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Abstract. We study the higher-order rewritelequational proof systems obtained by adding the 
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too. This result is relevant to parallel implementations of functional programming languages. 

We also show that provability in the higher-order equational proof system obtained by adding the 
simply typed P and 7 axioms to some many-sorted algebraic proof system is effectively reducible 
to  provability in that algebraic proof system. This effective reduction also establishes transforma- 
tions between higher-order and algebraic equational proofs, transformations which can be useful in 
automated deduction. 
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1 Introduction 

This paper presents two results in the area of "comparative anatomy" of type disciplines. Both 
results describe relationships between first-order features which can be modeled with algebraic 
equations and the higher-order paradigm modeled by the simply typed lambda calculus. 

Our first concern is with the interaction between "first-order computation" modeled by algebraic 
rewriting, and "copy-rule computation" modeled by P-reduction of lambda terms. If no type 
discipline is imposed on lambda terms, it is known that this interaction causes new, and negative, 
effects: Klop has shown that the untyped lambda calculus enriched with surjective pairing reduction 
does not have the Church-Rosser (CR) property (see [Klop 19801, or [Barendregt 19841, pp. 403- 
407; the proof uses Turing's fixed point combinator), even though the rewrite system consisting of 
the surjective pairing rules alone is Church-Rosser, and, of course, P-reduction in isolation is CR. 
Another such counterexample can be adapted from [Breazu-Tannen & Meyer 1987al: 

Consider the following algebraic rewrite system, call it y: 

cond 0 x y - x 

cond 1 x y --+ y 

minus x x - 0 

minus (succ x) x + 1 .  

This system is clearly strongly normalizing (terminating, noetherian) since all rules are length 
decreasing. It is also easy to check that y has the weak CR property (is locally, or weakly, confluent). 
Thus, by a well-known result of [Newman 19421 (for a simple proof see [Huet 1978]), y is CR. 
However, the CR property fails for py-reduction on untyped lambda terms constructed from the 

def constants cond, minus, succ, 0 and 1. Indeed, let F = A f. Ax. succ (f x) and let P be a fixed 
P P 

point of F (i.e., , P --+ F P, see [Barendregt 19841. p. 131). We have P --+ Ax. succ ( P  x )  , 
and thus 

P L' 
cond (minus ( P  0) ( P  0)) 0 1 ih cond (minus ((Ax. succ (P x)) 0) (P 0)) 0 1 -4 

cond (minus (succ ( P  0)) ( P  0)) 0 1 1, cond 1 0 1 1. 1 . 

But the same term also reduces 

7 cond (minus ( P  0) ( P  0)) 0 1 1. cond 0 0 1 - 0 , 

and, obviously, 0 and 1 are distinct py-normal forms. 

Both these counterexamples exploit the capability of expressing fixed point combinators in the 
untyped lambda calculus. Because of the normalization property, no such combinators can be 
expressed in the simply typed lambda calculus (A'). And, in fact, we make essential use of the 
normalization property to show, in section 2, that combining any many-sorted algebraic rewrite 
system which is CR with A' gives a rewrite system which is also CR. 



Specifically, given a many-sorted signature C, we construct simply typed lambda terms with the 
sorts of C as base (ground) types and from the symbols in C seen, by currying, as higher-order 
constants. We will call these terms X'C-terms, and the algebraic C-terms-aC-terms. More 
generally, a-tagged "things" (e.g., proofs) are algebraic. Note that any aC-term can be seen, by 
currying, as a X'C-term. In fact, when the prefixed Polish notation is used for algebraic terms and 
application is assumed to associate to the left in writing lambda terms, this passage goes unnoticed. 

Then, given a set R of rewrite rules between ax-terms, we show that if R is CR on aC-terms, 
then PR is CR on X'C-terms l .  (Of course, R-rewriting on X'C-terms is such that the variables 
occurring in the algebraic rules can be instantiated with any X'C-terms, as long as they are of the 
same (ground) type as the variables they replace.) 

