
Department of Computer & Information Science

Technical Reports (CIS)

University of Pennsylvania Year 2007

MOSAIC: Multiple Overlay Selection

and Intelligent Composition

Yun Mao∗ Boon Thau Loo†

Zachary G. Ives‡ Jonathan M. Smith∗∗

∗University of Pennsylvania
†University of Pennsylvania, boonloo@cis.upenn.edu
‡University of Pennsylvania, zives@cis.upenn.edu
∗∗University of Pennsylvania, jms@cis.upenn.edu

This paper is posted at ScholarlyCommons.

http://repository.upenn.edu/cis reports/654

MOSAIC: Multiple Overlay Selection and Intelligent Composition

Yun Mao Boon Thau Loo Zachary Ives Jonathan M. Smith
CIS Department, University of Pennsylvania

Abstract
Today, the most effective mechanism for remedying
shortcomings of the Internet, or augmenting it with new
networking capabilities, is to develop and deploy a new
overlay network. This leads to the problem of multi-
ple networking infrastructures, each with independent
advantages, and each developed in isolation. A greatly
preferable solution is to have a single infrastructure un-
der which new overlays can be developed, deployed, se-
lected, and combined according to application and ad-
ministrator needs.

MOSAIC is an extensible infrastructure that enables
not only the specification of new overlay networks, but
also dynamic selection and composition of such over-
lays. MOSAIC provides declarative networking: it uses
a unified declarative language (Mozlog) and runtime sys-
tem to enable specification of new overlay networks, as
well as their composition in both the control and data
planes. Importantly, it permits dynamic compositions
with both existing overlay networks and legacy appli-
cations. This paper demonstrates the dynamic selec-
tion and composition capabilities of MOSAIC with a
variety of declarative overlays: an indirection overlay
that supports mobility (i3), a resilient overlay (RON),
and a transport-layer proxy. Using a remarkably con-
cise specification, MOSAIC provides the benefits of run-
time composition to simultaneously deliver application-
aware mobility, NAT traversal and reliability with low
performance overhead, demonstrated with deployment
and measurement on both a local cluster and the Plan-
etLab testbed.

1 Introduction

The Internet faces many challenges today, ranging from
the lack of protection against unwanted or harmful traffic
to the increasing complexity and fragility of inter-domain
routing. At the same time, the proliferation of new appli-
cations has led to growing demands for new capabilities
such as mobility, content-based routing, and quality-of-
service (QoS) routing.

Overlay networks [19] that use the existing Internet to
provide connectivity for new services are both deploy-
able [20] and enable innovation. However, despite de-
ployment at global scale and emerging support for legacy
applications [6], overlay networks now face several hur-
dles. First, they are often optimized for a specific appli-

cation and may not be useful in all contexts. Second,
overlay networks are generally targeted at and limited
to niche vertical domains (e.g., mobility [33, 16], secu-
rity [8], reliability [1]). Third, the networks do not nor-
mally interoperate or share their functionality. For ex-
ample, resiliency [1] and mobility [27] provided by one
overlay cannot easily be leveraged by other overlay net-
works. Recent proposals for “clean slate” redesign of the
Internet itself will exacerbate this problem, as more and
more overlays are proposed and implemented.

Example 1.1 Alice returns from her vacation in the
Amazon rain forest and wants to share digital videos of
her trip with interested friends. Not satisfied with the
privacy protection and the quality of streams served by
public video sharing sites, she decides to host a Web
server for the videos on her laptop. While in principle
the laptop is capable of this, in practice she faces mul-
tiple difficulties. First, because Alice brings her laptop
along on her daily commute between school and home,
its IP address changes. Second, at home she shares a
cable modem with her roommate, so her laptop does not
have a public IP address. Third, her ISP is experiencing
intermittent routing failures to some peering ISPs due to
a BGP misconfiguration.

Each of the capabilities Alice requires can individu-
ally be supported by an overlay network — the challenge
is in getting the overlays to work together. Emerging
systems such as OCALA [6] have attempted to develop
bridging capabilities among overlays — but we argue
that a more general architecture, which supports layer-
ing as well as bridging, plus development and extension
of overlay protocols — is necessary. MOSAIC (Mul-
tiple Overlay Selection and Intelligent Composition) is
a unifying platform for developing, deploying, combin-
ing, and composing overlay networks — one capable of
bridging between overlays, stacking them in layers, and
allowing for rapid extensibility with new functionalities.
It enables (1) rapid authoring and deployment of new
overlay networks, (2) application-aware adaptivity to se-
lect and compose overlay networks to meet application
needs, and (3) seamless support for legacy applications
within the infrastructure.

MOSAIC is based on the model of declarative net-
works [13, 12], a declarative, database-inspired extensi-
ble infrastructure using query languages to specify be-
havior. Declarative networks utilize the Network Dat-

1

alog (NDlog) language as a natural and compact way
to implement a variety of routing protocols and overlay
networks. The ensuing multiple-orders-of-magnitude re-
duction in code size (e.g., Chord [28] in 43 lines) signif-
icantly increases network extensibility and makes it easy
for applications to adapt the overlays to suit their require-
ments. Support for declarative abstractions makes it easy
to compose protocols, either vertically (layering) or hor-
izontally (bridging).

MOSAIC builds upon the declarative networking
model by introducing several new constructs. Dynamic
location specifiers, combined with runtime types, en-
able flexible naming and addressing; composable virtual
views support modularity and composability; data and
control plane extensibility supports composition; declar-
ative tunneling and proxying enable support for legacy
applications. Several Mozlog features both meet the
composition goals of MOSAIC, and are also useful lan-
guage abstractions for declarative networking in general.
For example, the use of composable views results in
fewer lines of code and provides better error handling.

Organization: Section 2 describes the options for
overlay composition. Section 3 presents an architectural
overview of the MOSAIC infrastructure. Section 4 sum-
marizes the main aspects of the original NDlog language,
and describes our Mozlog extensions to enable various
aspects of MOSAIC. In Section 5, we demonstrate that
Mozlog specifications are amenable to execution within
a distributed query processor via modifications to the P2
declarative networking system. Section 6 experimentally
evaluates the compositions of various declarative over-
lays that support indirection (i3 [27]), mobility, and re-
silience (RON [1]). We show that MOSAIC’s ability
to support flexible compositions can enable application-
aware mobility, flexibility, and resilience at low over-
heads. In Section 7, measurement results are presented
for networks created on a local cluster and the PlanetLab
testbed.

2 Overlay Composition

Network composition is the act of combining distinct
parts or elements of existing networks to create a new
network with new functionalities. Overlay composition
is network composition of overlay networks, and so re-
sults in a new overlay network. We consider composition
of overlays along two planes.

Data plane composition. The data planes of two over-
lay networks can be composed horizontally by bridging
between the networks, or they can be composed verti-
cally by layering one overlay over the other.

In bridging (see Figure 1), each overlay network runs

Overlay 2
(reliability)

Overlay 1
(confidentiality)

Overlay 3
(QoS)

Sender
IP tunnel

Data plane composition 1: bridging

Receiver B

Receiver A

Figure 1: Overlay composition by bridging.

on top of the same substrate (e.g., the IP network) di-
rectly. However, for a variety of reasons (e.g., sending
from a wireless to a wired network), it may be neces-
sary to send a packet across multiple overlay networks
to reach the receiver. This is usually done via a gateway
node that belongs to both networks. If such gateways do
not exist, two nodes from each network need to be con-
nected via an IP tunnel to route packets. In Figure 1,
a sending laptop using wireless may use an overlay that
provides confidentiality to route traffic over the wireless
links, then use an overlay with reliability guarantees to
deliver important but not time-sensitive data to receiver
A, while using a QoS overlay to deliver multimedia traf-
fic to receiver B.
Data plane composition 2: layering

i3 router

Sender
RON

Receiver
(1 hop

from sender)

Receiver
(behind NAT)

Sender

i3

Figure 2: Overlay composition by layering.

