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Abstract
The serious bugs and security vulnerabilities facilitated by C/C++’s
lack of bounds checking are well known. Yet, C and C++ remain
in widespread use. Unfortunately, C’s arbitrary pointer arithmetic,
conflation of pointers and arrays, and programmer-visible memory
layout make retrofitting C/C++ with spatial safety guarantees ex-
tremely challenging. Existing approaches suffer from incomplete-
ness, have high runtime overhead, or require non-trivial changes
to the C source code. Thus far, these deficiencies have prevented
widespread adoption of such techniques.

This paper proposes SoftBound, a compile time transforma-
tion for enforcing complete spatial safety of C. SoftBound records
base and bound information for every pointer as disjoint meta-
data. This decoupling enables SoftBound to provide complete spa-
tial safety while requiring no changes to C source code. Moreover,
SoftBound performs metadata manipulation only when loading or
storing pointer values. A formal proof shows this is sufficient to
provide complete spatial safety even in the presence of wild casts.
SoftBound’s full checking mode provides complete spatial viola-
tion detection. To further reduce overheads, SoftBound has a store-
only checking mode that successfully detects all the security vul-
nerabilities in a test suite while adding 15% or less overhead to half
of the benchmarks.

1. Introduction
The serious bugs and security vulnerabilities facilitated by C/C++’s
lack of bounds checking are well known. The lack of spatial mem-
ory safety leads to bugs that cause difficult-to-diagnose crashes,
silent memory corruption, and incorrect results. 1 Worse yet, it is
the underlying root cause of a multitude of security vulnerabili-
ties [28, 31]. Even though modern operating systems and compilers
employ partial countermeasures (e.g., guarding the return address
on the stack, address space randomization, non-executable stack),
vulnerabilities persist. For example, in November, 2008 Adobe
released a security update that fixed several serious buffer over-
flows [2]. Attackers have reportedly exploited such buffer overflow
vulnerabilities by using banner ads to redirect users to a malicious
PDF document crafted to take complete control of the victim’s ma-
chine [1].

Safe languages such as Java and C# completely prevent this en-
tire class of bugs and security vulnerabilities by enforcing memory
safety. Such languages have thankfully become mainstream, how-
ever C and C++ are still widely used. C provides low-level con-
trol of memory layout, proximity to the underlying hardware, re-
quires minimal runtime support, and is the gold standard for perfor-
mance. Today’s operating systems, virtual machine monitors, lan-
guage runtimes, enterprise database management systems, embed-

1 Temporal safety violations (i.e., dangling pointers) are also a significant
source of bugs in C programs. As spatial safety is the primary concern
for security vulnerabilities, this works focuses exclusively on the spatial
safety issues of C. Other previously proposed complementary techniques
such as conservative garbage collection, reference counted safe pointers, or
probabilistic approaches may be employed to detect temporal violations.

ded software, and web browsers are all generally written in C/C++.
Furthermore, altogether such systems comprise millions of lines of
C/C++ code, thus preventing the transition away from C/C++ any-
time soon.

As a recognition to the importance of this problem, many pro-
posals have pursued techniques for retrofitting C (or close vari-
ants) to provide complete or near-complete spatial memory safety
[4, 9, 13, 18, 19, 23, 26, 30, 34, 35]. Unfortunately, several as-
pects of C, such as its conflation of arrays and singleton point-
ers, unchecked array indexing and pointer arithmetic, pointers to
the middle of objects, arbitrary casts, user-visible memory layout,
and structs with internal arrays all interact to greatly increase the
difficulty of retrofitting C with spatial memory safety. As a result,
these proposals all suffer from one or more practical difficulties that
may prevent wide adoption, such as: unacceptably high runtime
overheads, incomplete detection of spatial violations, incompatible
pointer representations (by changing memory layout), or requiring
non-trivial changes to existing C source code. Moreover, the pro-
posals with the lowest performance overheads generally employ
whole-program compiler analyses (e.g., [13, 23]) which compli-
cates separate compilation and use of dynamically linked libraries.
Section 2 provides additional background on these proposals.

This paper describes SoftBound, a compile-time transforma-
tion for inserting runtime bounds checks to enforce complete spa-
tial safety of C programs. SoftBound uses a pointer-based ap-
proach to enforce spatial safety, by associating base and bound
metadata with every pointer. Unlike prior pointer-based approaches
that change pointer representations and thus object layouts [4,
23, 34], SoftBound records the base and bound metadata in a dis-
joint metadata facility that is accessed via explicit table lookups on
loads and stores of pointer values. SoftBound performs a simple
intra-procedural transformation that instruments and renames each
function to propagate and check pointer metadata. Functions with
pointer arguments or return values are extended with additional
parameters for base and bound metadata. This approach provides
SoftBound with the following attributes:

• Source Compatibility SoftBound is highly compatible with
existing C source code because its disjoint metadata (1) avoids
any program-visible memory layout changes, (2) allows arbi-
trary casts by preventing the coercion of metadata that could
otherwise occur with in-line metadata. Our experiments with
several benchmarks and two network daemons show that Soft-
Bound can be successfully applied to unmodified C programs.

• Completeness By default the SoftBound tranformation guar-
antees complete spatial safety. In essence, SoftBound provides
the same spatial safety guarantees as CCured, and Section 4
includes the sketch of a formal proof that SoftBound’s core
mechanisms enforce a well-formed memory property similar
to that provided by CCured [23]. Our experiments show Soft-
Bound catches errors not caught by Valgrind [24] or GCC’s
Mudflap [15].

• Separate Compilation SoftBound’s simple intraprocedural
analysis, disjoint metadata, and function renaming provides
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transparent support for separate compilation, allowing library
code to be recompiled with SoftBound and dynamically linked.
This extends checking into library code and can avoids the
library wrappers used by prior proposals.

SoftBound provides two modes of checking. For low-overhead
debugging and security-critical software, SoftBound’s full check-
ing mode provides complete safety at the cost of a 79% runtime
overhead on average over a range of 15 benchmarks. In contrast to
heavyweight instrumentation [24] used selectively during the de-
velopment process, SoftBound’s full checking overheads are low
enough to use continuously throughout the software development
process. For security-critical applications, such overheads are also
likely acceptable.