We compare this result with those of [Toyama 19871 and [Klop 19801. Toyarna shows that the direct 
sum of two CR algebraic rewriting systems is also CR. For the direct sum, the two components 
are required to  have disjoint signatures. In our case, note that while the symbols of the algebraic 
signature do not play any special role in defining P-reduction, there is one "operation" which is 
implicit in algebraic rewriting and which is therefore shared with P-reduction, namely application, 
and indeed, Toyama's methods do not seem to help in this situation. Our putting together of 
an algebraic rewrite system and a lambda calculus is more like Klop's direct sum of combinatory 
reduction systems for which, as shown in [Klop 19801, preservation of the CR property fails, in 
general, (see the examples above). Klop proves preservation of CR under certain restrictions, but 
he keeps the untyped lambda calculus as one of the components and imposes the restrictions on 
the algebraic reduction rules. In contrast, our algebraic reduction rules are totally arbitrary, but 
we restrict the lambda terms using the simple type discipline. 

Our result about CR preservation is relevant for the problem of parallel implementation of func- 
tional programming languages (see [Hudak 19861 for a survey). Since it guarantees that results 
are independent of the computational strategy, the Church-Rosser property is the theoretical foun- 
dation for parallel evaluation. For functional languages based on the untyped lambda calculus 
(such as SCHEME [Abelson & Sussman 19851) CR depends on the choice of the first-order com- 
putational rules. Useful optimizations such as (x - x) + 0 and (succ(x) - x) - 1 (see the 
counterexample above) or (if b then x else x) - x (see [Klop 19801) are ruled out. Our result 
shows that, in contrast, strongly typed functional languages (such as ML [Gordon et al., 19791 and 
Miranda [Turner 19851) are completely flexible from this point of view. Beware: even typed func- 
tional languages feature recursion which causes the failure of CR just like the untyped fixed points 
do. The difference is that in typed languges the use of recursion can be effectively isolated and one 

l ~ h e  reader may wonder what happens with q-reduction. Even though, of course, q-reduction is CR both in 
isolation, and together with P-reduction, combining it with CR algebraic rewrite systems does not always yield a CR 
system: consider the algebraic reduction rule f x a . Then, f Xz. f x 2 X 2 .  a . Nonetheless, given 
the absence of a perspicuous computational interpretation for q-reduction we do not regard this failure as significant. 
However, g, regarded as an equational maom, may be useful when reasoning about programs and thus we take it into 
consideration when we study the interaction between equational proof systems. 

21n the presence of types, the surjective pairing rules must be postulated for every pair of types, which takes us 
out of the framework of algebraic rewrite systems. Nonetheless, it is still true that simply typed lambda calculus 
with product types and surjective pairing has the CR property [Pottinger 19811. This result also follows horn the fact 
that the typed lambda calculus with surjective pairing is strongly normalizing [Lambek & Scott 19861 (I also know 
of two unpublished proofs of this fact, obtained independently: [Bercovici 19841 and [Dougherty 1986]), as above, by 
Newman's result, since it is easy to check the weak CR property. 



can identify the chunks of program for which CR holds and parallel-execute them. This is much 
more difficult in untyped languages where non-typable "hacks" may hide the failure of CR. 

In section 3, we study again the interaction between algebra and higher-order types but from 
the point of view of equational theories. In the pure simply typed lambda calculus, every term 
has a unique PI?-normal form and this implies the decidability of simply typed pq-conversion. 
Algebraic equational theories can, of course, be undecidable. However, it is reasonable to hope 
that when combined with the simply typed lambda calculus, the algebraic theories would be the 
sole potential source of undecidability in the resulting systems, that is, the interaction itself does 
not introduce new and negative effects. We show that indeed this is the case, and, moreover, we 
establish effective translations between equational proofs in the combined higher-order system and 
corresponding algebraic equational proofs, and conversely. 

