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1 Formulation of the Optimization Problems

The goal of this paper is to find methods for solving various quadratic optimization problems,
mostly arising from computer vision (image segmentation and contour grouping). For a quick
overview of the problems, we suggest reading Sections 1 and 2, omitting proofs at first, and
then jumping directly to Section 6 which contains a thorough discussion of related work.

We consider mainly two problems:

Problem 1. Let A be an n×n Hermitian matrix and let b ∈ Cn be any vector. Consider
the following optimization problem:

maximize z∗Az + z∗b+ b∗z

subject to z∗z = 1, z ∈ Cn.

Because the matrix, A, is Hermitian, the quantity, f(z) = z∗Az + z∗b + b∗z, is indeed
real. First, we show that the above problem reduces to an optimization problem over R2n

(Problem 2).

Since A is Hermitian, we can write A = H + iS, with

H =
A+ A>

2
, S =

A− A>

2i
,

where H is a real symmetric matrix and S is a real skew symmetric matrix (S> = −S) and
if we let z = x + iy and b = br + ibc, with x, y ∈ Rn and br, bc ∈ Rn, then x>Hy = y>Hx,
x>Sy = −y>Sx, and x>Sx = y>Sy = 0, so we have

z∗Az = (x> − iy>)A(x+ iy)

= x>Ax+ ix>Ay − iy>Ax+ y>Ay

= x>Hx+ ix>Sx+ ix>Hy − x>Sy − iy>Hx+ y>Sx+ y>Hy + iy>Sy

= x>Hx+ y>Hy − 2x>Sy

= (x>, y>)

(
H −S
S H

)(
x

y

)
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and

z∗b+ b∗z = (x> − iy>)(br + ibc) + (b>r − ib>c )(x+ iy)

= x>br + ix>bc − iy>br + y>bc + b>r x+ ib>r y − ib>c x+ b>c y

= 2x>br + 2y>bc

= 2(x>, y>)

(
br
bc

)
.

Observe that the matrix (
H −S
S H

)
is real symmetric. Therefore, our optimization problem reduces to the problem

maximize (x>, y>)

(
H −S
S H

)(
x

y

)
+ 2(x>, y>)

(
br
bc

)
subject to (x>, y>)

(
x

y

)
= 1,

(
x

y

)
∈ R2n

where the matrix involved is a real symmetric 2n× 2n matrix.

Consequently, we will now focus on the following optimization problem:

Problem 2. If A is a real n× n symmetric matrix and b ∈ R is any vector,

maximize x>Ax+ 2x>b

subject to x>x = 1, x ∈ Rn.

Observe that if A = µI, for some µ ∈ R, then on the unit sphere, x>x = 1, we have

f(x) = x>Ax+ 2x>b = µ+ 2x>b.

If b = 0, then f is the constant function with value µ. If b 6= 0, then the maximum of
f(x) = µ+ 2x>b is achieved for x = b/

√
b>b. For the rest of this paper, we will assume that

A is not of the form µI, which means that A is a symmetric matrix with at least two distinct
eigenvalues.

Let L(x, λ) be the Lagrangian of the above problem,

L(x, λ) = x>Ax+ 2x>b− λ(x>x− 1).

We know that a necessary condition for the function, f(x) = x>Ax + 2x>b, to have a local
extremum on the unit sphere, x>x = 1, is that L(x, λ) has a critical point, which means that

∂L

∂x
= 0,

∂L

∂λ
= 0.
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Since
∂L

∂x
= 2Ax+ 2b− 2λx,

∂L

∂λ
= x>x− 1,

necessary conditions for f to have a local extremum are

(λI − A)x = b

x>x = 1.

If b = 0, this is a standard eigenvalue problem so let us assume that b 6= 0. Since A is a
symmetric matrix, it can be diagonalized and we can write

A = Q>ΣQ,

where Σ is a (real) diagonal matrix andQ is an orthogonal matrix. Substituting the righthand
side of A into our system, we get

Q>(λI − Σ)Qx = b

x>x = 1,

which yields

(λI − Σ)Qx = Qb

(Qx)>Qx = 1.

If we let c = Qb and y = Qx, the above system becomes

(λI − Σ)y = c

y>y = 1

and the solutions of the original system

(λI − A)x = b

x>x = 1

are obtained using the equation x = Q>y.

Remark: It is well-known that it is possible to “absorb” the linear term, 2x>b, into the
quadratic term, x>Ax, by going up one dimension, that is, by considering the unknown to
be the vector

(
x
t

)
∈ Rn+1. Then, if we observe that

(x>, t)

(
A b
b> 0

)(
x

t

)
= x>Ax+ 2tx>b,
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our optimization problem is clearly equivalent to

maximize (x>, t)

(
A b
b> 0

)(
x

t

)
subject to (x>, t)

(
x

t

)
= 2,

(
x

t

)
∈ Rn+1

t = 1.

The constraint, t = 1, is linear and can be written as

c>
(
x

t

)
= 1,

where c> = (0, . . . , 0, 1). If the right-hand side of this last equation was 0, then following
Golub [6] (1973), it would be possible to get rid of this constraint and reduce the problem
to a standard eigenvalue problem with respect to a different matrix, namely PA′, with

P = I − cc> and A′ =

(
A b
b> 0

)
. The matrix PA′ is not symmetric, but PA′P is symmetric

and as P 2 = P (P is a projection) and since it is known that PPA′ and PA′P have the same
eigenvalues, we would be reduced to a standard eigenvalue problem. Golub [6] also shows
how to handle a more general linear constraint of the form C>x = 0, where C is a matrix
(for details, see Section 6).

Unfortunately, the right-hand side of our equation, c>
(
x
t

)
= 1, is not zero and we have

not made any progress. Indeed, the Lagrangian of the new formulation of our problem is

L′
((

x

t

)
, λ, µ

)
= (x>, t)

(
A b
b> 0

)(
x

t

)
− λ

(
(x>, t)

(
x

t

)
− 2

)
− µ

(
c>
(
x

t

)
− 1

)
and necessary conditions for L′ to have a critical point are

2

(
A b
b> 0

)(
x

t

)
− 2λ

(
x

t

)
− µc = 0

(x>, t)

(
x

t

)
= 2

c>
(
x

t

)
= 1.

Thus, we must have t = 1 and then

Ax− λx+ b = 0

x>x = 1

µ = 2b>x− 2λ.
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Therefore, we are back to our original system

(λI − A)x = b

x>x = 1.

In fact, Gander, Golub and von Matt [5] (1989) have shown that eliminating a constraint of
the form N>x = t (where t is a nonzero vector) from the quadratic problem

maximize x>Ax

subject to x>x = 1, x ∈ Rn

N>x = t

leads to a quadratic function of the form x>Cx + 2x>b (for details, see Section 6). In
summary, there is really no hope of making the linear term, 2x>b, go away.

2 Solution in the Generic Case

Let us first assume that the eigenvalues of A are all distinct and order them in decreasing
order so that σ1 > σ2 > · · · > σn. The system

(λI − Σ)y = c

defines a parametric curve, C(Σ, c), in Rn, for all λ 6= σi, 1 ≤ i ≤ n, where the ith coordinate
of a point on the curve is given by

yi(λ) =
ci

λ− σi
.

If ci 6= 0, for i = 1, . . . , n, then yi(λ) −→ ±∞ when λ −→ σi and note that y −→ 0 when
λ −→ ±∞. In this case, the solutions of the system

(λI − Σ)y = c

y>y = 1

are the points of intersection of the curve, C(Σ, c), with the unit sphere, y>y = 1.

