1-1-2016

‘Eem’ Negation in African American English: A Next Step In Jespersen’s Cycle?

Taylor Jones
‘Eem’ Negation in African American English: A Next Step In Jespersen’s Cycle?

Abstract
This work examines a change in negation in African American English. Speakers are using a lexical item, eem, that while likely descended from even is shown to be a distinct lexical item. For many speakers, it is a negative polarity item, however here it is argued that for some it has moved from NPI to overt marker of negation, and in some instances is the only marker of negation in a clause. Like other overt markers of negation, it can trigger negative concord and trigger local phonological agreement (e.g., can’t to cain’t). It is also shown to license its own NPIs, including even (e.g., I eem even say that’). Because it is a change in negation in which an NPI is reanalyzed as negation, it is relevant to the research on Jespersen’s Cycle (JC), though it is crucially different from previously discussed instances of JC in two respects: both elements are preverbal, and all four stages are attested, in simultaneous competition.
‘Eem’ Negation in African American English: A Next Step In Jespersen’s Cycle?

Taylor Jones*

1 Introduction

(1) a. I knew what this was before I eem clicked it
b. I don’t eem remember that

Eem appears at first glance to be simply a phonological reduction of even in informal speech. However, it behaves peculiarly, and is sensitive to both semantics and syntax. Moreover, on social media, AAE speakers go out of their way to represent it as <eem> rather than <even>. Below, I argue that eem is entirely distinct from even, that it is a negative polarity item (NPI), and that it may be moving from NPI to outright negation.

The article will proceed as follows: Section 2 is a review of Jespersen’s Cycle, Section 3 outlines methodology, Section 4 explains the phonology of eem, and Section 5 explains the syntactic constructions that use eem. Section 6 is about the eem’s implications for what we know about Jespersen’s Cycle. Finally, Section 7 concludes the article.

2 Jespersen’s Cycle

Jespersen’s Cycle (JC) is the diachronic process by which negation in a language changes from a single marker of negation (Neg1) to negation with an emphatic (Neg1 + optional Neg2), which may then be reanalyzed as a single marker of negation (Neg1 + obligatory Neg2), culminating in the loss of the original negation and reanalysis of emphatic as marker of negation (Neg2 only) (Jespersen 2013, Dahl 1979). Jesperen’s Cycle is cross-linguistically common, and well known examples include the change from jeo ne dis ‘I don’t say’ in Middle French through je ne dis pas to Modern French je dis pas, and the development of negative circumfixes in some modern varieties of Arabic (e.g., ma-frbna-f ‘we didn’t drink’ in Moroccan Arabic).

Generally, JC is taken to start with preverbal negation (joe ne dis) and to progress when a postverbal element is bleached of its previous meaning and grammaticalized. For instance, French pas from ‘step,’ (je ne marche pas ‘I don’t walk a step’) or Moroccan Arabic -f from Jay ‘thing’ (ma frbna Jay ‘We didn’t drink a thing’). However, below it will be argued that there is nothing a priori inherent to the mechanism of Jespersen’s Cycle that should require that the first element be preverbal and the second postverbal.

3 Methodology

The focus of this investigation is primarily data from the microblogging platform Twitter, which allows users to post ‘tweets’ of 140 characters or fewer. Increasingly, Twitter and other social media

*I would like to thank the organizers of PLC39 and the faculty and graduate students at the University of Pennsylvania. I am particularly indebted to William Labov, Lisa Green, Robin Clark, Christopher Ahern, Julie Legate, Brittany McLaughlin, and Sabriya Fisher for their guidance and support.

For this study, data were gathered using the twitteR package (Gentry 2015) in the R statistical computing language (R Core Team 2015), and cleaned through an iterative process of grepping and deleting irrelevant strings (e.g., <$EEM> which refers to an Emerging Markets Index Fund, or the meme <got eem!> where <eem> is an orthographic representation of him), and visual inspection of the resulting sub-corpus. Because eem occurs at a relatively low rate on Twitter (∼650 per day, including the above false positives, compared to ∼350,000,000 English language tweets per day), a corpus of tokens of eem alone was compiled, as was a separate corpus of tweets containing the string <even>. This approach yielded 2,272 tokens of eem, which were compared against 1,000 tokens of even. Rarer constructions were queried directly through Twitter’s search function, as the Application Program Interface only allows users to query one week’s worth of tweets, but the search function returns ‘historical’ tweets as well. As the focus of the present work is a description of the existence of and phonology and morphosyntax of eem, only cursory statistics were performed—a more robust analysis will require the painstaking annotation of more granular semantic and syntactic information, and the collection of demographic data for tweets or other corpora is preferable. All examples presented in this paper are from Twitter.