Specifically, we are given a many-sorted signature C, and a set E of equations between aC-terms, 
regarded as axioms, that is, we are given a presentation of a many-sorted algebraic theory. Then, 
we consider the higher-order equational proof system which proves equalities between arbitrary 
X'C-terms using ,!3, q and the equations in E as axioms. (Again, the variables in E can be 
instantiated by lambda terms, of course.) This determines a simply typed lambda theory. We 
describe an algorithm which computes for every pair ( M , N )  of X'C-terms of the same type, a 
finite non-empty set {L1,. . . , L,), where each L; is a finite non-empty set of equations between 
aC-terms and we show that M = N is provable in the higher-order proof system if and only if for 
some i, 1 5 i < n , all the equations in L; are provable in the algebraic proof system. (Each of the 
Li's corresponds to a possible way of proving M = N using algebraic equations.) It follows that 
the combined lambda theory is Turing-reducible to (recursive in) the algebraic theory, and thus if 
the latter is decidable, so is the former4. Moreover, we show that we can effectively transform any 
proof of M = N in the higher-order system, into a choice of some i and algebraic proofs for all 
the equations in Li. Conversely, we show that we can effectively transform a given i and algebraic 
proofs for all the equations in Li into a higher-order proof of M = N. 

As a corollary, it follows that the combined lambda theory is a conservative extension of the 
algebraic theory. Such an "effective" proof of conservative extension was first mentioned in 
[Bream-Tannen & Meyer 1987al (a complete account is in [Bream-Tannen 19871) 5 .  As another 
corollary, it follows that the combined lambda theory is a conservative extension of the pure simply 
typed lambda theory if and only if the algebraic theory does not contain any equations of the 
form x = y with x and y distinct variables (i.e., no "partial inconsistencies"; since the theory is 
many-sorted, this does not necessarily imply that every equation is provable) 6. 

3This is not true in general: there are, of course, undecidable equational theories which are the combination of 
two decidable equational theories. 

*The similar result about adding the untyped lambda calculus to algebraic theories is obviously false, since provable 
equality of pure untyped terms is already undecidable. 

5There is an easier, model-theoretic but not effective, proof of this [Meyer & Reinhold 19861. 
'Again, there is an easier, model-theoretic but not effective, proof of this [Bream-Tannen 19861 which uses a 

completeness result from [Friedman 19751. 



2 Combining rewrite systems 

P 
Our terminology and notation follows [Barendregt 19841. In addition, we use H for p-conversion 
(several steps). Note that any simply typed term X has a p-normal form which decomposes as 
pnf (X)  = XG. h Z1 - .. 2, where h is a variable or a constant an each Z; is a P-normal form. 

Fix a many-sorted signature C and a set R of rewrite rules between aC-terms [Huet & Oppen 19801, 
[Klop 19871. Note that for each rule s -+ t E R, s is not allowed to be a variable and FV(s) > 
FV(t) . 

Lemma 2.1 Let X and Y be X'C-terms. 
(i) Let r E R. If X Y then Dnf (X)  pnf (Y). 

PR R 
(ii) If X --t, Y then pnf (X) ++ pnf (Y). 

Proof. (i) Let r E s - t and let { x l , . .  . , x,) = FV(s) . Since X 5 Y, there exists a context 
P[ ] with exactly one hole of the same (base) type as s and t, and X'C-terms Q1,. . . , Q, with 

4 

Q; of the same (base) type as I;, such that X = P[s [Z = 011 and Y - P[t [Z: = Q]] . 
I def Let X' d"' P[(Xi. s )  G] and Y = P[(XI. t) 01 . Also let z be a fresh variable of the same type 

as Xi?. s and X I .  t. Since both X I .  s and X I .  t are closed, we have X' E P[z G][z: = X I .  s] and 

Y' - P[z Q][z: = X l .  t] . Let P' dCf pnf (P[z &I) . We claim that any occurrence of z in P' is 
at  the head of a term of base type. Indeed, the property is true for P[z  91 and it is easy to show 
that it is preserved under P-reduction. 

Finally, we show by induction on the length of Z that for any term Z in p-normal form, and in 

which every occurrence of z is at  the head of a term of base type, we have pnf (Z[z: = X l .  s]) 
P 

pnf (Z[z: = Xi?. t]) . This ends the proof of (i), since X - pnf (Pt[z: = X I .  s]) and therefore 
/3nf(X) E pnf (Pt[z: = X I .  s]) and similarly for Y. (ii) is immediate from (i). End of proof 

R 
Lemma 2.2 (i) If M is a ,!?-normal form and M - N then N is a /?-normal form. 
(ii) If R-reduction is CR on aC-terms then it is also CR on X'C-terms in p-normal form. 