In layering, logically a packet is routed within a single
data plane of an existing overlay network. However, the
data paths between the nodes inside the overlay may be
constructed on top of other overlay networks, rather than
IP. For example, RON only works for nodes that have
publicly routable IP addresses. As shown in Figure 2,
by composing RON on top of another overlay protocol
that enables NAT traversal, such as i3, nodes behind NAT
should be able to join the RON network.

We note that the two data plane compositions listed
above are not mutually exclusive; some data composi-
tion scenarios may combine both layering and bridging.
We also reiterate that prior attempts to combine overlay
networks [6] only support bridging but not layering.

Control plane composition. One overlay network’s
control plane may be layered over either the data plane
or the control plane of another overlay. For example, it is
possible to build the control message channels of DHT

2

protocols such as Chord over the data plane of RON.
Typically, the failure detection components of DHTs as-
sume that hosts unreachable via IP are dead. In fact,
some hosts may be alive and functioning, but temporary
network routing failures may create the illusion of node
failure to part of the overlay nodes. If the network fail-
ure happens intermittently, churn rate is increased and
may create unnecessary state inconsistency. Using a re-
silient overlay like RON can overcome some of the net-
work failures to reduce churn.

Some overlay network protocols have complex, lay-
ered control planes. For example, both i3 and DOA [2]
use DHTs for either forwarding or lookup. RON and
OverQoS heavily depend on measurements of underly-
ing network performance characteristics such as latency
and bandwidth. When overlay networks are built from
scratch over IP, it is conceivable that different logical
overlays built on the same physical IP topology may
duplicate the effort to maintain DHTs or perform net-
work measurements. Nakao, et al. [18], observed that
on PlanetLab, each node had 1GB outgoing ping traffic
daily: many overlay networks running on the same node
were probing the same set of hosts without coordination.
Such duplicated probing traffic can be wasteful, and in-
teractions between probe traffic may introduce measure-
ment error. A composition-driven approach is to build
smaller elements that provide well defined interfaces
(e.g., OpenDHT [23] for DHT lookup and iPlane [14]
for measurement) so that they can be easily composed
with upper layer overlay network control planes to share
rather than compete for resources.

3 MOSAIC Overview

Overlay 2
Specificationsend

Transport Layer

recvOverlay 1
Specification Specification

Overlay 1 Overlay 2
Specification

IP

N t k L i MOSAIC

dataflow

tables

dataflowdataflow

tablestables

Compiler Compiler

Network Layer in MOSAIC

Figure 3: An overview of the MOSAIC architecture for net-
work layer overlays.

MOSAIC is an architecture to design, implement and
deploy composable overlay networks based on a data-
centric declarative networking approach [13, 12], and di-
rectly addresses the architectural challenges imposed by
overlay composition.

Figure 3 illustrates the MOSAIC architecture. MO-
SAIC allows users to define a network protocol using

declarative specifications rather than high level code: the
actual implementation of the protocol is automatically
generated by a declarative compiler. As a result, one
can pay less attention to implementation details such as
packet format, data (de)serialization, packet fragmenta-
tion, etc. Instead, the focus is on the protocol behavior.

The declarative approach provides a further benefit
that we exploit in MOSAIC: since network definitions
in MOSAIC separate specification from implementation,
the system can (assuming the right constraints are met)
freely replace the IP network underneath one overlay net-
work with a second overlay network — i.e., it can layer
networks. For example, the protocol used in RON is a
modified link-state protocol, which is general enough to
operate on any connected graph. The original RON im-
plementation assumes IPv4 as a substrate, and hence it
is hard-coded to use publicly routable IP addresses. In
MOSAIC, protocols are written with a network-agnostic
addressing scheme, so a RON overlay can instead use ad-
dresses from one or more lower-level overlay networks,
so long as they are reachable from one another.

MOSAIC is positioned at the network layer in the
network stack to replace IP. It exposes a simple inter-
face to the transport layer by providing two primitives:
send(DestAddress, Packet) and recv(Packet).
In IP, a packet consists of an IP header with fixed for-
mat and a raw byte data as the payload. In MOSAIC,
Packet is represented abstractly as a structured data ele-
ment, which might be a set of scalar values or even nested
tuples. The encoding of this packet is up to the specific
overlay protocol, and declarative mappings or transfor-
mations can convert between the packet formats of dif-
ferent overlays (see Section 4). DestAddress is a spe-
cially typed tuple, with the first attribute being the iden-
tifier of the overlay network to which the packet belongs.
This identifier is used to demultiplex the send requests
to different overlays or IP at the network layer. A send

request will trigger a recv event at the node or nodes
who own the DestAddress if the network successfully
routes the packet.

In addition, we have added initial support for transport
layer extensibility in MOSAIC by exposing TCP-style
primitives to the overlays. These extensions and an im-
plemented proof-of-concept are discussed in Section 4.6.

3.1 Specifying Overlay Networks

In MOSAIC, overlay specifications are written in Mo-
zlog, which is a database-like declarative query language
based on NDlog [12]. (We present the details of Mo-
zlog and NDlog in Section 4). MOSAIC takes a Mozlog
program, compiles it into distributed P2 dataflows [12],
and deploys it to all nodes that participate the overlay.
A single node may host multiple overlay networks at the

3

same time. P2 dataflows resemble the execution model
of the Click modular router [9], which consists of ele-
ments that are connected together to implement a variety
of network and flow control components. In addition, P2
elements include database operators (such as joins, ag-
gregation, selections, and projections) that are directly
generated from queries. Each local dataflow participates
in a global, distributed dataflow across the network, with
messages flowing among elements at different nodes, re-
sulting in updates to local tables. The local tables store
the state of intermediate and computed query results, in-
cluding structures such as routing tables, the state of var-
ious network protocols, and data related to their result-
ing compositions. The distributed dataflows implement
the operations of various network protocols. The flow of
messages entering and leaving the dataflow constitute the
network packets generated during query execution.

3.2 Specifying Overlay Compositions
The Mozlog language upon which MOSAIC is based is
inherently compositional: the results of one declarative
query can be named as a view, which can used as an in-
put to another query (or view). However, layering and
bridging among protocols require a certain amount of se-
mantic understanding encoded in the rules.

Layering. Layering of a control or data plane over an-
other overlay’s data plane is achieved by ensuring that
every protocol uses opaque abstract addresses — rather
than being bound to physical addresses. MOSAIC binds
the abstract addresses of the upper layer to the logical
addresses in the underlying overlay; for example, a RON
node built on top of i3 has RON::(i3::key) as op-
posed to RON::IP. In addition to the address composi-
tion, MOSAIC encapsulates the upper overlay’s data or
control payload within the underlying overlay’s packet.
The result is a seamless layering of one overlay network
on top of another.

Additionally, MOSAIC allows the control plane of one
overlay network to layer over another overlay’s control
plane, accessing its internal state. Here, each overlay ex-
ports relevant database logical views (query results pre-
sented as a named table) to expose its composable com-
ponents. These views typically encapsulate useful ab-
stractions of state: e.g., a distributed hash table’s contents
can be modeled as a relation with tuples associating keys
and values. Importantly, accessing a neighboring proto-
col’s state can be done within the overlays’ specification
language — there is no “impedance mismatch” between
languages, and no interoperability issues arise.

Bridging. Bridging can be done in an explicit or im-
plicit way in MOSAIC. In the implicit way, the desti-

nation has an address of an overlay in which the sender
does not participate. MOSAIC tries to send to one of
the overlay nodes via anycast [7, 4], which continues to
forward the packet. In an explicit way, the end points
find the gateway node that sits on both networks. Ei-
ther source routing is used to specify an address such as
sr::[gateway, dest], which explicitly describes the
data path, or address translation state that uniquely iden-
tifies the flow between the sender and the receivers is
stored at the gateway so that it can perform indirection.
We will describe several examples of such compositions
in Section 6 using the Mozlog language.