The (connected) branch of the curve, C(Σ, c), for which λ ∈ (−∞, σn)∪ (σ1,+∞) always
intersects the unit sphere, since it passes through the origin for λ = ±∞. When λ −→ σn
from −∞, the line parallel to the yn-axis for which

y1 =
c1

σn − σ1
, . . . , yn−1 =

cn
σn − σn−1

is an asymptote and when λ −→ σ1 from +∞, the line parallel to the y1-axis for which

y2 =
c2

σ1 − σ2
, . . . , yn =

cn−1
σ1 − σn

5



is another asymptote. Since the coordinates y2, . . . , yn−1 of these two lines have different
signs, this branch of the curve has a “kink” (it is not planar).

The curve, C(Σ, c), has n− 1 other connected branches, one for each interval (σi, σi−1),
where i = n, . . . , 2. When λ −→ σi from above, the line parallel to the yi-axis for which

y1 =
c1

σi − σ1
, . . . , yi−1 =

ci−1
σi − σi−1

, yi+1 =
ci+1

σi − σi+1

, . . . , yn =
cn

σi − σn

(with yi+1 and yn omitted when i = n) is an asymptote and when λ −→ σi−1 from below,
the line parallel to the yi−1-axis for which

y1 =
c1

σi−1 − σ1
, . . . , yi−2 =

ci−2
σi−1 − σi−2

, yi =
ci

σi−1 − σi
, . . . , yn =

cn
σi−1 − σn

(with y1 and yi−2 omitted when i = 2) is another asymptote. Since either the y1 coordinate
or the yn coordinate of these two lines differ, these branches of the curve also have a “kink”
(are not planar).

If ci = 0 for some i, the situation is more subtle. Let us begin by considering the case
n = 2.

When n = 2, we have the system of equations

(λ− σ1)y1 = c1

(λ− σ2)y2 = c2

y21 + y22 = 1.

If c1 = 0, then, as c2 6= 0, the two linear equations have a solution iff λ 6= σ2.

Case 1 . If (y1, y2) is a solution of the system

(λ− σ1)y1 = 0

(λ− σ2)y2 = c2

with y1 = 0, then this solution belongs to the line of equation y1 = 0. This line intersects
the unit circle y21 + y22 = 1 for y2 = ±1. For these solutions, we must have

y2 =
c2

λ− σ2
= ±1

which has the two solutions,
λ = σ2 ± c2.

Since c2 6= 0, our system has the two solutions (y1, y2) = (0,±1) for λ = σ2 ± c2.
Case 2 . If (y1, y2) with y1 6= 0 is a solution of the system

(λ− σ1)y1 = 0

(λ− σ2)y2 = c2
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then we must have λ = σ1. In this case, the above system reduces to the single equation

(σ1 − σ2)y2 = c2

which defines the line of equation

y2 =
c2

σ1 − σ2
.

This line intersects the unit circle y21 + y22 = 1 iff

y21 = 1− c22
(σ1 − σ2)2

.

This equation has real nonzero solutions iff

c22 < (σ1 − σ2)2

and if so, the solutions to our system are

y1 = ±
√

1− y22, y2 =
c2

σ1 − σ2
.

In summary, when c1 = 0, (y1, y2) = (0,±1) are solutions and there are possibly two
extra solutions if λ = σ1 and c22 < (σ1 − σ2)2.

The case where c2 = 0 is similar. We find that (y1, y2) = (±1, 0) are solutions and there
are possibly two extra solutions if λ = σ2 and c21 < (σ2 − σ1)2.

Case 3 . If c1 6= 0 and c2 6= 0, by solving for λ in terms of y1, we get

λ =
c1
y1

+ σ1

and by substituting in the second equation we get

y2 =
c2y1

c1 + (σ1 − σ2)y1

the equation of a hyperbola passing through the origin and with two asymptotes parallel to
the y1 and the y2 axes, namely,

y1 = − c1
σ1 − σ2

and
y2 =

c2
σ1 − σ2

.

The branch of the hyperbola passing through the origin intersects the unit circle, y21 +y22 = 1,
in two points and, in general, the other branch of the hyperbola also intersects the unit circle
in two points as illustrated in Figure 1.
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Figure 1: Intersections of C(Σ, c) (a hyperbola) with the unit circle

Therefore, in general, the hyperbola intersects the unit circle in four points and always
in at least two points. The corresponding values of λ are given by the equation

c21
(λ− σ1)2

+
c22

(λ− σ2)2
= 1,

which yields a polynomial equation of degree 4.

In the general case, n ≥ 2, we have the following theorem:

Theorem 2.1 If the eigenvalues of the n × n symmetric matrix, A, are all distinct, then
there are 2m values of λ, say λ1 > λ2 ≥ λ3 > · · · > λ2m−2 ≥ λ2m−1 > λ2m, with 1 ≤ m ≤ n,
such that the system

(λI − A)x = b

x>x = 1

(with b 6= 0) has a solution, (λ, x). As a consequence, the Lagrangian,

L(x, λ) = x>Ax+ 2x>b− λ(x>x− 1),

has at least two and at most 2n critical point, (x, λ). Furthermore, the eigenvalues,
σ1 > σ2 > · · · > σn, of A separate the λ’s, which means that
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Figure 2: Intersections of C(Σ, c) with the unit sphere (n = 3)

1. λ1 ≥ σ1

2. λ2m ≤ σn

3. For every λi, with 2 ≤ i ≤ 2m− 1, either λi = σj for some j with 1 ≤ j ≤ n, or there
is some j, with 1 ≤ j ≤ n− 1, so that σj > λi > σj+1.

Proof . As we explained earlier, we first diagonalize A as A = Q>ΣQ and if we let c = Qb
and y = Qx, then the above system is equivalent to the system

(λI − Σ)y = c

y>y = 1.

If ci 6= 0 for i = 1, . . . , n, then the curve, C(Σ, c), is a kind of generalized hyperbola in
Rn, with n asymptotes corresponding the the values λ = σi. An example of this curve in
shown for n = 3 in Figure 2.

In order for some, y, on the curve C(Σ, c) to belong to the unit sphere, the equation

n∑
i=1

c2i
(λ− σi)2

= 1,

9



must hold, which yields a polynomial equation of degree 2n. Observe that since every
coordinate,

yi =
ci

λ− σi
,

of a point on the curve, C(Σ, c), is an injective monotonic function of λ (for λ 6= σi), the
branch of the curve passing through 0 intersects the unit sphere in exactly two points:

1. One point when λ varies from −∞ to σn, corresponding to some λ2m < σn

2. One point when λ varies from +∞ to σ1, corresponding to some λ1 > σ1.

If another branch of C(Σ, c) corresponding to λ ∈ (σj+1, σj) (1 ≤ j ≤ n − 1) intersects the
unit sphere, then it will do so in two points corresponding to some values, λ2i and λ2i+1, so
that σj > λ2i ≥ λ2i+1 > σj+1.

Thus, when the eigenvalues of A are all distinct and ci 6= 0 for i = 1, . . . , n, the system

(λI − Σ)y = c

y>y = 1

has at least two and at most 2n solutions and the eigenvalues of A separate the solutions in
λ.

Let us now consider the case where ci = 0 for all i ∈ Z in some proper subset, Z, of
{1, . . . , n} and let s = |Z|. The linear system,

(λI − Σ)y = c,

has a solution iff λ 6= σi for all i /∈ Z.

Case 1 . There is a solution, y, of the system (λI−Σ)y = c for which yi = 0 for all i ∈ Z.
In this case, the system (λI −Σ)y = c defines a curve, C(Σ, c), in the subspace of dimension
n− s defined by the equations yi = 0, for i ∈ Z, and this curve is given parametrically by

yi =
ci

λ− σi
, i /∈ Z.