Proof. (i) Immediate. 
(ii) We show, by induction on the length of M ,  that for any term M in @-normal form, R-confluence 

R R R R 
holds from M ,  that is, if N ++- M - P then there exists a Q such that N - Q tt P . 
This is trivial for length 1 since no rules apply. Assume the statement is true for all strictly shorter 
/3-normal forms and let us show it holds for M = Xv'. h Z1 - . Z, . There are several cases. 

The case when h is a variable of base type is trivial: no rules apply. Next, consider the case when 
R 

h = z, a variable of non-base type. We then show that M - N iff N - Xv'. z Wl W, and 
R 

2; - W; for each i. From this, it immediately follows that R-confluence holds from M ,  using the 
induction hypothesis on the strictly shorter 2;'s. Moreover, the case when h is a constant from C 



but h Zl . . . Z, is not of base type is just like the previous case: indeed, h cannot occur in any 
R-redex. 

The interesting case is when h is in C and h Zl . . . Z, is of base type. Then, h Zl - . Z, can be 
decomposed as t[xl: = Nl,. . . , zk: = Nk] where t is a ax-term, the xi's are fresh variable of base 
type, and the Ni's are P-normal forms of base type which have at head a variable of non-base type 
(this can be shown by induction on the lenghth of ,O-normal forms of base type). We then show 

R R R 
that M - N iff N - Xv'. sb1: = PI,. . . ,xk: = Pk] , where t - s and Ni - Pi for each i . 
One direction is immediate, the other one follows by induction on the length of the R-reduction. 

With this we can show that R-confluence holds from M, using the induction hypothesis on the 
strictly shorter Ni's and the fact that R-confluence holds from the algebraic t '. End of proof. 

Finally, we have 

Theorem 2.3 
If R-reduction is CR on ax-terms then OR-reduction is CR on X'C-terms. 

PR PR R R 
Proof. Suppose that N - M -S P . By Lemma 2.1 we obtain pnf(N) ct pnf(M) it 

R R 
,L?nf(P) . Then, by Lemma 2.2, there exists a Q such that /?nf(N) it Q - ,f?nf ( P )  . Thus 

P R R P 
N it Onf (N) --tt Q tt pnf(P)  tt P . End of proof. 

3 Combining equational theories 

Fix a many-sorted signature C and a set E of equations between aC-terms (no restrictions on the 
form of these equations). 

The notion of equational proof we will work with is that of chain of replacements of equals by equals. 
Such proofs have the same power as deduction trees using axioms and inference rules such as con- 
gruence, transitivity, etc., and there are effective translations between these two kinds of proofs, so 
we can proceed without loss of generality [Bream-Tannen & Meyer 1987b], [Breazu-Tannen 19871. 
Given e E E and two X'C-terms X and Y, we define one-step e-conversion, X Y in the obvi- 
ous type-preserving manner (free variables in e can be instantiated with any A'C-term of the same 
type); this holds only when X and Y have the same type. This yields a notion of pqE-conversion. 

PaE 
We will write E tX- X = Y and X - Y interchangeably. For s and t crC-terms, we define 
proofs in the algebraic theory: E F a  t = t' whenever there exist aC-terms to , .  . . , t, (n 2 0) 
and e l , .  . . ,en E E such that t G to 2% t l  2% . . t,-l 2% t, = t' . 
Since we are working with many-sorted/many-base-typed calculi, we should point out that this 
kind of equational reasoning is sound only in models with all sorts/types non-empty. As shown in 

7This should have been used somewhere, and, indeed is needed here: while t is a @-normal form, it is not strictly 
shorter than M when M is actually algebraic. 



