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Abstract
There are now a number of bidirectional programming languages, where every program
can be read both as a forward transformation mapping one data structure to another and as
a reverse transformation mapping an edited output back to a correspondingly edited input.
Besides parsimony—the two related transformations are described by just one expression—
such languages are attractive because they promise strong behavioral laws about how the two
transformations fit together—e.g., their composition is the identity function. It has repeatedly
been observed, however, that such laws are actually a bit too strong: in practice, we do not
want them “on the nose,” but only up to some equivalence, allowing inessential details, such
as whitespace, to be modified after a round trip. Some bidirectional languages loosen their
laws in this way, but only for specific, baked-in equivalences.

In this work, we propose a general theory of quotient lenses—bidirectional transformations
that are well behaved modulo equivalence relations controlled by the programmer. Semanti-
cally, quotient lenses are a natural refinement of lenses, which we have studied in previous
work. At the level of syntax, we present a rich set of constructs for programming with can-
onizers and for quotienting lenses by canonizers. We track equivalences explicitly, with the
type of every quotient lens specifying the equivalences it respects.

We have implemented quotient lenses as a refinement of the bidirectional string processing
language Boomerang. We present a number of useful primitive canonizers for strings, and
give a simple extension of Boomerang’s regular-expression-based type system to statically
typecheck quotient lenses. The resulting language is an expressive tool for transforming real-
world, ad-hoc data formats. We demonstrate the power of our notation by developing an
extended example based on the UniProt genome database format and illustrate the generality
of our approach by showing how uses of quotienting in other bidirectional languages can be
translated into our notation.



1. Introduction
“Good men must not obey the laws too well.”

—R W Emerson

Most programs compute in a single direction, from input to output. But it is often useful to take a modified output
and “compute backwards” to obtain a correspondingly modified input. For example, if we have a transformation
mapping from a simple XML database format describing classical composers...

<composers>
<composer>
<name>Jean Sibelius</name>
<years birth="1865" death="1956"/>
<nationality>Finnish</nationality>

</composer>
</composers>

... to comma-separated lines of ASCII...

Jean Sibelius, 1865-1956

... we may want to be able to edit the ASCII output (e.g., to correct the death date above to 1957, the year Sibelius
actually died) and push the change back into the original XML. The need for such bidirectional transformations
arises in many diverse areas of computing, including data synchronizers (Foster et al. 2007a,b), parsers and pretty
printers (Fisher and Gruber 2005; Eger 2005), marshallers and unmarshallers (Ramsey 2003; Kennedy 2004),
structure editors (Hu et al. 2004), graphical user interfaces (Meertens 1998; Evers et al. 2006; Greenberg and
Krishnamurthi 2007), software model transformations (Stevens 2007; Xiong et al. 2007), system configuration
management (Lutterkort 2007), schema evolution (Miller et al. 2001; Cunha et al.; Berdaguer et al. 2007), and
databases (Bancilhon and Spyratos 1981; Dayal and Bernstein 1982; Bohannon et al. 2006, etc.).

In previous work (Foster et al. 2007b; Bohannon et al. 2006, 2008), we have used the term lens to describe a
bidirectional program. Formally, a lens l mapping between a set C of “concrete” structures and a set A of “abstract”
ones comprises three functions:

l.get ∈ C −→ A
l.put ∈ A −→ C −→ C

l.create ∈ A −→ C

The get component is the forward transformation, a total function from C to A. The put component takes an old C
and a modified A and yields a correspondingly modified C. The create component handles the special case where
we want to compute a C from an A but we have no C to use as the “old value”; create uses defaults to fill in any
information in C that is thrown away by the get function (such as the nationality of each composer in the example
above). Every lens obeys the following “round-tripping” laws for every c ∈ C and a ∈ A:

l.put (l.get c) c = c (GETPUT)

l.get (l.put a c) = a (PUTGET)

l.get (l.create a) = a (CREATEGET)
The first law states that the put function must restore all the information discarded by get when its arguments are an
abstract structure and a concrete structure that generates the very same abstract structure. The second and third laws
state that put and create must propagate all of the information contained in their abstract arguments to the concrete
structure they produce. These laws express fundamental expectations about how the components of a lens should
work together; they are closely related to classical conditions on correct view update translation developed in the
database community (see Foster et al. 2007b). The set of all lenses mapping between C and A is written C ⇐⇒ A.

The naive way to build a lens is simply to write three separate functions (get, put, and create) in a general-purpose
programming language, and check manually that they satisfy the lens laws. But this is unsatisfactory for all but the
simplest lenses: the three functions will be very redundant, since each of them will embody the structure of both C



and A—a maintenance nightmare. A better alternative is to design a bidirectional programming language in which
every expression can be read both from left to right (as a get function) and from right to left (as put or create).
Besides avoiding redundancy, this approach permits us to carry out the proofs of the behavioral laws once and for
all, by designing a type system in which—by construction—every well-typed expression denotes a well-behaved
lens. Many such programming languages have been proposed (Foster et al. 2007b; Bohannon et al. 2006, 2008;
Meertens 1998; Kennedy 2004; Benton 2005; Ramsey 2003; Hu et al. 2004; Matsuda et al. 2007; Brabrand et al.
2007; Kawanaka and Hosoya 2006; Fisher and Gruber 2005; Alimarine et al. 2005).

Now comes the fly in the ointment. The story we’ve told so far is appealing... but not perfectly true! Most
bidirectional languages for processing real-world data do not guarantee the behavioral laws we have given—
or rather, they guarantee them only “modulo insignificant details.” The nature of these details varies from one
application to another; examples include whitespace, artifacts of representing graph or tree structures such as XML
as text (order of XML attributes, etc.), escaping of atomic data (XML PCDATA, vCard and BibTeX values), ordering
of fields in record-structured data (BibTeX fields, XML attributes), breaking of long lines in ASCII formats (RIS
bibliographies, UniProtKB genomic data bases), and duplicated information (aggregated data, tables of contents).

To illustrate, consider the composers example again. The information about each composer could be larger than
fits comfortably on a single line in the ASCII format, especially if the example were more complex. We might then
want to relax the abstract schema so that a line could be broken (optionally) using a newline followed by at least
one space, so that

Jean Sibelius,
1865-1956

would be accepted as an equivalent, alternate presentation of the data in the original example. But now we have
a problem: the PUTGET law is only satisfied when the put function is injective in its first (A) parameter. But this
means that

Jean Sibelius, 1865-1956

and

Jean Sibelius,
1865-1956

must map to different XML trees—the presence or absence of linebreaks must be reflected in the concrete structure
produced by put. We could construct a lens that does this—e.g., storing the line break inside the PCDATA string
containing the composer name...

<composers>
<composer>
<name>Jean Sibelius

</name>
<years birth="1865" death="1956"/>
<nationality>Finnish</nationality>

</composer>
</composers>

...but this “solution” isn’t especially attractive. For one thing, it places an unnatural demand on the XML repre-
sentation (indeed, possibly an unsatisfiable demand—e.g., if the application that uses the XML data assumes that
the PCDATA does not contain newlines). For another, writing the lens so that it handles and propagates linebreaks
correctly is going to involve some extra work. And finally, this fiddly work and warping of the XML format is all
for the purpose of maintaining information that we actually don’t care about!

A better alternative is to relax the lens laws. There are several ways to do this.

1. We can be a bit informal, stating the laws in their present form and explaining that they “essentially hold” for
our program, perhaps supporting this claim by giving some algorithmic description of how inessential details are
processed. For many purposes such informality may be perfectly acceptable, and several bidirectional languages
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Figure 1. Architecture with “canonizers at the edges”

adopt this strategy. For instance, biXid (Kawanaka and Hosoya 2006), a language for describing XML to XML
conversions using pairs of intertwined regular tree grammars, provides no explicit guarantees about the round-
trip behavior of the transformations its programs describe, but the clear intention is that they should be “morally
bijective.”

2. We can keep the same basic structures but claim weaker laws. For example, X (Hu et al. 2004) is a general-
purpose bidirectional language with a duplication operator. This operator makes it possible to express many
useful transformations—e.g., augmenting a document with a table of contents—but because the duplicated data
is not preserved exactly on round-trips, the PUTGET law does not hold. Instead, X programs satisfy a “round-trip
and a half” variant that is significantly weaker:

c′ = put a c

put (get c′) c′ = c′
(PUTGETPUT)

This law still imposes some constraint on the behavior of lenses, but opens the door to a wide range of unintended
behaviors. For example, a lens whose put component is a constant function put a c = c′ is considered well
behaved, as is the identity lens with put component put a c = c.1

3. We can give a more precise account of the situation—yielding better principles for programmers to reason
about the behavior of their programs—by splitting bidirectional programs into a “core component” that is a
lens in the strict sense plus “canonization” phases at the beginning and end that standardize the representation of
whitespace (or whatever) and makes sure the pure lens part only has to work with a particular representative of
each equivalence class. See Figure 1.

For example, in our earlier language for lenses on trees (Foster et al. 2007b), the end-to-end transformations
on actual strings (e.g., concrete representations of XML trees in the filesystem) only obey the lens laws up to
the equivalence induced by a viewer—a pair of functions mapping between strings and trees (e.g., an XML
parser and printer). Similarly, XSugar (Brabrand et al. 2007), a language for converting between XML and
ASCII, guarantees that its transformations are bijective modulo a fixed relation on input and output structures
that is obtained by canonizing XML, data matching special “unordered” productions, and certain “ignorable”
non-terminals.2

1 Later work by the same authors (the journal version of Hu et al. 2004 and Liu et al. 2007) excludes such examples by annotating data with
“edit tags,” ordering this data according to a “more edited than” relation, and adding a new law stipulating that a put followed by a get should
yield a more edited abstract structure.
2 The XML canonization component is treated as a distinct “pre-processing” phase. Canonization of other ignorable data is interleaved with
other processing; in this respect, XSugar can be regarded as a special case of the framework we are proposing here. We return to this
comparison in more detail in Section 9.



This approach is quite workable as long as the data formats and canonizers are generic (e.g., XML parsers and
printers). However, for ad-hoc formats, such as textual genome databases, bibliographies, configuration files,
etc., this approach rapidly becomes impractical because the two directions of the canonization transformation
themselves become difficult to write and maintain. In particular the structure of the data is recapitulated,
redundantly, in the lens and in each direction of the canonizer. In other words, we wind up back in the situation
that lenses were designed to avoid! In our experience, these difficulties quickly become unmanageable for many
formats of practical interest.

4. We can develop a more refined account of the whole semantic and syntactic framework allowing us to say,
precisely and truthfully, that the lens laws hold of a given program modulo a particular equivalence that can
be calculated from the program, with explicit constructs for defining and applying canonizers anywhere in a
program, not just at the edges. This is the goal of this paper.

At the semantic level, the refinement is straightforward, as we show in Section 2. We enrich the types of lenses
with equivalence relations—instead of C ⇐⇒ A, we write C/∼C ⇐⇒ A/∼A, where ∼C is an equivalence on
C and ∼A is an equivalence on A, and we relax the lens laws accordingly. We call the structures inhabiting such
types quotient lenses, or q-lenses for short. (When we need to distinguish them, we use the term basic lenses for the
original, un-quotientied ones we have studied previously.)

The story is much more interesting on the syntactic side. Our goal is to discover basic principles for bidirectional
languages that treat quotienting explicitly—principles that will be useful in other domains besides strings, such
as bidirectional UML model transformation (Stevens 2007). We therefore begin our investigation of syntax in
Section 3, in a completely generic setting that is independent of the particular domain of structures over which
the lenses operate. We propose a general notion of canonizers, structures that map (bidirectionally!) between a
set of structures and a set of normalized representatives; we then develop operations for quotienting a q-lens by
a canonizer; and we show how lenses themselves can be converted into canonizers. A pleasant corollary of this
last observation is that many of our core primitives can be used both as lenses and as canonizers. Better yet, q-
lens composition and quotienting may be composed freely with other operations such as concatenation and union,
allowing more compact descriptions in which canonization is interleaved with other processing, instead of occurring
only “at the edges” as in Figure 1.

It is important to ground this sort of language design in experiments with real-world examples. To support such
experiments, in the later sections of the paper we extend Boomerang, a language for writing lenses on strings whose
primitives are based on finite state transductions (Bohannon et al. 2008), with canonizers and quotient operators.
We show how to reinterpret the core string lens combinators—lenses for copying and deleting data, sequential
composition, and the rational operators union, concatenation, and Kleene-star—as q-lenses in Section 4, and we
prove that the resulting structures are well behaved according to the more refined q-lens behavioral laws.3 Section 5
introduces primitive q-lenses and canonizers for strings.

In Section 6, we discuss an unexpected side benefit of our design: we can use canonizers to simplify overly
complex types, significantly mitigating the difficulties of programming with the extremely precise regular types that
arise in Boomerang.

In Section 7 we consider typechecking algorithms for q-lenses in Boomerang. The challenge here is choosing
a tractable syntactic presentation for the equivalence relations appearing in types. We first give a simple, coarse
representation, classifying each equivalence relation as either “the identity” or “something other than the identity.”
Surprisingly, this very simple analysis suffices for all of our examples. We then discuss a more precise technique
where equivalence relations are represented by rational functions; this technique yields a more flexible type system,
but appears prohibitively expensive to implement.