For lower overhead protection against security vulnerabilities,
SoftBound provides a store-only checking mode. In this mode,
SoftBound fully propagates all metadata, but inserts bounds checks
only for memory writes. As observed previously [3], store-only
checking is sufficient to stop just about any security vulnerability,
because attacks typically require performing at least one out-of-
bounds write. Out-of-bound writes are particularly subversive bugs
in that the memory corruption caused by such bugs often manifests
much later and in a different part of the program code. Our exper-
iments show store-only SoftBound detects all the vulnerabilities in
a security vulnerability suite at that cost of 32% average overhead.
The overhead is low enough for many benchmarks (over half of the
benchmarks evaluated have less than 15% runtime overhead) to be
used in end-user production code.

2. Background
The problem of detecting and preventing spatial violations in the C
programming language is a well researched topic. Many techniques
were initially proposed as debugging aids [4, 19, 27], but have now
been improved immensely [11, 13, 18, 23, 30, 34]—nearly to the
point of being ready for deployment in production systems.

In this section, we describe approaches most closely related to
our scheme, comparing them with respect to completeness, per-
formance and compatibility attributes. Because SoftBound is fo-
cused on handling spatial violations, this section does not discuss
approaches for preventing temporal safety violations (i.e., dangling
pointers). Other less directly related work is discussed in Section 7.

2.1 Object-based Approaches
Object-based approaches [11, 13, 15, 19, 30] track all object al-
locations in a separate data structure to allow any addresses to
be mapped to a specific object. All pointer operations, including
arithmetic and dereference, are checked to ensure that they re-
main within the bounds of the same object. When out-of-bound
pointers do occur, a special out-of-bounds object is used [13, 19].
When such an out-of-bound pointer is modified so that it is back
in bounds, the enforcement mechanism must ensure that it points
back to the original object. The important advantage of the object-
pointer approach is that memory layout of objects is unchanged,
providing source and binary compatibility.

However, object-based schemes have two disadvantages. First,
the object-lookup table is often implemented as a splay tree, which
can be a performance bottleneck, yielding runtime overheads of
5x or more [15, 19, 30]. Subsequent proposals have considerably
mitigated this issue by reducing the overhead of object-table-based
approaches by checking only strings [30] or using whole-program
analysis to perform automatic pool allocation to partition the splay
trees and eliminate lookup and checking of many scalar objects [11,
13].

The primary drawback of the object-based approaches is that
are incomplete. That is, they do not detect all spatial violations, for

example, arrays inside structures are not checked [13, 19]. Consider
the example below

1. struct { char str[8]; void (*func)();} node;
2. char* ptr = node.str;
3. strcpy(ptr, "overflow...");

In the above code, pointers to node and node.str are indistinguish-
able as they have the same address. Hence node.str has the bounds
of the whole node object. When ptr is passed to strcpy()—even if
strcpy() is instrumented—an overflow of node.str can overwrite the
function pointer, potentially resulting in a serious bug or security
vulnerability.

2.2 Pointer-based Approaches
An alternative approach is the pointer-based approach that tracks
base and bound information with each pointer. This is typically
implemented using a fat pointer representation that replaces some
or all pointers with a multi-word pointer/base/bound. Such a fat
pointer records the actual pointer value along the addresses of the
upper and lower bounds of the object pointed by the pointer. As
two distinct pointers can point to the same object and have dif-
ferent base and bound associated with them, this approach avoids
the problem with object-table approaches discussed above. When a
pointer is involved in arithmetic, the actual pointer portion of the fat
pointer is incremented/decremented. On a dereference, the actual
pointer is checked to see whether it is within the base and bound
associated with it. Proposals such as SafeC [4], CCured [23], Cy-
clone [18], MSCC [34], and others [12, 24, 27] use this pointer-
based approach to provide spatial safety guarantees.

The pointer-based approach is attractive in that it can be used to
enforce complete spatial safety. However, propagating and check-
ing bounds for all pointers can result in significant runtime over-
heads. To reduce these overheads, CCured [23] used whole pro-
gram type inference to identify pointers that do not require bounds
checking. CCured classifies pointers into various kinds: SAFE,
SEQ, and WILD. SAFE pointers have no performance overhead and
are not involved in pointer arithmetic, array indexing or typecasts.
SEQ pointers are fat pointers that allow only pointer arithmetic and
array indexing and are not involved in arbitrary typecasts. WILD
pointers allow for arbitrary casts, but require additional metadata
and also any non-pointer store through a WILD pointer is required
to update the additional metadata. This approach reduces the run-
time overhead significantly, but CCured requires modifications to
the source code to avoid introducing inefficient WILD pointers and
handle the memory layout incompatibility introduced by CCured
use of fat pointers.

The most significant disadvantage of these pointer-based ap-
proaches is that fat pointers change memory layout in programmer-
visible ways. This introduces significant source code compatibility
issues in that the source must be modified [23]. The modified mem-
ory layout also makes interfacing with library code challenging. To
address this issue, attempts have been made to split the metadata
from the pointer [23, 34]. However, this can result in mirroring en-
tire data structures. These approaches partially mitigate some of
the compatibility issues, but such techniques can increase overhead
by introducing linked shadow structures that mirror entire exist-
ing data structures. Furthermore, they do not handle arbitrary casts
(another compatibility issue) and MSCC’s [34] optimized encoding
loses the ability to detect sub-object overflows.

2.3 Comparison of various approaches
Object-based and pointer-based approaches have complementary
strengths and weaknesses. Object-base approaches are highly com-
patible because they do not change the memory layout. In fact,
they have been successfully applied to the entire Linux kernel [11].
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Scheme No src Complete Memory Arb. Dyn.
code (subfield layout casts link

change access) lib
SafeC [4] Yes Yes No Yes No

JKRLDA [13] Yes No Yes Yes Yes
CCured-

Safe/Seq [23] No Yes No No No
CCured -
Wild [23] Yes Yes No Yes No

MSCC [34] Yes No Yes No Yes
SoftBound Yes Yes Yes Yes Yes

Table 1. Comparison of object-based (JKRLDA) and pointer-
based approaches (CCured, SafeC, MSCC) in contrast to Soft-
Bound with respect to attributes such as completeness, support for
arbitrary casts, memory layout compatibility, support for dynam-
ically linked libraries, completeness with respect to subfield ac-
cesses.

But, object-based approaches don’t enforce complete spatial safety
because of sub-object overflows. In contrast, pointer-based ap-
proaches typically change the pointer representation and memory
layout causing source code compatibility problems. Handling ar-
bitrary casts is another important problem, as arbitrary casts re-
sult in WILD pointers (which further complicate library compati-
bility) and may have significant performance ramifications. When
whole-program analysis is applied to reduce the overhead of either
scheme [13, 23], it can complicate the use of precompiled and dy-
namically loaded libraries.