This curve intersects the unit sphere, y>y = 1, iff the equation∑
i/∈Z

c2i
(λ− σi)2

= 1

holds, which yields a polynomial equation of degree 2(n − s). Clearly, each of its roots, λ,
must be different from σi, for i /∈ Z.

If 1 /∈ Z, then the branch of the curve, C(Σ, c), through the origin, intersects the unit
sphere when λ varies from +∞ to σ1 in some point for which λ > σ1. Similarly, if n /∈ Z,
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then the branch of the curve, C(Σ, c), through the origin, intersects the unit sphere when λ
varies from −∞ to σn in some point for which λ < σn.

Case 2 . There is a solution, y, of the system (λI − Σ)y = c and yk 6= 0 for some k ∈ Z.
Then, we must have, λ = σk, in which case the system (σkI − Σ)y = c defines a line given
by the equations

yi = 0, i ∈ Z − {k}
yi =

ci
σk − σi

, i /∈ Z

This line intersects the unit sphere, y>y = 1, iff the equation

y2k +
∑
i/∈Z

c2i
(σk − σi)2

= 1

has a solution with yk 6= 0. This will be the case iff∑
i/∈Z

c2i
(σk − σi)2

< 1,

and we get two solutions for yk and thus, for y. In summary, there are up to 2s solutions
if λ = σi with i ∈ Z, and there are always at least two and up to 2(n − s) solutions with
yi = 0 for all i ∈ Z. Thus, in all cases, there are at least two and at most 2n solutions.

If 1 ∈ Z, then if
∑

i/∈Z
c2i

(σ1−σi)2 < 1, then λ = σ1 is a solution. Consequently, the largest

solution, λ, must satisfy λ ≥ σ1. If
∑

i/∈Z
c2i

(σ1−σi)2 ≥ 1, then, the point corresponding to σ1
is not inside the unit sphere and since the point on the curve, C(Σ, c), moves away from
the origin as λ decreases from +∞, the intersection with the unit sphere will occur for some
λ ≥ σ1. It follows that λ ≥ σ1 for the largest solution λ.

If n ∈ Z, then if
∑

i/∈Z
c2i

(σn−σi)2 < 1, then λ = σn is a solution. Consequently, the smallest

solution, λ, must satisfy λ ≤ σn. If
∑

i/∈Z
c2i

(σn−σi)2 ≥ 1, then, the point corresponding to σn
is not inside the unit sphere and since the point on the curve, C(Σ, c), moves away from
the origin as λ decreases from −∞, the intersection with the unit sphere will occur for some
λ ≤ σn. Thus, λ ≤ σn for the smallest solution λ.

Suppose that λ is a solution such that λ 6= σi, for i = 1, . . . , n. First, assume that λ is
the smallest of the two values for which some branch of the curve, C(Σ, c), with λ ∈ (σj, σl),
intersects the unit sphere. We must have σl > λ > σj. If j > l+1, then for every intermediate
σk, with l < k < j, if ∑

i/∈Z

c2i
(σk − σi)2

< 1,

then, as λ increases from σj, we must have λ < σk.
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If
∑

i/∈Z
c2i

(σk−σi)2
< 1 for all k with l < k < j, then

σj−1 > λ > σj.

Otherwise, if k, with l < k < j, is the largest index for which
∑

i/∈Z
c2i

(σk−σi)2
≥ 1, then

σk−1 > λ > σk.

Next, assume that λ is the largest of the two values for which the branch of the curve,
C(Σ, c), with λ ∈ (σj, σl), intersects the unit sphere. We must have σl > λ > σj. If j > l+1,
then for every intermediate σk, with l < k < j, if∑

i/∈Z

c2i
(σk − σi)2

< 1,

then, as λ decreases from σl, we must have λ > σk.

If
∑

i/∈Z
c2i

(σk−σi)2
< 1 for all k with l < k < j, then

σl > λ > σl−1.

Otherwise, if k, with l < k < j, is the smallest index for which
∑

i/∈Z
c2i

(σk−σi)2
≥ 1, then

σk > λ > σk+1.

Since we have considered all possibilities, the proof is complete.

Regarding the linear independence of the solutions, y, we have the following proposition:

Proposition 2.2 Let m be the number of cis such that ci 6= 0. Then, any k ≤ m unit vectors,
y1, . . . , yk associated with distinct λi’s such that λi and yi are solutions of the system

(λI − Σ)y = c

y>y = 1

are linearly independent.

Proof . We may assume by renumbering coordinates that ci 6= 0, for i = 1, . . . ,m, with
m ≤ n. Since the yi are unit vectors solutions of the system

yij =
cj

λi − σj
,

with 1 ≤ i ≤ k ≤ m and 1 ≤ j ≤ n, it is enough to prove that the determinant of the matrix

c1
λ1 − σ1

c2
λ1 − σ2

· · · ck
λ1 − σkc1

λ2 − σ1
c2

λ2 − σ2
· · · ck

λ2 − σk
...

...
...

...
c1

λk − σ1
c2

λk − σ2
· · · ck

λk − σk

 = c1c2 · · · ck



1

λ1 − σ1
1

λ1 − σ2
· · · 1

λ1 − σk
1

λ2 − σ1
1

λ2 − σ2
· · · 1

λ2 − σk
...

...
...

...
1

λk − σ1
1

λk − σ2
· · · 1

λk − σk
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is nonzero and since c1c2 · · · ck 6= 0, this amounts to proving that

det



1

λ1 − σ1
1

λ1 − σ2
· · · 1

λ1 − σk
1

λ2 − σ1
1

λ2 − σ2
· · · 1

λ2 − σk
...

...
...

...
1

λk − σ1
1

λk − σ2
· · · 1

λk − σk


6= 0.

Now, since the λi are solutions of the equation

m∑
j=1

c2j
(λi − σj)2

= 1,

we must have λi 6= σj for all i, j.

The problem reduces to computing a so-called Cauchy determinant . A (square) Cauchy
matrix is a matrix of the form

1

λ1 − σ1
1

λ1 − σ2
· · · 1

λ1 − σn
1

λ2 − σ1
1

λ2 − σ2
· · · 1

λ2 − σn
...

...
...

...
1

λn − σ1
1

λn − σ2
· · · 1

λn − σn


where λi 6= σj, for all i, j, with 1 ≤ i, j ≤ n. It is known that the determinant, Cn, of a
Cauchy matrix as above is given by

Cn =

∏n
i=2

∏i−1
j=1(λi − λj)(σj − σi)∏n
i=1

∏n
j=1(λi − σj)

.

Here is a proof of the above formula by induction. The base case n = 1 is trivial. For
the induction step, we perform the following row operations which preserve the determinant,
Cn+1:

Multiply the first row by λ1−σ1
λi−σ1 and subtract the resulting row from the ith row, i ≥ 2.

The effect of these linear combinations is to set all the entries of the first column of our
matrix but the first to zero. More precisely, the jth entry (j ≥ 2) of the new ith row (i ≥ 2)
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is

1

λi − σj
− λ1 − σ1

(λi − σ1)(λ1 − σj)
=

(λi − σ1)(λ1 − σj)− (λ1 − σ1)(λi − σj)
(λi − σj)(λi − σ1)(λ1 − σj)

=
λ1λi − λiσj − λ1σ1 + σ1σj − λ1λi + λ1σj + λiσ1 − σ1σj

(λi − σj)(λi − σ1)(λ1 − σj)

=
(λ1 − λi)σj + (λi − λ1)σ1

(λi − σj)(λi − σ1)(λ1 − σj)

=
(λi − λ1)(σ1 − σj)

(λi − σj)(λi − σ1)(λ1 − σj)
and thus, the new ith row (i ≥ 2) is

0
(λi − λ1)(σ1 − σ2)

(λi − σ2)(λi − σ1)(λ1 − σ2)
· · · (λi − λ1)(σ1 − σn+1)

(λi − σn+1)(λi − σ1)(λ1 − σn+1)
.

