
Department of Computer & Information Science

Technical Reports (CIS)

University of Pennsylvania Year 2007

Provenance-aware Declarative Secure

Networks

Wenchao Zhou∗ Eric Cronin†

Boon Thau Loo‡

∗University of Pennsylvania, wenchaoz@seas.upenn.edu
†University of Pennsylvania, ecronin@seas.upenn.edu
‡University of Pennsylvania, boonloo@cis.upenn.edu

This paper is posted at ScholarlyCommons.

http://repository.upenn.edu/cis reports/764

Provenance-aware Declarative Secure Networks
Wenchao Zhou Eric Cronin Boon Thau Loo

University of Pennsylvania

Abstract
In recent years, network accountability and forensic anal-
ysis have become increasingly important, as a means
of performing network diagnostics, identifying malicious
nodes, enforcing trust management policies, and imposing
diverse billing over the Internet. This has lead to a series
of work to provide better network support for account-
ability, and efficient mechanisms to trace packets and in-
formation flows through the Internet. In this paper, we
make the following contributions. First, we show that net-
work accountability and forensic analysis can be posed
generally as data provenance computations and queries
over distributed streams. In particular, one can utilize
provenance-aware declarative networks with appropriate
security extensions to provide a flexible declarative frame-
work for specifying, analyzing and auditing networks.
Second, we propose a taxonomy of data provenance along
multiple axes, and show that they map naturally to dif-
ferent use cases in networks. Third, we suggest tech-
niques to efficiently compute and store network prove-
nance, and provide an initial performance evaluation on
the P2 declarative networking system with modifications
to support provenance and authenticated communication.

1 Introduction
The Internet was not designed with accountability as its
primary goal. However, network accountability and foren-
sic analysis have become increasingly important in re-
cent years, as a means of performing network diagnostics,
identifying malicious and misbehaving users, enforcing
trust management policies, and imposing diverse billing
over the Internet. This has lead to a series of propos-
als (e.g. [18, 3, 19, 10, 21, 4, 8, 11]) on improving net-
work support for accountability, and efficient mechanisms
to trace packets and information flows through the Inter-
net. While there have not been a lack of proposals, several
of them narrowly tackling a specific functionality or net-
work application.

Provenance (also called lineage) has been studied in
many different contexts. In the context of database sys-
tems, they have primarily used in databases to help “ex-
plain” to users why a tuple exists [6]. In this paper,
we show that network accountability and forensic anal-
ysis can be posed generally as data provenance computa-
tions and queries over distributed streams. We argue that
declarative networks [12, 14, 13] enhanced with the abil-
ity to maintain provenance of computations will enable
a general extensible framework for specifying, analyz-
ing, and auditing networks. Declarative networks utilize a
database query language for specifying and implementing
networks, and its dataflow framework captures informa-
tion flow naturally as distributed streams computations.

We further demonstrate that with the appropriate security
extensions [1] to the query language used in declarative
networks, we can further allow provenance computations
and queries to be authenticated in untrusted environments.

Contributions and Organization: In Section 2, we pro-
vide a background on declarative networks, its query lan-
guages, and recent security extensions obtained by unify-
ing its core language with logic-based access control lan-
guages. Next, in Section 3, we survey various use cases of
network provenance ranging from real-diagnostics, foren-
sics, accountability, and trust management. In Section 4,
we then provide a taxonomy of different types of data
provenance (local vs distributed, online vs offline, authen-
ticated, etc), several of which are derived from existing
database literature, and show that they map naturally into
existing use cases. We outline some possible optimiza-
tions (Section 5), perform initial performance evaluations
based on extensions to the P2 declarative networking sys-
tem (Section 6), and then conclude in Section 7.

2 Declarative Networks
As background, we briefly introduce declarative network-
ing and its query language, including security extensions.
The high level goal of declarative networks [14, 13, 12]
is to build extensible network architectures that achieve
a good balance of flexibility, performance and safety.
Declarative networks are specified using Network Data-
log (NDlog), which is a distributed recursive query lan-
guage used for querying network graphs. NDlog queries
are executed using a distributed query processor to imple-
ment the network protocols, and continuously maintained
as distributed views over existing network and host state.