3.3 Composition in MOSAIC
The end goal of MOSAIC is to match a composition of
overlay networks to an application’s needs. This may
be subject to constraints: certain nodes, either at the
client-side or the server side, may have policies restrict-
ing which overlay networks are allowed to run within the
local subnets. Moreover, there may be multiple alterna-
tive means to achieve the same goals, e.g., using differ-
ent overlays that provide the same capabilities, such as
SOS [8] and OverDoSe [26] for DoS attack resistance.

The problem of automatic service composition is an
entire field of research [17], and we leave a comprehen-
sive treatment of the problem as future work. However,
we assume the existence of the following metadata that
assists in finding the appropriate compositions:

• A specification of end-to-end application connec-
tivity requirements, included as a file associated
with each client application.

• A set of local overlay constraints within (1) the
client’s local subnet and (2) the server’s local subnet
— each of which restricts what overlay networks
may run locally.

• A global system catalog, in the form of tables, spec-
ifying (1) allowed compositions of overlays (both
bridging and layering); (2) mappings from poten-
tial application requirements to overlays or overlay
compositions that meet the requirements.

• A composition rule list specifying Mozlog rules for
composing overlays, which is disseminated to the
nodes willing to execute the composition.

The system catalog includes a predefined set of over-
lay properties relating to mobility, QoS, security, multi-
cast, transcoding, etc. When an overlay is created, its
provider publishes a service description to the system
catalog, specifying which properties it satisfies.

During application setup, MOSAIC takes the list of
application requirements and queries the system catalog

4

tables for satisfying overlay combinations that meet the
local constraints at the client and server ends, use only
legal overlay compositions, and satisfy the application
requirements. Each composition represents a database
join, and in essence the query finds a “path” of composi-
tions through the list of compositions. The local system
administrator generally makes the final decision to au-
thorize a composition of overlays, and this information is
stored for retrieval at runtime. We describe the runtime
system and how it executes compositions in Section 5.

4 Mozlog Language

Before presenting Mozlog, we first provide a brief
overview of the NDlog language upon which it is defined.

4.1 Core Language: NDlog

NDlog is based on Datalog [22]: a Datalog program con-
sists of a set of declarative rules. Each rule has the form p

:- q1, q2, ..., qn., which can be read informally
as “q1 and q2 and ... and qn implies p”. Here, p is the
head of the rule, and q1, q2,...,qn is a list of literals that
constitutes the body of the rule. Literals are either pred-
icates with attributes (which are bound to variables or
constants by the query), or boolean expressions that in-
volve function symbols (including arithmetic) applied to
attributes. (Predicates in datalog are typically relations,
although in some cases they may represent functions.)

Datalog rules can refer to one another in a cyclic fash-
ion to express recursion. The order in which the rules
are presented in a program is semantically immaterial;
likewise, the order predicates appear in a rule is not se-
mantically meaningful. Commas are interpreted as logi-
cal conjunctions (AND). The names of predicates, func-
tion symbols, and constants begin with a lowercase letter,
while variable names begin with an uppercase letter.

Network Datalog (NDlog) is a distributed variant of
traditional Datalog, primarily designed for expressing
distributed recursive computations common in network
protocols. We illustrate NDlog using a simple example
of two rules that computes all pairs of reachable nodes:

r1 reachable(@S,D) :- link(@S,D).
r2 reachable(@S,D) :- link(@S,Z), reachable(@Z,D).

The rules r1 and r2 specify a distributed transitive
closure computation, where rule r1 computes all pairs of
nodes reachable within a single hop from all input links,
and rule r2 expresses that “if there is a link from S to
Z, and Z can reach D, then S can reach D.” By modify-
ing this simple example, we can construct more complex
routing protocols, such as the distance vector and path
vector routing protocols.

NDlog supports a location specifier in each predicate,
expressed with @ symbol followed by an attribute. This
attribute is used to denote the source location of each
corresponding tuple. For example, all reachable and
link tuples are stored based on the @S address field. The
output of interest is the set of all reachable(@S,D) tu-
ples, representing reachable pairs of nodes from S to D.

4.2 Mozlog Extensions
In this section, we describe Mozlog’s language exten-
sions to NDlog that are required for overlay composition.
We categorize these extensions as follows:

Flexible naming and addressing: Mozlog supports dy-
namic location specifiers whose types (e.g., IP address or
logical overlay identifier) are determined at runtime. In
addition, location specifiers are decoupled from data at-
tributes and made optional for local data. These two lan-
guage extensions not only enable interoperability among
multiple overlays, but provide multi-homing and mobil-
ity features (Section 4.3).

Data and control plane integration: Mozlog pro-
vides language support for forwarding on the data plane.
This provides extensibility at both the control and data
plane, and hence provides flexible composition of differ-
ent overlay features on either plane (Section 4.4).

Modularity and reusability: Mozlog allows multi-
ple declarative rules to be composed and modularized as
Composable Virtual Views (CViews). This enables fea-
tures of different overlays to be modularized, hence fa-
cilitating composition of different features, and improved
resource sharing. As an additional benefit, Mozlog pro-
vides more concise specifications and better abstractions
for timeouts and exception handling (Section 4.5).

Special predicates: Mozlog provides several predicates
for accessing the tun device and using TCP. This enables
legacy application support at both the network and trans-
port layers and creates the opportunity to build transport
layer overlays (Section 4.6).

This section focuses purely on the Mozlog language
extensions; we discuss implementation details in Sec-
tion 5 and provide detailed use cases and experimental
analysis in Section 6.

4.3 Flexible Naming and Addressing
Location specifiers in NDlog currently have two limita-
tions. First, they are assumed to be IP addresses, hence
limiting its usage to IP-based networks. As a result, it is
not possible to express data placement in terms of over-
lay identifiers or differentiate data that belongs to dif-

5

ferent overlays. Second, location specifiers tightly cou-
ple data’s attributes to its location, hence limiting each
host to store only data with a unique network address.
This prevents multi-homing, an important requirement
when each physical host may be simultaneously associ-
ated with several logical overlay networks. Third, mobil-
ity is not supported since any change in IP address will
invalidate all local tables.

To address these limitations, we make two modifica-
tions. First, we decouple each data from its location
specifier, and make them optional. Second, we associate
all location specifiers with a runtime type.

4.3.1 Decoupling Location from Data

To enable the first modification, Mozlog predicates have
the following syntax:

predicate[@Spec](Attrib1, Attrib2, ..)

In the absence of any location specifier, predicate is
assumed to refer to local data. For example, in the fol-
lowing rule,

a1 alarm@R(L, N) :- periodic(E, 10), cpuLoad(L),
nodeName(N), monitorServer(R), L>20.

periodic is a built-in local event that will be triggered
every 10 seconds with a unique identifier E. The predi-
cates cpuLoad, nodeName, and monitorServer are lo-
cal tables. The rule specifies that for every 10 seconds, if
the CPU load is above the threshold 20, an alarm event
containing the current load L and hostname N will be sent
to the monitoring server R.

Decoupling data from its location enhances interop-
erability and reusability. Now multiple overlays can
interoperate (i.e., exchange state) by sending network-
independent data tuples in a common data representation.
Moreover, since these rules are rewritten in a location-
independent fashion, they can be reused on different net-
work types (e.g., i3, RON, or IP). Finally, since it does
not bind addresses to data, the language is friendly to mo-
bility, where host movement (and hence resulting change
in its IP address) does not invalidate its local tables.

4.3.2 Runtime Types for Location Specifiers

Our second modification involves adding support for
runtime types to location specifiers. This feature is
necessary for dynamically composing multiple over-
lays at runtime. Location specifiers are denoted by
an [oID::]nID element, where oID is an optional
unique string identifier for an overlay network, and nID

is a mandatory overlay node identifier. For example,
i3::0x123456789I denotes an i3 node with identifier
0x123456789I, and ron::"158.130.7.3:10000"

denotes a RON node with IP address 158.130.7.3:10000.
In the absence of any overlay identifier, IP is assumed.