It follows that Cn+1 is equal to the determinant∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1

λ1 − σ1
1

λ1 − σ2
· · · 1

λ1 − σn+1

0
(λ2 − λ1)(σ1 − σ2)

(λ2 − σ2)(λ2 − σ1)(λ1 − σ2)
· · · (λ2 − λ1)(σ1 − σn+1)

(λ2 − σn+1)(λ2 − σ1)(λ1 − σn+1)
...

...
...

...

0
(λn − λ1)(σ1 − σ2)

(λn+1 − σ2)(λn+1 − σ1)(λ1 − σ2)
· · · (λn+1 − λ1)(σ1 − σn+1)

(λn+1 − σn+1)(λn+1 − σ1)(λ1 − σn+1)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
Since the ith row (i ≥ 2) contains the common factor

λi − λ1
λi − σ1

and the jth column (j ≥ 2) contains the common factor

σ1 − σj
λ1 − σj

,

by multilinearity and by expanding the above determinant with respect to the first row, we
get

Cn+1 =

∏n+1
i=2 (λi − λ1)(σ1 − σi)∏n+1

i=1 (λi − σ1)
∏n+1

j=2 (λ1 − σj)
Dn,

where

Dn =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1

λ2 − σ2
1

λ2 − σ3
· · · 1

λ2 − σn+1
1

λ3 − σ2
1

λ3 − σ3
· · · 1

λ3 − σn+1
...

...
...

...
1

λn+1 − σ2
1

λn+1 − σ3
· · · 1

λn+1 − σn+1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
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Using the induction hypothesis applied to Dn, we get the desired formula,

Cn+1 =

∏n+1
i=2

∏i−1
j=1(λi − λj)(σj − σi)∏n+1

i=1

∏n+1
j=1 (λi − σj)

.

Since we assumed that the σj are all distinct, that the λi are all distinct and that λi 6= σj,
for all i, j, we conclude that

det



1

λ1 − σ1
1

λ1 − σ2
· · · 1

λ1 − σk
1

λ2 − σ1
1

λ2 − σ2
· · · 1

λ2 − σk
...

...
...

...
1

λk − σ1
1

λk − σ2
· · · 1

λk − σk


6= 0,

which proves that y1, . . . , yk are linearly independent.

Unfortunately, the yi are generally not pairwise orthogonal.

3 Solution in the General Case (Multiple Eigenvalues)

Fortunately, when the matrix, A, has multiple eigenvalues, Theorem 3.1 can still be proved
pretty much as before except for some notational complications.

Theorem 3.1 If the n×n symmetric matrix, A, has p distinct eigenvalues, σ1 > σ2 > · · · >
σp, each with multiplicity ki ≥ 1, with k1 + · · ·+ kp = n, then there are 2m values of λ, say
λ1 > λ2 ≥ λ3 > · · · > λ2m−2 ≥ λ2m−1 > λ2m, with 1 ≤ m ≤ p, such that the system

(λI − A)x = b

x>x = 1

(with b 6= 0) has a solution, (λ, x). As a consequence, there are at least two and at most 2p
values of λ for which the Lagrangian,

L(x, λ) = x>Ax+ 2x>b− λ(x>x− 1),

has a critical point, (x, λ), but there may be infinitely many x for which (x, λ) is a critical
point. Furthermore, the distinct eigenvalues, σ1 > σ2 > · · · > σp, of A separate the λ’s,
which means that

1. λ1 ≥ σ1

2. λ2m ≤ σp
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3. For every λi, with 2 ≤ i ≤ 2m− 1, either λi = σj for some j with 1 ≤ j ≤ p, or there
is some j, with 1 ≤ j ≤ p− 1, so that σj > λi > σj+1.

Proof . If ci 6= 0 for i = 1, . . . , n, then the curve, C(Σ, c), is still a kind of generalized
hyperbola in Rn, but it only has asymptotes corresponding the distinct values of the σi’s.
To simplify notation, let
p1 = 1, q1 = k1, pi = k1 + · · ·+ ki−1 + 1, qi = k1 + · · ·+ ki, for i = 2, . . . , p, and let

Ji = {pi, qi}, i = 1, . . . , p.

In order for some, y, on the curve C(Σ, c) to belong to the unit sphere, the equation

p∑
i=1

∑
j∈Ji c

2
j

(λ− σi)2
= 1,

must hold, which yields a polynomial equation of degree 2p. Observe that the parametric
equations of the curve, C(Σ, c), can be written as p sets of equations,

yj =
cj

λ− σi
, j ∈ Ji, i = 1, . . . , p.

This shows that the curve, C(Σ, c), lies in the linear subspace of dimension p (an intersection
of n− p hyperplanes) given by the equations

ypi
cpi

=
ypi+1

cpi+1

= · · · = yqi
cqi
, i = 1, . . . , p.

Each parametric equation of C(Σ, c) is still an injective monotonic function of λ (for
λ 6= σi), so the branch of the curve passing through 0 intersects the unit sphere in exactly
two points:

1. One point when λ varies from −∞ to σp, corresponding to some λ2m < σp

2. One point when λ varies from +∞ to σ1, corresponding to some λ1 > σ1.

If another branch of C(Σ, c) corresponding to λ ∈ (σj+1, σj) (1 ≤ j ≤ p − 1) intersects the
unit sphere, then it will do so in two points corresponding to some values, λ2i and λ2i+1, so
that σj > λ2i ≥ λ2i+1 > σj+1.

Thus, when ci 6= 0 for i = 1, . . . , n, the system

(λI − Σ)y = c

y>y = 1

has at least two and at most 2p solutions and the eigenvalues of A separate the solutions in
λ.
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Let us now consider the case where cj = 0, for some j. For every i, with 1 ≤ i ≤ p, define
the two disjoint subsets, Zi and Hi, of Jj, by

Zi = {j ∈ Ji | cj = 0}
Hi = {j ∈ Ji | cj 6= 0},

and let si = |Zi|, ri = |Hi|, s = s1 + · · · + sp and r = r1 + · · · + rp. We also let q be the
number of subsets, Hi, such that Hi 6= ∅. Note that some of the Zi and Hi may empty, but
not at the same time. Of course, r + s = n.

Again, there are two cases.

Case 1 . There is a solution, y, of the system (λI − Σ)y = c for which yj = 0, for
all j ∈ Zi, for i = 1, . . . , p. In this case, C(Σ, c) is a curve in the subspace of dimension
n− s− (r − q) = q determined by the equations,

yj = 0, j ∈ Zi, i = 1, . . . , p
yk1
ck1

=
yk2
ck2

ki, k2 ∈ Hi, k1 < k2, i = 1, . . . , p.

(For each of the q nonempty subset, Hi, there are ri − 1 linearly independent equations and
so, a total of r − q equations of the second type). This curve intersects the unit sphere iff
the equation

p∑
i=1

∑
j∈Hi

c2j

(λ− σi)2
= 1

holds, which yields a polynomial equation of degree 2q. The rest of the discussion is com-
pletely analogous to the corresponding discussion in the proof of Theorem 2.1. There are at
least two and at most 2q solutions and the distinct eigenvalues of A separate the solutions
in λ.

Case 2 . There is a solution, y, of the system (λI − Σ)y = c such that yj 6= 0 for some
j ∈ Zk and for some k with 1 ≤ k ≤ p. In this case, we must have λ = λk, a multiple
solution, and also Hk = ∅. The system (λI − Σ)y = c defines a subspace of dimension
n− (s− sk)− r = sk, defined by the equations

yj = 0, j ∈ Zi, i = 1, . . . , p, i 6= k

yj =
cj

λk − λj
, j ∈ Hi, i = 1, . . . , p.