Declarative queries such as NDlog are a natural and
compact way to implement a variety of routing protocols
and overlay networks. For example, traditional routing
protocols can be expressed in a few lines of code [14],
and the Chord [20] distributed hash table in 47 lines of
code [13]. When compiled and executed, these declar-
ative networks perform efficiently relative to imperative
implementations.

2.1 Network Datalog Language
NDlog is based on Datalog [16]: a Datalog program con-
sists of a set of declarative rules. Each rule has the form
p :- q1, q2, ..., qn., which can be read informally
as “q1 and q2 and ... and qn implies p”. Here, p is
the head of the rule, and q1, q2,...,qn is a list of literals
that constitutes the body of the rule. Literals are either
predicates with attributes (which are bound to variables
or constants by the query), or boolean expressions that in-
volve function symbols (including arithmetic) applied to
attributes. (Predicates in datalog are typically relations,
although in some cases they may represent functions.)

1

Datalog rules can refer to one another in a cyclic fashion
to express recursion. The order in which the rules are pre-
sented in a program is semantically immaterial; likewise,
the order predicates appear in a rule is not semantically
meaningful. Commas are interpreted as logical conjunc-
tions (AND). The names of predicates, function symbols,
and constants begin with a lowercase letter, while variable
names begin with an uppercase letter. We illustrate ND-
log using a simple example of two rules that computes all
pairs of reachable nodes:

r1 reachable(@S,D) :- link(@S,D).
r2 reachable(@S,D) :- link(@S,Z), reachable(@Z,D).

The rules r1 and r2 specify a distributed transitive clo-
sure computation, where rule r1 computes all pairs of
nodes reachable within a single hop from all input links
(denoted by the neighbor, and rule r2 expresses that “if
there is a link from S to Z, and Z can reach D, then S can
reach D.” By modifying this simple example, we can con-
struct more complex routing protocols, such as the dis-
tance vector and path vector routing protocols.

NDlog supports a location specifier in each predicate,
expressed with @ symbol followed by an attribute. This
attribute is used to denote the source location of each cor-
responding tuple. For example, all reachable and link
tuples are stored based on the @S address field. The out-
put of interest is the set of all reachable(@S,D) tuples,
representing reachable pairs of nodes from S to D.

When executed, the above NDlog query is essen-
tially a distributed stream computation, where stream of
neighbor and reachable tuples are joined at different
nodes to compute routing tables. Interestingly, sliding
windows commonly used in stream processing enables the
soft-state [17] maintenance of network data: the window
size essentially corresponds to the lifetime of all routes.

2.2 Secure Network Datalog
Secure Network Datalog (SeNDlog) [1] is a unified declar-
ative language for networks and security policies. It com-
bines language features from NDlog, and Binder, a logic-
based language for access control in distributed systems,
and NDlog, with the goal of providing a unified declara-
tive language for networks and security policies. SeNDlog
utilizes Binder’s notion of context that represents a com-
ponent (or security principal) in a distributed environment
and a distinguished operator “says”. We illustrate SeND-
log via the same reachable example as before, with the
additional use of the “says” operator:

At S:
s1 reachable(S,D) :- link(S,D).
s2 linkD(D,S)@D :- link(S,D).
s3 reachable(Z,Y)@Z :- Z says linkD(Z,S),

W says reachable(S,Y).

The rules s1-s3 are within the context of the princi-
pal S. An additional localization rewrite [12] ensures that
all rule bodies are localized within a context (i.e. have
the same location specifier). Assuming an untrusted net-
work, this allows rules to execute only based on trusted lo-
cal data, or authenticated data from remote sources. The

“says” construct is an abstraction for the details of au-
thentication. In one specific implementation, communi-
cation happens via signed certificates, where derived tu-
ples signed using the private key of the exporting context
can be imported into another context and checked using
the corresponding public key. E.g. node S will import
the reachable(S,Y) fact from its neighbor W, and ver-
ify that it is indeed from W via the signature stored with
the fact. Node S then derives the reachable(Z,Y) fact
which is signed and exported to node Z.

Note that the implementation of “says” may depend on
the system and its context. In a hostile world, “says” may
require digital signatures, while in a more benign world,
“says” may simply append a cleartext principal header to
a message—and this will of course be cheaper.