Table 1 summarizes the various object-based and pointer-based
approaches in contrast with SoftBound. Object-based approaches
such as JKRLDA [13] satisfy most of the attributes except for com-
pleteness. CCured with only Safe/Seq pointers has low overhead
and is complete but lacks source code compatibility. MSCC [34],
has many positive qualities, but it is incapable of handling wild
casts and it does not detect sub-object overflows in the configura-
tion with the best performance overhead. In the next section, we
describe the SoftBound approach, which satisfies all the attributes
listed in the Table 1 by combining the disjoint metadata of object-
based schemes with the completeness of pointer-based schemes.

3. The SoftBound Approach
SoftBound is a compile-time transformation for inserting runtime
bounds checks to enforce complete spatial safety of C programs.
SoftBound is highly compatible with existing C source code be-
cause its disjoint metadata representation allows arbitrary casts
and avoids memory layout change. SoftBound associates base and
bound metadata with every pointer, but records that metadata in a
disjoint metadata space that is accessed via explicit table lookups.
This approach is conceptually a pointer-based approach, but Soft-
Bound’s disjoint metadata provides the source code compatibil-
ity of object-based approaches. This section describes SoftBound’s
key ideas. Section 4 formalizes SoftBound and sketches a proof
of SoftBound’s spatial memory safety. A full discussion of Soft-
Bound’s specific implementation choices and its handling of all of
C’s features is deferred to Section 5.

3.1 Pointer Checking and Metadata Propagation
The following description of SoftBound’s transformation assumes
the C code has been translated into a generic intermediate form
that contains only simple operations, uses explicit indexing and
memory access operations, and provides the abstraction of an un-

bounded number of non-memory intermediate values and tempo-
raries that will ultimately be mapped to registers.

Pointer dereference check For every pointer value in the pro-
gram’s intermediate representation, the SoftBound transformation
creates a corresponding base and bound intermediate value. When-
ever a pointer is used to access memory (i.e., dereferenced), Soft-
Bound inserts code for checking the bounds to detect spatial mem-
ory violations:

check(ptr, ptr_base, ptr_bound, sizeof(*ptr));
value = *ptr; // original load

Where check() is defined as:

void check(ptr, base, bound, size) {
if ((ptr < base) || (ptr+size > bound)) {
abort();

}
}

The dereference check explicitly includes the size of the memory
access to ensure that the entire access is in bounds (and not just
the first byte). For example, if a pointer to a single character is cast
to be a pointer to an integer, dereferencing that pointer is a spatial
violation. This dereference check is inserted for all pointer deref-
erences, but such a check is not required when accessing scalar lo-
cal variables or when spilling/restoring register values to/from the
stack—we assume that the C compiler generates such code cor-
rectly.

Creating pointers New pointers in C are created in two ways: (1)
malloc() and (2) taking the address of a global or stack-allocated
variable using the & operator. At every malloc() call site, Soft-
Bound inserts code to set the base and bound. The base value is
set to the pointer returned by malloc(). The bound value is set
to either the pointer plus the size of the allocation (if the pointer is
non-NULL) or to NULL (if the pointer is NULL):

ptr = malloc(size);
ptr_base = ptr;
ptr_bound = ptr + size;
if (ptr == NULL) ptr_bound = NULL;

For pointers to global or stack-allocated objects, the size of the
object is known statically, so SoftBound inserts code to set the base
to the pointer and bound to one byte past the end of the object:

int array[100];
ptr = &array;
ptr_base = &array[0];
ptr_bound = &array[100];

Pointer arithmetic and pointer assignment When an expression
contains pointer arithmetic (e.g., ptr+index), array indexing (e.g.,
&(ptr[index])), or pointer assignment (e.g., newptr = ptr;),
the resulting pointer inherits the base and bound of the original
pointer:

newptr = ptr + index; // or &ptr[index]
newptr_base = ptr_base;
newptr_bound = ptr_bound;

No checking is needed during pointer arithmetic because all point-
ers are bounds checked when dereferenced. Thus, as is required
by C semantics, creating an out-of-bound pointer is allowed. Soft-
Bound will detect the spatial violation whenever such a pointer is
dereferenced. Array indexing in C is equivalent to pointer arith-
metic, so SoftBound applies this same transformation to array in-
dexing.
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Structure field accesses Accesses to the fields of a structure are
covered by the above transformations by conversion to separate
pointer arithmetic and dereference operations.

Shrinking Pointer Bounds SoftBound shrinks the bounds on a
pointer when creating a pointer to a field of a struct (e.g., when
passing a pointer to an element of a struct). In such cases, the
pointer inherits the bounds of the field it points to rather than the
bounds of the entire structure:

typedef struct { ..., char str[8]; ...} node;
ptr = &node.str[2];
ptr_base = &node.str[0];
ptr_bound = &node.str[8];

This ability to shrink bound provides SoftBound with the capabil-
ity to prevent internal object overflows. Further, SoftBound allows
the programmer to explicitly shrink bounds using the setbound()
function (e.g., when employing a custom memory allocator).

3.2 In-Memory Pointer Metadata Encoding
The above transformation only handled pointers as intermediate
values (i.e., values that can be mapped to registers). Pointers must
also be stored to and retrieved from memory. SoftBound uses a
table data structure to map an address of a pointer in memory to
the metadata for that pointer. SoftBound inserts a table lookup to
retrieve the base and bounds from the disjoint metadata space at
every load of a pointer value:

int** ptr;
int* new_ptr;
...
check(ptr, ptr_base, ptr_bound, sizeof(*ptr));
newptr = *(ptr);
newptr_base = table_lookup(ptr)->base;
newptr_bound = table_lookup(ptr)->bound;

Correspondingly, SoftBound inserts a table update for every store
of a pointer value:

int** ptr;
int* new_ptr;
...
check(ptr, ptr_base, ptr_bound, sizeof(*ptr));
*(ptr) = new_ptr;
table_lookup(ptr)->base = newptr_base;
table_lookup(ptr)->bound = newptr_bound;

Only load and stores of pointers are annotated; loads and stores
of non-pointer value are unaffected. Even though loads and stores
of pointers are only a fraction of all memory operations, fast table
lookups and updates are key to reducing overall overheads. The
implementation section (Section 5) explores two implementations
of the lookup table.