This subspace intersects the unit sphere iff the equation

∑
j∈Zk

y2j +

p∑
i=1

∑
j∈Hi

c2j
(λ− σi)2

= 1
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has a solution with
∑

j∈Zk
y2j 6= 0, which is the case iff∑

j∈Hi
c2j

(λ− σi)2
< 1.

In general, if sk > 1, there are infinitely many solutions in y.

In all cases, we proved that there are at least two solutions in λ. Since there are at most
2q solutions in λ in Case 1, and since for every eigenvalue, λk, which is a solution in Case
2, we must have Hk = ∅, there are at most p − q such eigenvalues, so there are at most
2q + p− q = p+ q ≤ 2p solutions in λ and possibly infinitely many solutions in y. The part
of the proof that shows that the distinct eigenvalues of A separate the λ’s is similar to the
proof in Theorem 2.1.

Remark: The seemingly more general problem

maximize x>Ax+ 2x>b

subject to x>Bx = 1, x ∈ Rn,

where A is an arbitrary symmetric matrix and B is symmetric positive definite can be reduced
to our problem. Indeed, the Lagrangian of the above problem is

L(x, λ) = x>Ax+ 2x>b− λ(x>Bx− 1)

and necessary conditions for this Lagrangian to have a critical point are

Ax+ b− λBx = 0

x>Bx = 1,

which can be written as

(λB − A)x = b

x>Bx = 1.

Since B is symmetric positive definite, both B1/2 and B−1/2 exist so if we make the change
of variable,

x′ = B1/2x,

we have x = B−1/2x′ and our system becomes

(λB1/2 − AB−1/2)x′ = b

x>B1/2B1/2x = 1,

which, after multiplying on the left by B−1/2, yields

(λI −B−1/2AB−1/2)x′ = B−1/2b

x′>x′ = 1.
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Therefore, we are back to our original problem with the symmetric matrix,
A′ = B−1/2AB−1/2, and the vector, b′ = B−1/2b.

Observe that for computational reasons, if might be preferable to use a Cholesky de-
composition, B = CC>, where C is a lower triangular matrix. In this case, the system
becomes

(λCC> − A)x = b

x>CC>x = 1,

and if we let x′ = C>x and multiply on the left by C−1, using the fact that x = (C>)
−1
x′,

we get

(λI − C−1A(C>)
−1

)x′ = C−1b

x′>x′ = 1,

which is our original problem with A′ = C−1A(C>)
−1

= C−1A(C−1)>, a symmetric matrix.
Since C is lower triangular, C−1 is generally cheaper to compute than B−1/2.

4 Local Study of the Critical Points of the Lagrangian

If (λ, x) is any critical point of the Lagrangian, L(x, λ), that is, if (λ, x) is any solution of
the system

(λI − A)x = b

x>x = 1,

then b = λx− Ax, and we have

f(x) = x>Ax+ 2x>b

= x>Ax+ 2x>(λx− Ax)

= 2λ− x>Ax

and since Ax = λx− b, we also have

f(x) = 2λ− x>Ax
= λ+ x>b.

Since, the function, f(x) = x>Ax + 2x>b, is continuous (and differentiable) on the unit
sphere, which is compact, the function, f , has a minimum and a maximum and both of them
are achieved. Furthermore, at a local extremum, the Lagrangian

L(x, λ) = x>Ax+ 2x>b− λ(x>x− 1)

must have a critical point.

We can obtain more information on the critical points of the Lagrangian by computing
f(v)− f(u), where u is a critical point of L(u, λ).
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Proposition 4.1 If (u, λ) is a critical point of the Lagrangian,

L(x, λ) = x>Ax+ 2x>b− λ(x>x− 1),

so that Au−λu+b = 0 and u>u = 1 and if v is any other point on the unit sphere (v>v = 1),
then

f(v)− f(u) = (v − u)>(A− λI)(v − u).

Proof . We have
f(v)− f(u) = v>Av + 2v>b− u>Au− 2u>b

so we need to compute v>Av − u>Au. Observe that as A is symmetric, we have

(v − u)>A(v − u) = v>Av − u>Av − v>Au+ u>Au

= v>Av − 2u>Av + u>Au,

so we have

v>Av − u>Au = (v − u)>A(v − u) + 2u>Av − 2u>Au

= (v − u)>A(v − u) + 2u>A(v − u)

and thus,

f(v)− f(u) = v>Av − u>Au+ 2(v − u)>b

= (v − u)>A(v − u) + 2u>A(v − u) + 2(v − u)>b

= (v − u)>A(v − u) + 2(Au)>(v − u) + 2b>(v − u)

= (v − u)>A(v − u) + 2(Au+ b)>(v − u)

and since Au+ b = λu, we get

f(v)− f(u) = (v − u)>A(v − u) + 2(Au+ b)>(v − u)

= (v − u)>A(v − u) + 2λu>(v − u).

However, the computation of v>Av − u>Au with A = I yields

0 = 1− 1

= v>v − u>u
= (v − u)>(v − u) + 2u>(v − u)

so
2u>(v − u) = −(v − u)>(v − u)

and we finally get

f(v)− f(u) = (v − u)>A(v − u) + 2λu>(v − u)

= (v − u)>A(v − u)− λ(v − u)>(v − u)

= (v − u)>(A− λI)(v − u),
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that is,
f(v)− f(u) = (v − u)>(A− λI)(v − u),

as claimed.

Remark: It is easy to see that the computation carried out in Proposition 4.1 applies to
the more general Lagrangian,

L(x, λ) = x>Ax+ 2x>b− λ(x>Bx− 1),

where B is any symmetric matrix, and we get

f(v)− f(u) = (v − u)>(A− λB)(v − u),

for any critical pair, (λ, u), of L and any v such that v>Bv = 1. However, we have to
assume that B is invertible in order to ensure the validity of the necessary condition for the
Lagrangian to have a critical point, namely, ∇L(u, λ) = 0. We have to further assume that
B is positive definite in order to reduce the problem to the situation where x>x = 1.

Using Proposition 4.1, we can find a necessary and sufficient condition for a critical point,
(u, λ), of the Lagrangian, L(u, λ), to correspond to a maximum of the function f(x) =
x>Ax+ 2x>b.

Proposition 4.2 A critical point, (u, λ), of the Lagrangian,

L(x, λ) = x>Ax+ 2x>b− λ(x>x− 1)

corresponds to the maximum of the function, f(x) = x>Ax + 2x>b, on the unit sphere iff
λ ≥ σi, for all eigenvalues, σi, of A.

Proof . Assume that the eigenvalues of the symmetric matrix, A, are σ1 ≥ σ2 ≥ · · · ≥ σn,
written in decreasing order and let (e1, . . . , en) be an orthonormal basis of eigenvectors. For
any point, v, on the unit sphere, if we write v − u =

∑n
i=1 ziei, then by Proposition 4.1, we

have

f(v)− f(u) = (v − u)>(A− λI)(v − u)

=

( n∑
i=1

zie
>
i

)( n∑
j=1

(σj − λ)zjej

)

=
n∑
i=1

(σi − λ)z2i .

From the above, we see that if λ ≥ σi, for i = 1, . . . , n, then

n∑
i=1

(σi − λ)z2i ≤ 0
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and f(u) is indeed the maximum of f on the unit sphere.

Conversely, assume that (u, λ) corresponds to the maximum of f on the unit sphere. If
λ < σ1, we will prove that we can find some v on the unit sphere so that f(v) − f(u) > 0,
and thus, f(u) is not the maximum of f on the unit sphere, a contradiction.

