
Department of Computer & Information Science

Technical Reports (CIS)

University of Pennsylvania Year 2009

Online Learning a Binary Labeling of a

Graph

Mickey Brautbar
University of Pennsylvania

This paper is posted at ScholarlyCommons.

http://repository.upenn.edu/cis reports/896



Online Learning a Binary Labeling of a Graph

Mickey brautbar brautbar@seas.upenn.edu

Department of Computer and Information Science, University of Pennsylvania, PA 19104 USA

Keywords: graph labeling, prediction on graphs, online learning

Abstract

We investigate the problem of online learning
a binary labeling of the vertices for a given
graph. We design an algorithm, Majority, to
solve the problem and show its optimality on
clique graphs. For general graphs we derive
a relevant mistake bound that relates the al-
gorithm’s performance to the cut size (the
number of edges between vertices with op-
posite labeling) and the maximum indepen-
dent set in the graph. We next introduce a
novel complexity measure of the true labeling
- the frontier and relate the number of mis-
takes incurred by Majority to this measure.
This allows us to show, in contrast to pre-
vious known approaches, that our algorithm
works well even when the cut size is bigger
than the number of vertices. A detailed com-
parison with previous results is given.

1. Introduction

Consider the following natural scenario: we are given
a graph that connects a set of entities. Edges in the
graph correspond to direct influence/relationship be-
tween entities. The graph is known and is given to us
in advance. Each entity holds a private binary value,
its labeling. In each round we are presented with a pre-
viously unlabeled vertex in the network and are asked
to predict its labeling; if the labeling of the vertices
in the graph are chosen completely at random then
we will inevitably be mistaken at least half the time.
However, if there is some structure to the labeling of
the vertices, then we would like to be able to predict
well. Apart from the field of Machine Learning, the
online labeling problem naturally arises in several re-
lated fields. (Herbster & Pontil, 2006) describe an in-

Presented at ILP-MLG-SRL, Leuven, Belgium, 2009.

triguing example, showing the importance of the graph
labeling problem in the context of Web Advertisement
Systems. In the field of Social Networks, an important
task is to predict whether a person will vote for a cer-
tain candidate, given the voting results of his friends.
This can be done using a graph labeling algorithm.

We introduce the Majority algorithm in order to ef-
ficiently solve the labeling problem. We then derive
a mistake bound that relates the algorithm’s perfor-
mance to the cut-size measure. In contrast to pre-
vious results (Pelckmans & Suykens, 2008; Herbster
et al., 2008; Herbster & Pontil, 2006), our algorithm
is proven to perform well even when the cut size (the
number of edges with opposite labeling) is bigger than
the number of vertices. In order to show this we define
a novel complexity measure, the frontier measure, and
bind the performance of our algorithm to it.

Majority algorithm is run-time efficient, as it runs in
linear time in the number of vertices and edges. This
stands in contrast to graph Laplacian based methods
which run in cubic time in the number of vertices. A
detailed comparison to previous results is given.

2. The ’Majority’ algorithm

We are given an undirected, non weighted graph G =
(V,E). A natural strategy for predicting the label of a
new vertex is to use the majority vote of its neighbors
which were labeled so far.

Some notation is in place. Denote by mmajority the
number of mistakes incurred by Majority on a given
prediction sequence. Denote the size of the largest
independent set in G by α. Define the cut size induced
by y∗ (number of edges with opposite labeling) to be:

CutSize(y∗) = |{e = (u, v) : y∗(u) = ’+’, y∗(v) = ’-’}|

Theorem 2.1 (upper bound) Assume the given
graph G is a clique. Let s be a sequence of vertices,
and let n1 be the number of vertices labeled with one



Online Learning a Binary Labeling of a Graph

Algorithm 1 Majority
Input: a previously unlabeled vertex v
1: Let S ⊆ V be the set containing all neighbors of v

that had been labeled in previous iterations.
2: if |S| = 0 then
3: predict ’+’
4: else
5: predict ŷ(v) to be the most popular label type

between the vertices in S, according to y∗, and
’+’ in a case of tie.