3 Provenance in Practice
In this section, we survey a (non-exhaustive) list of ex-
isting work in the networking literature that motivates the
use of network provenance. We classify the use-cases as
real-time diagnostics, forensics, accountability, and trust
management. While our examples focuses on examples
at the IP layer, we note that network provenance similarly
applies to overlay networks, and other multi-hop networks
such as sensor networks.

3.1 Real-time Diagnostics
Provenance (also called lineage) has been studied in many
different contexts, but primarily to help “explain” to users
why a tuple exists [6]. This is particularly useful to per-
form real-time diagnostics. One can add declarative rules
that monitor a protocol for run-time anomalies, e.g. lack
of convergence, network traffic spike suggesting possible
intrusion etc. To illustrate, the following rule raises an
alarm when the current best path from S to D via the next
hop Z is greater than 10:

routeAlarm(@S,D,Z,C) :- nextHop(@S,D,Z,C), C>10.

When routeAlarm is generated, one can further exe-
cute a distributed query over the provenance of nextHop
to figure out how the errant nextHop was computed. An
alternative is to track changes of nextHop over past T sec-
onds, and raise an alarm when the number of changes ex-
ceed a threshold, as an indication of divergence. For real-
time diagnostics, typically, one only need to maintain the
provenance for existing network state that is necessary to
determine how an routing entry was generated.

3.2 Forensics
Real-time diagnostics involve running queries over cur-
rent network state. In many cases, historical data is
required in order to correlate traffic patterns of attack-
ers. A common area of research has been in providing
“traceback”[18] of traffic, either by the receiver or by an
involved third party(e.g. in transitor networks), to deter-
mine where packets are originated from without trusting
the unauthenticated IP headers.

2

We illustrate the relationship between traceback and
provenance via the following NDlog example. Con-
sider an IP router node Node, with forwarding ta-
ble nextHop(@Node, Dest, NextHop, Cost), and
an incoming packet(@Node, Dest, Payload). The
forwarding NDlog rule expresses its traversal through a
series of routers until the destination is reached:

packet(@NextHop,Dest,Payload) :-
nextHop(@Node, Dest, NextHop, Cost),
packet(@Node, Dest, Data), Node!=Dest.

One can store annotations either in the packet (i.e. pig-
gyback each tuple with its complete “path” or “prove-
nance”), or maintain state at each router, to allow for sub-
sequent traceback via a distributed query during forensic
analysis.

To reduce the storage and communication overhead,
there are other proposals such as ForNet [19] and Time
Machine[10] that trade off accuracy for performance, by
using summarization (via bloom filters) and sampling
techniques respectively to compress the provenance. In
addition, to reduce the overhead of queries over the prove-
nance, random moonwalks [21] are used to avoid travers-
ing all possible paths.

3.3 Accountability
Forensics analysis is essentially a form of call-detail used
in voice telephone networks, where historical information
on the caller, callee, length of call, and call status both in
real-time and in many cases historically through the ex-
amination of call detail records. One important use of
the call-detail information is to enforce accountability, or
proper usage in networks. For example, PlanetFlow [8]
is a network auditing service provided on PlanetLab [15],
to provide accountability for all traffic generated by Plan-
etLab services, to ensure that all users are in accordance
with PlanetLab policies. With detailed accountability of
traffic, more diverse billing is possible as in the telephone
network. In addition, increased accountability can also
lead to greater incentives for network innovation [11].

3.4 Trust Management
In our final use case, provenance in networks is useful
for enforcing trust management policies. For example,
a router can drop packets that have traversed via certain
paths in order to enforce transit traffic policies. In fact,
the path-vector protocol used in BGP carries the entire
path during route advertisement, in order to allow ASes
to enforce their respective policies.

More generally, beyond routing, provenance enables a
recipient node to trace the origins of networked data, and
hence enforce trust policies to accept or reject incoming
updates based on the source origins. The Orchestra [9]
p2p data-integration engine uses provenance in this man-
ner, to accept or reject updates from neighboring nodes by
examining the provenance of updates and the trust rela-
tionships among nodes. Taking this idea one step further,
one can maintain a quantifiable notion of trust, e.g. ac-
cepting an update only if over K entities assert the update.