3 Readers familiar with Boomerang may recall that it is based not on simple string lenses as we have described them here but on dictionary
lenses, which incorporate extra mechanisms for correctly handling ordered lists of records identified by keys. The semantics in (Bohannon
et al. 2008) also relies on an equivalence relation for describing “reorderable chunks of data.” The two equivalence relations are unrelated
but compatible: dictionary lenses and q-lenses can be combined very straightforwardly; see Section 10.



Section 8 demonstrates the utility of our language by describing some large q-lenses we have built, including a
generic library of lenses for processing XML and an XML-to-ASCII converter for the UniProt genomic database
format (Bairoch et al. 2005).

Finally, to illustrate the generality of our constructions, we show in Section 9 how a large subset of XSugar and
many uses of quotienting in biXid and X can be translated into our notation.

2. Foundations
We begin our technical development by describing the semantic space of q-lenses. This part of our account and
the fundamental combinators described in Section 3 are both completely generic: we make no assumptions about
the universes of concrete and abstract structures. Later we will instantiate these universes to strings and introduce
additional q-lens combinators that work specifically with strings.

The definition of q-lenses is a straightforward refinement of basic lenses: we enrich the domain and codomain
types with equivalences, loosen the lens laws appropriately, and add a few natural conditions on how the lens
components and equivalence relations interact. Formally, let C and A be sets of concrete and abstract structures and
let ∼C and ∼A be equivalence relations C and A. We write C/∼C ⇐⇒ A/∼A for the set of q-lenses between C
(modulo ∼C) and A (modulo ∼A). A q-lens l in this set has components with the same types as a basic lens but it is
only required to obey the lens laws up to ∼C and ∼A:

l.put (l.get c) c ∼C c (GETPUT)

l.get (l.put a c) ∼A a (PUTGET)

l.get (l.create a) ∼A a (CREATEGET)
These relaxed laws are just the basic lens laws on the equivalence classes C/∼C and A/∼A (and when ∼C

and ∼A are equality they revert to the basic lens laws precisely). However, while we want to reason about
the behavior of q-lenses as if they worked on equivalence classes, their component functions actually work on
representatives—i.e., members of the underlying sets of concrete and abstract structures: the type of get is C −→ A,
not C/∼C −→ A/∼A. Thus, we need three additional laws stipulating that the functions respect ∼C and ∼A.

c ∼C c′

l.get c ∼A l.get c′
(GETEQUIV)

a ∼A a′ c ∼C c′

l.put a c ∼C l.put a′ c′
(PUTEQUIV)

a ∼A a′

l.create a ∼C l.create a′
(CREATEEQUIV)

These laws ensure that the components of a q-lens treat equivalent structures equivalently; they play a critical role
in (among other things) the proof that the composition operator defined below produces a well-formed q-lens.

3. Basic Combinators
Every basic lens can be lifted to a q-lens, with equality as the equivalence relation on both C and A.

l ∈ C ⇐⇒ A

lift l ∈ C/= ⇐⇒ A/=

The get, put, and create components of lift l are identical to those of l. This inference rule can be read as a lemma
asserting that the lifted lens is a q-lens at the given type.

3.1 Lemma: lift l ∈ C/= ⇐⇒ A/=

Appendix A contains the proof of this lemma, as well as proofs of the corresponding lemmas for each of the primitive
q-lenses and canonizers described in this paper. We elide the statements of these other lemmas, as they can be read
off from the definitions.
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Lifting basic lenses gives us q-lenses with equivalences that are finer than we may want. We need a mechanism
for loosening up a q-lens, making it work on a larger domain and/or codomain with coarser equivalences. To this
end, we introduce two new operators: lquot, which coarsens the domain by adding a canonizer on the left of a q-lens,
and rquot, which coarsens the codomain by adding a canonizer on the right. Let us consider lquot first.

Suppose l is a q-lens from B/∼B to A/∼A, where ∼B is a relatively fine equivalence (e.g., B could be some
set of “canonical strings” with no extraneous whitespace and ∼B could be equality). We want to construct a new
q-lens whose domain is some larger set C (e.g., the same set of strings with more whitespace in various places)
with a relatively coarse equivalence ∼C (relating pairs of strings that differ only in whitespace). To get back and
forth between C and B, we need two functions: one (called canonize) from C to B, which maps each element to
its “canonical representative” (e.g., by throwing away extra whitespace) and another (choose) from B to C that
maps each canonical representative to some element in its inverse image under canonize (for example, the identity
function, or perhaps a pretty printer that adds whitespace according to some layout convention). The canonize and
choose functions together are called a canonizer; see Figure 2.

Clearly, a canonizer is a bit like a lens (minus the put component); the difference is that we impose a weaker law.
Formally, let C and B be sets and ∼B an equivalence relation on B.4 A canonizer q from C to B/∼B comprises
two functions

q.canonize ∈ C −→ B
q.choose ∈ B −→ C

such that, for every b ∈ B:

q.canonize (q.choose b) ∼B b (RECANONIZE)

That is, canonize is a left inverse of choose modulo ∼B . The set of all canonizers from C to B/∼B is written
C B/∼B .

Now lquot takes as arguments a canonizer q and a q-lens l and yields a new q-lens where l is coarsened on the
left using q.

4 We name the equivalence on B explicitly because, when we put the canonizer together with a q-lens using lquot, the equivalences on B
need to match. We do not need to mention the equivalence on C because it is going to be calculated later (by the typing rule for lquot).



q ∈ C B/∼B l ∈ B/∼B ⇐⇒ A/∼A

c ∼C c′ iff q.canonize c ∼B q.canonize c′

lquot q l ∈ C/∼C ⇐⇒ A/∼A

get c = l.get (q.canonize c)
put a c = q.choose (l.put a (q.canonize c))
create a = q.choose (l.create a)

The concrete argument to the get function is first canonized to an element of B using q.canonize and then mapped
to an A by l.get. Similarly, the abstract argument to the create function is first mapped to a B using l.create, which
is then transformed to a C using q.choose . The equivalence∼C is the relation induced by q.canonize and∼B—i.e.,
two elements of C are equivalent if q.canonize maps them to equivalent elements of B.

The rquot operator is symmetric; it quotients l ∈ C/∼C ⇐⇒ B/∼B on the right, using a canonizer from A to
B/∼B . One interesting difference is that its canonizer argument is applied in the opposite direction, compared to
lquot—i.e., if we think of a canonizer as a weak form of lens, then lquot is essentially just lens composition, while
rquot is a sort of “head to head” composition that would not make sense with lenses.

l ∈ C/∼C ⇐⇒ B/∼B q ∈ A B/∼B

a ∼A a′ iff q.canonize a ∼B q.canonize a′

rquot l q ∈ C/∼C ⇐⇒ A/∼A

get c = q.choose (l.get c)
put a c = l.put (q.canonize a) c
create a = l.create (q.canonize a)

The lquot and rquot operators allow us to quotient a q-lens repeatedly on either side, which has the effect of
composing canonizers. We do this often in q-lens programming—stacking up several canonizers, each of which
canonizes a distinct aspect of the concrete or abstract structures. In composing canonizers like this, the following
typing rule, which allows the equivalence relation component of a canonizer’s type to be coarsened, is often useful:

q ∈ A B/∼B ∼B refines ∼B′

q ∈ A B/∼B′

The next combinator gives us a different kind of composition—of q-lenses themselves.

l ∈ C/∼C ⇐⇒ B/∼B k ∈ B/∼B ⇐⇒ A/∼A

l ; k ∈ C/∼C ⇐⇒ A/∼A

get c = k.get (l.get c)
put a c = l.put (k.put a (l.get c)) c
create a = l.create (k.create a)

The typing rule demands that the intermediate type B have the same equivalence relation ∼B on both sides. To see
what goes wrong if this condition is dropped, consider

l1 = id ∈ {a}/= ⇐⇒ {a}/=
l2 = id ∈ {a, b}/= ⇐⇒ {a, b}/=

where id is the identity lens (whose get and create components are identity functions and whose put component is
the identity on its abstract argument) and q ∈ {a, b} {a}/= defined by

q.canonize x = a
q.choose a = a.



If we now take l = (rquot l1 q); l2 (where the equivalence on the left is the total relation on {a, b}, which is strictly
coarser than equality, the relation on the right), then the CREATEGET law fails:

l.get (l.create b)
= l.get a
= l2.get (q.choose (l1.get a))
= a 6= b

Conversely, if we take l = l2; (lquot q l1), (where the left equivalence is equality and the right equivalence is the
total relation on {a, b}), then the GETPUT law fails, since a = l.get b but

l.put a b
= l2.put ((lquot q l1).put a (l2.get b)) b
= l2.put (q.choose (l1.put a (q.canonize (l2.get b)))) b
= l2.put a b
= a 6= b.

This requirement raises an interesting implementation issue: to statically type the composition operator, we must be
able to check whether two equivalence relations are identical; see Section 7.

So far, we have seen how to lift basic lenses to q-lenses, how to coarsen the equivalence relations in their types
using canonizers, and how to compose them. We have not, however, discussed where canonizers themselves come
from. Of course, we can always define canonizers as primitives—this is essentially the approach used in previous
“canonizers at the edges”-style proposals, where the set of parsers and pretty printers is fixed. But we can do better:
we can build a canonizer out of the get and create components of an arbitrary lens—indeed, of an arbitrary q-lens!

l ∈ C/∼C ⇐⇒ B/∼B

canonizer l ∈ C B/∼B

canonize c = l.get c
choose b = l.create b

Building canonizers from lenses gives us a pleasantly parsimonious design, allowing us to define canonizers
using whatever generic or domain-specific primitives are already available on lenses (e.g., in our implementation,
primitives for copying, deletion, etc., as well as the rational operators—concatenation, iteration, union, etc.—
described in Section 4). A composition operator on canonizers can be derived from the quotienting operators (on the
identity lens, copy, defined in Section 5). We state a simple version here, whose type can be derived straightforwardly
from the types of copy, lquot, and canonizer .

q1 ∈ C B/= q2 ∈ B A/=
(q1; q2) ∈ C A/=

(q1; q2) , canonizer (lquot q1 (lquot q2 (copy A)))

In general, the equivalence on B need not be the identity, but must refine the equivalence induced by q2.
Of course, it is also useful to design primitive canonizers de novo. The canonizer law imposes fewer restrictions

than the lens laws, giving us enormous latitude for writing specific canonizing transformations that would not be
legal as lenses. Several useful canonizer primitives are discussed in Section 5.

4. Rational Operators
Having presented the semantic space of q-lenses and several generic combinators, we now turn our attention to q-
lenses for the specific domain of strings. The next several q-lenses are direct generalizations of corresponding basic
string lens operators (Bohannon et al. 2008).



First, a little notation. Let Σ be a fixed alphabet (e.g., ASCII). A language is a subset of Σ∗. Metavariables u, v, w
range over strings in Σ∗, and ε denotes the empty string. The concatenation of two strings u and v is written u·v;
concatenation is lifted to languages L1 and L2 by L1·L2 = {u·v | u ∈ L1 and v ∈ L2}. The iteration of L is written
L∗; i.e., L∗ =

⋃∞
n=0 Ln, where Ln is the n-fold concatenation of L.

The types of the q-lenses developed in this paper include equivalence relations as components. Given a set of
structures S, we write Id(S) for the identity relation on S and Tot(S) for the total relation. Given a relation
R ⊆ S × S, we write TransClosure(R) for the transitive closure of R: i.e., the smallest transitive relation on S
that contains R.

Some of the definitions below require that, for every string belonging to the concatenation of two given languages,
there must be a unique way of splitting that string into two substrings belonging to the concatenated languages. We
say that two languages L1 and L2 are unambiguously concatenable, written L1·!L2, when, for every u1, v1 in L1

and u2, v2 in L2, if u1·u2 = v1·v2 then u1 = v1 and u2 = v2. Similarly, a language L is funambiguously iterable,
written L!∗, when, for every u1, . . . , um ∈ L and v1, . . . , vn ∈ L, if u1·····um = v1·····vn then m = n and ui = vi

for every i. It is decidable whether two regular languages L1 and L2 are unambiguously concatenable and whether
a single language L is unambiguously iterable; see Bohannon et al. (2008).

Several of the primitives are parameterized on regular expressions

R ::= u | R·R | R|R | R∗

where u ranges over arbitrary strings (including ε). The notation [[E]] denotes the language described by E ∈ R.
The function rep(E) picks an arbitrary representative of [[E]].

Our first string q-lens combinators are based on the rational operators union, concatenation, and iteration (Kleene
star). The functional components of these combinators are identical to the basic lens versions defined in Bohannon
et al. (2008), but the typing rules are different, since they define equivalence relations on the concrete and abstract
domains.

We start by defining the concatenation of relations on sets of strings.