6: end if

labeling type by y∗, where n1 ≤ n− n1. Then,

mMajority ≤ 2n1 + 1

Proof:
Assume for contradiction that mMajority ≥ 2n1 + 2.
Assume w.l.o.g. that there are less vertices labeled
as ’+’ than ’-’ by y∗. Denote the number of vertices
labeled as ’+’ by y∗ by n1. Notice that there are two
types of mistakes. The first type, which we call type
I is when Majority predicts ’-’ but the real labeling
is ’+’. The second type of mistakes, type II, is when
Majority predicts ’+’ but the real labeling is ’-’. First
we observe that the number of type I mistakes is at
most n1, since otherwise we have more than n1 vertices
labeled as ’+’ by y∗. Therefore, the number of type II
mistakes is at least n1+2. Take the last vertex v in the
prediction sequence that the algorithm incurred a type
II mistake on. When the algorithm was requested to
label v he had already made a mistake labeling at least
n1+1 vertices that were labeled as ’-’ by y∗. Moreover,
since Majority predicted v to have a ’+’ label we mast
have seen up to that moment at least as many vertices
labeled as ’+’ as vertices labeled as ’-’. From this
fact and the previous one, we must have seen at least
n1 +1 vertices labeled as ’+’ by y∗ immediately before
labeling v, a contradiction.

Interestingly, this bound is optimal under a mild as-
sumption on the size of n, even if we may device an
algorithm that receive, in advance, the size of n1.

Theorem 2.2 (lower bound) Assume the given
graph G is a clique. Fix the size of n1. Let A be
any deterministic algorithm for the graph labeling
problem. Then, assuming that n ≥ 4n1 + 1, one may
construct a sequence of vertices and a labeling for it
y∗, where n1 is the number of vertices labeled with the
less frequent label type by y∗, such that,

mA ≥ 2n1 + 1

Proof:

Nature will choose any 2n1 +1 vertices, call this set S.
Than, on each round, Nature will choose a new vertex
from S and label it by the opposite type of the labeling
the deterministic algorithm A would label that new
vertex. After Nature had asked A to label all vertices
in S, Nature counts and check what is the label less
common in the sequence so far. Assume without loss
of generality that this label type is ’+’, and denote
the number of times it appeared so far by t. Note that
t ≤ n1. Then, for the next n1 − t rounds, Nature will
choose any previously unlabeled vertex and label it by
’+’. From that time on (from round 3n1−t+2), Nature
will choose any previously unlabeled vertex and label
it by ’-’. By doing this Nature labels exactly n1 of the
vertices (the less common ones) with one label type
and the rest with the other type.

We now turn to analyze the performance on general
graphs.

Theorem 2.3 For any graph G, any sequence of pre-
diction requests s, and any true labeling y∗,

mmajority ≤ CutSize(y∗) + α

Proof:
Define the sets R and T as follows:
R = {v ∈ V s.t. when Majority was asked to label v,
none of v’s neighbors had been labeled before.}
T = {v ∈ V s.t. when Majority was asked to label v,
at least one of v’s neighbors had been labeled before.}
Note that by definition, R∩T = ∅ and that R∪T = V .
will shall first prove two auxiliary lemmas.

Lemma 2.3.1 If u ∈ R, v ∈ R then (u, v) /∈ E.

Proof:
Suppose not. Let u ∈ R, v ∈ R, s.t. (u, v) ∈ E.
Assume w.l.o.g. that Majority was asked to label v
first. Then, at the later time when Majority was asked
to label u, v was already labeled. Since v is a neighbor
of u, u /∈ R, a contradiction.

Lemma 2.3.2 Majority misclassifies at most
CutSize(y∗) vertices from T .

Proof:
The proof follows using amortized analysis; define a
potential function φ(G, y∗) = CutSize(y∗). Each time
a new vertex is misclassified by Majority algorithm,
we charge that vertex with the number of edges
connecting it to its neighboring vertices who had
already been labeled in previous iterations, and had
been labeled by y∗ the opposite label of v. Clearly,
since Majority misclassified the vertex v, at least one
new edge of the cut induced by y∗ is found. Therefore,



Online Learning a Binary Labeling of a Graph

Majority misclassifies at most φ(G, y∗) vertices of T .

Back to the proof of the theorem; the number
of mistakes Majority incurs on vertices in R is upper
bounded by α since, by the first lemma , R is an
independent set. Using the second lemma, the number
of mistakes Majority incurs on vertices in T is upper
bounded by CutSize(y∗). Since R ∪ T = V , the total
number of mistakes is less than CutSize(y∗) + α.

Example 2.4 The graph is made of two cliques con-
nected by a single edge. The vertices in the first clique
are labeled as ′+′ while the vertices in the second clique
as ′−′. α is therefore two and the cut size induced by
y∗ is one, so Majority incurs at most three mistakes.