At runtime, MOSAIC examines the location specifier
of each tuple and routes it along the appropriate network.
To illustrate the flexibility of our addressing scheme,
consider the CPU load monitoring example from Sec-
tion 4.3. Rule a1 can be rewritten as a2, in which the
monitoring server R refers to an i3 key generated as a
hash of its name N instead of an IP address:

a2 alarm@R(L, N) :- periodic(E, 10), cpuLoad(L),
nodeName(N), serverName(N), L>20,
Key := f_sha1(N), R:=i3::Key.

Dynamic location specifiers enable bridging of dif-
ferent overlays easily. For example, a gateway node G

can physically host two overlay network nodes (one for
i3 and another for RON), and is addressable via either
network. A source routing specifier is used to perform
forwarding via the gateway node. For instance, node
Dest in RON with address sr::[i3::Gateway key,

ron::Dest] is reachable from all hosts in the i3 net-
work. As an additional benefit, dynamic location speci-
fiers enable addresses to be updated at runtime to switch
between IP networks and various overlays. We provide a
detailed example in Section 6.

4.4 Data and Control Plane Integration
Declarative networking previously focused on the con-
trol plane of networks. Overlay composition requires
the integration of the data and control planes of multi-
ple overlays. To achieve this, Mozlog enables declarative
specification of the data plane behavior. Each overlay
network has send and recv predicates that are used to
specify data forwarding within an overlay. We provide
an example based on the data plane of RON:

snd ron.send@Next(Dest, Packet) :-
localAddr(Local), Local!=Dest,
ron.send(Dest, Packet), ron.RT(Dest, Next).

rcv ron.recv(Packet) :-
ron.send(Dest, Packet),
localAddr(Local), Local==Dest.

Rule snd expresses that for all non-local Dest ad-
dresses, the data packet (Packet) is sent along the next
hop (Next) which is determined via a join with RON’s
routing table (ron.RT) using Dest as the join key. These
packets are then received via the rule rcv at node (Dest),
which generates a ron.recv(Packet) event at Dest.

In Mozlog, the send and recv predicates are usually
not directly used by other rules, but rather automatically
invoked by the MOSAIC runtime engine when the loca-
tion specifier type of a tuple matches the overlay. As a
result, one can bridge the data planes of different over-
lays together, or layer the control plane of one overlay

6

network over the data plane of another. We provide a
detailed example in Section 6.

4.5 Modularity and Composability
In order to support overlay composition, Mozlog sup-
ports Composable Virtual Views (CViews). These define
rule groups that, when executed together, perform a spe-
cific functionality.

4.5.1 CView Syntax and Usage

The syntax of CViews is as follows:

viewName[@locSpec](K1,K2,...,Kn, &R1,&R2,...,&Rm)

Each CView predicate has an initial set of attributes
K1,K2,...Kn which are already bound to input values
read from another predicate (intuitively, these are like
input parameters to a function call). The remaining at-
tributes, &R1,&R2,...,&Rm, represent the return values
from invoking the predicate given the input values. This
is akin to the use of input bindings [21] in data integra-
tion, which were used to pass data into queriable Web
forms to retrieve relation results.

We illustrate using a view definition for the fol-
lowing CView predicate ping(SrcAddr, DestAddr,

&RTT):

def ping(Src, Dest, &RTT) {
p1 this.Req@Dest(Src,T) :-

this.init(Src,Dest), T:=f_now().
p2 this.Resp@Src(T) :- this.Req(Src,T).
p3 this.return(RTT) :-

this.Resp(T), RTT:=f_now()-T.
}

Any rule that must compute the RTT between two
nodes can simply include the ping predicate in the rule
body. this is a keyword used to express the context of
the CView. All predicates beginning with this are valid
only locally within the ping CView. There are two new
built-in events/actions: this.init and this.return.
Rule p1, upon receiving event this.init along with
the query keys Src and Dest, takes the current times-
tamp T, and passes the data to the host Dest as a ping
request. After the destination node receives it in rule p2,
a ping response event is immediately sent back to the
source with the timestamp. In rule p3, the source node
calculates the round trip time based on the timestamp and
issues a this.return action that finishes the query pro-
cessing.

4.5.2 Composition and Resource Sharing

CViews are a natural abstraction for composing control
plane functionalities over different overlays. We provide

an example to show how to construct trigger sampling in
i3 by composing Chord and RON. The Chord lookup in
CView can be written as:
chord.lookup@Ldmk(Key,&DestID,&DestAddr)

Given a query on Key, it returns the lookup result: the
Chord ID of the destination and the network address of
the destination. A query with an unbound Key will be
rejected by the compiler.

RON maintains several CViews to export the current
pair-wise EWMA latency, bandwidth and loss rate mea-
surement results. The latency CView is:

ron.latency(Src, Dest, &EWMA_RTT)

When an i3 client tries to locate a private trigger that
relays its traffic, it can leverage the RON measurement
results and find the best private trigger.

/*schema: (Address, Key, RTT) */
materialize(bestPT, SAMPLE_LIFETIME, 1,

keys(1), evict max(3)).
s1 bestPT(KeyAddr, K, RTT) :-

periodic(E, SAMPLE_INTERVAL),
localAddr(LocalAddr), K :=f_randID(),
chord.lookup@LANDMARK(K, &_, &KeyAddr),
ron.latency(LocalAddr, KeyAddr, &RTT).

s2 trigger@KeyAddr(NodeID, LocalAddr) :-
periodic(E, TRIGGER_REFRESH_INTERVAL),
node(NodeID), localAddr(LocalAddr),
bestPT(KeyAddr, _, _).

The rules s1-s2 are used by a local node LocalAddr
to compute a private trigger with the lowest RTT from
itself. Periodically, every SAMPLE INTERVAL seconds,
LocalAddr picks a random node and obtains a sam-
ple RTT. The sampling is performed by rule s1 using
the chord.lookup CView predicate to locate a node
KeyAddr corresponding to a random identifier K. Then
the ron.latency CView predicate obtains the RTT
measurements between LocalAddr and KeyAddr. The
use of CViews allows us to perform multiple distributed
operations (Chord lookup, followed by RON measure-
ment) all within a single rule. Based on the sampling
result stored in bestPT, rule s2 periodically refreshes
the current best trigger at the node KeyAddr.

To summarize, the advantages of CViews are as fol-
lows. First, CViews promote code reuse and enable func-
tionality composition between different overlays (as with
the shared ping CView). Not only is code reused, but
network resources are saved. Second, CViews abstract
details of asychronous event-driven programming. In the
ping example, nodes no longer are required to main-
tain pending state for every ping message that was sent
out: the compiler automatically takes care of that. This
avoids the tedious churn and failure detection rules often
required in original NDlog specifications. This enhances
readability and makes the code even more concise: the
use of CViews reduced the number of lines in Chord by
8 rules (from 43 to 35).

7

4.6 Special Predicates
To interact with legacy applications and provide
more transport layer functionalities, Mozlog sup-
ports several built-in predicates for tun device ac-
cess and TCP. The tun predicate has the fol-
lowing schema: tun(IPPacket[,SrcIP, DestIP,

Protocol,TTL]). When MOSAIC receives an IP
packet from /dev/net/tun, a tun tuple is injected into
the dataflow. IPPacket is the whole IP packet including
the header. SrcIP, DestIP, Protocol and TTL are cor-
responding attributes extracted from the IP header. When
tun is an action generated by the rules, IPPacket will
be sent to /dev/net/tun. Optionally, the IP header is
updated based on the rest of the attributes if given.

We use the following two rules to demonstrate how to
use the tun predicate:

p2p_tun tun@Peer(Pkt) :- tun(Pkt),
Peer:="158.130.7.3:1086".

i3_tun tun@Peer(Pkt) :- tun(Pkt, Src, Dest),
Key:=f_sha1(Dest), Peer:=i3::Key.