4.1 Definition [Relation Concatenation]: Let L1 and L2 be languages and let R1 and R2 be binary relations on
L1 and L2. The relation R1·R2 is defined as w (R1·R2) w′ iff there exist w1, w

′
1 ∈ L1 and w2, w

′
2 ∈ L2 with

w = w1·w2 and w′ = w′
1·w′

2 such that w1 R1 w′
1 and w2 R2 w′

2.

The concatenation of two equivalence relations ∼1 and ∼2 is not always an equivalence relation. (In particular, it
may not be transitive.) However, it is guaranteed to be an equivalence in two important cases: when the concatenation
of L1 and L2 is unambiguous, and when ∼1 and ∼2 are both the identity relation.

The concatenation operator for q-lenses works in the obvious way. Note that the equivalence relations on both
sides of the type are guaranteed to be an equivalence since the concatenations of both pairs of languages are
unambiguous.

C1·!C2 A1·!A2

l1 ∈ C1/∼C1 ⇐⇒ A1/∼A1

l2 ∈ C2/∼C2 ⇐⇒ A2/∼A2

∼C = ∼C1 ·∼C2 ∼A = ∼A1 ·∼A2

l1·l2 ∈ C1·C2/∼C ⇐⇒ A1·A2/∼A

get (c1·c2) = (l1.get c1)·(l2.get c2)
put (a1·a2) (c1·c2) = (l1.put a1 c1)·(l2.put a2 c2)
create (a1·a2) = (l1.create a1)·(l2.create a2)

Concatenation raises an interesting side point. Suppose that we have two canonizers, q1 and q2, and two q-lenses,
l1 and l2, that we want to—in some order—concatenate and quotient on the left. There are two ways we could do
this: we could quotient l1 and l2 first using q1 and q2, and combine the results by concatenating the q-lenses just



defined, or we could concatenate the q-lenses l1 and l2 and the canonizers q1 and q2 and then quotient the results.
Both are possible in our system and (when both are well-typed5) yield equivalent q-lenses. At the end of this section,
we define the rational operators on canonizers, and prove this equivalence formally.

For Kleene star, we start by lifting iteration to relations.

4.2 Definition [Relation Iteration]: Let L1 be a regular language, and let R1 be a binary relation on R1. The
relation R∗

1 is defined as w R∗
1 w′ iff there exist strings w1, ..., wn and w′

1, ..., w
′
n such for all i in {1...n} we have

wi R1 w′
i.

As with concatenation, the iteration of a relation is not always an equivalence in general, but it is when the underlying
language is unambiguously iterable and when the relation being iterated is the identity. Using this definition, the
generalization of Kleene star to q-lenses is straightforward.

l ∈ C/∼C ⇐⇒ A/∼A C !∗ A!∗

l∗ ∈ C∗/∼∗C ⇐⇒ A∗/∼∗A

get (c1 ···cn) = (l.get c1)···(l.get cn)
put (a1 ···an) (c1 ···cm) = c′1 ···c′n

where c′i =
{

l.put ai ci i ∈ {1, ...,min(m,n)}
l.create ai i ∈ {m + 1, ..., n}

create (a1 ···an) = (l.create a1)···(l.create an)

The q-lens version of union is more interesting.

l1 ∈ C1/∼C1 ⇐⇒ A1/∼A1

l2 ∈ C2/∼C2 ⇐⇒ A2/∼A2

C1 ∩ C2 = ∅
a ∼A a′ ∧ a ∈ A1 ∩A2 implies a∼A1a

′ ∧ a∼A2a
′

∼C = ∼C1 ∪ ∼C2 ∼A = ∼A1 ∪ ∼A2

l1 | l2 ∈ C1 ∪ C2/∼C ⇐⇒ A1 ∪A2/∼A

get c =

{
l1.get c if c ∈ C1

l2.get c if c ∈ C2

put a c =


l1.put a c if c ∈ C1 ∧ a ∈ A1

l2.put a c if c ∈ C2 ∧ a ∈ A2

l1.create a if c ∈ C2 ∧ a ∈ A1 \A2

l2.create a if c ∈ C1 ∧ a ∈ A2 \A1

create a =

{
l1.create a if a ∈ A1

l2.create a if a ∈ A2 \A1

The relations ∼C and ∼A are formed by taking the the union of the corresponding relations from l1 and l2;
the side conditions in the typing rule ensure that these are equivalence relations. The side condition on ∼A is also
essential for ensuring the q-lens laws. It stipulates that ∼A1 and ∼A2 may only relate elements of the intersection
A1 ∩ A2 to other elements in A1 ∩ A2 and that ∼A1 and ∼A2 must agree in the intersection. To see why this is
needed, suppose we have a in A1 ∩ A2 and a′ ∈ A2 \ A1 with a ∼A a′, and let c ∈ C1 with get c = a. Then
put a′ c = l2.create a′ c. Since dom(l1.put) ∩ dom(l2.create) = ∅, the result cannot be related to c by ∼C—i.e.,
GETPUT fails.
5 Quotienting the lenses first is a little more flexible, since the concatenation of the original q-lenses need not be typeable.



The final q-lens combinator in this section, permute , is like concatenation, but reorders of the abstract string it
constructs according to a fixed permutation σ. As an example, let σ be the permutation that maps 1 to 2, 2 to 3, and
3 to 1. The get component of permute σ (copy a) (copy b) (copy c) maps abc to cab.

σ ∈ Perms({1, ..., n}) i1 , σ(1) ... in , σ(n)
C1·!C2 ... Cn−1·!Cn Ai1 ·!Ai2 ... Ain−1 ·!Ain

∀i ∈ {1, ..., n}. li ∈ Ci/∼Ci ⇐⇒ Ai/∼Ai

∼C , ∼C1 ·...·∼Cn C , C1·...·Cn

∼A , ∼Ai1
·...·∼Ain

A , Ai1 ·...·Ain

permute σ l1 ... ln ∈ C/∼C ⇐⇒ A/∼A

get (c1·...·cn) = (li1 .get cin)·...·(li1 .get cin)
put (ai1 ·...·ain) (c1·...·cn) = (l1.put a1 c1)·...·(ln.put an cn)
create (ai1 ·...·ain) = (l1.create a1)·...·(ln.create an)

The permute lens is used in many of our examples, including the lenses for genomic data described in Section 8
and in the translation from XSugar programs to q-lenses in Section 9.

Now we lift each of the rational operators to canonizers. Since canonizers only have to satisfy the weaker
RECANONIZE law, we have some additional flexibility compared to basic lenses. For example, the concatenation
operator on q-lenses requires that the concatenations of the languages on the left and on the right each be
unambiguous; with canonizers, we only need the concatenation on the left be unambiguous:

q1 ∈ C1 B1/∼B1 q2 ∈ C2 B2/∼B2

C1·!C2 ∼B = TransClosure(∼B1 ·∼B2)
split ∈ Πb : (B1·B2). {(b1, b2) ∈ (B1 ×B2) | b1·b2 = b}

q1·q2 ∈ C1·C2 B1·B2/∼B

canonize c1 · c2 = (q1.canonize c1)·(q2.canonize c2)
choose b = (q1.choose b1)·(q2.choose b2)

where spilt b = (b1, b2)

The split function determines how strings in (B1·B2), which may be ambiguous, should be split. The dependent
type of split ensures that it is a function that splits a string into two substrings. (In Boomerang, we have two different
operators for concatenating canonizers: one instantiates split with a function that uses a longest-match policy, and
another that uses a shortest-match policy.) Note that we take the transitive closure of (∼B1 ·∼B2) (to ensure that it is
an equivalence).

Having defined the concatenation of canonizers, we now prove a result described earlier: that canonizing and
quotienting on the left in either order yields equivalent lenses

4.3 Lemma: Let
l1 ∈ B1/∼B1 ⇐⇒ A1/∼A1 q1 ∈ C1 B1/∼B1

l2 ∈ B2/∼B2 ⇐⇒ A2/∼A2 q2 ∈ C2 B2/∼B2

be q-lenses and canonizers. Define q-lenses

l , (lquot q1 l1)·(lquot q2 l2) and l′ , lquot (q1·q2) (l1·l2)

If l and l′ are both well-typed, then l and l′ are equivalent q-lenses.

Proof: Since l is well typed, we have that C1·!C2 and A1·!A2. Also, since l′ is well typed, we have that B1·!B2.
Using these facts, we prove that the component functions of l and l′ are equivalent.



GET: Let c = c1·c2 ∈ (C1·C2). We calculate as follows

l.get c
= ((lquot q1 l1).get c1)·((lquot q2 l2).get c2)
= (l1.get (q1.canonize c1))·(l2.get (q2.canonize c2))
= (l1·l2).get ((q1·q2).canonize (c1·c2)) as B1·!B2 and C1·!C2

= (lquot (q1·q2) (l1·l2)).get c
= l′.get c

and obtain the required equality.
PUT: Let a = a1·a2 ∈ A1·A2 and c = c1·c2 ∈ C1·C2. We calculate as follows:

l.put a c
= ((lquot q1 l1).put a1 c1)·((lquot q1 l1).put a2 c2)
= (q1.choose (l1.put a1 (q1.canonize c1)))·(q2.choose (l2.put a2 (q2.canonize c2)))
= (q1·q2).choose ((l1·l2).put a ((q1·q2).canonize c))

as A1·!A2 and B1·!B2 and C1·!C2

= (lquot (q1·q2) (l1·l2)).put a c
= l′.put a c

and obtain the required equality.
CREATE: Analogous to the case for put. �

The iteration operator on canonizers is similar:

q1 ∈ C1 B1/∼B1

C1
!∗ ∼B = TransClosure(∼∗B1

)
split ∈ (B1

∗) → List(B1)
q1
∗ ∈ C1

∗ B1
∗/∼∗B1

canonize c1 ···cn = (q1.canonize c1)···(q1.canonize cn)
choose b = (q1.choose b1)···(qn.choose bn)

where split b = [b1, ..., bn]

Note that as in the concatenation operator for canonizers, the iteration of B1 is allowed to be ambiguous. The
split function handles the splitting of strings in B1

∗ into substrings belonging to B1. Boomerang has two variants of
canonizer iteration: one with a longest-match split and another that uses shortest-match.

The final combinator in this section forms the union of two canonizers.

q1 ∈ C1 B1/∼B1 C1 ∩ C2 = ∅
q2 ∈ C2 B2/∼B2 ∼B = TransClosure(∼B1 ∪ ∼B2)

q1 | q2 ∈ C1 ∪ C2 (B1 ∪B2)/(∼B1 ∪ ∼B2)

canonize c =

{
q1.canonize c if c ∈ C1

q2.canonize c if c ∈ C2

choose b =

{
q1.choose b if b ∈ B1

q2.choose b if b ∈ B2 \B1

5. Primitives
Now we define some primitive q-lenses and canonizers. As background, we recall two basic string lenses defined in
Bohannon et al. (2008):



E ∈ R
copy E ∈ [[E]] ⇐⇒ [[E]]

get c = c
put a c = a
create a = a

E ∈ R u ∈ Σ∗ v ∈ [[E]]
const E u v ∈ [[E]] ⇐⇒ {u}

get c = u
put a c = c
create a = v

The first, copy E, behaves like the identity on [[E]] in both directions. The second, const E u v, maps every
string belonging to [[E]] to a constant u in the get direction and restores the concrete string in the put direction. The
argument v is a default for create. Some other useful lenses are now expressible as derived forms:

E ↔ u , const E u (rep(E))
E ↔ u ∈ [[E]] ⇐⇒ {u}

del E , E ↔ ε
del E ∈ [[E]] ⇐⇒ {ε}
ins u , ε ↔ u
ins u ∈ {ε} ⇐⇒ {u}

E ↔ u is like const but automatically chooses an element of E for create; del E deletes a concrete string belonging
to E in the get direction and restores it in the put direction; ins u inserts a fixed string u in the get direction and
removes it in the other direction. Each of these basic lenses can be converted to a q-lens using lift. To avoid clutter,
we assume from now on that copy, const, etc. denote the (lifted) q-lens versions.

Now let us explore some q-lens variants of these basic lenses. The get component of del deletes a string and the put
component restores it. In most situations, this is the behavior we want. However, if the deleted data is “ignorable”—
e.g., whitespace—then we may prefer to have a put component that produces a canonical default e ∈ [[E]] instead of
restoring the original. This transformation cannot be a basic lens because it violates GETPUT, but it is easy to define
as a q-lens using left quotient:

qdel E e , lquot (canonizer (const E e e)) (del e)

Operationally, the get function works by canonizing the input string to e, and then deleting it. The put restores e and
passes it to the canonizer’s choose component (i.e., the create component of const), which also produces e. The type
of qdel E e, which is [[E]]/Tot([[E]]) ⇐⇒ {ε}/=, records the fact that every string in [[E]] is treated equivalently.

Next we define a q-lens for inserting information into the abstract string. The q-lens qins e E behaves like ins e
in the get direction, but its put component accepts the set [[E]] (where e ∈ [[E]]). We often use qins in examples to
insert canonical whitespace in the forward direction while accepting arbitrary whitespace in the other direction. Its
definition is straightforward using right quotient:

qins e E , rquot (ins e) (canonizer (const E e e))

Again, the type of qins e E, namely {ε}/= ⇐⇒ [[E]]/Tot([[E]]), records the fact that the equivalence relation on
the abstract domain is the total relation.