[Breazu-Tannen & Meyer 1987b],[Breazu-Tannen 19871, proofs of conservative extension for reason- 
ing about models with possibly empty sorts/types [Goguen & Meseguer 1982],[Lambek & Scott 19861 
are actually simplified versions of the proofs for the reasoning described above 8 .  The same is true 
for the result we give here. This paper presents only the version that applies to the more compli- 
cated flavor of equational reasoning. 

A long Pq-normal form is (recursively) a term of the form Xv'. h Z1 - .  Zn where h is a variable 
or a constant, each Z; is a long ,811-normal form, and h Zl . - Zn is of base type. While such a 
term is in general not in 11-normal form, the name is justified by the fact that any X'C-term, X ,  is 
pq-convertible to  a unique long pq-normal form, lpqnf (X); to effectively obtain it, take the term 
to &normal form and then perform (if needed) some anti-7-reductions. With this, we have a result 
very similar to Lemma 2.1 (and the proof is essentially the same) which reduces everything to  the 
analysis of E-conversion on long pq-normal forms: 

Lemma 3.1 Let X and Y be X'C-terms. 
(i) Let e E R. If X A Y then lpqnf (X)  - lp7nf (Y). 

P7E E 
(ii) X * Y if and only if lpvnf (X)  * lpqnf (Y). 

We describe an effective procedure f3 which takes as input two terms M and N of the same type and 
in long p7-normal form and which returns a boolean expression B(M, N)  built from atoms of the 
form E F a  s = t or of the form false, by means of conjunctions and disjunctions. (The intention 

E 
is that M - N iff B(M, N )  is true). 13 is given as recursive procedure. The description of B 
will be interrupted with lemmas which are essential for its understanding. 

Algorithm f3. Given M and N ,  since they are long Pq-normal forms of the same type, they both 
decompose uniquely (and, of course, effectively) as M = Xv'. MM' and N Xv'. N' where MM' and 
N' are long pq-normal forms of the same base type. 

L e m m a  3.2 Any long pq-normal form of base type uniquely (and, of course, effectively) decom- 
poses as FIUl,. . . , Urn] where F[ , . . . , ] is an aC-context &e., an ax-term with holes of base 
type) and each Ui is a long p7-normal form of base type which has at  head a variable of non-base 

type. 

The proof is by induction on the length of long pq-normal forms. Thus, L? continues by decomposing 
MI - FIUl, . . . , Urn] and N' = GIVl, . . . , V,] . We need some names for all the holes in F[ , . . . , ] 
and G[ , . . . , ] and we choose to use numbers, as follows F[1,. . . , m] , G[m + 1,. . . , m + n] . Let 

def 
3-t = (1,. . . , m  + n} be the set of all these holes. Let X be a set of m + n fresh variables, one 
for each hole in H ,  and with same (base) type as it. We denote by a(3-1, X) the set of all type- 
preserving maps from 7-l to X (there are at most ( m ~ n ) ~ + ~  such maps). We also rename the terms 

dzf def def def 
Ul,.. . ,Um,Vl,. . . ,Vn as f0110w~: Z1 - Ul, . . . )Zm = Um, Zm+1 = Vl, . . . ,Zm+, = Vm 

 he simplification comes from the fact that in the reasoning of [Goguen & Meseguer 1982],[Lambek & Scott 19861 
all the free variables that occur in a chain of replacements of equals by equals must also occur in one or the other of 
the two terms being proven equal. 



and, for each # E @(H, X), we define the ax-terms F[#] ef F[#(l), . . . , #(m)] and G[#] dd 
G[#(m + I) ,  . . . , #(m $. n)] . The following lemma is not necessary for the description of what B 
does, but, at this point, it may help understanding why B does it. 

E 
Lemma 3.3 FIZ1,. . . ,Z,] - GIZm+l,.. .,Zm+,] ifl there exists a map 4 E @('If, X) such 
that E Fa F[4] = G[#] and, for all i, j E (1,. . . , m + n) such that #(i) = #(j), we have 

p7E 
2; .-. zj , 

E 
Here, "proper" E-conversion, i.e., -, is defined only for long pq-normal forms of base type which 

pr E 
have at head a variable of non-base type, as follows: U * V whenever U and V have the same 
variable at head, thus U = z M I . .  . Mm and V G z Nl . . . N, , and, for all i E (1,. . . ,m) we 

E 
have Mi * N; . 
One direction in the proof of the lemma is immediate. The other one follows by induction on the 
length of the proof by E-conversion and we omit the details here. 