Rule p2p tun sets up a point-to-point UDP tunnel be-
tween the local node and the remote MOSAIC node lis-
tening at the specific address and port. The peer IP is a
constant UDP address. Similarly, rule i3 tun sets up a
tunnel via i3. It uses the SHA-1 hash of the destination
tunneling address as the i3 key.

A second set of new predicates is TCP-related: Each
predicate corresponds to a system call for TCP sockets.
They are tcp.listen, tcp.connect, tcp.accept,
tcp.read, tcp.write and tcp.close, provided in
the CView syntax. This support provides a foundation
for transport layer or session layer overlay [16, 11, 32]
support inside MOSAIC.

An example use case would be to use tcp.read and
tcp.write to forward packets from Skt1 to Skt2.

fwdEvent(Skt1, Skt2) :- fwdEvent(Skt1,Skt2),
tcp.read(Skt1, 0, &Packet),
tcp.write(Skt2, Packet, &Size).

tcp.read has the schema of tcp.read(Skt, Len,

&Packet). That is, the query takes a socket descrip-
tor and an integer Len as inputs and returns the ac-
tual packet when it is received from the socket. The
socket descriptor is obtained from either tcp.accept
or tcp.connect. Similarly, tcp.write sends Packet
to Skt2. As a recursive rule, it keeps forwarding data
packets until one of the sockets is closed.

5 Implementation

The MOSAIC platform uses the P2 [12] declarative net-
working system at its core, but adds significant new func-
tionality. A translator generates NDlog rules from Mo-
zlog rules to leverage the existing planner.

In addition, we modify the P2 planner and dataflow
engine to generate execution plans that can accommo-
date new language features of Mozlog, specifically those
related to runtime support for dynamic location specifier,
data plane forwarding, and various transport and tunnel-
ing predicates.

5.1 Dataflow

Network In

Mux TimedPullPush
0Queue

Overlay
Recv

Unwrap

Receive
Demux

TimedPullPush
0

Round
Robin

LocSpec
Demux

Overlay
Send Wrap

QueueNetwork Out IP

overlay

local

Figure 4: System dataflow with dynamic location specifiers.

Figure 4 shows a typical execution plan generated by
compiling Mozlog rules. Similar to P2 dataflows, there
are several network processing elements (denoted by
Network In and Network Out) that connect to indi-
vidual rule strands (inside the gray box) that correspond
to compiled database operators. Here, we focus on our
modifications, and the interested reader is referred to [12]
for details on the dataflow framework.

To implement dynamic location specifiers and
overlay forwarding on the data plane, we modify the
planner to automatically generate three additional
MOSAIC elements shown in bold in the dataflow:
OverlayRecvUnwrap, OverlaySendWrap, and
LocSpecDemux. The elements OverlayRecvUnwrap

and OverlaySendWrap are used for de-encapsulation
and encapsulation of tuples from overlay traffic.

At the top of the figure, the Mux multiplexes incom-
ing tuples received locally or from the network. These
tuples are processed by the OverlayRecvUnwrap ele-
ment that will extract the overlay payload for all tuples
of the form overlay.recv(Packet), where Packet

is the payload with type tuple. Since the payload may
be encapsulated by multiple headers (for layered over-
lays), this element needs to “unwrap” until the payload
is retrieved. The Packet payload is then used as input to
the dataflow via the ReceiveDemux element, and used
as input to various rule strands for execution.

Executing the rule strands results in the generation of

8

output tuples that are sent to a LocSpecDemux element.
This element checks the runtime type of the location
specifier, and then demultiplexes as follows:

• Tuples tuplename(F1, F2, ..., Fn) are local
tuples and sent to the Mux.

• Tuples tuplename@IPAddr(F1, F2, ...,

Fn) are treated as regular IP-based tuples and sent
to the network directly.

• Tuples tuplename@ovname::ovaddr(F1, F2,

..., Fn) are designated for overlay network
ovname with address ovaddr. A new event
tuple ovname.send(ovaddr, tuplename(F1,

F2, ..., Fn)) which denotes the send primitive
of the overlay network ovname is generated (see
Section 4.4). This new tuple is reinserted back to the
same dataflow to be forwarded based on the overlay
specification.

5.2 Compilation of CViews

The Mozlog-to-NDlog translator requires rewriting and
expanding all CView rules into NDlog rules, which can
then be compiled into dataflow strands using the P2 plan-
ner. The compilation process involves a query rewrite
that takes as input all CView predicates, and expands
them into multiple NDlog rules based on their view defi-
nitions.

Since this process resembles function call compila-
tion, we reuse the terms caller and callee. A rule that
takes an input CView predicate is the caller. The set of
rules based on the view definition (e.g., rules p1-p3 in
Section 4.5) comprises the operations of the callee.

In a typical C compiler, the caller maintains a stack,
pushing local variables (execution context) and the re-
turn address before a call. Similarly, for each CView
input predicate viewName[@locSpec](K1,...,Kn,

&R1,...,&Rm), the execution context is all the bound
variables K1,...,Kn and the variables that appear in the
rule body before the CView term. The expanded rules
are executed, and the local variables are stored in a des-
ignated internal context table. The local state is stored
for the duration of view execution. Each expanded set of
rules replaces the this prefix in the original view defi-
nition with a query identifier QID that uniquely identifies
the current invocation of the view, and a return address
RetAddr of the caller. When the caller has finished ex-
ecuting all the rules for the view, the results are returned
to the caller (RetAddr).

We have explored several optimizations of CView
compilation that are beyond the scope of this paper.
These include tail recursive view optimization to reduce

communication overhead, inline view expansion by du-
plicating runtime CView elements to reduce demulti-
plexing overhead, and local event shortcut to shorten the
dataflow paths and reduce scheduling overhead.

5.3 Special Predicates
The tun-, and tcp-related special predicates are treated
differently from ordinary tuples in the dataflow by the
planner. Each special predicate has a rule strand in the
dataflow, between the ReceiveDemux element and the
RoundRobin element(see Figure 4). For tun, two el-
ements Tun::Tx and Tun::Rx are inserted in the tun

rule strand right after ReceiveDemux. Tun::Rx reads
IP packets from the tun device, generates the tun tuple,
and sends to the next element in the rule strand; Tun::Tx
receives a tun tuple, formats it to an IP packet and writes
to the tun device.

Each TCP predicate has a corresponding input and
output event handler. To use tcp.read as an ex-
ample, first the CView compiler translates each rule
that contains tcp.read to the NDlog format, which
generates a tcp.read.init event and waits for the
tcp.read.return event. The tcp.read.init event
is connected to the tcpRead element. It adds the socket
descriptor to the select() pool of the P2 event loop.
Once data is available, the P2 event loop calls back to
the element, which then removes the socket descriptor
from the select() pool, reads the packet, and sends a
tcp.read.return event tuple containing the packet.

5.4 Legacy Support
MOSAIC adopts two mechanisms to support legacy ap-
plications at different layers. At the network layer, we
use the tun device to provide overlay tunnels between
legacy applications. For each end host, it takes a private
IP address from 1.0.0.0/8 to avoid conflict from other
public IP networks. After a legacy application sends a
packet to an address in the tun network, the kernel redi-
rects it to MOSAIC, which generates a tun tuple. Cur-
rently there is an address translation rule to use a special
mapping table to translate the private IP address to the
overlay address. This can be extended to use any name
resolution service in the future by combining DNS re-
quest hijacking [6]. After address translation, the packet
tunneling rules we described in Section 4.6 deliver the IP
packet to the destination via the corresponding overlays.

