER provides a unifying framework that bridges specification, verification,
and implementation.

7 Conclusions
In this paper, we present the DRIVER system for designing, analyzing and implement-
ing network protocols. DRIVER utilizes theorem proving, a well established verifica-
tion technique where formal specifications are automatically generated to capture net-
work semantics, and a user-driven proof process is used to establish network correct-
ness properties. DRIVER takes as input declarative networking specifications written in
the NDlog query language, and maps that automatically into formal specifications that
can be directly used in existing theorem provers to verify desired protocol properties.
Moreover, the verified formal specifications can be compiled into NDlog programs for
execution, hence enabling the synthesis of implementation from verified protocol.

Our initial experiences suggest that DRIVER is a promising approach towards a uni-
fied framework that integrates specification, implementation, and verification. Moving
forward, we have identified a few areas of future work.

First, we are working towards integrating the use of model checking techniques to
specify general protocol invariants such as reachability and solvability [18] in tempo-
ral logic. Second, we are exploring more automatic proof support to make DRIVER

more approachable for non theorem proving expert. Most general-purpose theorem
provers utilize an interactive proof process that requires experience of the proof sys-
tem of these provers. To ease the user-directed proof construction, we plan to introduce
into DRIVER network-specific proof strategies by leveraging the PVS built-in proof
strategy language [2], hence lowering the barrier for adoption by network designers.

Finally, recent work on boolean satisfiability (SAT) solving and satisfiability mod-
ulo theories (SMT) [4], as well as the development in automatic first-order theorem
provers have enable fully automated verification of various software and hardware prob-
lems. This provides an alternative proof automation support to PVS network-specific
proof strategies developments that we plan to incorporate into DRIVER.

References

1. P2: Declarative Networking System. http://p2.cs.berkeley.edu.
2. PVS Specification and Verification System. http://pvs.csl.sri.com/.
3. The Coq Proof Assistant. http://coq.inria.fr.
4. Yices: An SMT Solver. http://yices.csl.sri.com/.
5. R. Cardell-Oliver. On the use of the hol system for protocol verification. In TPHOLs, 1991.
6. C. T. Ee, B.-G. Chun, V. Ramachandran, K. Lakshminarayanan, and S. Shenker. Resolving

Inter-Domain Policy Disputes. In SIGCOMM, 2007.
7. D. Engler and M. Musuvathi. Model-checking large network protocol implementations. In

NSDI, 2004.
8. A. P. Felty, D. J. Howe, and F. A. Stomp. Protocol verification in nuprl. In CAV, 1998.
9. T. G. Griffin, F. B. Shepherd, and G. Wilfong. The Stable Paths Problem and Interdomain

Routing. IEEE Transactions on Networking, 10:232–243, 2002.
10. T. G. Griffin and J. L. Sobrinho. Metarouting. In ACM SIGCOMM, 2005.
11. C. Killian, J. Anderson, R. Jhala, and A. Vahdat. Life, death, and the critical transition:

Finding liveness bugs in systems code. In NSDI, 2007.
12. C. Labovitz, G. Malan, and F. Jahanian. Internet Routing Instability. ACM/IEEE Trans. on

Networking, 1998.
13. B. T. Loo, T. Condie, J. M. Hellerstein, P. Maniatis, T. Roscoe, and I. Stoica. Implementing

Declarative Overlays. In ACM SOSP, 2005.
14. B. T. Loo, J. M. Hellerstein, I. Stoica, and R. Ramakrishnan. Declarative Routing: Extensible

Routing with Declarative Queries. In ACM SIGCOMM, 2005.
15. J. A. N. Perez, A. Rybalchenko, and A. Singh. Cardinality abstraction for declarative net-

working applications. In CAV, 2009.
16. R. Ramakrishnan and J. D. Ullman. A Survey of Research on Deductive Database Systems.

Journal of Logic Programming, 23(2):125–149, 1993.
17. L. Subramanian, M. Caesar, C. T. Ee, M. Handley, M. Mao, S. Shenker, and I. Stoica. HLP:

A Next-generation Interdomain Routing Protocol. In SIGCOMM, 2005.
18. Timothy G. Griffin et. al. An Analysis of BGP Convergence Properties. In SIGCOMM, 1999.
19. A. Wang, P. Basu, B. T. Loo, and O. Sokolsky. Declarative network verification. In 11th

International Symposium on Practical Aspects of Declarative Languages, 2009.

	University of Pennsylvania
	ScholarlyCommons
	1-1-2009

	Verifiable Policy-Based Routing With DRIVER
	Anduo Wang
	Changbin Liu
	Boon Thau Loo
	Oleg Sokolsky
	Prithwash Basu
	Recommended Citation

	Verifiable Policy-Based Routing With DRIVER
	Abstract
	Comments

	tmp.1246976455.pdf.Vi6sT