Q-lens versions of const and E ↔ u are similar:

qconst u E D v , lquot (canonizer (const E u u))
(rquot (u ↔ v)

(canonizer (const D v v)))
E ↔ D , qconst (rep(E)) E D (rep(D))

The q-lens qconst accepts any E in the get direction and maps it to v; in the put direction, it accepts any D and maps
it to u. Its type is [[E]]/Tot([[E]]) ⇐⇒ [[D]]/Tot([[D]]). The q-lens E ↔ D has the same type; it maps between E
and D, producing arbitrary representatives in each direction.



The next primitive duplicates data. Duplication operators in the context of bidirectional languages have been
extensively studied by Hu et al. (2004) and Liu et al. (2007) in settings with different laws. Our own previous lens
languages have not supported duplication operators because their semantics is incompatible with the strict versions
of the lens laws (and the types used in those languages, as we discuss in Section 6). In the more relaxed semantic
space of q-lenses, however, duplication causes no problems.

l ∈ C/∼C ⇐⇒ A1/∼A1 f ∈ C → A2

A1·!A2 ∼A = ∼A1 ·Tot(A2)
dup1 l f ∈ C/∼C ⇐⇒ A1·A2/∼A

get c = (l.get c)·(f c)
put (a1·a2) c = (l.put a1 c)
create (a1·a2) = (l.create a1)

The q-lens dup1 is parameterized on a q-lens l and a function f having the same domain as l (f is typically the get
component of a q-lens; in Boomerang, the built-in function get extracts a q-lens’s get component). The get function
of dup1 supplies one copy of the concrete string c to l’s get component, sends a second copy to f , and concatenates
the results. The put and create components discard the portion of the abstract string generated by f and invoke the
corresponding component of l on the remainder of the abstract string. For example, if e and e′ belong to [[E]], then
the get component of dup1 (copy E) ((copy E).get) maps e to e·e, and the create component maps e·e′ to e. The
typing rule records the fact that dup1 ignores the part of the abstract string generated by f . The symmetric operator
dup2 f l discards the first copy instead of the second in the put/create direction.

In both of these q-lenses, the handling of duplicated data is quite simple. (In particular, unlike the duplication
operators proposed and extensively studied by Hu et al. (2004), put and create do not make any attempt to merge
changes to the duplicated data in the abstract string.) Nevertheless, they suffice for many practical examples. For
example, when f is an aggregation operator such as count count,6 discarding the aggregate valued while retaining
the other copy often makes sense (see Section 8).

So much for primitive q-lenses; for the rest of this section, let us consider some primitive canonizers. The first is
a generic combinator that builds a canonizer from a function mapping a set of structures onto a “normalized” subset
of itself.

f ∈ C → C0 C0 ⊆ C ∀c ∈ C0. f c = c

normalize f ∈ C C0/=

canonize c = f c
choose c = c

The canonize component is the given function f , and the choose component is the identity function.
Using normalize, we can build a canonizer to put substrings of a larger string in sorted order. To lighten the

presentation, we describe the binary version; the generalization to an n-ary sort is straightforward. Let C1 and C2

be regular languages that can be unambiguously concatenated in either order and such that C1·C2 ∩C2·C1 = ∅. Let
f C1 C2 be the function that takes a string c1·c2 ∈ C1·C2 or c2·c1 ∈ C2·C1 and produces c1·c2 in either case. It is
easy to check that this function satisfies the side condition in the typing rule for normalize with C0 = C1·C2, since
already sorted strings map to themselves. The canonizer sort C1 C2 is defined as normalize (f C1 C2). It has the
canonizer type

(C1·C2 ∪ C2·C1) C1·C2/=.

(We consider a variant of the sorting primitive in Section 6.)

6 In Boomerang, the function count R takes a string u belonging to R∗ and returns the number of substrings belonging to R that u can be
split into.



It is occasionally necessary to introduce special primitives to meet the requirements of particular applications.
The next primitive canonizer, columnize, is one such. It was designed specifically for processing the UniProt format
described in Section 8, wrapping long lines of text by replacing spaces with newlines so that they do not spill over
into the margin. However, it is easy to imagine columnize being handy in other situations—for processing textual
documents or other kinds of string data presented in fixed-width formats.

(Σ∗·nl·Σ∗) ∩ C0 = ∅
C = [(s ∪ nl)/s]C0

columnize C0 s nl ∈ C C0/=

canonize c : replace nl with s in c
choose c : replace s with nl as needed in c to wrap long lines

It takes as arguments a set of strings C0, a “space” string s, and a “newline” string nl. Its canonize component
replaces every occurrence of the newline string with space; the choose component wraps long lines by replacing
some of their spaces with newlines. The typing rule for columnize requires that nl not appear in strings in C0 and
assigns to the entire canonizer the type C C0/=, where C is obtained by widening C0 so that nl may appear
anywhere that s may.

6. Loosening Lens Types with Canonizers
We were originally motivated to study q-lenses by the need to work “modulo insignificant details” when writing
lenses to transform real-world data formats. However, as we began using our language to build larger examples,
we discovered a significant—and completely unexpected—additional benefit: q-lenses allow us to assign many
bidirectional transformations coarser types than the strict lens laws permit, easing some serious tractability concerns
that arise in languages with extremely precise type systems.

The need for precise types stems from a fundamental choice in our design: the put component of every lens is a
total function. Totality is attractive to users of lenses, because it guarantees that any valid abstract structure can be
put back with any valid concrete structure—i.e., the lens can handle an arbitrary edit to the abstract view, as long
as it stays within the specified type.7 However, for exactly the same reason, totality makes it difficult to design lens
primitives—the put function must do something reasonable with every pair of valid abstract and concrete structures,
and the only way that a lens can avoid having to handle certain structures is by excluding them from its type. Thus,
in practice, a lens language with a sufficiently rich set of primitives has to be equipped with a correspondingly rich
set of types.

Working in a language with very precise types has many advantages. For example, Boomerang’s type checker,
which is based on regular languages, uncovered a subtle source of ambiguity in the UniProt ASCII format. But it
also imposes burdens—both on programmers, who must write programs to satisfy a very picky type checker, and on
implementations, where mechanizing these precise analyses often requires expensive algorithms. Fortunately, the
increased flexibility of q-lenses and canonizers can be exploited to loosen types and alleviate these burdens. We give
three examples.

The first example involves the columnize transformation, which was defined as a primitive canonizer in Section 5.
The mappings between long lines of text and blocks of well-wrapped lines form a bijection and so trivially satisfy
the lens laws. Thus, we could also define columnize as a basic lens. However, the type of this lens, which describes
the set of minimally-split, well-wrapped blocks (i.e., sequences of lines that must be broken exactly at the margin
column, or ones that must be broken at the column just before the margin because the next two characters are
not spaces, or lines that must be broken at the second-to-last column..., and so on) is horribly complicated and
cumbersome—both for programmers and in implementations. We could loosen the type to match the one we gave
to the columnize canonizer—i.e., to arbitrary blocks of text, including blocks containing “extra” newlines—but
changing the type in this way also requires changing the put function in order to avoid violating the GETPUT law.
7 In the terminology of Hegner (1990), the abstract structures are “closed views.”



In particular, if we take a concrete block of text containing some extra newlines, map it to an abstract line by get,
and immediately map it back to a concrete block by put, then the strict version of GETPUT stipulates that all of the
extra newlines must be restored exactly. Thus, the put function cannot ignore its concrete argument and insert the
minimal number of newlines needed to avoid spilling over into the margin; it must also examine the concrete string
and restore any extra newlines from it. Formulating columnize as a canonizer rather than a lens, avoids both of these
complications. By exploiting the additional flexibility permitted by the canonizer law, we obtain a primitive whose
type and behavior are both simple.

The second example of a transformation whose type can be simplified using canonizers is sort. As with columnize,
it is possible to define a basic lens version of sort. To sort C1...Ck, we form the union of lenses that recognize the
concatenations of permutations of the Cis, and apply the appropriate permutation to put them in sorted order. This
lens has the behavior we want, but its type on the concrete side is the set of all concatenations of permutations of
Cis—a type whose size grows as the factorial of k! As the number of languages being sorted increases, the size
of this type rapidly becomes impractical. Fortunately, this combinatorial blowup can be avoided by widening the
concrete type to (C1 | ... | Cn)∗. This type overapproximates the set of strings that we actually want to sort, but
has an enormously more compact representation—one that grows linearly with k. Of course, having widened the
type in this way, we also need to extend the canonizer’s functional components to handle this larger set of strings.
In particular, we must extend canonize to handle the case where several or no substrings belong to a given Ri. A
reasonable choice, which works well for many examples including sorting XML attributes and BibTeX fields, is to
simply discard any extras and fill in any missing ones with defaults.

The final example involves the duplication operator. Consider the simple instance dup1 (copy E) ((copy E).get)
whose get function maps strings e ∈ [[E]] to e·e (assume the concatenation of E with itself is unambiguous). There
is a pure basic lens with this behavior, but but in order to satisfy PUTGET, the domain of its put component must
be restricted to abstract strings where the two copies of e are equal. (If it were defined on e·e′ with e different
from e′, then no matter what concrete string e′′ it produced, the get function would produce a string e′′·e′′, violating
PUTGET.) Thus, as a basic lens, the type of dup1 must include an equality constraint in its abstract component:
[[E]] ⇐⇒ {e·e′ ∈ [[E]]·[[E]] | e = e′}. Unfortunately, this type is not regular and cannot be expressed in Boomerang’s
type system. Since we were not prepared to deal with these equality constraints in our type system, we were forced
to exclude dup1 as a primitive in earlier versions of Boomerang. However, if we take dup1 as a q-lens, we can assign
it a more flexible type with no equality constraint: [[E]]/= ⇐⇒ [[E]]·[[E]]/=·Tot([[E]]). Executing a round-trip via
put and get on an abstract string e·e′ with e different from e′ is no problem. Although the result, e·e′, and original
string e·e are different, they are related by =·Tot([[E]]). Hence, the PUTGET law is satisfied.

7. Typechecking
The typing rules for some of the q-lens combinators—including left and right quotienting, sequential composition,
and union—place constraints on the equivalence relation components in the types of the q-lenses they combine. For
example, to check that an instance of sequential composition l ; k is well formed, we need to verify that l’s abstract
equivalence relation and k’s concrete one are identical. In this section, we describe two different approaches to
implementing these rules. The first uses a coarse analysis, simply classifying equivalences according to whether they
are or are not the equality relation. Surprisingly, this very simple analysis captures our most common programming
idioms and turns out to be sufficient for all of the applications we have built. The second approach is much more
refined: it represents equivalence relations by rational functions that induce them. This works, in principle, for a
large class of equivalence relations including most of our canonizers (except for those that do reordering). However,
it appears too expensive to be useful in practice.

The first type system is based on two simple observations: first, that most q-lenses originate as lifted basic lenses,
and therefore have types whose equivalence relations are both equality; and second, that equality is preserved by
many of our combinators including all of the rational operators, permute, sequential composition, and even (on
the non-quotiented side) the left and right quotient operators. These observations suggest a coarse classification of



equivalence relations into two sorts:
τ ::= Identity | Any

We can now restrict the typing rules for our combinators to only allow sequential composition, quotienting, and
union of types whose equivalence relation type is Identity . Although this restriction seems draconian (it disallows
many q-lenses that are valid according to the typing rules presented in earlier sections), it turns out to be surprisingly
successful in practice—we have not needed anything more to write many thousands of lines of demo applications.
The reasons for this are twofold. First, is that it allows two q-lenses to be composed, whenever the uses of lquot are
all in the lens on the left and the uses of rquot on the right, a very common case. And second, it allows arbitrary
q-lenses (with any equivalences) to be concatenated as long as the result is not further composed, quotiented, or
unioned—another very natural idiom. This is the typechecking algorithm currently implemented in Boomerang.

We can (at least in theory) go further by replacing the Identity sort with a tag carrying an arbitrary rational
function f (i.e., a function computable by a finite state transducer):

τ ::= Rational of f | Any

Equivalence relations induced by rational functions are a large class that includes nearly all of the equivalence
relations that can be formed using our combinators—everything except q-lenses constructed from canonizers based
on sort and permute. Moreover, we can decide equivalence for these relations.

7.1 Definition: Let f ∈ A −→ B be a rational function. Denote by ∼f the relation {(x, y) ∈ A × A | f(x) =
f(y)}.

7.2 Lemma: Let f ∈ A −→ B and g ∈ A −→ C be rational and surjective functions. Define a rational relation
h ⊆ C ×B as (f ◦ g−1). Then (∼g ⊆ ∼f ) iff h is functional.

Proof: Let’s expand the the definition of h

h(c) = {f(a) | a ∈ A and g(a) = c}

Observe that, by the surjectivity of g we have h(c) 6= ∅.
(⇒) Suppose that ∼g ⊆ ∼f .
Let b, b′ ∈ h(c). Then by the definition of h, there exist a, a′ ∈ A with b = f(a) and b′ = f(a′) and

g(a) = c = g(a′). We have that a ∼g a′, which implies that a ∼f a′, and so b = b′. Since b and b′ were arbitrary
elements of h(c), we conclude that h is functional.