To use IP layer overlays, such as i3 or RON, IP tunnel-
ing is mandatory. For transport layer overlays that intend
to replace or augment TCP, we provide an alternative
way to leverage the dynamic library call interceptions.
The environment variable LD PRELOAD is set to our
customized library to intercept the socket system calls at

9

get ApacheT [t IP I t lIP]

(a) Bob contacts Alice using her public i3 trigger.

wget

i3 i3

Apache

sr
To: i3::AliceID

sr

To: sr::[gatewayIP, InternalIP]
To: InternalIP

i3

Bob Alicei3 server 1 gateway

wget Apache
T i3 B bIDTo: BobIP

(b) Alice contacts Bob using his public i3 trigger.

i3 i3i3

i3 2

To: i3::BobIDTo: BobIP

B b Alii3 server 2

wget Apache

Bob Alice
(c) Bob contacts Alice using her private trigger

sr::[ron::gatewayIP, InternalIP].

i3 sr ron ron sr

gateway

i3

AliceBob

ron

RON router

Figure 5: Alice hosts a Web server using MOSAIC.

the user space. Compared to the tun approach at the IP
layer, library interceptions avoid the overhead of an extra
memory copy between the kernel and user space, and ex-
poses the connection oriented primitives from the appli-
cation to the transport overlays. Based on the TCP pred-
icates, we have implemented a SOCKS proxy [10] in our
prototype, which can be viewed as a two-hop transport
layer overlay that does source routing to traverse firewall.

To support a legacy overlay that is not implemented in
MOSAIC, we build an adapter for the overlay to interact
with MOSAIC via the send and recv primitives. The
adapter redirects legacy.send tuple from the dataflow
to the overlay, and inject legacy.recv tuple upon over-
lay’s packet reception. Because the legacy overlays are
built on IP, they can only be bridged with other over-
lays or used as substrates underneath other networks, but
cannot be layered on top of another overlay for either the
control or the data plane.

6 Composition Examples

We now demonstrate MOSAIC’s ability to support flex-
ible overlay compositions including bridging, layering
and hybrid compositions.

Alice’s challenges: Consider Alice’s challenges of
Section 1. An overlay composition can meet her needs.
Suppose there is a publicly available i3 overlay network,
and Alice uses her gateway node at home to form a pri-
vate RON network with her friends. For this scenario, we
show the corresponding MOSAIC data structures: the
global system catalog appears in Table 1, and the local
overlay constraints are shown in Table 2.

Suppose Bob is a downloader whose overlay con-
straints are known to Alice. At school, Alice only needs
mobility, but neither NAT traversal nor resilience. A

overlay mobility reliability NAT
i3 Y N Y
sr N N Y

RON N Y N

Table 1: system catalog

i3 sr RON
Alice-Home Y Y N

Bob Y Y Y
Gateway (G) N Y Y
Alice-School Y Y N

i3-Server Y Y N

Table 2: local overlay constraints

query on Table 1 returns i3 as a mobility overlay sup-
ported by both Alice and Bob. Therefore, Alice and Bob
connect via the i3 overlay on IP. Alice inserts the pub-
lic IP of her laptop into the public i3 trigger. When Bob
sends a packet to Alice’s unique i3 id i3::AliceID, the
i3.send event in MOSAIC is invoked by MOSAIC run-
time system. It first queries chord.lookup on the ID,
then locates the i3 server that holds the public trigger for
the ID, and and finally forwards the packet to the server.
The server retrieves Alice’s address from the trigger, and
forwards the packet to Alice. Sending from Alice to Bob
uses a similar scheme. As an optimization, Bob and Al-
ice may exchange their actual IP addresses as the pri-
vate triggers (known as i3-shortcut) to reduce indirec-
tion overhead, once they have located each other using
the public triggers. In Mozlog, the private trigger (PT)
address is retrieved using the query bestPT@i3::K(K,

PTAddr), where K is Alice’s or Bob’s ID.
When Alice comes home, she now needs mobility,

NAT traversal via the gateway G, and a reliable connec-
tion between Bob and G. Mobility can still be provided
by i3. NAT traversal requires overlay support from Al-
ice, Bob, and the gateway, which leaves source routing
as the only option. RON is also the only option for relia-
bility. Since G does not run i3, Alice needs to provide a
NAT-friendly address to i3. Therefore, i3 should be lay-
ered over source routing. There are two data paths in i3:
one via the public trigger, and one via the private trigger.
The private trigger path is layered over the bridging of
two paths as sr::[ron::GatewayIP, InternalIP],
providing both NAT traversal and data reliability. The
path via public trigger is layered on source routing
with sr::[GatewayIP, InternalIP], because the
i3 server is not reachable from the gateway via the pri-
vate RON network.

Alice is always reachable via the public trigger. There-
fore, Alice’s address change (i.e., host mobility) is not
a concern for Bob. Figure 5(a) and (b) illustrates the

10

dataflows of how they use the public triggers to commu-
nicate. The source routing address makes sure that Alice
is reachable behind the NAT.

After Alice and Bob exchange private triggers, the
packets from Bob are sent to the gateway node via their
private RON network, then forwarded by the gateway to
Alice as in Figure 5(c). Note that the RON router in the
middle is only used when network failure happens be-
tween Bob and the gateway. Alice’s laptop is not on
RON directly. Instead she forwards her packets to the
nearest RON node (her gateway node), which forwards
the packets to Bob via RON.

In this example, i3 is the end-to-end overlay, which
is layered on the overlay that bridges RON and Alice’s
internal network. In our approach, composition decisions
are made by the end users based on application scenarios.
Furthermore, the composition is flexible: with a reliable
network at school, Alice does not need to join RON at
both locations.

If some policy does not allow RON on the gate-
way, Alice can deploy RON on her laptop. She
can use sr::[GatewayIP, InternalIP] as her
publicly reachable address to join RON, and use
ron::sr::[GatewayIP,InternalIP] as her private
trigger to exchange with Bob.

Sender
ID sos::IP1
ID overqos::(IP2,20)
ID sr::[IP4,ipsec::IP3]

IP1

Sender
sos

IP2
anycast

anycastsource
i

OverQoS

IP3IP4
routing

Figure 6: A publish/subscribe composition example using
multicast.

Multicast for Pub/Sub Services: Consider a stock
broker that publishes a stream of stock prices, and sends
to the subscribers via multicast. Some of the subscribers
are active traders, who demand the data in a timely fash-
ion. Some of the users are under DoS attack. Some of
them are connected via unsecure wireless links. In MO-
SAIC, we can compose the existing i3, SOS, OverQoS
and IPSec overlays, as in Figure 6.

At the top layer, the publisher and the subscribers join
an i3 overlay. The published stock price has a unique
i3 ID, which is known to the subscribers. The sub-
scribers form a multicast tree in i3 and insert overlay-
specific addresses into their leaf triggers. The traders

test latency(ms) throughput (KByte/s)
DirectIP 0.134 97994

OpenVPN 0.365 7999
MozTun 0.612 7419

RON 1.152 3358
i3 2.08 2023

Table 3: Overhead comparison in LAN

use overqos::(IP2, 20ms) to attain quality of ser-
vice guarantees (latency within 20ms); the users under
DoS attack use sos::IP1 to allow packets with stock
prices pass through, while blocking other unwanted IP
traffic. Users with unsecure connections may redirect the
traffic through an IPSec tunnel by inserting sr::[IP4,

ipsec::IP3] into the trigger. In this scenario, the data
plane of i3 is layered over different overlays as well as
IP; however, i3 is unaware of this.

7 Evaluation

In this section, we present the evaluation of MOSAIC on
a local cluster and on PlanetLab. First, we validate that
Mozlog specifications for declarative networks, composi-
tions, tunneling and packet forwarding are comparable in
performance to native implementations. Second, we use
our implementation to demonstrate feasibility and func-
tionality, using actual legacy applications that run un-
modified on various composed overlays using MOSAIC.

In all our experiments, we make use of a declarative
Chord implementation which consists of 35 rules. Our
i3 implementation uses Chord and adds 16 further rules.
We also implement the RON overlay in 11 rules. Both i3
and RON can be used by legacy applications via the tun
device, as described in Section 4.6.

7.1 LAN Experiments
To study the overhead of MOSAIC, we measured the la-
tency and TCP throughput between two overlay clients
within the same LAN. The experiment setup was on a
local cluster with eight Pentium IV 2.8GHz PCs with
2GB RAM running Fedora Core 6 with kernel version
2.6.20, which are interconnected by high-speed Gigabit
Ethernet. While the local LAN setup and workload is
not typical of MOSAIC’s usage, it allows us to eliminate
wide-area dynamic artifacts that may affect the measure-
ments. We measured the latency using ping and TCP
throughput using iperf.