Figure 1: NDlog derivation tree for reachable(a,c).

This information can also be encoded in the provenance
of an update by maintaining a count of the number of its
derivations.

4 Taxonomy of Data Provenance
In this section, we present a taxonomy of data provenance,
most of which are derived from existing database litera-
ture. We then map that to the use cases presented in Sec-
tion 3. To illustrate, we make use of an example network
which consists of three nodes a, b, c and three unidirec-
tional links link(a,b), link(a,c), link(b,c).

We gives the derivation tree for reachable(@a,c) in
Figure 1 as a result of executing the NDlog query in Sec-
tion 2.1. This derivation tree essentially represents the lin-
eage or provenance of the tuple, and one can use this tree
to figure out the initial input base tuples (at the leaves of
the tree). The ovals in the diagram represent the rules (r1,
r2, or union to combine their results) that are used for
the derivation of reachable(@a,c).

Declarative networks are essentially computations over
distributed streams, with time-based sliding windows for
soft-state derived tuples. In order to incorporate prove-
nance into distributed streams, we make the following
changes to traditional provenance. First, we annotate each
derivation with its location (denoted by the location spec-
ifier “@”). Second, since tuples are soft-state with life-
times, we also add creation timestamps and time-to-live
to the nodes in the tree.

4.1 Local vs Distributed Provenance
The derivation tree shown in Figure 1 can be stored either
locally or in a distributed fashion. In local provenance,
the tree is stored at node a, which is the final storage lo-
cation of reachable(@a,b). In order to have a locally
complete provenance, each tuple that is derived needs to
piggy-back its entire provenance when shipped from one
node to another.

On the other hand, one can utilize distributed prove-
nance, which only stores pointers to the previous node
to reconstruct its provenance on demand. Hence,
node a only needs to store the fact that it is de-
rived from link(@a,b) which is available locally, and

3

reachable(@b,c) which is stored at node b. The anal-
ogy here is IP traceback (Section 3.2), where one can
either store the entire traversed path within each packet
(similar to local provenance), or only maintain enough
state at each router to traceback the route on demand.

There are evidently tradeoffs between local and dis-
tributed provenance. In local provenance, computation is
more expensive for each tuple, but provenance querying
is cheap. Also, since each node has the provenance avail-
able locally, it can also better enforce trust policies (see
Section 3.4). On the other hand, distributed provenance
requires no extra communication overhead, but incurs ex-
pensive cost of querying the provenance.

4.2 Online vs Offline Provenance
Along another axis, we can further classify provenance as
either online or offline. Online provenance is maintained
for network state that is currently valid (i.e. not expired),
and offline provenance is kept even when the derivations
have expired. The purpose of online provenance is for run-
time reaction to network anomalies. For example, when a
node is detected to be suspicious, one can query the online
provenance to delete all routing entries associated with the
malicious node.

Online provenance has limited usage given that most
networked data are maintained as soft-state with TTLs. In
this case, offline provenance is maintained even for data
that has long expired. While not useful for real-time diag-
nostics, it can be used for supporting forensics and enforc-
ing accountability (Sections 3.2 and 3.3). Offline prove-
nance can result in high storage overhead. We will revisit
this issue in Section 5.

4.3 Authenticated Provenance
Up to this point, we have assumed that all nodes who com-
pute the provenance are trusted. In practice, authentica-
tion is required to ensure the validity of provenance com-
puted by other nodes (e.g. to prevent spoofing of messages
from malicious attackers).

Figure 2 shows an alternative derivation tree based on
the SeNDlog query presented in Section 2.2. We note the
following differences. First, since all rule bodies are local-
ized within the context of a security principal, we can omit
the location specifiers for each tuple. However, we anno-
tate each operator (denoted by the oval) with the location
(or context) where the rule is executed. Second, each node
in the tree is asserted by a principal using “says”. In an
untrusted environment, this means that individual nodes
in the provenance tree needs to have digital signatures to
validate the authenticity of the computed provenance.

4.4 Condensed Provenance
When computing local provenance, the overhead of ship-
ping the entire provenance with each tuple may be expen-
sive. With authenticated provenance, the overhead is in-
creased due to the digital signatures. We note that in sev-
eral instances, local provenance is desired (e.g. for decid-
ing whether to accept a tuple based on its origins).