Case 1 . u>e1 6= 0.

If λ ≤ σ2, then pick v = u+ z1e1 + z2e2. Since v>v = u>u = 1, we must have

z21 + 2αz1 + z22 + 2βz2 = 0.

with α = u>e1 and β = u>e2. As a quadratic equation in z1, the discriminant of this
equation is

∆ = 4α2 − 4z2(z2 + 2β)

and since α 6= 0, we can pick z2 6= 0 small enough so that ∆ > 0 and z2 + 2β 6= 0, and we
find a nonzero solution for z1. For this choice of v, as λ < σ1, λ ≤ σ2 and z1 6= 0, we have

f(v)− f(u) = (σ1 − λ)z21 + (σ2 − λ)z22 > 0,

as claimed.

If σ1 > λ > σ2, then pick some positive real, ρ, so that

ρ2 < −σ1 − λ
σ2 − λ

.

Then, let
v = u+ z1e1 + ρz1e2.

Since v>v = u>u = 1, we must have

z21 + 2αz1 + ρ2z21 + 2ρβz1 = 0,

with α = u>e1 and β = u>e2, that is,

((ρ2 + 1)z1 + 2(α + ρβ))z1 = 0

Since α 6= 0, we can choose ρ > 0 small enough so that α + ρβ 6= 0 and then we can pick

z1 = −2(α + ρβ)

ρ2 + 1
6= 0.

For such a choice of v, we get

f(v)− f(u) = (σ1 − λ)z21 + (σ2 − λ)ρ2z21
= ((σ1 − λ) + (σ2 − λ)ρ2)z21 > 0,
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since z1 6= 0 and

ρ2 < −σ1 − λ
σ2 − λ

.

Case 2 . u>e1 = 0.

Let k be the smallest index so that u>ei 6= 0 and write β = u>ek. If λ ≤ σk, then pick
v = u+ z1e1 + zkek. Since v>v = u>u = 1, we must have

z21 + z2k + 2βzk = 0,

since α = u>e1 = 0. As a quadratic equation in zk, the discriminant of this equation is

∆ = 4β2 − 4z21

and since β 6= 0, we can pick z1 6= 0 small enough so that ∆ > 0 and we find a nonzero
solution for zk. For this choice of v, as λ < σ1, λ ≤ σk and z1 6= 0, we have

f(v)− f(u) = (σ1 − λ)z21 + (σk − λ)z2k > 0,

as claimed.

If σ1 > λ > σk, then pick some positive real, ρ, so that

ρ2 < −σ1 − λ
σk − λ

.

Then, let
v = u+ z1e1 + ρz1ek.

Since v>v = u>u = 1, we must have

z21 + ρ2z21 + 2ρβz1 = 0,

that is,
((ρ2 + 1)z1 + 2ρβ)z1 = 0

Since β 6= 0, we can pick

z1 = − 2ρβ

ρ2 + 1
6= 0.

For such a choice of v, we get

f(v)− f(u) = (σ1 − λ)z21 + (σk − λ)ρ2z21
= ((σ1 − λ) + (σk − λ)ρ2)z21 > 0,

since z1 6= 0 and

ρ2 < −σ1 − λ
σk − λ

.

Therefore, in all cases, we proved that if λ < σ1, then f(u) is not the maximum of f on the
unit sphere, a contradiction.

As a corollary, since the function, f(x) = x>Ax + 2x>b, achieves its maximum on the
unit sphere, we obtain the following theorem:

23



Theorem 4.3 There are at least two and at most 2n scalars, λ, so that, (x, λ), is a critical
point of the Lagrangian,

L(x, λ) = x>Ax+ 2x>b− λ(x>x− 1)

and for the largest of these λ’s, we have λ ≥ σi, for all eigenvalues, σi, of A. The maximum
of the function, f(x) = x>Ax+2x>b, on the unit sphere is achieved for all the critical points,
(x, λ), such that λ ≥ σi, for all eigenvalues, σi, of A.

5 Finding the Intersections of the Curve, C(Σ, c), with

the Unit Sphere

It remains to give an algorithm for finding the intersection points of the curve, C(Σ, c), with
the unit sphere. From the discussion in Section 5, we may assume that the entries in Σ (the
eigenvalues of the matrix A) are all distinct and that ci 6= 0, for i = 1, . . . , n. The curve,
C(Σ, c), is given by the parametric equations

y1 =
c1

λ− σ1
...

...

yn =
cn

λ− σn
.

We know that this curve consists of n branches and that each of the n − 1 branches with
λ ∈ (σi+1, σi), for i = 1, . . . , n − 1, intersects the unit sphere at most twice and that the
branch of the curve corresponding to λ ∈ (−∞, σn) ∪ (σ1,+∞) intersects the unit sphere
twice.

It seems that a bissection method should exist, or perhaps we could use Newton’s method.

6 Related Work

The two earliest references that I found dealing with Problem 1 and a closely related problem
are:

(1) Burrows [1] (1966), which deals with Problem 1

(2) Forsythe and Golub [3] (1965), which deals with problem of finding the stationary
values of

Φ(x) = (x− b)∗A(x− b),

where A is an Hermitian matrix.
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Burrows [1] uses exactly the method proposed in this paper, namely, to diagonalize A
with respect to a unitary matrix and then, looking for the critical points of the Lagrangian,
he gets a system of the form

(λI − Σ)y = c

y∗y = 1,

where y ∈ Cn. Since Burrows deals with an Hermitian matrix, he need the fact that the
solutions, λ, are real and for this, he refers to Forsythe and Golub [3] where this is proved.
Burrows observes that the λ’s are the solutions of the equation

n∑
i=1

|ci|2

|λ− σi|2
= 1

(where only terms for which ci 6= 0 appear) and proves that the maximum of x∗Ax+x∗b+b∗x
arise for the largest λ. Since the problem is cast over C, the geometric interpretation as the
intersection of a curve with the unit sphere is missed.

Forsythe and Golub [3] deals with problem of finding the local extrema of

Φ(x) = (x− b)∗A(x− b),

where A is an Hermitian matrix. As Burrows points out,

(x− b)∗A(x− b) = x∗Ax− x∗Ab− b∗Ax+ b∗Ab

so, if we let a = Ab, the problem is equivalent to finding the local extrema of

x∗Ax− x∗a− a∗x,

which is Problem 1. In fact, Problem 1 is more general because if A is not invertible, then
a can’t be expressed as a = Ab. Interestingly, while Burrows cites Forsythe and Golub, the
converse is not true.

Forsythe and Golub also diagonalize A by picking some orthonormal basis, (u1, . . . , un),
of eigenvectors of A, and then express x and b over this basis. After setting the gradient of
the Lagrangian to zero, they also get a system of the form

(A− λI)x = Ab

x∗x = 1,

which yields the system

(σi − λ)xi = σibi, i = 1, . . . , n

x∗x = 1.
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The fact that the σi’s occur on the right-hand side complicates the discussion. Essentially,
the λ’s are solutions of the equation

n∑
i=1

σ2
i |bi|2

|λ− σi|2
= 1

Forsythe and Golub go through a thorough discussion of the two cases, (a) σibi 6= 0 for all
i, and (b) σibi = 0 for some i, which culminates in the main theorem stated in Section 4.
They also note that there are at least 2 and at most 2n solutions but they do not conduct a
detailed study depending on the multiplicity of the σi’s (as we do) and they only treat the
case n = 2 in detail. It is worth noting that because the problem is cast over C, it takes
some work (the entire Section 8) to prove that the Lagrange multipliers corresponding to
local extrema are real. However, this is a trivial consequence of the equivalence of Problem 1
and Problem 2, as we showed. Section 6 proposes a geometric interpretation of the problem
but it is different from ours (the intersection of the curve C(Σ, c) with the unit sphere).