It is important to note that eem is not an artifact of orthography. Not only is there evidence that people ‘tweet how they speak’ (Anis 2007, Eisenstein 2013, Jones in press, Van Halteren and Oostdijk 2012), but these data can be corroborated through recourse to social media like Vine, YouTube, SoundCloud, and others; careful attention to mainstream media: radio, television, film, etc.; spoken corpora like the Philadelphia Neighborhood Corpus; and fieldwork.

4 Phonology

While it is almost certain that eem originated as a phonological reduction of even, it is no longer the same as even in all instances, and for some speakers is evidently underlyingly /i:m/. That it is not underlyingly the same as even is evident from the fact that it is sensitive to the syntax, and other lexical items that are homophous with even do not reduce to [i:m]:

(2) a. even*eem Jamal was at the party.
 b. two, four, and six are even*eem numbers.
 c. let’s just call it even*eem.

Moreover, eem is subjected to regular phonological variation, where, loosely:

(3) a. i:m → i:n / _ [+ coronal]
 b. i:m → i: / _V
 c. i:m elsewhere (i.e., before labials and velars, in emphatic pronunciation and isolation, and when pausal)

This variation can be observed in rapper Rocko’s verse on the remix of Rick Ross’ 2014 hit song U.O.E.N.O. IT (‘you don’t even know it’):

(4) Ey, that monster truck sit tall as fuck, so big can 0 [i:n] tow it
don’t like snakes; keep my grass cut so low can 0 [i:m] mow it

Finally, eem is associated with negative stress patterns, so even if /t/ is deleted in final clusters as in (4), eem will appear with other local phonological correlates of negation: e.g., can becoming [kəm] (in the South) or [kæm] (in New York City).
5 Syntax

Use of *eem* is strongly correlated with negation, much more so than use of *even*. In fact, only half of tokens of *even* in the data are in the context of negation (with most of the remaining not non-veridical), whereas 75% of tokens of *eem* are in negative contexts, and the remaining are all non-veridical.

<table>
<thead>
<tr>
<th></th>
<th>Negation</th>
<th>Non-negation (including nonveridical)</th>
</tr>
</thead>
<tbody>
<tr>
<td>even</td>
<td>490 (49%)</td>
<td>510 (51%)</td>
</tr>
<tr>
<td>eem</td>
<td>1705 (75%)</td>
<td>567 (25%)</td>
</tr>
</tbody>
</table>

\[\chi^2 = 212.1204 \quad \text{p value < 0.001} \]

Table 1: *Even* and *eem* by syntactic environment.

There are three surface variations of *eem*, with four possible underlying structures, which will be examined in turn: (Section 5.1) *eem* as NPI, (Section 5.2) *eem* as NPI licensed by phonologically null negation, (Section 5.3) *eem* as negation marker, and (Section 5.4) *eem* as negation marker triggering negative concord and licensing NPIs of its own. The surface ambiguity between the second and third of these is a possible trigger for reanalysis by native learners, since *eem* as NPI licensed by phonologically null negation has the end result that the only overt marking of negation is *eem*. Note that in the following examples, for the sake of clarity, negation and nonveridical operators are italicized and NPIs are bolded.

5.1 *Eem* as NPI

By far, the most common use of *eem* is as an NPI, either in a nonveridical context as in (5) or licensed by negation as in (6):

(5) a. Hillary Clinton done bruh. Campaign over *before it eem* started
 b. My legs are so sore I’m doing the Kanye dance *without eem* trying

(6) a. *I don’t eem* want to have a kid until I’m a millionaire
 b. some of y’all *ain’t eem* double faced . . . more like triple

With overt negation arbitrarily many adjuncts (within reason) can adjoin to V, below NegP:

(7) a. *them cats don’t eem* truly know bruh.
 b. you *don’t eem* really much know what intellectual mean

The obvious interpretation, and one that conforms with other dialects of English, is that *eem* adjoins to V (i.e., is merged below NegP):

(8) I \[[Neg \ not \ can’t [VP eem [V see it]]] \]

5.2 *Eem* as NPI licensed by null Negation

The vast majority of tokens of *eem* conform to the above well-behaved pattern, however there is a minority that cannot be analyzed as such. The easiest to explain are those where *eem* behaves like an NPI, however it is licensed by Negation that is phonologically null—usually due to some predictable phonological pattern in AAE, such as -t/-d deletion in consonant clusters.