Figure 2: SeNDlog derivation tree for reachable(a,c) with an-
notations for condensed provenance.

To reduce the overhead of computing and sending prove-
nance, we present an existing technique to condense the
size of local provenance, yet retain sufficient information
for enforcing trust based on source origins. This technique
is inspired by provenance semirings [7] in Orchestra [9]
system, where tuples are annotated with provenance ex-
pressions that are based on the unique keys of base in-
put tuples. These provenance expressions can themselves
be encoded in boolean expressions stored in Binary De-
cision Diagrams (BDD) [5] , and further compressed as
presented in [2].

To provide the intuition behind the condensation pro-
cess, we revisit the derivation tree in Figure 2. Each tu-
ple has an additional field denoted by <...> that stores
the condensed provenance, where + represents union, and
* represents a join expression. An expression such as
<a+a*b> for reachable(a,c) can be compressed sim-
ply into <a>. Intuitively, whether the principal b is trusted
or not is inconsequential given a. As long as principal a is
trusted by the node that receives the reachable(@a,b)
tuple, this tuple will be accepted, regardless of whether b
is trusted or not.

4.5 Summary
Revisiting the use cases from Section 3, we summarize
the types of provenance that are applicable to each usage
scenario. In real-time diagnostics, online provenance of
existing data is required. The provenance can be local or
distributed, and can further be authenticated. On the other
hand, Forensics and Accountability requires offline prove-
nance, and in practice, would be used in conjunction with
online provenance. Trust Management is best enforced
locally at each node, and one can further utilize conden-
sation to reduce the communication overhead.

5 Optimizations
A key challenge in maintaining network provenance is
in lowering the storage, communication, and distributed
querying overheads. In the previous section, we have seen

4

how condensed provenance encoded via BDDs can re-
sult in a compact representation of provenance that can be
evaluated locally for trust management. In addition, we
outline three possible optimizations that we would like to
further explore as future work:
Proactive vs reactive provenance: In proactive prove-
nance, all the provenance of new tuples are eagerly main-
tained and propagated in the network. In a more reac-
tive mode of operation, one can maintain lazy provenance,
whose computation is triggered only by specified network
events. For example, in the earlier path computation ex-
ample, start computing the provenance of nextHop only
when slow route convergence is detected. Similarly, of-
fline provenance for forensics can be aged out over time
to reduce storage, unless explicitly marked to persist as a
result of network anomaly.
Sampling: A straightforward optimization is to only
record a portion of the provenance (both online and of-
fline) via sampling techniques. For example, IP Trace-
back (which generates a new message 1/20,000th of the
time) and ForNet (which uses Bloom filters) are exam-
ples of this approach. The sampling techniques can also
be applied when querying distributed provenance. One
example existing technique is the use of random moon-
walks [21] to avoid querying all provenance.
Granularity of provenance: In reconstructing network
provenance, there are different granularities at which sys-
tems can operate. To reduce overhead, provenance can be
aggregated and maintained at the AS granularity, which is
not conducive for IP traceback. However, we believe that
for most network forensic analysis over the Internet, AS
granularity is likely to be sufficient for detecting events
such as spoofed packet injection.

6 Preliminary Evaluation
In this section, we present a preliminary evaluation study
on the overhead of authenticated communication and
computing network provenance. We modified the P2
declarative networking system [13] to support the SeND-
log query language, which is compiled into distributed
dataflows that exchanges messages that are signed with
RSA signatures. We further modify various relational op-
erators (particularly joins) in the P2 system to support
provenance. In particular, we focus on evaluating the
performance of authenticated provenance (Section 4.3)
which is individually signed by the principal that asserted
each fact, and we further apply the condensation (Sec-
tion 4.4) to reduce communication and storage overhead.

We utilize the OpenSSL v0.9.8b, and Buddy BDD v2.4
libraries to support encryption and provenance. Our ex-
periments are performed on a quad-core machine with In-
tel Xeon 2.33GHz CPUs and 4GB RAM running Fedora
Core 6 with kernel version 2.6.20. In our experiments,
we execute up to 100 P2 processes representing different
nodes on the machine.