Forsythe and Golub [3] is a bit lengthy and some complications caused by casting the
problem over C can be avoided. In a short paper, Spjøtvoll [9] (1972) tightens up the
treatment of the cases in Forsythe and Golub [3] and gives a shorter proof of their main
theorem (from Section 4). Spjøtvoll [9] also shows how to solve the problem of finding the
local extrema of Φ(x) = (x− b)∗A(x− b), subject to x∗x ≤ 1.

Among other things, Golub [6] (1973) considers the following problem: Given an n × n
real symmetric matrix, A, and an n× p matrix, C,

minimize x>Ax

subject to x>x = 1, x ∈ Rn

C>x = 0.

Golub shows that the linear constraint, C>x = 0, can be eliminated as follows: If we use
a QR decomposition of C, by permuting the columns, we may assume that

C = Q>
(
R S
0 0

)
Π,

where R is an r×r invertible upper triangular matrix and S is an r×(p−r) matrix (assuming
C has rank r). Then, if we let

x = Q>
(
y

z

)
,

where y ∈ Rr and z ∈ Rn−r, then C>x = 0 becomes

Π>
(
R> 0
S> 0

)
Qx = Π>

(
R> 0
S> 0

)(
y

z

)
= 0,
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which implies y = 0, and every solution of C>x = 0 is of the form

x = Q>
(

0

z

)
.

Our original problem becomes

minimize (y>, z>)QAQ>
(
y

z

)
subject to z>z = 1, z ∈ Rn−r

y = 0, y ∈ Rr.

Thus, the constraint C>x = 0 has been eliminated and if we write

QAQ> =

(
G11 G12

G>12 G22

)
our problem becomes

minimize z>G22z

subject to z>z = 1, z ∈ Rn−r,

a standard eigenvalue problem. Observe that if we let

J =

(
0 0
0 In−r

)
,

then

JQAQ>J =

(
0 0
0 G22

)
and if we set

P = Q>JQ,

then
PAP = Q>JQAQ>JQ.

Now, Q>JQAQ>JQ and JQAQ>J have the same eigenvalues, so PAP and JQAQ>J also
have the same eigenvalues. It follows that the solutions of our optimization problem are
among the eigenvalues of K = PAP , and at least r of those are 0. Using the fact that CC†

is the projection onto the range of C, where C† is the pseudo-inverse of C, it can also be
shown that

P = I − CC†,
the projection onto the kernel of C>. In particular, when n ≥ p and C has full rank (the
columns of C are linearly independent), then we know that C† = (C>C)−1C> and

P = I − C(C>C)−1C>.
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This fact is used by Cour and Shi [2] and implicitly by Yu and Shi [10].

The paper by Gander, Golub and von Matt [5] (1989) gives a very detailed solution of
Problem 2 and is closely related to what we have done in this paper.

Gander, Golub and von Matt consider the following problem: Given an (n+m)×(n+m)
real symmetric matrix, A, (with n > 0), an (n + m) ×m matrix, N , with full rank and a
nonzero vector, t ∈ Rm, with

∥∥(N>)†t
∥∥ < 1 (where (N>)† denotes the pseudo-inverse of N>)

minimize x>Ax

subject to x>x = 1, x ∈ Rn+m

N>x = t.

This is a generalization of the problem considered in Golub [6], since t 6= 0. The condition∥∥(N>)†t
∥∥ < 1 ensures that the problem has a solution and is not trivial. The authors begin

by proving that the affine constraint, N>x = t, can be eliminated. One way to do so is to
use a QR decomposition of N . If

N = P

(
R

0

)
where P is an orthogonal matrix and R is an m×m invertible upper triangular matrix, then
if we observe that

x>Ax = x>PP>APP>x

N>x = (R>, 0)P>x = t

x>x = x>PP>x = 1,

if we write

P>AP =

(
B Γ>

Γ C

)
and

P>x =

(
y

z

)
,

then we get

x>Ax = y>By + 2z>Γy + z>Cz

R>y = t

y>y + z>z = 1.

Thus,
y = (R>)−1t

and if we write
s2 = 1− y>y > 0
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and
b = Γy,

we get the simplified problem

minimize z>Cz + 2z>b

subject to z>z = s2, z ∈ Rm,

which is equivalent to Problem 2 (since min z = max−z) except that the right hand-side of
the constraint is s2 rather than 1, but this is inessential.

Then, exactly as I did, Gander, Golub and von Matt write the necessary conditions for
the Lagrangian to have a critical point and find the unescapable system

λz − Cz = b

z>z = s2.

Then, the above system is reduced to the canonical form

(λI − Σ)y = c

y>y = s2

by diagonalizing C using an orthogonal matrix. Gander, Golub and von Matt introduce the
function

f(λ) =
n∑
i=1

c2i
(λ− σi)2

− s2,

that they call the secular function, and, of course, they show that the solutions of our
problem are the solutions of the equation

f(λ) = 0,

that they call the (explicit) secular equation. They discuss the various cases having to do
with ci 6= 0 or ci = 0 and they show that the minimum is achieved for any λ such that λ ≤ σi
for all i.

The authors discuss the implicit secular equation, which is a way of solving for the smallest
λ which does not require finding the eigenvalues of C. They also discuss the conditioning of
the explicit secular equation

n∑
i=1

c2i
(λ− σi)2

− s2 = 0.

In Section 4, the authors present an iterative method for finding the smallest solution of the
explicit secular equation.
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In Section 5, the authors observe that when a solution, λ, is different from all the eigen-
values of C, then z is given by

z = (λI − C)−1b

and since z>z = 1, λ is a solution of the equation

b>(λI − C)−2b− s2 = 0.

If we let γ = (λI − C)−2b, then it is easy to see that γ is a solution of the equation

(λI − C)2γ =
1

s2
bb>γ,

a quadratic eigenvalue problem. Then, the authors discuss the equivalence of the solvability
of the system

λz − Cz = b

z>z = s2

and of the quadratic eigenvalue problem

(λI − C)2γ =
1

s2
bb>γ

and they show that this problem reduces to a standard eigenvalue problem. Indeed, if we
write

η = (λI − C)γ.

then
(
γ
δ

)
is an eigenvector associated with λ for the following matrix:(

C −I
−1

s2
bb> C

)

The last section of the paper is devoted to a discussion of the numerical results. It turns
out that the quadratic eigenvalue problem performs very badly. The explicit and the implicit
secular equations achieve the same degree of accuracy but the implicit secular equation is
generally not cheaper than the explicit secular equation.

Two papers, Sorensen [8] (1982) and Moré and Sorensen [7] (1983) discuss the quadratic
optimization problem of minimizing a quadratic function

ψ(x) = x>Ax+ 2x>b

in which the constraint, x>x = 1, is relaxed to the convex constraint,

‖x‖ ≤ ∆,
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for some positive number, ∆ > 0. Because of the inequality constraint, which can be written
as

x>x ≤ ∆2,

the necessary conditions for the Lagrangian

L(x, λ) = x>Ax+ 2x>b− λ(x>x−∆2)

to have a critical point are the Kuhn and Tucker conditions which read:

(λI − A)x = b,

for some λ ≤ 0 such that
λ(x>x−∆2) = 0.

Note that in L(x, λ) we have switched the sign of the Lagrange multiplier, λ, which tradi-
tionally has the sign +, and this is why we get the condition λ ≤ 0 as opposed to λ ≥ 0
(the two papers under discussion assume that λ has a positive sign in the Lagrangian). Our
choice makes the comparison with the other optimization problems simpler.