3. Refining the Measure of Complexity

Using the cut-size as a measure of complexity is useful
when the cut-size is smaller then the number of ver-
tices. We next suggest a novel complexity measure,
one which is always at most the number of vertices.

Definition 3.1 Let Frontier+ be all the vertices in
the cut induced by y∗ that are labeled as ’+’ and
are connected to a vertex of the opposite labeling:
Frontier+ = {v : y∗(v) = ’+’ and ∃u s.t. y∗(u) = ’-’
and (u, v) ∈ E}. Similarly, define, Frontier− = {v :
y∗(v) = ’-’ and ∃u s.t. y∗(u) = ’+’ and (u, v) ∈ E}.

Definition 3.2 The frontier of a labeling y∗ is de-
fined as Frontier = Frontier+ ∪ Frontier−. The
frontier size of a labeling y∗, FrontierSize(y∗),
is defined as the size of Frontier(y∗).

We may now strengthen theorem 2.3.

Theorem 3.3 For any sequence of prediction requests
s, and any true labeling y∗,

mmajority ≤ FrontierSize(y∗) + α

Proof:
Looking back that the proof of theorem 2.3, we see
that the first lemma still holds. We can now define
and prove an updated version for the second lemma.

Lemma 3.3.1 Majority misclassifies at most
FrontierSize(y∗) vertices from T .

Proof:
The proof follows using amortized analysis; define
a potential function φ(G, y∗) = FrontierSize(y∗).
Each time a new vertex is misclassified by Majority
algorithm we charge that vertex with one. Clearly,

since Majority misclassified the vertex, at least one
new frontier vertex induced by y∗ is found. Therefore,
Majority misclassifies at most φ(G, y∗) vertices of T .

Lemma 3.3.2 The frontier size of the true labeling y∗

is at most twice the cut-size induced by y∗

Proof:
Enumerate all cut edges; each new edge in the cut in-
troduces at most two new frontier vertices and, there-
fore, FrontierSize(y∗) ≤ 2 · CutSize(y∗).
Notice however, that FrontierSize(y∗) may be much
smaller than CutSize(y∗).

Example 3.4 Assume having one big clique A with
n − 2

√
n vertices in it, all labeled as ′+′, a cliques B

with
√

n vertices, all labeled ′+′, and a clique C with√
n vertices, all labeled ’-’. All possible edges between

B and C are presented. No other edges appear in G.
Clearly, |B| · |C| = n, and the cut size is exactly n.
However, by theorem 3.3, mmajority ≤ 2

√
n + 3.

Using the proofs of theorems 2.3 and 3.3 we conclude:

Corollary 3.5 For any true labeling y∗,

mmajority ≤ α+min {CutSize(y∗), FrontierSize(y∗)}

Moreover, if the sequence presented to Majority con-
tains at most k non contiguous nodes, namely, there
are at most k times such that the vertex presented at
that time wasn’t a neighbor of a previously labeled ver-
tex, then

mmajority ≤ k+min {CutSize(y∗), FrontierSize(y∗)}.

For example, the last bound holds with k = 1 for a
meta crawling application, where one moves from one
web page to a neighbor webpage and needs to predict
some boolean property of the webpages.

4. Possible extensions

4.1. Evolving graphs

In our framework the graph G is given in advance.
In fact, a closer look at Majority ’s performance theo-
rems show that our analysis works for dynamic graphs
where the only constraint is that when one needs to
label a vertex, no new edges are allowed to be added
between that vertex and previously labeled vertices.
It is perfectly fine to have growing edges between a
vertex which is not yet labeled and any other vertex.

4.2. Multi class labeling

In the multi-class labeling problem, each label belongs
to some fixed class of discrete labels of size s. s = 2



Online Learning a Binary Labeling of a Graph

is the binary problem treated beforehand. A closer
observation of the analysis of theorem 3.3 shows that
it can be easily generalized to give a corresponding
mistake bound for the multi-class labeling problem:
the mistake bound will consists of α plus the sum of
all frontier vertices, where a frontier vertex is one who
has a neighbor vertex of a different label type.

4.3. Weighted graphs

When we are given weights on the edges theorem
2.3 continues to hold if we replace Majority with a
weighted-majority version and define the cut-size as
the sum of the weighted edges in the labeling cut.