In addition to (4) above, there are uses like (9a–b):

(9) a. if u got kids and u don’t take care of em, we can *eem* be friends
 b. I cain *eem* deal wid dem
As noted above, other changes triggered by Negation co-occur with *eem*, such as *can* → *cain* in (9b). However, for some utterances, the phonologically null Negation cannot be analyzed as just the result of regular phonological reduction:

(10) **Eem** really much to do but me and Tiny’ll find sumn

Furthermore, while the above could be explained by recourse to truncation (cf. “There is not really much . . .”), such an explanation is not possible here:

(11) a. I *eem* do nothing!
 b. I got clicked out on for sum I *eem* do

Here, the most plausible structure is:

(12) I \[NegP 0 [VP eem [v◦ do [nothing]]]\]

5.3 **Eem** as Negation

The above is inherently unstable, and leads to surface ambiguity. Perhaps unsurprisingly, some speakers seem to have reanalyzed it. While the above utterances are ambiguous, but phonologically null Negation is the most parsimonious explanation, there are others for which it is simpler to just posit *eem* as Negation:

(13) a. I *eem* tryna be shady . . . I just have questions
 b. I *eem* talkin to bul right now

While it is possible to posit that *eem* is licensed by phonologically null Negation if the Negation is a null realization of *ain’t*, it is not possible with the more idiomatic and more probable “I’m not *eem* talking to . . .”. Moreover, there is a clear, principled reason why *not*, realized as clitic -n’t would reduce on words like *can’t*, namely -t/-d deletion. In general, this applies to *ain’t* as well, leaving [emin’m]². There is not a clear reason why *ain’t* would be deleted entirely. Furthermore, if we posit a null equivalent to *not* as in “I’m not *eem* trying . . .” this poses a new problem: we then must justify the deletion of the copula. While AAE does have copula deletion, it does not in the present indicative first person singular (see, e.g., Fasold and Wolfram 1972, Green 2002, Labov 1972, Rickford and Labov 1999, Wolfram 1969).

As such, the simplest principled account of the data in (23) and (24) is this structure:

(14) I \[NegP eem [VP talking [to bul right now]]\]

5.4 **Eem** as Negation, Licensing NPIs

If *eem* is actually functioning as the head of a NegP and not as an NPI licensed by possibly null Negation, then as Negation it should be able to license NPIs of its own in its former position and should (optionally) trigger Negative concord. This is precisely what we find for some speakers:

(15) a. I *eem* ever been in love
 b. I *eem* much know my avi (=“avatar”) was changed
 c. You in love with instagram niggas and you *eem neva* met em
 d. I *eem* much really just fuck with the tens, but those shoes I ran across: yes!

In (15c), it is important to note that *neva* ‘never’ does not asymmetrically c-command *eem*, and is not licensing it as an NPI. Rather, *eem* is triggering Negative concord (cf. 15a).

Perhaps the best illustration of *eem* as Negation, and as a lexical item distinct from *even* is the fact that Negation *eem* licenses NPI *even*:

¹ “I got chewed out for something I didn’t do

² This is often explicitly represented on social media as <ain’eem> or <ain eem>.
(16) a. imma act like I *eem even* read that
 b. you the next iron chef . . . and you *eem even* know

Here, the structure seems to be:

(17) I’m-a act like I \[NegP eem \[VP even \[V◦ read] [dat]] \]

6 Discussion

In the above, there are four distinct structural configurations all attested in social media. They are summarized in the table below:

<table>
<thead>
<tr>
<th>type</th>
<th>structure</th>
<th>example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eem as NPI</td>
<td>[TP [NegP not [VP eem [. . .]]]]</td>
<td>he ain’t eem cute</td>
</tr>
<tr>
<td>with null Negation</td>
<td>[TP [NegP [Ø [VP eem [. . .]]]]]</td>
<td>I’m so short you can eem see me</td>
</tr>
<tr>
<td>Eem as Negation</td>
<td>[TP [NegP eem [VP even [. . .]]]]</td>
<td>I eem care</td>
</tr>
<tr>
<td>licensing NPIs</td>
<td>[TP [NegP eem [VP even [. . .]]]]</td>
<td>I eem much go outside no moe</td>
</tr>
</tbody>
</table>

Table 2: Structural configurations of *eem* in social media.