3.3 Metadata Propagation with Function Calls
When pointers are passed as arguments or returned from functions,
their base and bound metadata must also travel with them. If all
pointer arguments were passed and returned on the stack, the just
described table-lookup approach for handling in-memory metadata
would suffice. However, the function calling conventions of most
ISAs specify that function arguments are generally passed in regis-
ters.

To address this issue, SoftBound transforms every function dec-
laration and call site to include additional arguments for base and
bound. For each pointer argument, base and bound arguments are
added to the end of the list of the function’s arguments. As part of

this transformation, the function name is appended with a unique
identifier, specifying this function has been transformed by Soft-
Bound:

int func(char* s)
{
...

}

int value = func(ptr);

is transformed to:

int _sb_func(char* s, void* s_base, void* s_bound)
{
...

}

int value = _sb_func(ptr, ptr_base, ptr_bound);

Functions that return a pointer are changed to return a three-
element structure by value that contains the pointer, its base, and
its bound.

The transformation at the call site is performed entirely based
on the arguments being passed to the function. Thus, this approach
works when the definition and call site are in different files, which
is necessary to support traditional separate compilation and exter-
nal libraries. In fact, even if the function prototype is unspecified
and incomplete (which is surprisingly common in actual C code),
as long as the arguments passed in the C code are correct, the trans-
formation will work as expected. This general approach has the
additional benefit that the transformation is independent of the tar-
get ISA and the generated code obeys the system’s standard calling
conventions (albeit with additional parameters). Note that variable
argument functions must be treated specially, as described in Sec-
tion 5.

3.4 Differences & Similarities to CCured’s WILD Pointers
In many respects, SoftBound’s pointer representation is a more
compatible and more efficient implementation of CCured’s WILD
pointers. Like CCured’s WILD pointers, SoftBound provides com-
plete memory safety even in the context of arbitrary casts. CCured’s
WILD pointers accomplish this by (1) including a base field with
each pointer (2) including a size field at the beginning of each al-
location, and (3) using tag bits at the end of each allocation to in-
dicate which bytes in the allocation are pointers. These tag bits are
written whenever storing to such an object (set to one when stor-
ing a valid pointer, set to zero otherwise) and read on every pointer
load. As formally shown [23], this approach prevents corruption of
the base pointer metadata stored inline within the objects, even if
those objects are accessed via arbitrarily cast pointers. The key to
this guarantee is that such stores will also set the tag to zero and
that all pointer loads check this tag.

Although complete, WILD pointers have three key disadvan-
tages. First, WILD pointers introduce source code compatibility is-
sues because they change memory layout in programmer-visible
ways. Second, WILD pointer’s base pointer must point to the start
of an allocation, thus disallowing sub-object bounds information
and failing to protect sub-object overflows. Third, all stores to a
WILD object must update the metadata bits, adding runtime over-
head. For these reasons (and the fact that WILD pointers disrupt
CCured’s whole-program type inference), all performance results
for CCured are presented for benchmarks in which the need for
WILD pointers was totally eliminated by program source modifica-
tions, program annotations, or insertion of unsafe trusted casts [23].

SoftBound’s pointer representation improves upon WILD point-
ers while maintaining their spatial safety properties. First, Soft-
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Bound’s metadata is recorded in a disjoint metadata space, avoid-
ing the memory layout incompatibility of WILD pointers. Second,
by using base/bound metadata that is totally decoupled from the
pointer in memory, SoftBound avoids the object size header and
tag bits, which in turn allows SoftBound to address the second de-
ficiency of WILD pointers by allowing arbitrary sub-object bound-
ing to detect sub-object overflows. Third, as the metadata is dis-
joint, normal program memory operations cannot corrupt the meta-
data, eliminating both the tag bits and the need for every store
operation to update these tag bits. With these improvements over
WILD pointers, SoftBound pointer representation is highly com-
patible, provides reasonable performance overheads, and provides
complete spatial safety even in the presence of arbitrary casts. The
next section provides a formal proof that shows SoftBound’s point-
ers provide the same well-formed memory guarantees (and thus
spatial safety guarantees) as CCured’s WILD pointers.

4. Formal Proof
This section sketches a safety proof for the key components of Soft-
Bound’s enforcement mechanisms, namely pointer-metadata prop-
agation and assertion checking. These claims have been mecha-
nized using the Coq proof assistant [10].2

Due to the size and complexity of the full SoftBound imple-
mentation, we concentrate our efforts on an interesting fragment
of C that covers covers almost all of SoftBound’s features, includ-
ing the address-of operator &, malloc, and named structure types,
which permit recursive data structures. The full SoftBound imple-
mentation includes mechanisms to deal with function pointers and
sub-object bounds violations, the formalization of which we leave
to future work.

At a high level we first develop a non-standard operational se-
mantics for (straight-line) C programs that tracks information about
which memory addresses have been allocated. Crucially, this se-
mantics is partial—it is undefined whenever a bad C program
would cause a (non sub-object) spatial-safety violation; for pro-
grams without spatial memory errors, this semantics agrees with C.
Next, we augment the operational semantics so that it both propa-
gates the bounds metadata and performs bounds-check assertions,
aborting the program upon assertion failure. This step abstractly
models the results of SoftBound instrumentation of the C program.
Finally, we define a well-formedness predicate that captures invari-
ants ensured by a combination of the C compiler (e.g. that local
variables map to stack addresses) and SoftBound instrumentation.
Preservation and progress results then establish that, starting from
a well-formed initial program, the SoftBound instrumented version
will either terminate with a value, exhaust memory, or abort—it
will never get stuck trying to access unallocated memory. This ap-
proach is similar to that used in CCured’s formalism [23].

4.1 Syntax
The grammar below gives the fragment of C used in our proof.
Commands consist of straight-line sequence of assignments, where
the left-hand-side (lhs) is either a variable, a pointer dereference,
or the field of a struct. The right-hand-side (rhs) of an assignment
can be an integer constant, the results of an arithmetic operation, a
lhs, the address of a lhs, the results of a cast, the size of a type, or
the results of malloc.

Atomic types are integers or pointers to pointer types, which
include anonymous structure types, named structures and void in
addition to atomic types. Here, n ranges over named structures, and
id ranges over C identifiers.