5. Comparison to previous results

1. In their seminal paper, (Pelckmans & Suykens,
2008) present the Graphtron algorithm which pre-
dicts the labeling of a vertex by the majority vote
between neighboring vertices of v that had been
misclassified before. Majority may be viewed
as a more aggressive version of the Graphtron
where one uses all neighboring vertices that had
been previously labeled and not only the mis-
classified ones for the prediction task. Pelck-
mans and Suykens prove that the set M of ver-
tices, where Graphtron predicts incorrectly, satis-
fies

∑
v∈M dM,v ≤ 4 · cut(y∗), where dM,v is the

number of vertices adjacent to v that reside in
M . Their proof is based on the graph Laplacian
properties and its relation with the labeling cut in-
duced by y∗. We now give a purely combinatorial
proof to show that Majority fulfills a correspond-
ing mistake bound. Let E be the set of vertices
where the Majority algorithm predicts incorrectly.
Then,

∑
v∈E dE,v ≤ 4 · cut(y∗). In order to show

this let vi be the vertex that was needed to be la-
beled at time i. Define the vertex order, by which
they were labeled, by O. Let nO,G

v the number
of edges in G connecting v to previously labeled
vertices. Similarly, let nO,E

v the number of edges
connecting v to previously labeled vertices that
reside in E. Then,

∑
v∈E dE,v = 2

∑
v∈E nO,E

v ≤
2

∑
v∈E nO,G

v = 4
∑

v∈E
nO,G

v

2 ≤ 4cut(y∗). The
first equality is true since the sum of degrees
equals twice the number of edges, and the last
inequality is true since each time a mistake oc-
curs at least half of the edges connecting a vertex
to previously labeled vertices are cut edges.

2. (Herbster et al., 2005; Herbster & Pontil, 2006;
Herbster, 2008) describe a series of modifications
to the Perceptron Algorithm, all based on a kernel

defined by the pseudo-inverse of the graph Lapla-
cian. In (Herbster et al., 2005), a mistake bound
of the form m ≤ CutSize(y∗) · Diameter(G) ·(

n
min n+,n−

)
, is given, where Diameter(G) is the

graph diameter, and n+,n−, are the number of
vertices labeled as ′+′ and ′−′, respectively. In
(Herbster & Pontil, 2006), this bound is im-
proved to give m ≤ 4CutSize(y∗) · (R(G) +
1), where R(G) is the resistance diameter of G
(see (Herbster & Pontil, 2006) for formal def-
inition). In (Herbster, 2008) cluster structure
in a graph is exploited. In that paper, they
define the covering number N(G, ρ), the mini-
mum number of balls of diameter ρ that con-
tain together all the vertices of G, under the re-
sistance distance (see (Herbster, 2008) for defi-
nitions). The mistake bound proven therein is
m ≤ minρ>0N(G, ρ) + 4CutSize(y∗)ρ + 1. No-
tice that the first two bounds mentioned are vacu-
ous when the cut size induced by y∗ is bigger than
n. The Majority algorithm would provide better
bounds in this case. Moreover, comparing to the
last bound, if α is not too big then the bound
made by Majority, m ≤ α + FrontierSize(y∗),
would be better. Consider the following example:
we have one clique with 2

√
n vertices, half labeled

as ′+′ and half as ′−′. That clique is connected
through a single edge to another clique, defined
on the rest of the vertices, with all its vertices la-
beled as ′+′. Clearly, CutSize(y∗) = n, rendering
the bounds in (Herbster et al., 2005) ,(Herbster &
Pontil, 2006) vacuous. The bound of (Herbster,
2008) can be shown to give 8

√
n + 3. However,

the bound given by Majority would be 2
√

n + 3,
since α = 2 and FrontrierSize(y∗) = 2

√
n + 1.

References

Herbster, M. (2008). Exploiting cluster-structure to
predict the labeling of a graph. ALT ’08.

Herbster, M., Lever, G., & Pontil, M. (2008). Online
prediction on large diameter graphs. In Nips ’06.

Herbster, M., & Pontil, M. (2006). Prediction on a
graph with a perceptron. NIPS (pp. 577–584).

Herbster, M., Pontil, M., & Wainer, L. (2005). On-
line learning over graphs. ICML ’05 (pp. 305–312).
Bonn, Germany.

Pelckmans, K., & Suykens, J. A. K. (2008). An online
algorithm for learning a labeling of a graph. MLG
08’, Helsinki, Finland.