7.1.1 Network Layer Overlay Overhead

In the experiments, we use the tun device to provide
legacy application support for network layer overlays.

11

MTU was reduced to 1250 bytes to avoid fragmentation
when headers were added. The measurement results are
shown in Table 3 for the following test configurations:
DirectIP: Two nodes communicate via direct IP, where
iperf can fully utilize the bandwidth of the Gigabit net-
work. This serves as an indication of the best latency and
throughput achievable in our LAN.
OpenVPN: OpenVPN [31] 2.0.9 is tunneling software
that uses the tun device. We set up a point-to-point tunnel
via UDP between two cluster nodes and disabled encryp-
tion and compression. The performance results provide
a baseline for the overhead using the tun device virtual-
ization. Compared to DirectIP, the latency increases by
more than 0.2ms, and the TCP throughput drops by a
factor of more than 10. This overhead is inevitable for
all overlay networks supporting legacy applications us-
ing the tun device, including those hosted on MOSAIC.
MozTun: We set up a static point-to-point tunnel in MO-
SAIC between two cluster nodes. MozTun and Open-
VPN essentially have the same functionality except that
MozTun is implemented in MOSAIC. The additional 7%
throughput overhead of MozTun is solely attributed to
the rule processing overhead in MOSAIC. Also, the la-
tency increase of 0.25ms is due to the extra overhead
incurred by the P2 dataflow engine, which is negligible
when executed over wide-area networks.
RON: We ran the RON network using MOSAIC and uti-
lize two nodes to run the measurements. Since RON does
not provide any benefit in our LAN setting with no fail-
ures, the comparison to MozTun is used to show the extra
overhead for rule processing in our implementation.
i3: Six nodes were set up as i3 servers, using Chord to
provide lookup functionality. The remaining two nodes
were selected as i3 clients. A packet sent by the source i3
client to the destination i3 client went through the pub-
lic trigger of the destination, which was hosted on the
i3 server of another cluster node. Since it introduced a
level of indirection plus extra rule processing overhead,
i3 added the most cost among the 5 configurations stud-
ied.

In summary, the overhead of MOSAIC is respectable:
the throughput of MOSAIC’s point-to-point tunneling
(MozTun) is comparable to that obtained by using well-
known tunneling software (OpenVPN). In the extreme
case (level of indirection of i3 with tunneling), the extra
latency (2ms) incurred is negligible for an application
running on wide-area networks. Later, in Section 7.2, we
will validate the performance of a composed overlay on
the Planetlab testbed.

7.1.2 Transport Layer Overlay Overhead

Our proof-of-concept implementation of a transport layer
overlay is a SOCKS proxy using 18 Mozlog rules. The

TCP SOCKS SOCKS optimized
tput. (KB/s) 97994 8132 97186

Table 4: Overhead comparison in LAN between native
TCP, SOCKS proxy in MOSAIC, and SOCKS proxy in
MOSAIC with optimized dataflow

SOCKS protocol [10] is a transport layer protocol, which
can be viewed as a transport-layer overlay network with
one level of indirection for firewall traversal. We used the
library interception technique mentioned in Section 5.4
to support legacy TCP applications.

We deployed our SOCKS proxy on the client and used
iperf to measure TCP throughput between the client
and the server. From the measurement results in Ta-
ble 4, we observe that by using a different virtualization
technique, the SOCKS proxy achieves better throughput
than OpenVPN in Section 7.1.1. In addition, by apply-
ing inline view expansion and local event shortcut opti-
mizations as described in Section 5.2, the throughput in-
creases dramatically and approaches that of native TCP.
The performance improvement obtained by our SOCKS
proxy suggests that MOSAIC is able to translate and
optimize high-level declarative specifications to efficient
implementations for the data plane. A detailed perfor-
mance study on the optimization is outside the scope of
this paper and is a subject of future work.

7.2 Wide-area Composition Evaluation

We deployed MOSAIC on PlanetLab to understand the
wide-area performance effects of using the system. We
purposely chose a composed overlay including i3, RON,
source routing, and tunneling for legacy applications (all
implemented within MOSAIC in 69 Mozlog rules) to
bring the Alice example from the introduction and Sec-
tion 6 to a resolution.

Our experimental setup is as follows. As our end-host,
we used a Linux PC in Edison, NJ with a high speed
cable modem connection as the gateway node, which
performed NAT for a Thinkpad X31 laptop. The laptop
functioned as our server, using Apache to serve a 21MB
file. The file was downloaded from Salt Lake City, UT
with a modified version of wget that records the down-
load throughput.

These two nodes in NJ and UT, plus three additional
nodes in Philadelphia, Berkeley, and Ithaca, were used
to form a private RON network. We further selected 44
nodes from PlanetLab, mostly in the US, to run i3. Dur-
ing the experiment, in order to validate the functionality
of resilient routing provided by RON, we manually in-
jected network failures by changing the firewall rules on
the gateway to block the downloader’s traffic 30 seconds

12

after wget was started; then we unblocked the traffic af-
ter another 30 seconds. For the purposes of comparison
with the best case scenario, we repeated the same test us-
ing direct IP communication. Note that direct IP loses
all the benefits of our composed overlay (no resilience,
NAT, or mobility support), but achieves the best possible
performance. Since our server was behind a NAT, in the
direct IP experiment, we had to manually set up a TCP
port forwarding rule on the gateway node to reach the
Apache server. We repeated multiple runs of the experi-
ments and observed no significant differences.

 0

 50

 100

 150

 200

 250

 300

 0 20 40 60 80 100 120 140

th
ro

ug
hp

ut
 K

B
/s

elapsed time (second)

Mosaic
Direct IP

Figure 7: Throughput comparison between overlay compo-
sition in Mosaic vs direct IP connection during network fail-
ure. Network failures were injected 30 seconds after experi-
ment start, and removed after 30 additional seconds.

Figure 7 shows the throughput of the download over
time for MOSAIC and DirectIP. We make the follow-
ing observations. First, MOSAIC’s performance over
the wide area is respectable: Despite implementing the
entire composed overlay (including legacy support for
applications using MOSAIC) in Mozlog, we incurred
only 20% additional overhead compared to using direct
IP, while achieving the benefits of mobility, NAT sup-
port and resilient routing. The majority of the over-
head comes from the extra packet headers for the com-
posed overlay protocols—an overhead that is repaid with
significant functionality. Second, with respect to the
functionality of our composed overlay, we were able to
achieve successful downloads from a server behind a
NAT using MOSAIC. In addition, resilient routing was
achieved: Our RON network periodically monitored the
link status and recovered from routing failures. Hence,
during the period where we injected the routing failures,
MOSAIC was able to make a quick recovery from fail-
ure, as is shown by the sustained throughput. On the
other hand, DirectIP suffered a failure (and hence a drop
of throughput to zero) during the 30-60 second period.
Overall, MOSAIC was able to complete the download in
a shorter time despite lower throughput, due to the re-

siliency of RON.

8 Related Work

Overlays such as i3 [27] and TRIAD [5] provide a de-
ployable solution for new network capabilities. Exam-
ples of new capabilities include DDoS resistance [8,
26], performance and reliability [25, 1], and QoS [29].
Overlay-based approaches to network infrastructure have
been used to enhance routing and to experiment with new
ways to specify and deploy networks [13, 12, 24]. MO-
SAIC augments such systems by combining their best
features to construct a new composite overlay.