2 A full description of the proof and accompanying Coq source code is
available at http://www.cis.upenn.edu/~jianzhou/softbound

Name Specification
read M l return some data at the address l, if l is accessible;

return none otherwise
write M l d update data at the address l, if l is accessible;

return none otherwise
malloc M i allocate a memory block with the size i

if the free memory space is available;
return none otherwise

Table 2. Memory operations.

Atomic Types a ::= int | p*
Pointer Types p ::= a | s | n | void

Struct Types s ::= struct{ · · ·;idi:ai; · · ·}
LHS Expressions lhs ::= x | *lhs | lhs.id | lhs->id
RHS Expressions rhs ::= i | rhs+rhs | lhs | &lhs

| (a)rhs | sizeof(a)
| malloc(rhs)

Commands c ::= c ; c | lhs = rhs

4.2 Operational Semantics
The operational semantics for this C fragment relies on an environ-
ment E, that has two components:

• A map, S, from variable names to their addresses and atomic
types. (This models a stack frame.)

• A partial map, M, from addresses to values. (This models mem-
ory.)

A memory M is defined only for addresses that have been al-
located to the program by the C runtime. The C runtime provides
three primitive operations for accessing memory: read, write, and
malloc. Rather than committing to a particular implementation of
these primitives, our formalism axiomatizes properties that any rea-
sonable implementation should satisfy. Most of the axioms state
simple properties like “reading a location after storing to it returns
the value that was stored” and “storing to a location ` doesn’t af-
fect any other location.” The most interesting axioms have to do
with malloc; they enforce properties like “malloc returns a pointer
to a region of memory that was previously unallocated” and “mal-
loc doesn’t alter the contents of already allocated locations.” Both
read, and write can fail if they try to access unallocated memory;
malloc can fail if there is not enough space. These operations are
summarized in Table 2.

Given these operations, it is straightforward to define an oper-
ational semantics for this fragment of C that is undefined for pro-
grams that access unallocated memory locations. To model Soft-
Bound’s behavior, we augment this operational semantics to keep
track of metadata. Values, written v(b,e) include their base (b) and
bound (e) information along with the underlying data v. To fully
capture the instrumentation performed by SoftBound it is also nec-
essary for the operational semantics to propagate some type infor-
mation as well—the types are used only in calculating metadata
needed for assertions and otherwise do not affect the “real” under-
lying computation.

These considerations lead to three large-step evaluation rules.
Left-hand-sides evaluate to a result r (which must be an address)
and its atomic type a. They have no effect on the environment:
(E, lhs) ⇒l r : a. A right-hand-side expression also yields a typed
result, but it may also modify the environment E, causing it to be-
come E ′: (E,rhs)⇒r (r :a,E ′). Commands simply evaluate to a
result and final environment: (E,c)⇒c (r,E ′). In all three cases, r
ranges over computational results, which include (metadata anno-
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tated) values, Abort, OutOfMem, and OK (which is the the result of
a successful command).

Space precludes showing the full set of operational rules (most
of which are completely standard or obvious). We show only two
examples that show how to evaluate a pointer dereference when the
bounds check succeeds (left) and fails (right):

(E, lhs)⇒l l :a*
read (E.M) l = some v(b,e)
b ≤ v ∧ v+ sizeof(a)≤ e

(E,*lhs)⇒l v :a

(E, lhs)⇒l l :a*
read (E.M) l = some v(b,e)
¬(b ≤ v ∧ v+ sizeof(a)≤ e)

(E,*lhs)⇒l Abort :a

4.3 Safety
The safety result relies on showing that certain well-formedness
invariants are maintained by the SoftBound instrumented program.
A well-formed environment `E E consists of a well-formed stack
frame S, which ensures that all variables are allocated in a valid
memory block and have the well-formed type information, and a
well-formed memory. A memory M is well formed when the meta-
data associated with each allocated location is well formed:

∀l,d,b,e.(read M l = some d(b,e))⇒ M `D d(b,e))

`M M

M `D d(b,e) , (b = 0)∨ [(b 6= 0)∧ (∀i ∈ [b,e). val M i)∧
(minAddr ≤ b ≤ e < maxAddr)]

Here, val M i is a predicate that is true when location i is allocated
in memory M. `M M guarantees that if any address is accessible,
its value is in-bounds according to its metadata. A command is
well-formed with respect to a stack frame S, written S `c c, when
c typechecks according to standard C conventions assuming that
each of the variables mentioned in c has the type assigned by S.

With the above well-formed environment, the type safety the-
orems show that SoftBound can detect memory violations at run-
time.

THEOREM 4.1 (Preservation). If `E E, E.S `c c and (E,c) ⇒c
(r,E ′), then `E E ′.

THEOREM 4.2 (Progress). If `E E and E.S `c c, then ∃ E ′.
(E,c)⇒c (ok,E ′) or ∃ E ′. (E,c)⇒c (OutofMem,E ′) or ∃ E ′.
(E,c)⇒c (Abort,E ′).

The proofs of these theorems are straightforward inductions on
the structure of the typing derivations, and the type safety proper-
ties of lhs expressions and rhs expressions which also follow by
inductions on the structure of the typing derivations. These theo-
rems also imply the following corollary:

COROLLARY 4.1 If `E E, E.S `c c and ∃ E ′. (E,c)⇒c (ok,E ′),
then the original C program will not cause any memory violation.

5. Implementation
The previous sections have described SoftBound’s basic approach
and formal justification. This section describes the specific imple-
mentation of SoftBound’s metadata facility and specifically how
SoftBound handles various aspects of C (global variables, sepa-
rate compilation, memcpy(), variable argument functions, function
pointers, and arbitrary casts).

5.1 Metadata Facility Implementation
SoftBound’s metadata facility completely decouples the metadata
from the pointers in memory. At its simplest, SoftBound must map
an address to the base and bound metadata for the pointer at that
address (i.e., the lookup is based on the location being loaded or
stored, not the value of the pointer that is loaded or stored). Such

a mapping can be implemented in several ways including lookup
trees or tables. SoftBound uses table lookup to implement this map-
ping.

As the metadata accesses can be a significant source of run-
time and memory overhead, we explore two implementations of the
metadata facility: a hash table and a tag-less shadowspace. Each
organization comes with its own set of trade-offs with respect to
memory and performance overheads.