This kind of variation should not be surprising, however, as *eem* is not necessarily new in AAE. Rather, new social media allow us to see that native speakers make a distinction between *eem* and *even*, and allows us to make use of an unprecedented volume of data to investigate these syntactic patterns for the first time. Moreover, while *eem* shows up in these forms on Twitter after 2009, it has existed in the spoken language, undocumented, for at least 35 years, as it is present in 1981 interviews in the Philadelphia Neighborhood Corpus.

While the use of *eem* as an NPI is very widespread and goes back at least a generation, *eem* as Negation is still very rare. It is possible that the enormous volume of data new media afford has allowed us to catch a syntactic change at a very early stage. However, it is also possible that this is small-scale drift and will be subject to strong selectional pressure and die out rather than develop so that *eem* becomes a standard method of Negation in AAE. As such, the future development of *eem* bears on the question of drift versus selection in Jespersen’s Cycle (Ahern and Clark 2014).

More importantly, this is a challenge to traditional discussion of Jespersen’s Cycle in a number of significant ways. First, while Jespersen’s Cycle is generally taken to be change in interpretation of a *preverbal* and a *postverbal* element, both elements involved in the change happening here are preverbal. However, precisely for this reason, it conforms to modern theoretical approaches to syntactic change and grammaticalization, namely that grammaticalization is renalysis *up the tree* (Roberts and Rousseau 2003). This kind of reinterpretation up the tree falls out from the surface ambiguity between *eem* licensed by null Negation and *eem* as null Negation as in examples (18–20).
For the sake of clarity, the structural position *eem* filled in (18) is still represented in (19) despite being empty. In (20), it is filled, as the position is available if *eem* is Negation and not an NPI. Second, all four stages are simultaneously attested, and present in varying degrees in the data. This means that rather than an orderly cycle, multiple structures are in simultaneous competition. This too, however, is in keeping with newer quantitative approaches to grammatical change, and specifically Jespersen’s Cycle, which suggest a somewhat messier transition as forms compete (Ahern and Clark 2014, Ecay 2014, Wallage 2008).

7 Conclusion

To summarize, there is a distinct, understudied lexical item in AAE: *eem*. It is related to, but in crucial respects different from, *even*, both in terms of phonology and syntax. It occurs in Negative and non-veridical contexts, and often behaves like a Negative polarity item, however it exhibits a range of syntactic patterns so that for some speakers it is clearly not an NPI but rather a Negation that licenses its own NPIs. This change is likely due to competing grammars as a result of ambiguous surface structure: the result being that some speakers reanalyze *eem* as being in a higher syntactic position than others. Such a change, while not quite the same pattern as canonical Jespersen’s Cycle, is consistent with contemporary theories of grammaticalization, and the simultaneous competition among grammars is consistent with contemporary theories of grammatical change in a speech community.

What the above means is that we may have the opportunity to observe a syntactic change from (nearly) its inception, as this is a possible change in progress, caught very early. However, more work needs to be done to thoroughly determine the exact origins of *eem* (specifically, when it diverged phonologically from *even*, or if it ever diverged, as 19th century representations of AAE, albeit potentially unreliable, often have <eb’m> or similar spellings for NPI *eem/even*). This can be done through recourse to spoken corpora, and to careful analysis of historical corpora. More work also needs to be done to more precisely describe its contemporary use, especially in spoken and offline contexts. That said, we are fortunate to be in a position to track its possible development from NPI to Negation starting from a very early stage, and possibly, for the first time, observe Jespersen’s Cycle in real time.

References

Gentry, Jeff. 2015. twitteR: R Based Twitter Client. R package version 1.1.9.

Jones, Taylor. in press. Tweets as graffiti: What the reconstruction of Vulgar Latin can tell us about black Twitter. In English in Computer Mediated Communication: Variation, Representation, and Change, ed. Lauren Squires.