Finally, we let 

where C is a subroutine which takes as arguments two terms U and V of the same base type, in 
long pq-normal form, each of which has at  head a variable of non-base type and returns boolean 

PT E 
expressions of the same kind as the ones B returns. (The intention is that U - V iff C(U, V)). 

Subroutine C. Given U and V, since they are both long Pq-normal forms of base type, they both 
decompose uniquely (and, of course, effectively) as U - u MI . . . M, and V r v Nl . . . N, 
where the Mi's and Nj7s are long pq-normal forms. If u f v let C(U, V) : = false . If u r v, then 
m = n and, for each i, Mi and N; are long Pv-normal forms of the same type so let 

It is not hard to see that f? terminates on all inputs. Indeed, if we replace all the calls of C in B 
by the corresponding code of C we obtain an equivalent presentation of B, with simple recursive 
calls. Termination then follows from the observation that if the call B(Mt, N') occurs inside a call 
f?(M, N )  then length(Mt) + length(Nt) is strictly less than length(M) + length(N) . Moreover, 
using Lemma 3.3, one can show by induction on the sum of the lenghts of M and N that 

E 
Lemma 3.4 For any two long pq-normal forms, M and N, M - N iff B(M, N )  is true. 



Note that the boolean expression B(M, N )  can be simplified by using the distributivity of con- 
junction through disjunction and such facts as false A e x p  = false, false V e x p  = exp,  etc., . In 
principle, we end up either with a disjunction of conjunctions of atoms of the form E Fa s = t , or, 
with just false. It is not hard to  see that the second possibility never happens. (This corresponds 
to the fact that even two distinct, pure long pv-normal forms are E-convertible if the algebraic 
theory contains L'partial inconsistency" equations of the form x = y, x and y distinct.) Thus, 
in fact, we have another algorithm V, which calls B, simplifies the resulting boolean expression 
and then produces a finite non-empty collection of finite non-empty sets (one for each conjunctive 
subexpression in the simplified boolean expression) of algebraic equations (where s = t comes from 
E s = t ). Consider now the algorithm A which computes for any two X'C-terms of the same 
type, X and Y, 

Putting together all the results from above, we obtain: 

Theorem 3.5 
Let A(X,Y) = {LI,.. . , L,) . Then, E kX- X = Y i f  an only if t h e n  exists an i E {I,. . . , n )  
such that for all s = t E L; we have E F a  s = t . 

In fact, Lemmas 3.3 and 3.4 can be easily strenghtened to  yield effective transformations of proofs 
by higher-order E-conversion into algebraic proofs and conversely. Details are omitted here. This 
gives 

Theorem 3.6 
Let A(X, Y) = {L1,. . . , L,) . Then, there is  an  effective procedure for transforming any proof of 
E bX- X = Y into an efective choice of an i E (1,. . . , n) and proofs of  E Fa s = t for each 
s = t E L; . Conversely, there is an  effective procedure which transforms any i E {I , .  . . , n) and 
proofs of E Fa s = t for each s = t E L; , into a proof of E FA- X = Y . 

For algebraic terms, A(s,t)  = { { s  = t ) )  , which gives 

Corollary 3.7 ("effective* conservative extension of algebraic theories by simple types) 
There is an eflective procedure which transforms any proof of E FA- s = t where s and t are 
crC-terms, into a proof of E Fa s = t . 

Let M and N be pure A'-terms and let A(M, N )  = {L1,. . . , L,) . It is not hard to see that each 
L; consists only of equations of the form x = x or x = y with x and y distinct. A finer analysis 
shows: 

Corollary 3.8 (conservative extension of the pure simply typed lambda calculus by consistent al- 
gebraic theories) The following statements are equivalent 

PT 
1) VM, N, pure A'-terms of the same type, E tXd M = N M - N . 
2) Vx, y, algebraic variables of the same sort, E Fa x = y =+ x r y . 