Hash table The conceptually most straightforward implementa-
tion of the metadata facility is a simple hash table. Each entry in
the table has three entries: tag, base, and bound. Assuming 64-bit
pointers, each entry is 24 bytes. To reduce overhead, this imple-
mentation uses a simple hash function: the double-word address
modulo the number of entries in the table. By keeping the number
of entries in the table a power of two, this calculation is a simple
shift and mask bit selection operation. Collisions are handled using
open hashing. Collisions are minimized by sizing the table large
enough to keep average utilization low. In the common case of no
collisions, the lookup is approximately nine x86 instructions: shift,
mask, multiply, add, three loads, compare, and branch.

Shadow space The shadow space implementation reduces the
overhead of the hash table by allocating a large enough table in
the virtual address space such that collisions are guaranteed not to
occur. With this guarantee, the tag field and checking is eliminated,
reducing both memory overhead and instruction count. A shadow
space lookup is approximately five x86 instructions: shift, mask,
add, and two loads.

To ensure no collisions occur, the stack and heap are each lim-
ited to the top and bottom eighth of the virtual address space,
respectively. The system reserves a large region of memory in
the middle of the virtual address space for the shadow space. In
essence, this approach reduces the size of the virtual address space
by two bits. The SoftBound prototype uses mmap() to create a zero-
initialized region in virtual memory, and the operating system then
allocates physical pages for this region on demand (i.e., when each
page is first accessed).

5.2 Implementation Consideration
Handling arbitrary C programs requires handling several issues.

Global variables For global arrays, the base and bound are
compile-time constants. Thus, SoftBound sets these bounds
without requiring writing the metadata to memory. However,
for pointer values that are in the global space and are initialized
to non-zero values, SoftBound adds code to explicitly initialize
the in-memory base and bounds for these variables. This can be
implemented using the same hooks C++ uses to run code for
constructing global objects.

Separate compilation and library code Unlike proposals that ex-
ploit whole-program analysis [13, 23], SoftBound easily supports
separate compilation. As described ealier, SoftBound transforms
functions to take additional parameters and changes the name of
the function to signify that it has been transformed. Separate com-
pilation works naturally, as the static or dynamic linker matches up
caller and callee as usual. SoftBound’s support for separate com-
pilation has two important ramifications. First, SoftBound supports
build environments in which a large program is built by compil-
ing many distinct modules via separate compilation. Second, Soft-
Bound can be applied directly to library code, allowing a library
writer to create and distribute a single library archive with both
transformed (spatial safe) and untransformed (unsafe) verions of
each function. For libraries that have not (yet) been transformed
by SoftBound, library function wrappers similar to those used in
MSCC [34] or CCured [23] (but without the marshaling issues
caused by incompatible memory layout) may be employed.

UPenn CIS Technical Report — TR-CIS-09-01 6



Memcpy Among various C standard library calls, memcpy
requires special attention. First, to reduce runtime overhead, the
source and targets of the memcpy are checked for bounds safety
once at the start of the copy. Second, memcpy must also handle the
corresponding metadata. By default, SoftBound takes the safe (but
slow) approach to memcpy (i.e., the approach always inserts code
to copy the metadata). Yet, most calls to memcpy involve buffers
of non-pointer values. To address this inefficiency, SoftBound
includes the option to infer whether the source of the memcpy
contains pointers by looking at the type of the argument at the call
site. Although not foolproof, we have found this heuristic works
well in practice to identify uses of memcpy involving pointers.

Variable argument functions To handle variable argument func-
tions, SoftBound adds two extra parameters to all vararg func-
tions. These parameters specify the number of parameters passed
(in bytes) and the number of pointers passed (and thus the number
of extra base/bound arguments passed to the function. SoftBound
then performs checking in the va_start and va_arg macros to
check that neither too many arguments nor too many pointer argu-
ments are decoded. This is a change to the calling convention for
vararg functions, but as SoftBound can also be used to transform
library code, the change is hidden from the programmer.

Function pointers To protect function pointers, SoftBound sets
the base and bound for function pointers to be equal to the pointer.
Such an encoding is not used by data objects (it would correspond
to a zero-sized object), so SoftBound uses it to check when calling
a function via a function pointer. Although this prevents data point-
ers or non-pointer data from being interpreted as a function pointer,
cast between function pointers of incompatibly types presents a
challenge because calling a function with arbitrary values may al-
low the manufacture of improper base and bounds. Although not
yet implemented in our prototype implementation, the ultimate so-
lution is to encode the pointer/non-pointer signature of the func-
tion’s arguments, allowing a dynamic check to properly handle
such cases.

Creating pointers from integers By default SoftBound sets the
base and bound of a pointer created from a non-pointer value to
NULL. This is a safe default (any dereference of such a pointer
will trigger a bounds violation), but may cause false violations in
particularly perverse C programs. Although we have not encoun-
tered such code in the benchmarks we have examined, such casts
can be supported by allowing the programmer insert a call the
setbound() function, which explicitly sets the bound for a pointer
(including “unbounding” the pointer to allow it to access arbitrary
memory if the programmer so desires).

Arbitrary casts and unions C supports arbitrary type conversion
by explicit casts and implict conversions via unions. SoftBound al-
lows all such casts, because separating the metadata and program
data ensures that pointer bounds are not unsafely manipulated by
casts. In contrast, inline fat pointer schemes [4, 23, 34] have diffi-
culty supporting arbitrary casts. In SoftBound, casts among pointer
types simply inherit the same bounds. As described earlier, Soft-
Bound enforces spatial memory safety and not specifically type
safety. That is, SoftBound ensures that a variable can only deref-
erence memory within its bounds; it does not provide an assurance
about the types of those memory locations.

Memory reuse and stale metadata Although clearing metadata
is not strictly necessary to preserve our well formed memory prop-
erty, SoftBound clears the metadata when reallocating previously
deallocated memory. To avoid clearing already zero metadata, Soft-
Bound uses the heuristic that it clears only variables that likely had
pointer metadata set. For variables on the stack, this entails setting
the metadata to zero for all pointer variables or pointer fields in

stack-allocated structs before the function returns. For variables in
the heap, SoftBound examines the static type of the pointer being
passed to free(). If the type is a pointer or struct with pointers,
SoftBound inserts a code to clear the metadata before the call to
free().

6. Experiments
In this section, we describe and experimentally evaluate our proto-
type implementation of SoftBound. The goal of this evaluation is
to (1) show SoftBound is effective in preventing spatial violations,
(2) measure its runtime and memory overheads, and (3) to show
SoftBound is compatible with existing C code.