For the query workload, we utilize the Best-Path recur-
sive query that computes the shortest paths between all

pairs of nodes. This query is obtained from the NDlog
all-pairs reachability query presented in Section 2, with
additional predicates to compute the actual path, cost of
the path, and two extra rules for computing the best paths.
As input, we insert link tables for up N nodes with average
outdegree of three, and vary the size of N from 10 to 100.

To isolate the individual overhead of authenticated com-
munication and provenance, we execute three versions of
the Best-Path query: NDlog version without authentica-
tion and provenance, SeNDLog with authentication but
without provenance, and SeNDLogProv with both authen-
tication and provenance. Our metrics of evaluation are as
follows:

• Query completion time (s): Time taken for a query
to finish execution. As our example programs are
recursive, this means the time elapsed before the sys-
tem reaches a distributed fixpoint, where all nodes
finish computing their best paths.

• Bandwidth usage (MB): The total combined band-
width usage across all nodes required for executing
the distributed query.

In our experiments, we measure the computation and
bandwidth overheads of encryption and provenance by
comparing NDLog, SeNDLog and SeNDLogProv. Fig-
ure 3 and 4 shows the query completion time and band-
width utilization respectively, averaged over 10 experi-
mental runs. We summarize our results as follows:

SeNDlog overhead: The use of authenticated commu-
nication in SeNDLog incurs in the average 53% delay
in query completion time and 36% bandwidth utilization
compared to NDlog. As N increases, the additional over-
head decreases. For example, when N is 100, the overhead
is 44% and 17% respectively. Given that we are running
multiple P2 processes on a single node and generating a
signature for each tuple, this represents an upper bound
on the encryption overhead.

Condensed provenance overhead: The query comple-
tion time of SeNDLogProv increases by 41% compared to
SeNDLog due to the overhead of computing and shipping
provenance. In addition, SeNDLogProv requires 54%
more bandwidth than SeNDLog. Similar to the SeNDlog
overhead above, we observe that provenance overhead de-
creases as the number of nodes increases. For example,
when N is 100, SeNDLogProv only incurs additional 6%
and 10% costs in computation and bandwidth overhead re-
spectively. Our results demonstrate that the BDD-encoded
condensed provenance is efficient for recording derivation
of tuples, at reasonably low overhead especially for larger
networks.

7 Conclusion
In this paper, we argue that network accountability and
forensic analysis can be posed as data provenance com-
putations and queries over distributed streams. In particu-
lar, one can utilize provenance-aware declarative networks
with appropriate security extensions to provide a flexible

5

0

40

80

120

160

200

240

280

0 20 40 60 80 100

Number of Nodes

Q
u
e
r
y

C
o
m
p
l
e
t
i
o
n

T
i
m
e

(
s
)

NDLog
SeNDLog
SeNDLogProv

Figure 3: Query completion time (s) for Best-Path query

0

10

20

30

40

50

60

70

0 20 40 60 80 100

Number of Nodes

B
a
n
d
w
i
d
t
h

U
t
i
l
i
z
a
t
i
o
n

(
M
B
) NDLog

SeNDLog
SeNDLogProv

Figure 4: Bandwidth utilization (MB) for Best-Path query.

declarative framework for specifying, analyzing and au-
diting networks. To prove our case, we propose a taxon-
omy of data provenance along multiple axes, and show
that they map naturally to several use cases ranging from
network forensics and diagnostics to trust management.
We suggest techniques to efficiently compute and store
network provenance, and provide an initial performance
evaluation using the P2 declarative networking system.

Our future work is proceeding along several fronts.
First, while we focus on forensics and accountability over
the Internet, we intend to explore the general applicability
of these techniques to overlay networks and sensor net-
works. Second, we are in the process of evaluating a va-
riety of secure networks specified and implemented us-
ing SeNDlog (e.g. secure Chord routing, DNSSEC), and
studying the usage of network provenance for a variety of
networks. This will enable us to investigate cross-layer
analysis opportunities that arise as a result of having a
single integrated system that unifies network and security
specifications.

References
[1] M. Abadi and B. T. Loo. Towards a Language and System

for Secure Networking. In NetDB, 2007.

[2] Anonymous. Paper is under submission.