(⇐) Suppose that h is functional.
Let a, a′ ∈ A with a ∼g a′. Then there exists c ∈ C such that g(a) = g(a′) = c. By the definition of h, and our

assumption that h is functional, we have that f(a) = h(c) = f(a′) and so a ∼f a′. Since a and a′ were arbitrary,
we conclude that ∼g ⊆ ∼f . �

7.3 Corollary: Let f and g be rational functions. It is decidable whether ∼f = ∼g.

Proof: Recall that rational relations are closed under composition and inverse. Observe that ∼f = ∼g iff both
f ◦ g−1 and g ◦ f−1 are functional. Since these are both rational relations, the result follows using the decidability
of functionality for rational relations (Blattner 1977). �

The condition mentioned in union can also be decided using an elementary construction on rational functions.
Thus, this finer system gives decidable type checking for a much larger set of q-lenses. Unfortunately, the construc-
tions involved seem quite expensive to implement.

We are currently investigating the decidability of extensions capable of handling our full set of canonizers,
including those that permute and sort data.



8. Experience: Q-lenses for Genomic Data
In this section we describe our experiences using Boomerang to implement a q-lens that maps between XML and
ASCII versions of the UniProtKB/Swiss-Prot protein sequence database. We described a preliminary version of
this lens in previous work (Bohannon et al. 2008), but while that lens handled the essential data in each format,
it did not handle the full complexity of either. On the XML side, it only handled databases in a certain canonical
form—e.g., with attributes in a particular order. On the ASCII side, it did not conform to the UniProt conventions
for wrapping long lines, and it did not handle duplicated or aggregated data. We initially considered implementing
custom canonizers (in OCaml) for the ASCII format, but this turned out to be quite complicated due to the slightly
different formatting details used to represent lines for various kinds of data. Re-engineering this program as a q-
lens was a big improvement. Our new version, about 4200 lines of Boomerang code, handles both formats fully,
using just the canonizer and q-lens primitives described above. In this section we sketch some highlights from this
development, focusing on interesting uses of canonizers. Along the way, we describe our generic XML library,
which encapsulates many details related to processing and transforming XML trees bidirectionally.

Let’s start with a very simple lens that gives a taste of programming with q-lenses in Boomerang, focusing on the
canonization of XML trees. In the XML presentation of UniProt databases, patent citations are represented as XML
elements with three attributes:

<citation type="patent" date="1990-09-20"
number="WO9010703"/>

In ASCII, they appear as RL lines:

RL Patent number WO9010703, 20-SEP-1990.

The bidirectional between these formats is essentially bijective—the patent number can be copied verbatim from the
attribute to the line, and the date just needs to be transformed from YYYY-MM-DD to DD-MMM-YYYY—but, because
the formatting of the element may include extra whitespace and the attributes may appear in any order, building a
lens that maps between all valid representations of patent citations in XML and ASCII formats is more complicated
than it might first seem.

A bad choice (the only choice available with just basic lenses) would be to treat the whitespace and the order of
attributes as data that should be explicitly discarded by the get function and restored by the put. This complicates
the lens, since it then has to explicitly manage all this irrelevant data. Slightly better would be to write a canonizer
that standardizes the representation of the XML tree and compose this with a lens that operates on the canonized
data to produce the ASCII form. But we can do even better by mixing together the functions of this canonizer and
lens in a single q-lens. (The code uses some library and auxiliary functions that are described later.)

let patent_xml : lens =
ins "RL " .
Xml.attr3_elt_no_kids NL2 "citation"
"type" ("patent" <-> "Patent number" . space)
"number" (escaped_pcdata . comma . space)
"date" date .

dot

This lens transforms concrete XML to abstract ASCII in a single pass. The first line inserts the RL tag and spaces
into the ASCII format. The second line is a library function from the Xml module that encapsulates details related
to the processing of XML elements. The first argument, a string NL2, is a constant representing the second level
of indentation. It is passed as an argument to an qdel instance that constructs the leading whitespace for the XML
element in the reverse direction. The second argument, citation, is the name of the element. The remaining
arguments are the names of the attributes and the lenses used for processing their corresponding values. These are
given in canonical order. Internally, the attr3_elt_no_kids function sorts the attributes to put them into this
order. The space, comma, and dot lenses insert the indicated characters; escaped_pcdata handles unescaping of
PCDATA; date performs the bijective transformation on dates illustrated above.



The next fragment demonstrates quotienting on the abstract ASCII side. In XML, taxonomic lineages of source
organisms are represented like this:

<lineage>
<taxon>Eukaryota</taxon>
<taxon>Lobosea</taxon>
<taxon>Euamoebida</taxon>
<taxon>Amoebidae</taxon>
<taxon>Amoeba</taxon>

</lineage>

In ASCII, these are flattened onto lines tagged with OC:

OC Eukaryota; Lobosea; Euamoebida; Amoebidae; Amoeba.

The code that converts between these formats is:

let oc_taxon : lens =
Xml.pcdata_elt NL3 "taxon" esc_pcdata in

let oc_xml : lens =
ins "OC " .
Xml.elt NL2 "lineage"
(iter_with_sep oc_taxon (semi . space)) .

dot

The first lens, oc_taxon, processes a single taxon element using a library function pcdata_elt that extracts
encapsulated PCDATA from an element. As in the previous example, the NL3 argument is a constant representing
canonical whitespace. The second lens, oc_xml, processes a lineage element. It inserts the OC tag into the ASCII
line and then processes the children of the lineage element using a generic library function iter_with_sep
that iterates its first argument using Kleene-star, and inserts its second argument between iterations. The dot lens
terminates the line.

The lineage for amoeba is compact enough to fit onto a single OC line, but most lineages are not:8

OC Eukaryota; Metazoa; Chordata; Craniata; Vertebrata;
OC Euteleostomi; Mammalia; Eutheria; Euarchontoglires;
OC Primates; Haplorrhini; Catarrhini; Hominidae; Homo.

The q-lens that maps between single-line OC strings produced by oc_xml and the final line-wrapped format:

let oc_q : canonizer =
columnize (atype oc_xml) " " "\nOC "

let oc_line : lens = rquot oc_xml oc_q

(The atype primitive extracts the abstract part of the type of a q-lens; ctype, used below, extracts the concrete
part.)

Lastly, let us look at two instances where data is duplicated. In a few places in the UniProt database, there is data
that is represented just once on the XML side but several times on the ASCII side. For example, the count of the
number of amino acids in the actual protein sequence for an entry is listed as an attribute in XML

<sequence length="262" ...>

but appears twice in ASCII, in the ID line...

ID GRAA_HUMAN Reviewed; 262 AA.

...and again in the SQ line:

SQ SEQUENCE 262 AA; 28969 MW;

8 To fit the human lineage into a single column, we have split lines longer than 45th column; in a real UniProt instance, the lines would be
split at the 75th column.



Using dup2, we can write a lens that copies the data from the XML attribute and onto both lines in the ASCII format.
The backwards direction of dup2 discards the copy on the ID line, a reasonable policy for this application.

Another place where duplication is needed is when data is aggregated. The ASCII format of the information
about alternative splicings of the gene is

CC -!- ALTERNATIVE PRODUCTS:
CC Event=Alternative initiation; Named isoforms=2;
CC Name=Long; Synonyms=Cell surface;
CC IsoId=P08037-1; Sequence=Displayed;
CC Name=Short; Synonyms=Golgi complex;
CC IsoId=P08037-2; Sequence=VSP_018801;

where the Named isoforms field in the second line is the count of the number of Name blocks that follow below.
The Boomerang code that generates these lines uses dup2 and count to generate the appropriate integer in the get
direction; in the reverse direction, it simply discards the integer generated by count.

9. Related Work
The idea of bidirectional transformations that work up to an equivalence relation is quite general. In this section, we
exploit the framework of quotient lenses to illuminate some previously proposed systems—XSugar (Brabrand et al.
2007), biXid (Kawanaka and Hosoya 2006), and X/Inv (Hu et al. 2004). The comparison with XSugar is the most
interesting, and we carry it out in detail, showing how a core fragment of XSugar can be translated into our notation.
The others are discussed more briefly.

9.1 XSugar
XSugar is a language for writing conversions between XML and ASCII formats. Conversions are specified using
pairs of intertwined grammars, in which the nonterminal names are shared and the right-hand side of each production
specifies both a string and an XML representation (separated by =). For instance, our composers example from the
introduction would be written as follows:

db : [comps cs] = <composers> [comps cs] </>
comps : [comp c] [comps cs] = [comp c] [comps cs]

: =
comp : [Name n] "," [Birth b] "-" [Death d] =

<composer>
<name> [Name n] </>
<years birth=[Birth b] death=[Death d]/>
<nationality> [Nationality] </> </>

(The pattern “: = ” used in the third line indicates that the list of composers can be empty in both formats.) XSugar
programs transform strings by parsing them according to one grammar and pretty printing the resulting parse tree
using the other grammar as a template. Additionally, on the XML side, the representation of trees is standardized
using a generic canonizer.

Well-formed XSugar programs are guaranteed to be bijective modulo an equivalence relation that captures XML
normalization, replacement of items mentioned on just one side of the grammar with defaults, and reordering of
order-insensitive data. Since every bijection is a lens (semantically), every XSugar program is trivially a q-lens.
However, it is not immediately clear that there should be a connection between XSugar and q-lenses at the level of
syntax, since XSugar programs are specified using variables and recursion, while q-lenses in our notation are written
using “point-free” combinators and no recursion.

To make the connection, we describe how to compile a core subset of XSugar into Boomerang. First, we identify
a syntactic restriction on XSugar grammars that ensures regularity. Second, we compile the individual patterns used
in XSugar grammars to lenses. Third, we apply a standard rewriting technique on grammars to eliminate recursion.
And finally, we quotient the resulting lens by a canonizer that standardizes the representation of XML trees.



XSugar productions are given by the following grammar

p ::= r : q1 : ... : qk

q ::= α∗ = β∗

α ::= "s" | [R] | [r z]
β ::= α | <t(n=α)∗>β∗</>

where productions p contain a non-terminal r and a set of patterns q1 to qk, each of the form α∗ = β∗. The αs describe
the ASCII format and the βs describe the XML format. The symbols used in patterns include literals "s", unnamed
regular expressions [R], non-terminals binding variables [r z], and XML elements <t n1=α1...nk=αk>β

∗</>.
(The full XSugar language also includes several extensions, including XML namespaces, precedence declarations,
and unordered productions. We discuss unordered productions below and ignore the others.) Well-formed XSugar
programs satisfy two syntactic properties: every variable (i.e., z in [r z]) occurring in a pattern is used exactly once
on each side of the pattern, and productions are unambiguous. (Ambiguity of context-free languages is undecidable,
but the XSugar system employs a conservative algorithm that is said to perform well in practice.)

The first step in our compilation imposes an additional syntactic restriction on grammars to ensure regularity.9

Recall that a language is regular iff it can be defined by a right-linear grammar. However, requiring that every non-
terminal appear in the right-most position is clunky and needlessly restrictive; we can use a slightly less draconian
restriction in which productions are sorted into mutually recursive groups of rules. Within each group, recursion
must be right-linear, but references to non-terminals defined in earlier (in the order of the topological sort) recursion
groups may be used freely. We construct the recursion groups by building the graph of references to non-terminals
between rules, collapsing cycles by coalescing mutually-dependent groups, and performing a topological sort. The
recursion groups for the composers example are as follows:

{comp} < {comps} < {db}

It turns out that, since XSugar patterns are linear in their variables, imposing right-linearity separately on the ASCII
and XML portions of patterns ensures a kind of joint right-recursion: every pattern has one of two forms

α1...αk =β1...βl or
α1...αk [ri z] =β1...βl [ri z],

where each non-terminal except for the final, optional [ri z] refers to a rule defined in a preceding recursion group.
This restriction rules out many XSugar programs—in particular, it obviously cannot handle XML with recursive
schemas—but still captures a large class of useful transformations, including most of the demos in the XSugar
distribution.