Composing a plurality of heterogeneous networks
was proposed in Metanet [30], and also examined in
Plutarch [3]. Oasis [15] and OCALA [6] provide legacy
support for multiple overlays. Oasis picks the best sin-
gle overlay for performance. OCALA proposes a mech-
anism to stitch (similar to MOSAIC’s bridge function-
ality) multiple overlay networks at designated gateway
nodes to leverage functionalities from different overlays.
In contrast, MOSAIC’s primary focus is on overlay spec-
ification and composition within a single framework. As
a result, MOSAIC is complementary to OCALA and Oa-
sis. MOSAIC’s use of a declarative language results in
more concise overlay network specification and compo-
sition, whose performance is quite comparable to native
code. MOSAIC also provides support for layering in ad-
dition to bridging. Finally, MOSAIC is not limited to
IP-based networks, supports dynamic composition, and
routing primitives such as unicast and multicast. These
benefits result in better extensibility and evolvability of
MOSAIC over existing composition systems.

9 Conclusions and Future Work

In this paper, we presented MOSAIC, an extensible in-
frastructure that enables not only the specification of new
overlay networks, but also dynamic selection and compo-
sition of such overlays. MOSAIC provides declarative
networking: it uses a unified declarative language (Mo-
zlog) and runtime system to enable specification of new
overlay networks, as well as their composition in both the
control and data planes. We demonstrated MOSAIC’s
composition capabilities via deployment and measure-
ment on both a local cluster and the PlanetLab testbed,
and showed that the performance overhead of MOSAIC
is respectable compared to native implementations, while
achieving the benefits of overlay composition.

Our research is proceeding in several directions. First,
we are exploring techniques for automatic overlay com-
position, given application requirements, overlay prop-
erties and constraints. Second, building upon our initial

13

language support for the transport layer, we are exploring
adding mechanisms for extensible transport and session
layer overlays [16, 11, 32]. Such extensibility will be
useful in the context of mobile computing, and in envi-
ronments where there is a high degree of network and de-
vice heterogeneity during an application session. Finally,
we are also exploring better ways to exploit CViews for
composition and sharing at finer granularity, by combin-
ing individual feature sets from multiple overlays to meet
application needs.

References

[1] D. Andersen, H. Balakrishnan, M. Kaashoek, and R. Mor-
ris. Resilient overlay networks. In Proc. SOSP, 2001.

[2] H. Balakrishnan, K. Lakshminarayanan, S. Ratnasamy,
S. Shenker, I. Stoica, and M. Walfish. A Layered Naming
Architecture for the Internet. In Proc. SIGCOMM, 2004.

[3] J. Crowcroft, S. Hand, R. Mortier, T. Roscoe, and
A. Warfield. Plutarch: An Argument for Network Plu-
ralism. In Proc. FDNA, 2003.

[4] M. Freedman, K. Lakshminarayanan, and D. Mazieres.
OASIS: Anycast for any service. In Proc of NSDI, 2006.

[5] M. Gritter and D. Cheriton. An Architecture for Content
Routing Support in the Internet. In USITS, 2001.

[6] D. Joseph, J. Kannan, A. Kubota, K. Lakshminarayanan,
I. Stoica, and K. Wehrle. OCALA: An architecture for
supporting legacy applications over overlays. In Proc.
NSDI, 2006.

[7] D. Katabi and J. Wroclawski. A framework for scalable
global IP-anycast (GIA). In SIGCOMM, 2000.

[8] A. Keromytis, V. Misra, and D. Rubenstein. SOS: Secure
overlay services. In Proc. SIGCOMM, 2002.

[9] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F.
Kaashoek. The Click Modular Router. ACM Transac-
tions on Computer Systems, 18(3):263–297, 2000.

[10] M. Leech, M. Ganis, Y. Lee, R. Kuris, D. Koblas, and
L. Jones. SOCKS Protocol Version 5. RFC1928, 1996.

[11] Y. Li, Y. Zhang, L. Qiu, and S. S. Lam. SmartTunnel:
Achieving reliability in the internet. In INFOCOM, 2007.

[12] B. T. Loo, T. Condie, J. M. Hellerstein, P. Maniatis,
T. Roscoe, and I. Stoica. Implementing Declarative Over-
lays. In Proc. SOSP, 2005.

[13] B. T. Loo, J. M. Hellerstein, I. Stoica, and R. Ramakr-
ishnan. Declarative Routing: Extensible Routing with
Declarative Queries. In Proc. SIGCOMM, 2005.

[14] H. V. Madhyastha, T. Isdal, M. Piatek, C. Dixon, T. An-
derson, A. Krishnamurthy, and A. Venkataramani. iplane:
An information plane for distributed services. In Proc.
OSDI, Nov 2006.

[15] H. V. Madhyastha, A. Venkataramani, A. Krishnamurthy,
and T. Anderson. Oasis: An Overlay-Aware Network
Stack. In Operating Systems Review, pages 41–48, 2006.

[16] Y. Mao, B. Knutsson, H. Lu, and J. M. Smith. DHARMA:
Distributed Home Agent for Robust Mobile Access. In
IEEE INFOCOM, 2005.

[17] N. Milanovic and M. Malek. Current solutions for web
service composition. IEEE Internet Computing, 8(6):51–
59, Nov 2004.

[18] A. Nakao, L. Peterson, and A. Bavier. A Routing Under-
lay for Overlay Networks. In Proc. SIGCOMM, 2003.

[19] L. Peterson, S. Shenker, and J. Turner. Overcoming the
Internet Impasse Through Virtualization. In HotNets-III,
2004.

[20] PlanetLab. Global testbed. http://www.planet-lab.org/.

[21] A. Rajaraman, Y. Sagiv, and J. D. Ullman. Answering
queries using templates with binding patterns. In ACM
Symposium on Principles of Database Systems, 1995.

[22] R. Ramakrishnan and J. D. Ullman. A Survey of Research
on Deductive Database Systems. Journal of Logic Pro-
gramming, 23(2):125–149, 1993.

[23] S. Rhea, B. Godfrey, B. Karp, J. Kubiatowicz, S. Rat-
nasamy, S. Shenker, I. Stoica, and H. Yu. Opendht: a
public dht service and its uses. In Proc. SIGCOMM, 2005.

[24] A. Rodriguez, C. Killian, S. Bhat, D. Kostic, and A. Vah-
dat. MACEDON: Methodology for Automatically Cre-
ating, Evaluating, and Designing Overlay Networks”. In
Proc. of NSDI, March 2004.

[25] S. Savage, T. Anderson, A. Aggarwal, D. Becker,
N. Cardwell, A. Collins, E. Hoffman, J. Snell, A. Vahdat,
G. Voelker, and J. Zahorjan. Detour: A Case for Informed
Internet Routing and Transport. In IEEE Micro, Jan 1999.

[26] E. Shi, D. Andersen, A. Perrig, and I. Stoica. Over-
DoSe: A Generic DDoS solution using an Overlay Net-
work. Technical Report CMU-CS-06-114, Carnegie Mel-
lon University, 2006.

[27] I. Stoica, D. Adkins, S. Zhuang, S. Shenker, and
S. Surana. Internet Indirection Infrastructure. In Proc.
SIGCOMM, 2002.

[28] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and
H. Balakrishnan. Chord: A scalable peer-to-peer lookup
service for internet applications. In Proc. of SIGCOMM,
Aug 2001.

[29] L. Subramanian, I. Stoica, H. Balakrishnan, and R. Katz.
OverQoS: An Overlay Based Architecture for Enhancing
Internet QoS. In Proceedings of NSDI, 2004.

[30] J. T. Wroclawski. The Metanet. In Proc. Workshop on Re-
search Directions for the Next Generation Internet, 1997.

[31] J. Yonan. OpenVPN: Building and Integrating Virtual Pri-
vate Networks. http://www.openvpn.net.

[32] M. Zhang, J. Lai, A. Krishnamurthy, L. Peterson, and
R. Wang. A transport layer approach for improving
end-to-end performance and robustness using redundant
paths. In Proc of USENIX ATC, 2004.

[33] S. Q. Zhuang, K. Lai, I. Stoica, R. H. Katz, and
S. Shenker. Host Mobility using an Internet Indirection
Infrastructure. In ACM/Usenix Mobisys, 2003.

14