[3] K. Argyraki, P. Maniatis, D. Cheriton, and S. Shenker. Pro-
viding packet obituaries. In Proc. of 2006 ACM SIGCOMM
Workshop on Mining Network Data (MineNet ’06). ACM
Press, Sept. 2006.

[4] A. Bender, N. Spring, D. Levin, and B. Bhattacharjee. Ac-
countability as a service. In USENIX Steps to Reducing
Unwanted Traffic on the Internet, 2007.

[5] R. E. Bryant. Symbolic boolean manipulation with ordered
binary decision diagrams. ACM Computing Surveys, 24(3),
1992.

[6] P. Buneman, S. Khanna, and W. C. Tan. Why and where:
A characterization of data provenance. In ICDT, 2001.

[7] T. J. Green, G. Karvounarakis, and V. Tannen. Provenance
semirings. In ACM Symposium on Principles of Database
Systems, 2007.

[8] M. Huang, A. Bavier, and L. Peterson. PlanetFlow: Main-
taining accountability for network services. Communica-
tions of the ACM, 32(6):89–94, June 1989.

[9] Z. Ives, N. Khandelwal, A. Kapur, and M. Cakir. OR-
CHESTRA: Rapid, collaborative sharing of dynamic data.
In CIDR, January 2005.

[10] S. Kornexl, V. Paxson, H. Dreger, A. Feldmann, and
R. Sommer. Building a time machine for efficient record-
ing and retrieval of high-volume network traffic. In Internet
Measurement Conference (IMC), 2005.

[11] P. Laskowski and J. Chuang. Network monitors and con-
tracting systems: Competition and innovation. In Proceed-
ings of ACM SIGCOMM Conference on Data Communica-
tion, 2007.

[12] B. T. Loo, T. Condie, M. Garofalakis, D. E. Gay, J. M.
Hellerstein, P. Maniatis, R. Ramakrishnan, T. Roscoe, and
I. Stoica. Declarative Networking: Language, Execution
and Optimization. In ACM SIGMOD, June 2006.

[13] B. T. Loo, T. Condie, J. M. Hellerstein, P. Maniatis,
T. Roscoe, and I. Stoica. Implementing Declarative Over-
lays. In ACM SOSP, 2005.

[14] B. T. Loo, J. M. Hellerstein, I. Stoica, and R. Ramakrish-
nan. Declarative Routing: Extensible Routing with Declar-
ative Queries. In ACM SIGMOD, 2005.

[15] PlanetLab. Global testbed. 2006. http://www.planet-
lab.org/.

[16] R. Ramakrishnan and J. D. Ullman. A Survey of Research
on Deductive Database Systems. Journal of Logic Pro-
gramming, 23(2):125–149, 1993.

[17] S. Raman and S. McCanne. A model, analysis, and pro-
tocol framework for soft state-based communication. In
SIGCOMM, pages 15–25, 1999.

[18] S. Savage, D. Wetherall, A. Karlin, and T. Anderson. Prac-
tical network support for IP traceback. In Proceedings
of ACM SIGCOMM Conference on Data Communication,
2000.

[19] K. Shanmugasundaram, N. Memon, A. Savant, and
H. Bronnimann. ForNet: A distributed forensics network.
In Proc. of 2nd International Workshop on Mathematical
Methods, Models, and Architectures for Computer Net-
work Security, 2003.

[20] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and
H. Balakrishnan. Chord: A Scalable Peer-to-Peer Lookup
Service for Internet Applications. In Proceedings of ACM
SIGCOMM Conference on Data Communication, 2001.

[21] Y. Xie, V. Sekar, M. K. Reiter, and H. Zhang. Forensic
analysis for epidemic attacks in federated networks. In
Proc. of the 2001 IEEE Symposium on Security and Pri-
vacy, pages 43–53. IEEE Computer Society, May 2001.

6

	Introduction
	Declarative Networks
	Network Datalog Language
	Secure Network Datalog

	Provenance in Practice
	Real-time Diagnostics
	Forensics
	Accountability
	Trust Management

	Taxonomy of Data Provenance
	Local vs Distributed Provenance
	Online vs Offline Provenance
	Authenticated Provenance
	Condensed Provenance
	Summary

	Optimizations
	Preliminary Evaluation
	Conclusion