It is easy to show that A − λI must be positive semidefinite, which simply means that
λ ≤ σi, for all eigenvalues, σi, of A.

The equation
(λI − A)x = b

shows up again but, this time, the solutions, x, may be in the interior of the ball of radius
∆. Having obtained necessary conditions for a local extremum, Sorenson also proves the
following sufficient conditions (Lemma 2.8):

Assume λ ∈ R and u ∈ Rn satisfy the following conditions:

(λI − A)u = b

and A− λI is positive semidefinite. Then, the following conditions hold:

(i) If λ = 0 and ‖u‖ < ∆, then u is a minimizer of ψ in the ball of radius ∆.

(ii) The vector, u, is a minimizer of ψ on the sphere of radius ‖u‖. In particular, if ‖u‖ = ∆,
then u is a minimizer of ψ on the sphere of radius ∆.

(iii) If λ ≤ 0 and ‖u‖ = ∆, then u is a minimizer of ψ in the ball of radius ∆.

Furthermore, if λI − A is positive definite, then u is unique in all three cases.

The proof uses the fact that if (λI − A)u = b, that is, (A− λI)u = −b, then

u>(A− λI)u+ 2u>b = u>(A− λI)u− 2u>(A− λI)u

= −u>(A− λI)u
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and so

x>(A− λI)x+ 2x>b− (u>(A− λI)u+ 2u>b) = x>(A− λI)x+ 2x>b+ u>(A− λI)u

= x>(A− λI)x− 2x>(A− λI)u

+ u>(A− λI)u

= (x− u)>(A− λI)(x− u)

and since A− λI is positive semidefinite, we get

x>(A− λI)x+ 2x>b ≥ u>(A− λI)u+ 2u>b

for all x ∈ Rn. The above inequality implies that

x>Ax+ 2x>b ≥ u>Au+ 2u>b− λ(u>u− x>x)

for all x ∈ Rn and the above result follows immediately.

Moré and Sorensen [7] characterize when the optimization problem has no solution on
the boundary of the unit ball of radius ∆:

There is no solution, x, with ‖x‖ = ∆ iff A is positive definite and if ‖A−1b‖ < ∆.

Consequently, if our optimization problem only has solutions, x, in the interior of the
ball of radius ∆ (that is, ‖x‖ < ∆), then there is a unique solution given by λ = 0 and
x = −A−1b.

Otherwise, our optimization problem has a solution on the sphere of radius ∆ and we
are back to Problem 2 , as studied in Section 3, except that the solutions, λ, satisfy the
conditions: λ ≤ 0 and λ ≤ σi, for all eigenvalues, σi, of A.

However, the two papers by Sorensen and Moré under discussion were written before
Gander, Golub and von Matt [5] and rather than thoroughly analyzing when the system

(λI − A)x = b

x>x = ∆2

has solutions, Sorensen considers the problem of solving the secular equation∥∥(A− λI)−1b
∥∥ = ∆.

Sorensen does observe that, by diagonalizing A, we get an equation of the form

n∑
i=1

c2i
(λ− σi)2

= ∆2,

where the terms for which ci = 0 are missing. This is a rational function with second-order
poles. As we know, this equation always has a solution provided that b 6= 0 and ∆ > 0.
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However, there is a difficulty with this approach when the smallest solution, λ, of this
equation is greater than the smallest eigenvalue, σn, of A, because then, A−λI is not positive
semidefinite. This may happen when b is orthogonal to the eigenspace, Eσn , associated with
σn. In this case, b is the range of σnI − A, so the equation

(σnI − A)x = b

has solutions and since we are assuming that our optimization problem has a solution, from
the results of Section 3, σn is the solution and so, σn < 0. In this case, the solution, x, is
not unique.

Sorenson also proves that in this case, which corresponds to Case 2 in the proof of
Theorem 3.1, it is still possible to find a solution which can be expressed as

x = (σnI − A)†b+ θw,

for some eigenvector, w, of A for σn and where θ is chosen so that ‖x‖ = ∆ (it is easy to
see that

∥∥(σnI − A)†b
∥∥ < ∆ must hold). However, there are numerical difficulties. This

situation if called the “hard case” by Sorenson. One of the problems in the hard case is that
if A− λI is positive definite, then ‖u‖ < ∆. Yet, in the hard case, we are seeking a solution
on the boundary.

The rest of the paper is devoted to a modification of Newton’s method using a so-called
“trust region method” and to its convergence.

Moré and Sorensen [7] is more algorithmically oriented. Other algorithms based on
Newton’s method and using the trust region method are presented and their convergence is
analyzed.

Some related work is found in Gander [4] (1981), which deals with the problem of least
squares with a quadratic constraint. Given a m × n matrix, A, a p × n matrix, C, some
vectors b ∈ Rm and d ∈ Rp, and some positive real, α, the problem is

minimize ‖Ax− b‖
subject to ‖Cx− d‖ = α, x ∈ Rn.

The conditions for the Lagrangian to have a critical point are

(A>A+ λC>C)x = A>b+ λC>d

‖Cx− d‖2 = α2.

If the matrix, A>A+ λC>C, is invertible, then we obtain the secular equation,

‖Cx(λ)− d‖2 = α2,

where
x(λ) = (A>A+ λC>C)−1(A>b+ λC>d).
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Using some SVD decompositions for A and C, this equation can be simplified and yields a
rational function with quadratic poles. The author gives a complete characterizations of the
solutions of the system

(A>A+ λC>C)x = A>b+ λC>d

‖Cx− d‖2 = α2

and goes on to solve the least squares problem with a quadratic constraint. He also shows
how to deal with the inequality constraint, ‖Cx− d‖2 ≤ α2, and various special cases of the
least squares problem with a quadratic constraint.

More recently, Cour and Shi [2] have considered the following optimization problem that
arises in computer vision:

maximize
x>Wx+ 2x>V + α

x>x+ β
subject to Cx = b, x ∈ Rn

where β > 0, W is a symmetric matrix and V 6= 0. The way to proceed is to “homogenize”,
namely to go up one dimension as we did earlier. If we let

W =

(
W V
V > α

)
D =

(
I 0
0 β

)
C = (C,−b)

then we obtain the problem

maximize (x>, t)W

(
x

t

)
subject to (x>, t)D

(
x

t

)
= 2,

(
x

t

)
∈ Rn+1

C

(
x

t

)
= 0.

It is clear that (x, t) (with t 6= 0) is a maximum of this last problem iff x/t is a maximum of
the former problem. However, neither problem is equivalent to our problem, since a solution,
x, with x>x = 1 is obtained iff βt = ±1, which is false in general.

The second formulation of Cour and Shi’s problem is reduced to a more standard form
by making the change of variable

x′ = D
1/2
(
x

t

)
,
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(which is possible since β > 0), which leads to the symmetric matrix W ′ = D
−1/2

W D
−1/2

,

the matrix C ′ = C D
−1/2

and to the problem

maximize x′>W ′x′

subject to x′>x′ = 1, x′ ∈ Rn+1

C ′x′ = 0.

This last problem reduces to a standard eigenvalue problem by eliminating the linear con-
straint, C ′x′ = 0, using Golub’s method [6].

Finally, Yu and Shi [10] consider the following optimization problem:

minimize
x>(D −W )x

x>Dx
subject to V >x = 0, x ∈ Rn

where D is a diagonal matrix with positive entries and V has full rank, which is equivalent
to

maximize x>(W −D)x

subject to x>Dx = 1, x ∈ Rn

V >x = 0.

This problem is also solved by making the change of variable x′ = D1/2x and by eliminating
the linear constraint, V >x = 0, using Golub’s method [6] involving a projector.
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