6.1 The SoftBound Prototype
The SoftBound prototype uses LLVM [21] as its foundation. Soft-
Bound operates on LLVM’s fully typed single static assignment
(SSA) intermediate form. LLVM invokes the SoftBound pass after
it has performed its full set of optimizations. By applying Soft-
Bound post-optimization, it ensures SoftBound’s instrumentation
does not prevent code optimization. Furthermore, as register pro-
motion and other optimizations have already reduced the number
of memory operations, this reduces the amount of additional in-
strumentation introduced by SoftBound.

The SoftBound pass inserts code to (1) perform base/bound
metadata manipulation prior to every memory operation that reads
or writes a pointer, (2) perform a bounds check before every mem-
ory operation, (3) create a base and bound value for each pointer
non-memory value in the program, and (4) rewrite all function
calls to pass the base and bounds as was described in Section 3.
Calls to external functions are mapped to wrapper functions as
described in Section 3. These transformations are all strictly lo-
cal (intra-procedural) transformations, without using any whole-
program type inference or alias analysis.

The code for maintaining the base/bound metadata and perform-
ing the bounds check are written in standard C. The SoftBound pass
invokes these routines by inserting function calls to these functions
which are later inlined by subsequent LLVM passes.

After the intermediate code has been instrumented with Soft-
Bound, we re-run the full suite of LLVM optimizations on the in-
strumented code. This simplifies the SoftBound pass, because sub-
sequent optimization passes will remove some redundant checks
and factor out common sub-expressions. To reduce compilation
time in production environments, SoftBound would likely become
an internal pass performed after early optimizations such as reg-
ister promotion, but before the most time-consuming optimization
passes.

The SoftBound pass operates on LLVM’s ISA-independent in-
termediate form, so the SoftBound pass is independent of any spe-
cific ISA. We selected 64-bit x86 as the ISA for evaluation due to
its ubiquity. The SoftBound pass is less than 5000 lines of C++
code.

6.2 Effectiveness in Preventing Vulnerabilities and Bugs
To evaluate the effectiveness of SoftBound in detecting violations
of spatial safety, we applied SoftBound to a suite of security viola-
tions [32] and to versions of programs with well-documented secu-
rity violations [22]. SoftBound detects all the spatial violations and
prevents all the security vulnerabilities in these tests without any
false positives.

We use a testbed of buffer overflow attacks [32] that includes
overflows on the stack, heap, and global segments to overwrite var-
ious return addresses, data pointers, function pointers, and longjmp
buffers. Table 3 lists the attack based on the technique adopted, lo-
cation of the overflow, and the attack target which is used to change
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Attack and Target Detection
Full Store

Buffer overflow on stack all
the way to the target

Return address yes yes
Old base pointer yes yes
Function ptr local variable yes yes
Function ptr parameter yes yes
Longjmp buffer local variable yes yes
Longjmp buffer function parameter yes yes

Buffer overflow on heap/BSS/data
all the way to the target

Function pointer yes yes
Longjmp buffer yes yes

Buffer overflow of a pointer on
stack and then pointing to target

Return address yes yes
Base pointer yes yes
Function pointer variable yes yes
Function pointer parameter yes yes
Longjmp buffer variable yes yes
Longjmp buffer function parameter yes yes

Buffer overflow of pointer on
heap/BSS and then pointing to target

Return address yes yes
Old base pointer yes yes
Function pointer yes yes
Longjmp buffer yes yes

Table 3. Various synthetic attacks proposed by Wilander et
al. [32]. SoftBound’s detection ability with full checking and store-
only checking

Detection?
Benchmark Valgrind MudFlap Store Full
go no no no yes
compress no yes yes yes
polymorph yes yes yes yes
gzip yes yes yes yes

Table 4. Benchmarks with overflows and detection efficacy of
SoftBound, Valgrind and Mudflap.

the control flow. SoftBound detects and prevents all these attacks
in both complete and store-only checking mode. Publicly available
tools such as StackGuard, ProPolice, Libsafe and Libverify miss
more than 50% of these test cases [32].

We also evaluated SoftBound’s ability to detect spatial bugs
using actual spatial errors from real programs obtained from the
BugBench suite [22]: go, compress, gzip, and polymorph. These
bugs are a mixture of one or more read or write overflows on the
heap, stack, and globals. Table 4 lists the benchmarks and the de-
tection ability of SoftBound and two popular debugging tools (Val-
grind [24] and GCC’s Mudflap [15]). SoftBound with full check-
ing was able to detect and prevent all of the errors. SoftBound with
checking only for stores was able to detect all of the store over-
flows, but not the load overflows. As a point of comparison, we
also evaluated Valgrind and GCC’s MudFlap efficacy. These exper-
iments show that SoftBound detects violations missed by Valgrind
and Mudflap. For example, Valgrind does not detect overflows on
the stack, leading to its failure to detect some of the bugs.
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Figure 1. Percentage of the memory operations that load or store
a pointer from/to memory, thus requiring a metadata access. The
SPEC benchmarks are shaded dark.

6.3 Runtime Overhead Evaluation
Benchmarks We used 15 benchmarks selected from the SPEC
CPU and the Olden benchmarks to evaluate SoftBound’s perfor-
mance. The Olden benchmarks [29] were used because they have
been used in the most significant prior work in this area [13, 23, 34].
Our SoftBound prototype is not yet sufficiently robust enough to
compile all of the C programs in SPEC 2006, but we present data
for all of the programs we examined on which SoftBound works
correctly. All runs are performed on a 2.66 Ghz Intel Core 2 pro-
cessor. No modifications were made to any of the benchmarks, as
discussed further in Section 6.4.

Benchmark characterization One of the main sources of over-
head in SoftBound are the metadata accesses, which is highly de-
pendent on the frequency of such accesses. Our experiments show
that the frequency of metadata accesses varies significantly from
benchmark to benchmark. Figure 1 shows the benchmarks sorted
by the percentage of memory operations that load or store a pointer
value. The SPEC benchmarks are dark bars; Olden benchmarks are
white bars. Several of the benchmarks have negligible number of
metadata accesses (less than 5%), including five of the seven se-
lected SPEC benchmarks. In the other extreme, over half of the
memory operations in several of the Olden benchmarks are loads
and stores of pointers. To more easily show the correlation of meta-
data accesses and runtime performance, the remaining graphs will
present the benchmarks in this sorted order.