Next, we compile patterns to lenses. There are two cases. For non-recursive patterns, we construct a lens that
maps between the XML and ASCII patterns using permute . For example, the comp rule in the example compiles to
the lens

permute [1;2;3;4;5;6;7]
[("<composer><name>" <-> ""); (copy Name);
("</><years birth=" <-> ","); (copy Birth);
(" death=" <-> "-"); (copy Death);
(("/><nationality> . Nationality . "</></>") <-> "")]

where Name, Birth, and Death are bound to the appropriate regular expressions and [1;2;3;4;5;6;7] represents
the identity permutation. Note that since both sides of a pattern may contain regular expressions, it is essential that
9 This is essential—while full XSugar can be used to describe context-free languages, the types of string lenses are always regular, so without
this restriction we would be trying to compile a context-free formalism into a regular one, which is clearly not possible! Note that we are not
claiming that our q-lens syntax subsumes all of the functionality of XSugar, but rather illustrating the generality of our account of bidirectional
programming modulo equivalences by drawing a connection with a completely different style of syntax for bidirectional programs.



the <-> be a q-lens (the basic lens variant of <-> only allows a string on the abstract side.) For recursive patterns,
we compile the prefix of the pattern in the same way, but associate it with the final non-terminal in the right-most
position. The result, after compiling each pattern, is a grammar in which the terminal symbols are lenses and any
recursive non-terminals are right-recursive. For example, the comps rule compiles to the following:

comps : (permute [1] [comp]) comps
: permute []

(The second lens, a 0-ary permutation, is equivalent to copy ε.)
The final step in the construction is to replace right-recursion by iteration, using a generalization of a standard

construction on grammars. We calculate the lens for each non-terminal in a recursion group separately. There
are again two cases. If ri : p1...pk is the only non-terminal in the group, then we partition the patterns into two
sets: recursive patterns go into S1, and non-recursive patterns into S2. We then construct the following lens for ri:(
∪(k ri)∈S1

k
) ∗· (∪l∈S2 l). It is easy to see that this lens describes the same transformation as ri. For the case where

the recursion group contains more than one non-terminal, we eliminate one non-terminal by replacing references to
it with a similarly constructed lens, and then repeat the compilation. For the composers example, this compilation
produces the following lenses (after replacing trivial permutations with concatenations):

let comp : lens =
("<composer><name>" <-> """) . (copy Name) .
("</><years birth=" <-> ",") . (copy Birth) .
(" death=" <-> "-") . (copy Death) .
("/><nationality>" . Nationality . "</></>" <-> """)

let comps : lens = comp* . copy ""

let db : lens =
(del "<composers>" <-> "") . comps . ("</>" <-> "")

One additional restriction of the translation should be mentioned. The typing rules for q-lenses check unambiguity
locally—every concatenation and iteration—and demand that unions be disjoint. Our compilation only produces
well-typed lenses for grammars that are “locally unambiguous” and “locally disjoint” in this sense.

The lenses produced by this compilation expect XML trees in a canonical form. To finish the job, we need to
build a canonizer that standardizes the representation of input trees. We can do this with an analogous compilation
that only uses the XML side of the grammar. For example, a canonizer for comp is

del WS . copy "<composer>" . del WS .
copy "<name>" . copy Name . "</name>" <-> "</>" .
del WS . copy "<years" . del WS .
sort2
(ins " " . copy ("birth=\"" . Birth . "\"") .

del WS)
(ins " " . copy ("death=\"" . Death . "\"") .

del WS) .
copy "/>" . del WS .
copy "<nationality>" . copy Nationality .
"</nationality>" <-> "</>"

where we have elided the coercions from q-lenses to canonizers, and where WS indicates whitespace. The final q-lens
is built by quotienting the compiled lens by this canonizer.

XSugar also supports productions where patterns are tagged as unordered. These result in transformations that
canonize order. We believe that an extension to unordered patterns is feasible using additional sort primitives in the
compiled canonizer, but we leave this extension as future work.



9.2 biXid
The biXid language (Kawanaka and Hosoya 2006) specifies bidirectional conversions between pairs of XML
documents. As in XSugar, biXid transformations are specified using pairs of grammars, but biXid grammars may be
ambiguous and may contain non-linear variable bindings. These features are central to biXid’s design. They are used
critically, for example, in transformations such as the following, which converts between different representations
of browser bookmark files.

relation contents_reorder =
(var nb | var nf)* <-> (var xb)*, (var xf)*

where bookmark(nb, xb), folder(nf,xf)

One transformation, read from right to left, parses a sequences of bookmarks (nb) or folders (nf), interleaved in
any order, converts them to the other format using using bookmark and folder transformations, and constructs a
sequence in which the bookmarks (xb) appear before the folders (xf). The other transformation, read from left to
right, parses a sequence consisting of bookmarks followed by folders, converts each of these to the first format, and
then produces a sequence where bookmarks and folders may be freely interleaved (in fact, the biXid implementation
does preserve the order of parsed items—i.e., the constructed sequence has bookmarks followed by folders—but this
behavior is not forced by the semantics.) Ambiguity is also used in biXid to generate data that only appears on one
side (analogous to XSugar’s “unnamed” items [R]) and to handle data that may be represented in multiple ways—
e.g., string values that can be placed either in an attribute or as PCDATA in a nested element.

In principle, we could identify a syntactically restricted subset of biXid, and compile it to Boomerang like we
did for XSugar. However, since the computation models are so different—in particular, ambiguity is fundamental
to biXid—the restrictions needed to make this work would be heavy and would likely render the comparison
uninteresting. Instead, we discuss informally how each of the idioms requiring ambiguity, as identified by the
designers of biXid, can be implemented instead using q-lenses and canonizers. Ambiguity arising from “freedom
of ordering,” as in the bookmarks transformation, can be handled using a q-lens that canonizes the order of the
interleaved pattern using sort. Ambiguity due to unused data can be handled using combinators like qins, qdel and
E ↔ D. Finally, ambiguity due to multiple representations of data can be handled by canonizing the various
representations; for each of the examples discussed in the biXid paper, these canonizers are simple and local
transformations.

9.3 Languages with Duplication
Bidirectional languages capable of duplicating data in the get direction, either by explicit combinators or implicitly
by non-linear uses of variables, have been the focus of recent work by the Programmable Structured Documents
group at Tokyo.

In early work, Mu et al. (2004) designed an injective language called Inv with a primitive duplication combinator
and demonstrated that it satisfies variants of the basic lens laws—our GETPUT and the more relaxed PUTGETPUT

law that we showed in the introduction. A key aspect of their approach is that transformations manipulate tagged
values that carry edit annotations. The idea is that, using these annotations, the put direction of the duplication
operator can check if a copied value has been modified (by looking for edit tags in the data), and, if so, incorporate
these changes in its result. The semantics of other primitives in Inv are generalized to propagate tagged values.
In particular, using a synchronization primitive for list values, they demonstrate that it is possible to achieve a
sophisticated backwards semantics for several intricate operations on lists, even in the presence of duplication. Inv
was later used as the foundation for a high-level bidirectional language for tree transformations, called X, and a
structured document editor (Hu et al. 2004; Mu et al. 2006).

A second line of work from the same group investigates bidirectional languages with variable binding. Languages
that allow unrestricted occurrences of variables implicitly support duplication, since data can be copied by programs
that use a variable several times. The goal of this work is to develop a bidirectional semantics for XQuery (Liu et al.
2007). As in the earlier work, they propose relaxed variants of the lens laws and develop a semantics based on
sophisticated propagation of annotated values.



One possible connection between their work and q-lenses is an informal condition proposed in the journal version
of Hu et al. (2004). This is formulated in terms of an ordering on edited values that captures when one value is “more
edited” than another. They propose strengthening the laws to require that composing put and get produce an abstract
structure that is more edited in this sense, calling this property update preservation. We hope to investigate the
relationship between our q-lens PUTGET law and their PUTGETPUT plus update preservation. (The comparison
may prove difficult to make, however, because our framework is “state based”—the put function only sees the state
of the data structure resulting from some set of edits, not the edits themselves—while theirs assumes an “operation-
based” world in which the locations and effects of edit operations are explicitly indicated in the data.)

10. Integration with Dictionary Lenses
So far, we have focused on the refinement of basic lenses to q-lenses. The lenses used in Boomerang, however, are
actually more complicated structures called dictionary lenses. In this section we argue that it makes sense to mix
the two flavors of lenses in the same language by demonstrating how dictionary lenses can also be enhanced with
quotienting.

Dictionary lenses are designed to manipulate data that may be reordered. Basic lenses have put functions that
align data in the concrete and abstract structures by position—e.g., when processing a list of structures using Kleene-
star, a dictionary lens matches up “chunks” of the concrete and abstract by “keys.” Dictionary lenses are specified
using special combinators that delineate certain parts of the data as reorderable “chunks,” and a portion of each
chunk as a “key”. The put function works by parsing up its concrete argument into a dictionary structure, where
chunks are organized by key, and a “skeleton” structure. The put function rebuilds a new concrete string, using both
the information in the skeleton and the chunks in the dictionary. Critically, when the updated abstract structure is
obtained by reordering chunks, it finds the corresponding chunks in the dictionary.

The formal definition of a dictionary lens from C to A with skeleton type S and dictionary type D, also written
C

S,D⇐⇒ A, is a structure with components:

l.get ∈ C −→ A
l.put ∈ A −→ S ×D −→ C ×D

l.create ∈ A −→ D −→ C ×D
l.parse ∈ C −→ S ×D

l.key ∈ A −→ K

The important thing to note is the parse function, which takes a concrete string and produces a dictionary and a
“skeleton” structure that remains after the chunks are removed, and the put function, which operates on a skeleton
and dictionary and produces the new concrete string and the dictionary that remains after removing any chunks
needed to produce the concrete string. We refer the reader to the original Boomerang paper (Bohannon et al. 2008)
for more details.

The way to see how these functions work, is to see how one can package up a dictionary lens l as a basic lens l:

l.get c = l.get c

l.put a c = π1(l.put a (l.parse c))
l.create a = π1(l.create a {})

The symbol {} denotes the empty dictionary. Note that the parse and put function are evaluated in strict sequence;
this separation of phases facilitates the global reordering of concrete chunks that is performed by the put function.

Just as we refined basic lenses to q-lenses, we can revise dictionary lenses to qd-lenses. The GETPUT law for
quotient-dictionary lenses (the notation ++ denotes the operation that concatenates two dictionary structures):

s, d′ = l.parse c a ∼A l.get c
l.put a (s, (d′ ++ d)) = c′, d′′

c ∼C c′ and d′′ = d
(GETPUT)



states that the put function restores information to c up to ∼C , and also that it consumes the dictionary constructed
from c exactly.

Similarly, we can revise the quotienting operators to wrap the arguments for the functional components, including
parse and key.

l ∈ C/∼C
S,D⇐⇒ B/∼B q ∈ A B/∼B

a ∼A a′ iff q.canonize a ∼B q.canonize a′

rquot l q ∈ C/∼C
S,D⇐⇒ A/∼A

get c = q.choose (l.get c)
put a (s, d) = l.put (q.canonize a) (s, d)
create a d = l.create (q.canonize a) d
parse c = l.parse c
key a = l.key (q.canonize a)

l ∈ B/∼B
S,D⇐⇒ A/∼A q ∈ C B/∼B

c ∼C c′ iff q.canonize c ∼B q.canonize c′

lquot q l ∈ C/∼C
S,D⇐⇒ A/∼A

get c = l.get (q.canonize c)
put a (s, d) = q.choose (l.put a (s, d))
create a d = q.choose (l.create a d)
parse c = l.parse (q.canonize c)
key a = l.key a

We can also use a dictionary lenses l as a canonizer by composing the conversion l, which packages a dictionary
lens up with the interface of a basic lens, with canonizer , which maps a basic lens to a canonizer. Note that this
conversion produces a canonizer that does not use dictionaries at all (the create function is supplied with {}); hence,
dictionary lenses do not behave in surprising ways when they are used as canonizers.

Besides the lens laws, dictionary lenses also obey an additional law, which captures, abstractly, the fact that
they should be oblivious to the order of chunks. It is phrased in terms of an equivalence relation ∼R that identifies
concrete strings that differ only in key-respecting reorderings of chunks. With quotients, this new law is as follows:

c ∼R c′

l.put a c = l.put a c′
(EQUIVPUT)

(Note that EQUIVPUT is stated using the basic lens version of l.) There are two equivalence relations on C in play—
-∼C and ∼R. These relations capture orthogonal aspects of bidirectional transformations on ordered data: the first
captures irrelevant differences between concrete strings, while the second describes which data can be reordered.
Every quotient-dictionary lens program constructed using our combinators obeys EQUIVPUT for a ∼R that can be
read off from its description.

Finally, we note that the interaction of dictionaries across sequential composition is not yet well understood.
However, the behavior of composition in some simple common cases—e.g., when only one of l or k in l ;k contains
“chunks”—is clear.

11. Conclusion
Q-lenses generalize basic lenses by allowing their forward and backward transformations to treat certain data as
“ignorable.” This extension, while modest at the semantic level, turns out have an elegant syntactic story based
on canonizers and quotienting operators—a story that is both parsimonious (the same core primitives are used as
lenses and as canonizers) and compositional (unlike previous approaches, where canonization is kept at the edges of
transformations, our canonizers can be arbitrarily interleaved with the processing of data). Moreover, the additional
flexibility offered by q-lenses make it possible to define many useful primitives such as duplication and sorting.

Our experience suggests that canonizers and q-lenses are essential for handling the details of real-world ad hoc
data formats. Although many of these details appear minor at first sight, attempting to sidestep them makes the
transformations we write essentially useless. Quotient lenses are the critical piece of technology that makes it
possible to build precisely the bidirectional transformations we want. Thus, q-lenses and canonizers fill a much-
needed gap between theory and practice of bidirectional languages.