4 Conclusions and directions for future investigation 

In addition to serving as another piece of formal evidence for the intuition that the interaction 
between algebra and higher-order types has no new negative effects, we believe that our proof- 
theoretic reductions will be useful in future development of equational theorem provers, an area of 
active research (see for example [Siekmann (ed.) 19861). 

We have made no attempts to analyze the complexity of the algorithm presented in section 3. 
The algorithm proceeds in two phases, the first of which involves normalization, and is therefore 
non-elementary recursive [Statman 19791. This does sound scary in theory, but experience with 
theorem-provers has shown that most normalizations that occur in practice can be done efficiently 
[Miller & Nadathur 19861. With this in mind, the complexity of the second part of the algorithm 
becomes relevant, and we propose to look for efficient versions of it. 

Another complexity-theoretic question regards the length of higher-order equational proofs vs. that 
of algebraic proofs. Intuitively, the latter should be shorter than the former. However, the proof 
transformations we establish give, at first glance, conflicting information. It  would be nice to 
formally settle this problem. 

Turning to the result about rewrite systems, an obvious question is what happens to the weak and 
strong normalization properties. Assuming that every crC-term R-reduces to an R-normal form, it 
is not hard to show, in the spirit of the proofs in section 2, that any X'C-term PR-reduces to an 
PR-normal form. However, the pure simply typed lambda calculus is not just weakly, but strongly 
normalizing. It is an open question whether strong normalization of the algebraic rewrite system 
implies strong normalization of the combined rewrite system. A plethora of counterexamples for 
similar questions about the direct sum of algebraic rewriting systems [Toyama 19861 suggests a 
cautious approach to  any kind of conjecture here. We should point out, though, one fact which is 
specific to the interaction between algebraic rewriting and P-reduction: an algebraic reduction step 
cannot create "essentially new" P-redexes, at worst it will duplicate existing P-redexes. 

In this first series of results we chose the simple type discipline for convenience reasons: simplicity 
of notation, no need for type assignments, etc., . In fact we believe that our results and proofs gen- 
eralize readily to the Girard-Reynolds polymorphic type discipline, as already shown for the conser- 
vative extension result (see [Breazu-Tannen & Meyer 1987a] and [Breazu-Tannen & Meyer 1987131 
and, for detailed proofs, [Breazu-Tannen 19871). 

However, it seems to us that the most interesting case is that of full dependent type disciplines such 
as the impredicative type discipline of the Calculus of Constructions [Coquand & Huet 1985a1, 
[Coquand & Huet 1985b], that of Martin-Lof's Type:Type calculus [Martin-Lof 19711 (or see 
[Meyer & Reinhold 19861) or the predicative type discipline presented in [MacQueen 19861. Indeed, 
in such a type discipline, terms can occur inside types, which makes even the problem of type- 
checking which is trivially decidable for the simple and the polymorphic type disciplines) at least 
as hard as the problem of provable equality of terms. For those dependent type disciplines which 
are normalizing (such as that of the Calculus of Constructions and that of [MacQueen 19861) we 
expect to show, using proofs in the spirit of the present paper, that when combined with an 
arbitrary algebraic theory, the problem of provable equality, and, more importantly, that of type- 
checking in the higher-order theory, are both Turing-reducible to the problem of provable equality 



in the algebraic theory, that is, that the interaction between algebra and even such complex higher- 
order type disciplines does not have new negative effects. This, of course, is false for Type:Type 
where even the problem of type-checking of pure terms is undecidable [Meyer & Reinhold 19861, 
[Howe 19871, [Coquand 19861. 

As a side-product of these conjectured proof-theoretic reductions we expect to  obtain useful heuris- 
tics for type-checking in such rich type disciplines. This expectation is based on the belief that while 
arbitrarily complex terms can occur inside dependent types, practical program type-checking will, 
in fact, not involve computations of universal power inside the types (for another line of research 
with similar goals see [Cardelli 19871). 

Acknowledgement. I am grateful to  Jean Gallier for several suggestions on how to improve the 
presentation of the paper. 
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