Runtime overheads of full checking Figure 2 presents the per-
centage of runtime overhead of SoftBound over an uninstrumented
baseline for the two metadata implementations with both full and
store-only checking. The two left-most bars in each group of bars
correspond to the overhead of complete checking using the hash
table and shadow space implementations of the metadata facility.
The benchmarks on the left of the graph (those with a lower fre-
quency of metadata accesses) generally have lower overhead. On
those benchmarks the overhead is largely performing the bounds
checks, so the overhead is largely independent of the specific meta-
data encoding scheme. The overhead of these benchmarks could
be reduced by applying more sophisticated bounds check removal
techniques (e.g., [7, 33]), which are complementary to and not the
focus of this work.

Conversely, the runtime of the benchmarks on the right are sig-
nificantly impacted by the metadata encoding, which is the focus
on this work. The hash table encoding has the highest overhead,
127% on average. In most cases the larger overhead is due to the
larger number of instructions necessary to perform the tag check. In
a few benchmarks (e.g., treeadd, mst, health), simulations of cache
miss rates (not shown) indicate the additional memory pressure is
contributing to the runtime overheads. The tag-less shadowspace
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Figure 2. Normalized execution time overhead of SoftBound with full checking and store-only checking with two metadata organizations.

reduces this overhead to 79% on average. For all the benchmarks
these runtimes overheads are likely more than acceptable for de-
bugging, internal and external testing, and for mission-critical ap-
plications. Furthermore, the variation in overhead is significant. For
example, if three benchmarks with the highest overhead (i.e., li,
bisort, em3d) are removed, the average overhead drops to 66%.

Runtime overhead of store-only checking Our experiments with
the security vulnerabilities reinforce the intuition that checking
only stores can prevent security vulnerabilities. Moreover, in our
experience, store overflow bugs are more insidious in that they are
harder to diagnose because the manifestation of the bug is often
widely separated from the root cause location at which the mem-
ory corruption occurred. The two right-most bars in each group of
bars in Figure 2 shows the runtime overhead for the two metadata
representations with store-only checking. The runtime overhead of
checking only stores is reduced to just 32% on average. Further-
more, the runtime overhead of store-only checking is less than 15%
for more than half of the benchmarks, which is likely low enough
for production code.

6.4 Source Code Compatibility Case Studies
To evaluate our claim that SoftBound is highly compatible with
existing source code and interfaces well with existing libraries,
we applied SoftBound to two network server applications: a
fully-functional FTP server (tinyftp-0.2) and high-performance
web server with CGI support from NullLogic (nhttpd-0.5.1).
The NullLogic HTTP server is multithreaded and capable of
handling thousands of simultaneous connections. SoftBound
successfully transformed these network applications without
requiring any source code modifications and no false positives
during program execution. Apart from these network applications,
SoftBound also successfully transformed the fifteen benchmarks
used in the performance evaluation, again, without any source
modifications. In total, these benchmarks and network servers
are approximately 130K total lines of code, all of which were
transformed without modification, further supporting SoftBound’s
source code compatibility claim.

6.5 Performance Comparison to Related Approaches
CCured [23] and MSSC [34] are two pointer-based schemes closely
related to SoftBound. CCured has low runtime overheads, rang-
ing from 3% to 87% [23]. CCured’s whole-program type infer-
ence statically removes many metadata manipulations, resulting
in overheads that are lower on average than SoftBound. How-
ever, on benchmarks whose overhead is dominated by dereference
bounds check overhead (e.g., the SPEC benchmark compress),

SoftBound and CCured have similar overheads. More importantly,
SoftBound supports separate compilation and requires no source
code modifications. In contrast, applying CCured to a program re-
quires non-trivial changes to the source code. Although some of
the changes are simple, restructuring a program to avoid all casts
that cause WILD pointers may require extensive code changes
such as runtime type information annotations and tagged unions
—or ultimately giving up on complete safety by marking casts as
trusted [23]. Lu et al. have used CCured to investigate its bug detec-
tion ability and have described these code modifications as “moder-
ate” to “hard” and ultimately failed to apply CCured to one bench-
mark [22].

MSCC [34] has higher overheads than CCured, partly because it
eschews whole-program analysis (as does SoftBound). When con-
figured to perform only spatial safety checking, MSCC’s overheads
range from 17% to 185% with an average overhead of 68% [34].
Our own experimentation with MSCC and the published results
shows that SoftBound’s overhead is lower than MSCC’s overhead
on common benchmarks. For example, the SPEC benchmark go
has 144% percent overhead with MSCC whereas SoftBound has
55% overhead. Moreover, MSCC does not handle arbitrary casts
and in its best performing configuration has the same issues as
object-based approaches in that it cannot prevent sub-object over-
flows.

7. Additional Related Work
Many other approaches other than enforcing full spatial safety
have been explored for detecting and diagnosing bounds violations
or preventing bounds-related security vulnerabilities. Many static
analyses that detect buffer overflows have been proposed, including
using abstract interpretation [6, 14] and integer programming [16].
Static analysis has also been coupled with lightweight programmer
or inferred annotations (e.g., [17, 9]). Static checking tools gener-
ally either have false positives or false negatives (they are incom-
plete), but are certainly useful complementary techniques to dy-
namically enforced spatial memory safety.

Other approaches enforce control flow integrity [20] or
dataflow integrity based on reaching definition analysis calculated
statically [8]. Pointer analysis can also be used to compute the
approximate set of objects written by each instruction [3]. In all
three cases, these properties are checked dynamically, but neither
strategy directly enforces memory safety. Probabilistic memory
safety approaches, such as DieHard [5, 25], prevent security
vulnerabilities in the heap by using a randomized runtime system
and achieving probabilistic memory safety by approximating to an
infinite size heap.
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8. Conclusion
SoftBound is a compile time transformation system to provide
complete spatial safety for the C programming language. Soft-
Bound provides completeness with no changes to the source code.
SoftBound accomplishes this using a pointer-based approach with
a disjoint metadata space. Further, the mechanized formal proof
shows SoftBound’s metadata propagation is sufficient to provide
complete spatial safety.

We experimentally verified SoftBound’s ability to catch spa-
tial violations using real benchmarks with overflows and a suite
of security vulnerabilities. We found that SoftBound successfully
transformed several benchmarks and two network daemons (around
130k lines of code total) with no source code modifications. Soft-
Bound’s performance overhead is 79% and 31% on an average in
its full and store-only checking modes, respectively. SoftBound’s
store-only checking mode has less than 15% overhead for more
than half of the benchmarks which is likely low enough to be em-
ployed in production code, substantially improving the security and
robustness of real-world software systems.
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