Naturally, there are still many interesting issues left to be investigated. On the theoretical side, we would like
to understand better how to characterize the set of programs for which the simple, coarse type analysis described
in Section 7 is sufficient, and whether this simple analysis can be refined to admit more programs without going



as far as the very expensive analysis in terms of rational functions. We would also like to investigate q-lenses for
other structures besides strings, such as trees. On the engineering side, we are working on scaling up the Boomerang
implementation to handle large datasets such as full-size (1Gb) UniProt databases. In particular, we believe it would
be useful to have an algebraic theory of program equivalence for q-lenses as a basis for an optimizing compiler.
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A. Quotient Lens and Canonizer Proofs
This technical appendix contains the proofs for each of the results in our development, including proofs that each
our primitive q-lenses and canonizers inhabit their declared types. For each definition, we repeat its type, restate the
lemma, and give the proof.

l ∈ C ⇐⇒ A

lift l ∈ C/= ⇐⇒ A/=

3.1 Lemma: lift l ∈ C/= ⇐⇒ A/=

Proof:
GETEQUIV: If c = c′ then (lift l).get c = (lift l).get c′ trivially.
PUTEQUIV: If a = a′ and c = c′ then (lift l).put a c = (lift l).get a′ c′ trivially.
CREATEQUIV: If a = a′ then (lift l).create a = (lift l).create a′ trivially.
GETPUT: Follows trivially by (the basic lens version of) GETPUT for l.
PUTGET: Follows trivially by (the basic lens version of) PUTGET for l.
CREATEGET: Follows trivially by (the basic lens version of) CREATEGET for l. �

q ∈ C B/∼B l ∈ B/∼B ⇐⇒ A/∼A

c ∼C c′ iff q.canonize c ∼B q.canonize c′

lquot q l ∈ C/∼C ⇐⇒ A/∼A

A.2 Lemma: lquot q l ∈ C/∼C ⇐⇒ A/∼A

Proof:
GETEQUIV: Let c, c′ ∈ C with c ∼C c′. By the definition of ∼C we have

q.canonize c ∼B q.canonize c′

We calculate as follows
(lquot q l).get c

= l.get (q.canonize c)
∼A l.get (q.canonize c′) by GETEQUIV for l
= (lquot q l).get c′

to obtain the required equivalence.
PUTEQUIV: Let a, a′ ∈ A and c, c′ ∈ C with a ∼A a′ and c ∼C c′. We will prove that

(lquot q l).put a c ∼C (lquot q l).put a′ c′

by showing that
q.canonize ((lquot q l).put a c) ∼B q.canonize ((lquot q l).put a′ c′)

As in the previous case, by the definition of ∼C we have

q.canonize c ∼B q.canonize c′

Using this fact, we calculate as follows

q.canonize ((lquot q l).put a c)
= q.canonize (q.choose (l.put a (q.canonize c)))
∼B l.put a (q.canonize c) by RECANONIZE for q
∼B l.put a′ (q.canonize c′) by PUTEQUIV for l
∼B q.canonize (q.choose (l.put a′ (q.canonize c′))) by RECANONIZE for q

= q.canonize ((lquot q l).put a′ c′)



(Note that in this proof, and throughout the rest of the paper, we silently use elementary facts about equivalence
relations, such as the transitivity of ∼B in the reasoning above.) Using this equivalence, and the definition of ∼C ,
we then obtain the required equivalence.
CREATEQUIV: Analogous to the previous case (using CREATEEQUIV for l instead of PUTEQUIV).
GETPUT: Let c ∈ C. We will prove that

(lquot q l).put ((lquot q l).get c) c ∼C c

by showing that
q.canonize ((lquot q l).put ((lquot q l).get c) c) ∼B q.canonize c

We calculate as follows

q.canonize ((lquot q l).put ((lquot q l).get c) c)
= q.canonize (q.choose (l.put (l.get (q.canonize c)) (q.canonize c)))
∼B l.put (l.get (q.canonize c)) (q.canonize c) by RECANONIZE for q
∼B q.canonize c by GETPUT for l

and obtain the required equivalence.
PUTGET: Let a ∈ A and c ∈ C. By RECANONIZE for q we have

q.canonize (q.choose (l.put a (q.canonize c))) ∼B l.put a (q.canonize c)

Using this fact, we calculate as follows:

(lquot q l).get ((lquot q l).put a c)
= l.get (q.canonize (q.choose (l.put a (q.canonize c))))
∼A l.get (l.put a (q.canonize c)) by GETEQUIV for l
∼A a by PUTGET for l

and obtain the required equivalence.
CREATEGET: Analogous to the previous case (using CREATEGET for l instead of PUTGET). �

l ∈ C/∼C ⇐⇒ B/∼B q ∈ A B/∼B

a ∼A a′ iff q.canonize a ∼B q.canonize a′

rquot l q ∈ C/∼C ⇐⇒ A/∼A

A.3 Lemma: rquot l q ∈ C/∼C ⇐⇒ A/∼A

Proof:
GETEQUIV: Let c, c′ ∈ C with c ∼C c′. We will prove that

(rquot l q).get c ∼A (rquot l q).get c′

by showing that
q.canonize ((rquot l q).get c) ∼B q.canonize ((rquot l q).get c′)

We calculate as follows

q.canonize ((rquot l q).get c)
= q.canonize (q.choose (l.get c))
∼B l.get c by RECANONIZE for q
∼B l.get c′ by GETEQUIV for l
∼B q.canonize (q.choose (l.get c′)) by RECANONIZE for q

= q.canonize ((rquot l q).get c′)



and obtain the required equivalence.

PUTEQUIV: Let a, a ∈ A and c, c′ ∈ C with a ∼A a′ and c ∼C c′. By the definition of ∼A, we have

q.canonize a ∼B q.canonize a′

Using this fact, we calculate as follows

(rquot l q).put a c
= l.put (q.canonize a) c
∼C l.put (q.canonize a′) c′ by PUTEQUIV for l
= (rquot l q).put a′ c′

and obtain the required equivalence.

CREATEQUIV: Analogous to the previous case (using CREATEEQUIV for l instead of PUTEQUIV).

GETPUT: Let c ∈ C. We calculate as follows

(rquot l q).put ((rquot l q).get c) c
= l.put (q.canonize (q.choose (l.get c))) c
∼C l.put (l.get c) c by RECANONIZE for q and PUTEQUIV for l
∼C c by GETPUT for l

and obtain the required equivalence.

PUTGET: Let a ∈ A and c ∈ C. We will show that

(rquot l q).get ((rquot l q).put a c) ∼A a

by showing that
q.canonize ((rquot l q).get ((rquot l q).put a c)) ∼B q.canonize a

We calculate as follows

q.canonize ((rquot l q).get ((rquot l q).put a c))
= q.canonize (q.choose (l.get (l.put (q.canonize a) c)))
∼B l.get (l.put (q.canonize a) c) By RECANONIZE for q
∼B (q.canonize a) By PUTGET for l

and obtain the desired equivalence.

CREATEGET: Analogous to the previous case (using CREATEGET for l instead of PUTGET). �

q ∈ A B/∼B ∼B refines ∼B′

q ∈ A B/∼B′

A.4 Lemma: q ∈ A B/∼B′

Proof:
Let b ∈ B. As q ∈ A B/∼B we have that q.canonize (q.choose b)∼B b. Since∼B refines∼B′ we immediately
have that q.canonize (q.choose b) ∼B′ b, as required. �

q1 ∈ C B/= q2 ∈ B A/=
(q1; q2) ∈ C A/=

A.5 Lemma: l ; k ∈ C/∼C ⇐⇒ A/∼A



Proof:
GETEQUIV: Let c, c′ ∈ C with c ∼C c′. We have the following equivalences

(l ; k).get c
= k.get (l.get c)
∼A k.get (l.get c′) by GETEQUIV for l and k
= (l ; k).get c′

as required.
PUTEQUIV: Let a, a ∈ A and c, c′ ∈ C with a ∼A a′ and c ∼C c′. We have the following equivalences

(l ; k).put a c
= l.put (k.put a (l.get c)) c
∼C l.put (k.put a′ (l.get c′)) c′ by GETEQUIV for l and PUTEQUIV for l and k
= (l ; k).put a′ c′

as required.
CREATEQUIV: Analogous to the previous case (using CREATEEQUIV for l and k).
GETPUT: Let c ∈ C. We calculate as follows

(l ; k).put ((l ; k).get c) c
= l.put (k.put (k.get (l.get c)) (l.get c)) c
∼C l.put (l.get c) c by GETPUT for k and PUTEQUIV for l
∼C c by GETPUT for l

and obtain the required equivalence.
PUTGET: Let a ∈ A and c ∈ C. We calculate as follows

(l ; k).get ((l ; k).put a c)
= k.get (l.get (l.put (k.put a (l.get c)) c))
∼A k.get (k.put a (l.get c)) by PUTGET for l and GETEQUIV for k
∼A a by PUTGET for k

and obtain the required equivalence.
CREATEGET: Analogous to the previous case, using CREATEGET for l and k. �

l ∈ C/∼C ⇐⇒ B/∼B

canonizer l ∈ C B/∼B

A.6 Lemma: canonizer l ∈ C B/∼B

Proof:
Let b ∈ B. We have

(canonizer l).canonize ((canonizer l).choose b)
= l.get (l.create b)
∼B b by CREATEGET for l

as required. �

C1·!C2 A1·!A2

l1 ∈ C1/∼C1 ⇐⇒ A1/∼A1

l2 ∈ C2/∼C2 ⇐⇒ A2/∼A2

∼C = ∼C1 ·∼C2 ∼A = ∼A1 ·∼A2

l1·l2 ∈ C1·C2/∼C ⇐⇒ A1·A2/∼A



A.7 Lemma: l1·l2 ∈ (C1·C2)/∼C ⇐⇒ (A1·A2)/∼A

Proof:
GETEQUIV: Let c, c′ ∈ C1·C2 with c∼C c′. Then there exist unique c1, c

′
1 ∈ C1 and c2, c

′
2 ∈ C2 such that c = c1·c2

and c′ = c′1·c′2 and c1 ∼C1 c′1 and c2 ∼C2 c′2.
The equivalence

(l1·l2).get c
= (l1.get c1) · (l2.get c2)
∼A (l1.get c′1) · (l2.get c′2)
= (l1·l2).get c′

follows from GETEQUIV for l1 and l2 and the definition of ∼A.

PUTEQUIV: Let c, c′ ∈ C1·C2 and a, a′ ∈ A1·A2. Then there exist unique c1, c
′
1 ∈ C1 and c2, c

′
2 ∈ C2 such that

c = c1·c2 and c′ = c′1·c′2 and c1 ∼C1 c′1 and c2 ∼C2 c′2. There also exist unique a1, a
′
1 ∈ A1 and a2, a

′
2 ∈ A2 such

that a = a1·a2 and a′ = a′1·a′2 and a1 ∼A1 a′1 and a2 ∼A2 a′2.
The equivalence

(l1·l2).put a c
= (l1.put a1 c1) · (l2.put a2 c2)
∼C (l1.put a′1 c′1) · (l2.put a′2 c′2)
= (l1·l2).put a′ c′

follows from PUTEQUIV for l1 and l2 and the definition of ∼C .

CREATEQUIV: Analogous to the previous cases (using CREATEEQUIV for l1 and l2).

GETPUT: Let c ∈ C1·C2 and let a ∈ A1·A2 with a = (l1·l2).get c. As C1 and C2 are unambiguously concatenable,
there exist unique c1 ∈ C1 and c2 ∈ C2 such that c = c1 · c2. Similarly, there exist unique a1 ∈ A1 and a2 ∈ A2

such that a = a1 · a2. With the definition of (l1·l2).get we also have that a1 = l1.get c1 and a2 = l2.get c2.
Using these facts, we calculate as follows

(l1·l2).put ((l1·l2).get c) c
= (l1·l2).put (a1·a2) (c1·c2)
= (l1·l2).put a c
= (l1.put a1 c1) · (l2.put a2 c2)
= (l1.put (l1.get c1) c1) · (l2.put (l2.get c2) c2)
∼C c1 · c2 By GETPUT for l1 and l2 and definition of ∼C

= c

and obtain the required equivalence.

PUTGET: Let a ∈ A1·A2 and c ∈ C1·C2. As A1 and A2 are unambiguously concatenable, there exist unique
a1 ∈ A1 and a2 ∈ A2 such that a = a1 · a2. Similarly, there exist unique c1 ∈ C1 and c2 ∈ C2 such that c = c1 · c2.

Using these facts, we calculate as follows (ran(−) denotes the codomain of a function):

(l1·l2).get ((l1·l2).put a c)
= (l1·l2).get ((l1·l2).put (a1·a2) (c1·c2))
= (l1·l2).get ((l1.put a1 c1) · (l2.put a2 c2))
= (l1.get (l1.put a1 c2)) · (l1.get (l1.put a2 c2)) as ran((l1·l2).put) = C1·C2 and C1·!C2

∼A a1 · a2 By PUTGET for l1 and l2 and definition of ∼A

= a

and obtain the required equivalence.

CREATEGET: Analogous to the previous case (using CREATEGET for l1 and l2). �



l ∈ C/∼C ⇐⇒ A/∼A C !∗ A!∗

l∗ ∈ C∗/∼∗C ⇐⇒ A∗/∼∗A

A.8 Lemma: l∗ ∈ C∗/(∼C)∗ ⇐⇒ A∗/(∼A)∗

Proof:
GETEQUIV: Let c, c′ ∈ C∗ with c ∼C

∗ c′. By the definition of ∼C
∗ there exist c1, ..., cn ∈ C with c = c1 ···cn and

c′1, ..., c
′
n with c′ = c′1 ···c′n and ci ∼C c′i for i ∈ {1, ..., n}.

The equivalence
(l∗).get c

= (l.get c1)···(l.get cn)
∼A

∗ (l.get c′1)···(l.get c′n)
= (l∗).get c′

follows using GETEQUIV for l and the definition of ∼A
∗.

PUTEQUIV: Let a, a′ ∈ A∗ with a ∼A
∗ a′ and c, c′ ∈ C∗ with c ∼C

∗ c′. By the definition of ∼A
∗ there exist

a1, ..., an ∈ A and a′1, ..., a
′
n ∈ A with a = a1 ···an and a′ = a′1 ···a′n and ai ∼A a′i for i ∈ {1, ..., n}. Similarly, by

the definition of ∼C there exist c1, ..., cm ∈ C and c′1, ..., c
′
m ∈ C with c = c1 ···cm and c′ = c′1 ···c′m with ci ∼C c′i

for i ∈ {1, ...,m}. The equivalence

(l∗).put a c
= c′′1 ···c′′n

where c′′i = l.put ai ci for i ∈ {1, ...,max(m,n)}
and c′′i = l.create ai for i ∈ {max(m,n) + 1, ...,m}

∼C
∗ c′′′1 ···c′′′n

where c′′′i = l.put a′i c′i for i ∈ {1, ...,max(m,n)}
and c′′′i = l.create a′i for i ∈ {max(m,n) + 1, ...,m}

= (l∗).put a′ c′

follows using PUTEQUIV and CREATEEQUIV for l and the definition of ∼C .
CREATEQUIV: Analogous to the previous cases (using CREATEEQUIV for l).
GETPUT: Let c ∈ C∗. By C !∗ there exist unique c1, ..., cn ∈ C such that c = c1 ···cn. By the definition of (l∗).get
we have (l∗).get c = (l.get c1)···(l.get cn).

Using these facts, we calculate as follows

(l∗).put ((l∗).get c) c
= (l.put (l.get c1) c1)···(l.put (l.get cn) cn) as A!∗

∼C
∗ c1 ···cn By GETPUT for l and definition of ∼C

= c

and obtain the required equivalence.
PUTGET: Let a ∈ A∗ and c ∈ C∗. By A!∗, there exist unique a1, ..., am ∈ A such that a = a1 · am. Likewise, by
C !∗ there exist unique c1, ..., cn ∈ C such that c = c1 ···cn.

We calculate as follows

(l∗).get ((l∗).put a c)
= (l∗).get (c′1 ···c′m) where c′i = l.put ai ci for i ∈ {1, ...,max(m,n)}

and c′i = l.create ai for i ∈ {max(m,n) + 1, ...,m}
= (l1.get (c′1))···(l1.get (c′m)) as ran(l.put) = ran(l.create) = C

and C !∗ and definition (l∗).get
∼A

∗ a1 ···a2 by PUTGET and PUTCREATE for l and definition of ∼A

= a



and obtain the required equivalence.

CREATEGET: Analogous to the previous case (using PUTCREATE for l.) �

l1 ∈ C1/∼C1 ⇐⇒ A1/∼A1

l2 ∈ C2/∼C2 ⇐⇒ A2/∼A2

C1 ∩ C2 = ∅
a ∼A a′ ∧ a ∈ A1 ∩A2 implies a∼A1a

′ ∧ a∼A2a
′

∼C = ∼C1 ∪ ∼C2 ∼A = ∼A1 ∪ ∼A2

l1 | l2 ∈ C1 ∪ C2/∼C ⇐⇒ A1 ∪A2/∼A

A.9 Lemma: l1 | l2 ∈ C1 ∪ C2/∼C ⇐⇒ A1 ∪A2/∼A

Proof:
GETEQUIV: Let c, c′ ∈ C1 ∪ C2 with c ∼C c′. By the definition of ∼C , and since C1 ∩ C2 = ∅, we have that
c, c′ ∈ C1 with c ∼C1 c′ or c, c′ ∈ C2 with c ∼C2 c′. We analyze each case separately.

Case c, c′ ∈ C1: We calculate as follows

(l1 | l2).get c
= l1.get c
∼A l1.get c′ by GETEQUIV for l1
= (l1 | l2).get c′

Case c, c′ ∈ C2: Symmetric to the previous case, using l1 instead of l1.

PUTEQUIV: Let a, a′ ∈ A1 ∪A2 with a ∼A a′ and c, c′ ∈ C1 ∪ C2 with c ∼C c′.
By the definition of∼A and the conditions on∼A1 and∼A2 on their intersection, A1∩A2, we have that a, a′ ∈ A1

with a ∼A1 a′ or a, a′ ∈ A2 with a ∼A2 a′. Also, by the definition of ∼C and since C1 ∩ C2 = ∅, we have that
c, c′ ∈ C1 with c ∼C1 c′ or c, c′ ∈ C2 with c ∼C2 c′. We analyze each case separately.

Case a, a′ ∈ A1 and c, c′ ∈ C1: We calculate as follows

(l1 | l2).put a c
= l1.put a c
∼C l1.put a′ c′ by PUTEQUIV for l1
= (l1 | l2).put a′ c′

and obtain the required equivalence.
Case a, a′ ∈ A2 and c, c′ ∈ C2: Symmetric to the previous case, using l2 instead of l1.
Case a, a′ ∈ A1 \A2 and c, c′ ∈ C2: We calculate as follows

(l1 | l2).put a c
= l1.create a
∼C l1.create a′ by CREATEEQUIV for l1
= (l1 | l2).put a′ c′

and obtain the required equivalence.
Case a, a′ ∈ A2 \A1 and c, c′ ∈ C1: Symmetric to the previous case, using l2 instead of l1.

CREATEQUIV: Analogous to the previous case.

GETPUT: Let c ∈ C. We analyze several cases.



Case c ∈ C1: By the definition of (l1 | l2).get, we have that (l1 | l2).get c = l1.get c ∈ A1. Using this fact, we
calculate as follows

(l1 | l2).put ((l1 | l2).get c) c
= l1.put (l1.get c) c
∼C c by GETPUT for l1

and obtain the required equivalence.
Case c ∈ C2 and (l1 | l2).get c ∈ A2: Symmetric to the previous case, using l2 instead of l1.

PUTGET: Let a,∈ A1 ∪A2 and c ∈ C1 ∪ C2. We analyze several cases.

Case a ∈ A1 and c ∈ C1: We calculate as follows

(l1 | l2).get ((l1 | l2).put a c)
= l1.get (l1.put a c) as ran(l1.put) = C1 and C1 ∩ C2 = ∅
∼A a by PUTGET for l1

and obtain the required equivalence.
Case a ∈ A2 and c ∈ C2: Symmetric to the previous case, using l2 instead of l1.
Case a ∈ A1 and c ∈ C2 \ C1: We calculate as follows

(l1 | l2).get ((l1 | l2).put a c)
= l1.get (l1.create a) as ran(l1.create) = C1 and C1 ∩ C2 = ∅
∼A a by CREATEGET for l1

and obtain the required equivalence.
Case a ∈ A2 and c ∈ C1 \ C2: Symmetric to the previous case, using l2 instead of l1.

CREATEGET: Analogous to the previous case. �

q1 ∈ C1 B1/∼B1 q2 ∈ C2 B2/∼B2

C1·!C2 ∼B = TransClosure(∼B1 ·∼B2)
split ∈ Πb : (B1·B2). {(b1, b2) ∈ (B1 ×B2) | b1·b2 = b}

q1·q2 ∈ C1·C2 B1·B2/∼B

A.10 Lemma: q1·q2 ∈ C1·C2 B1·B2/∼B

Proof:
Let b ∈ B1·B2 with split b = (b1, b2). We calculate as follows

(q1·q2).canonize ((q1·q2).choose b)
= (q1·q2).canonize ((q1.choose b1)·(q2.choose b2))
= (q1.canonize (q1.choose b1))·(q2.canonize (q2.choose b2)) as C1·!C2

∼B (b1·b2) by RECANONIZE for q1 and q2

= b

and obtain the required equivalence. �

q1 ∈ C1 B1/∼B1

C1
!∗ ∼B = TransClosure(∼∗B1

)
split ∈ (B1

∗) → List(B1)
q1
∗ ∈ C1

∗ B1
∗/∼∗B1



A.11 Lemma: q1
∗ ∈ C1

∗ B1
∗/∼∗B1

Proof:
Let b ∈ B1

∗ and let split b = [b1, ..., bn]. We calculate as follows

(q1
∗).canonize ((q1

∗).choose b)
= (q1

∗).canonize ((q1.choose b1)···(q1.choose bn))
= (q1.canonize (q1.choose b1))···(q1.canonize (q1.choose bn)) as C1

!∗

∼B b1 ···bn by RECANONIZE for q1

and obtain the required equivalence. �

q1 ∈ C1 B1/∼B1 C1 ∩ C2 = ∅
q2 ∈ C2 B2/∼B2 ∼B = TransClosure(∼B1 ∪ ∼B2)

q1 | q2 ∈ C1 ∪ C2 (B1 ∪B2)/(∼B1 ∪ ∼B2)

A.12 Lemma: q1 | q2 ∈ C1 ∪ C2 (B1 ∪B2)/(∼B1 ∪ ∼B2)

Proof:
Let b ∈ B. We analyze two subcases. If b ∈ B1 then we calculate as follows

(q1 | q2).canonize ((q1 | q2).choose b)
= q1.canonize (q1.choose b) as b ∈ B1 and ran(q1.choose) = C1 and C1 ∩ C2 = ∅
∼B b by RECANONIZE for q1

and obtain the required equivalence. The case where b ∈ B2 \B1 is symmetric. �

l ∈ C/∼C ⇐⇒ A1/∼A1 f ∈ C → A2

A1·!A2 ∼A = ∼A1 ·Tot(A2)
dup1 l f ∈ C/∼C ⇐⇒ A1·A2/∼A

A.13 Lemma: dup1 l f ∈ C/∼C ⇐⇒ A1·A2/∼A

Proof:
GETEQUIV: Let c, c′ ∈ C with c ∼C c′. We calculate as follows

(dup1 l f).get c
= (l.get c)·(f c)
∼A (l.get c′)·(f c′) by GETEQUIV for l
= (dup1 l f).get c′

and obtain the required equivalence.

PUTEQUIV: Let a, a′ ∈ A with a∼A a′ and let c, c′ ∈ C with c∼C c′. Then there exist a1, a
′
1 ∈ A1 and a2, a

′
2 ∈ A2

with a = a1·a2 and a = a′1·a′2 and a1 ∼A1 a′1.
Using these facts, we calculate as follows

(dup1 l f).put a c
= (dup1 l f).put (a1·a2) c
= l.put a1 c
∼C l.put a′1 c by PUTEQUIV for l
= (dup1 l f).put (a′1·a′2) c′

= (dup1 l f).put a′ c′



and obtain the required equivalence.

CREATEQUIV: Analogous to the previous case, using CREATEEQUIV for l.

GETPUT: Let c ∈ C. We calculate as follows

(dup1 l f).put ((dup1 l f).get c) c
= (dup1 l f).put ((l.get c)·(f c)) c
= l.put (l.get c) c as ran(l.get) = A1 and A1·!A2

∼C c by GETPUT for l

and obtain the required equivalence.

PUTGET: Let a ∈ A and c ∈ C. Then there exist a1 ∈ A1 and a2 ∈ A2 with a = a1·a2. We calculate as follows

(dup1 l f).get ((dup1 l f).put a c)
= (dup1 l f).get ((dup1 l f).put (a1·a2) c)
= (dup1 l f).get (l.put a1 c)
= (l.get (l.put a1 c))·(f (l.put a1 c))
∼A a by PUTGET for l and definition of ∼A

and obtain the required equivalence.

CREATEGET: Analogous to the previous case, using CREATEGET for l. �

f ∈ C → C0 C0 ⊆ C ∀c ∈ C0. f c = c

normalize f ∈ C C0/=

A.14 Lemma: normalize f ∈ C C0/=

Proof:
Let c ∈ C0. We calculate as follows

(normalize f).canonize ((normalize f).choose c)
= (normalize f).canonize c
= f c
= c as c ∈ C0

and obtain the required equality. �

(Σ∗·nl·Σ∗) ∩ C0 = ∅
C = [(s ∪ nl)/s]C0

columnize C0 s nl ∈ C C0/=

A.15 Lemma: columnize C0 s nl ∈ C C0/=

Proof:
Let c ∈ C0. Then (columnize C0 s nl).canonize (columnize C0 s nl).choose c = c since nl does not appear in c,
(columnize C0 s nl).choose only replaces some s characters with nl, and (columnize C0 s nl).canonize replaces all
nl characters with s. �


