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Ergodic Stochastic Optimization Algorithms for
Wireless Communication and Networking

Alejandro Ribeiro, Member, IEEE

Abstract—Ergodic stochastic optimization (ESO) algorithms
are proposed to solve resource allocation problems that involve
a random state and where optimality criteria are expressed in
terms of long term averages. A policy that observes the state and
decides on a resource allocation is proposed and shown to almost
surely satisfy problem constraints and optimality criteria. Salient
features of ESO algorithms are that they do not require access
to the state’s probability distribution, that they can handle non-
convex constraints in the resource allocation variables, and that
convergence to optimal operating points holds almost surely. The
proposed algorithm is applied to determine operating points of
an orthogonal frequency division multiplexing broadcast channel
that maximize a given rate utility.

Index Terms—Adaptive signal processing, cross-layer design,
gradient methods, OFDM, optimization, wireless communications,
wireless networks.

I. INTRODUCTION

T HIS paper develops ergodic stochastic optimization
(ESO) algorithms to solve problems that involve a time

varying random state with probability distribution function
(pdf) , a resource allocation function and an ergodic
limit variable . The goal is to
design an adaptive algorithm that observes to determine

and without knowledge of the state’s distribution
in order to satisfy given problem constraints and opti-

mality criteria. Problem constraints restrict instantaneous values
and as well as ergodic limits . Optimality criteria,

however, depend only on the ergodic average . Constraints are
convex in and but need not be convex in .

A. Motivation and Context

Problems with the characteristics described above are
common in signal processing, most notably in the context
of optimal wireless communications and networking. In this
case denotes time varying fading channels, instan-
taneous power allocations and includes communication
rates and other variables specific to the problem. If the oper-
ation time scale is much larger than the communication time
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scale, perceived quality of service is reasonably captured as a
function of ergodic limits . Particular examples where this
type of problem formulation might arise include optimization
of orthogonal frequency division multiplexing (OFDM), [3],
beamforming, [4], [5] and cognitive radio, [6], [7]. In OFDM,
for example, terminals observe current channel realizations
to determine power allocation across frequencies and users.
Power allocation is restricted by instantaneous constraints,
e.g., at most one terminal may transmit on each frequency,
as well as ergodic average constraints, e.g., satisfy a given
power budget. Optimality criteria, however, are most often
formulated in terms of ergodic capacities. Similar interplays
between instantaneous resource allocations and ergodic rates
can be observed in beamforming and cognitive radio problems.
Preceding comments also extend naturally to wireless networks
where on top of power allocation and link capacities, routes and
admission control variables are also part of the optimization
space. Applications of ESO algorithms in this context are of
particular interest because optimization is an important tool
to analyze and design wireline and wireless communication
networks, e.g., [8]–[16].

The proposed ESO algorithm uses stochastic subgradient de-
scent on the dual function. Subgradient descent algorithms were
developed for minimizing nondifferential convex functions and
are commonly used to minimize dual functions which are al-
ways convex and often nondifferentiable. Subgradient descent
with constant step sizes does not necessarily converge to the so-
lution of the optimization problem considered, see e.g., [17], but
this is not a significant drawback because it is possible to either
use decreasing step sizes or, if this is not desirable, optimal solu-
tions can be recovered from the time average of iterates. When
the function to be minimized involves a random component it is
possible to devise a stochastic counterpart, e.g., [18]–[20]. Sim-
ilar convergence results, i.e., convergence with decreasing step
sizes or through ergodic averages of iterates can be established
using stochastic approximation tools [21]. Derivation and anal-
ysis of these algorithms is analogous to the transformation of
a gradient descent algorithm to minimize mean squared errors
into the least mean square (LMS) algorithm, e.g., [22, Ch. 4].

Implementation of dual subgradient descent yields, as a
byproduct, a sequence of primal iterates. Do these primal
iterates approximate optimal primal variables? Not always.
When using deterministic or stochastic subgradient descent on
the dual function this is true only when the problem Lagrangian
is strictly concave with respect to primals. This condition is
not satisfied if some variables appear only in linear constraints
and linear terms of the optimization objective. Although this
restriction might seem minor, non strictly concave Lagrangians

1053-587X/$26.00 © 2010 IEEE
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do appear frequently—e.g., wireless networking problems are
typically not strictly concave with respect to routing variables
[23]. To overcome this limitation in deterministic subgradient
descent, the use of ergodic averages of primal iterates has been
proposed and shown to approximate optimal primal variables
[24], [25]. Notice the remarkable coincidence of this property
with the problem studied in this paper. The use of ergodic limits
is necessary for convergence and the problems we purport to
study include ergodic limits as part of their formulations.

While this much is known in a deterministic setting, conver-
gence results for primal variables in stochastic subgradient de-
scent are mostly restricted to convergence in mean for problems
with strict convexity [20]. This paper shows that ergodic limits
of primal iterates obtained from the implementation of a sto-
chastic subgradient descent algorithm converge almost surely
to the solution of the given optimization problem. With respect
to existing work on stochastic subgradient descent the contri-
butions of this work are: (i) we allow for non strictly concave
Lagrangians, in which case convergence in the primal domain
is not a simple consequence of convergence in the dual domain;
(ii) we allow for nonconvex constraints in the resource alloca-
tion variables, in which case it is necessary to overcome the chal-
lenge that lack of duality gap cannot be ruled out a priori; and
(iii) we prove almost sure convergence of the ergodic averages
of primal iterates, which is stronger and more difficult to estab-
lish than convergence in expected value. These three properties
are important in signal processing applications.

In the context of wireless networking, the work on stochastic
network optimization of [14] and [15] has similar features to
ESO in that it can operate without knowledge of the fading pdf
and handle constraints that are not convex in . The goal in
stochastic network optimization is to determine operating points
that maximize a network utility subject to queue stability con-
straints. To guarantee queue stability, it is necessary to find oper-
ating variables whose ergodic average is inside a capacity region
that may be defined in terms of nonconvex constraints. To find
such optimal operating points, stochastic network optimization
relies on the backpressure algorithm, [26]. Performance anal-
ysis is undertaken through the use of Lyapunov drifts to estab-
lish that the average path across realizations of the state process

comes close to a solution of the optimization problem. In
ESO, the nonconvex constraints may appear as part of the defi-
nition of a capacity region, as in, e.g., [2]; or, they may appear
in a different form, as in, e.g., [27]. When the problem formu-
lations coincide, as in [2], ESO yields a different algorithm be-
cause backpressure does not play a role in the solution. Conver-
gence properties of ESO and stochastic network optimization
differ too because the analysis of ESO’s behavior is based on
supermartingales and ergodic theory, which allows for almost
sure performance claims as opposed to claims on the average
across ensembles.

B. Organization and Results

The paper starts in Section II by introducing the optimiza-
tion problem whose solution determines optimal resource al-
locations and ergodic limits. Problem constraints are assumed
convex in the ergodic limits but not necessarily so with respect
to the resource allocation. The problem’s objective is a concave

function of ergodic limits only. The ESO algorithm and the main
result of the paper, regarding convergence of resource allocation
and ergodic limit sequences, is also introduced here in Theorem
1. It is claimed that: (i) resource allocation and ergodic limit se-
quences almost surely satisfy problem constraints in an ergodic
sense; and (ii) the ergodic limit sequence is almost surely close
to optimal.

Salient features of the ESO algorithm are that it does not
require access to the state’s pdf, that it can handle nonconvex
constraints in the resource allocation variables, and that con-
vergence to optimal operating points holds almost surely. To
exemplify these characteristics we apply the ESO algorithm to
determine the optimal operating point of an OFDM broadcast
channel in Section II-A. A common access point (AP) adminis-
ters a set of frequency bands and a given power budget to com-
municate with a set of nodes. Power and frequency allocations
adapt to instantaneous channel realizations in order to maximize
a given rate utility. The problem is complicated by the fact that
at most one terminal can occupy a frequency band—yielding an
integer constraint—and that the function that maps powers to
communication rates may not be concave. Despite these com-
plications, the ESO algorithm can be used to find an optimal
operating point without requiring knowledge of the channels’
pdf. The example serves as illustration of how ESO can be used
to solve a nonconvex optimization problem with thousands of
variables with reasonable computational cost. Numerical results
of this example are presented in Section II-B. See also [2] for
the application of ESO to general wireless networking problems
and [27] for an application to random access channels.

The proofs of almost sure feasibility and optimality are re-
spectively presented in Sections III and IV. They differ from
typical stochastic approximation arguments in that while ESO
descends on the dual domain we are interested in convergence
in the primal domain. We start discussing convergence in the
dual domain in Section III introducing a weak convergence re-
sult stated in Theorem 2. The proof of Theorem 2 is typical of
stochastic approximation problems and is thereby relegated to
the Appendix. Almost sure feasibility follows as a consequence
of dual convergence and is presented in Section III. The proof of
almost sure near optimality is presented in Section IV. We show
that the expected value of the ergodic limit is a point with small
optimality gap and use this result to prove almost sure conver-
gence. This latter part of the proof is in Section IV-A. It is worth
anticipating that the proof’s argument is more involved than the
prevalent ergodicity assumption. If ESO iterates were real-
izations of an ergodic process all ergodic limits would be equal,
therefore equal to their expected value, and almost sure opti-
mality would follow trivially from average optimality. However,
the process with realizations might or might not be ergodic
and it is therefore necessary to prove that even if ergodic limits

are different for different sequences they are all close to
optimal. Concluding remarks are given in Section V.

Notation: Boldface denotes vectors and vector valued func-
tions . Vector inequalities are meant to imply

for all components and of and , while with
a scalar implies for all . The pdf of a random vari-

able evaluated at is denoted as . When not
leading to confusion we use the same symbol to denote values
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and random variables in which case we drop the subindex to
write . The operator denotes expected
value with respect to the pdf of the random variable . If
this pdf is fixed we write . For a sequence
with elements we use when referring to all el-
ements between times and for all elements at
times greater than , and when referring to the whole se-
quence. We use to denote a stochastic process with real-
izations . The operator denotes projection to the pos-
itive orthant.

II. ERGODIC STOCHASTIC OPTIMIZATION ALGORITHM

Consider problems involving a random state with
probability distribution , a resource alloca-
tion associated with state realization and having pdf

, and an ergodic limit variable . The
goal is to determine resource allocations and ergodic limits that
are optimal in the sense of solving the optimization problem

(1)

The optimization in (1) is with respect to ergodic limits and
probability distributions for all . We emphasize
that the expected value is taken with respect to the pdfs
of the state and of the resource allocation and
that while is fixed the pdfs are part of the opti-
mization space. See Section II-A for a particular example.

The problem structure in (1) originates in optimal resource
allocation problems with infinite time horizons allowing perfor-
mance characterization through ergodic limits. System opera-
tion is affected by a random state with realizations . In re-
sponse to the observed state , a resource allocation variable

measuring how many units of a certain resource
are allocated at time is determined. Allocation of units of
resource when the random state is , results in the produc-
tion of units of goods. In the same time slot
consumption is determined by variables. Consump-
tion cannot exceed production, but if long time horizons are of
interest, instead of imposing such restriction for every it suf-
fices to constraint the limits of the time averages, i.e.

(2)

The first constraint in (1) follows upon defining the ergodic limit
and assuming ergodicity in the

limit on the right-hand side (RHS) of (2). Notice that equal state
realizations can be associated with different re-
source allocations . That is why the expected
value in (1) is taken with respect to the pdfs and
and the optimization is with respect to probability distributions

not values . The constraint
imposes further restrictions on the ergodic average .

Functions and in (1) are concave with respect
to their argument . The family of functions is pa-

rameterized by the random state and, different from
and , is not necessarily concave with respect to the re-
source allocation . The sole requirement for the functions

is that they be finite for finite argument, i.e., for
every bounded vector of resources , the vector func-
tion is also bounded. The set to which the
ergodic limits are constrained is compact and convex, while
the set constraining resource allocation values is
compact but not necessarily convex. Notice that the set
constrains the resource allocation on a per-state basis, i.e.,
there exists a set for each random state realization .

Because of the distributions , there is an infinite
number of variables in the primal domain. Observe though,
that there is a finite number of inequality constraints. Thus, the
dual problem contains a finite number of variables hinting that
the problem is likely more tractable in the dual space. Define
then dual variables associated with the constraint

and associated with
. Using these definitions the Lagrangian for the

optimization problem in (1) is written as

(3)

where we defined the aggregate dual variable
and reordered terms to obtain the second equality. The dual
function is defined as the maximum of the Lagrangian over the
set of feasible ergodic limits and probability distribu-
tions in the set of feasible powers , i.e.

(4)

The dual problem is defined as the minimization of the dual
function over all positive dual variables, i.e.,

(5)

Introduce now a discrete time index and consider a state sto-
chastic process with realizations having values
identically and independently distributed (i.i.d.) according to

. The ESO algorithm consists of iterative application of
the following steps.

(S1) Primal Iteration: Given multipliers find primal
variables and such that

(6)

(7)

(S2) Dual Stochastic Subgradients: Define the stochastic
subgradient of the dual
function with components

(8)
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(S3) Dual Iteration: The algorithm’s iteration is completed
by an update in the dual domain moderated by a predetermined
step size along the direction

(9)

Resource allocation iterates are functions of dual iterates
and state realizations . Since is random, so is

implying that the sequence is a realization of a stochastic
process . In fact, all other sequences and

are realizations of random processes respectively denoted
as , and , as can be seen by noting that
depends on which depends on which depends on
(random) . This chain of relations further shows that with

given, is determined and the probability distributions
of and depend only on the probability distri-
bution of . Consequently the process is Markov with
time invariant transition probabilities, while processes

and are hidden Markov. Henceforth, the operator
, without subindex, is used to denote expected value with

respect to a probability space measuring, at least,
, and .

Solving an optimization problem like (1) entails finding the
optimal value and optimal arguments and such
that the constraints in (1) are satisfied and . Heeding
the connection with ergodic constraints we adopt a different def-
inition of solution. Our goal is not to find and but
to show that sequences and generated by the ESO
algorithm (S1)–(S3) satisfy (2) with the ergodic limit of the

sequence further satisfying and .
Because the algorithm is stochastic, these results will be estab-
lished in probability. Specifically, we will prove the following
theorem.

Theorem 1: Consider the optimization problem in (1) and se-
quences and generated by the ESO algorithm de-
fined by (6)–(9). Let be a bound on
the second moment of the norm of the stochastic subgradients

and assume that there exists strictly feasible and
such that and

for some strictly positive constant . Then
i) Almost sure feasibility. Sequences and are

feasible with probability 1, i.e.

(10)

(11)

ii) Almost sure near optimality. The ergodic average of
almost surely converges to a value with opti-

mality gap smaller than , i.e.

(12)

It is important to elaborate on what (10)–(12) imply in
terms of finding a solution of (1). The ergodic limit

satisfies the constraints in (1) and
the objective function evaluated at is within of op-
timal. Since and are compact sets it follows that the
bound is finite. Therefore, reducing it is possible to make

arbitrarily close to and as a consequence arbitrarily
close to some optimal argument . The optimal resource
allocation distribution , however, is not computed by
the ESO algorithm. Rather, (10) implies that, asymptotically,
the ESO algorithm is drawing resource allocation realizations

from a resource allocation distribution that is close to the
optimal . This is not a drawback in practice because
realizations are sufficient for implementation. In that
sense, (6)–(9) yield an optimal resource allocation policy, i.e.,
allocate units at time , that supports optimal consumption

in an ergodic sense.
Recall that and primal iterates processes and

are respectively Markov and hidden Markov processes
with time invariant transition probabilities. As a consequence,
all the ergodic limits in (10)–(12) exist, a fact that is exploited in
subsequent proofs. Note also, that the limits in (10)–(12) might
be different for different state sequences . The claims in
Theorem 1 are on the probability distributions of these limits.
The proof of Theorem 1 and corresponding discussions are pre-
sented in Sections III and IV after the following remarks and the
discussion of an example in Sections II-A and B.

Remark 1: The problem formulation in (1) makes what seems
an arbitrary distinction between constraints and

. While one is expressed as a function inequality and the other
as a set inclusion both are convex contraints in the ergodic limit

. Despite this similarity they are intended to model different
constraint modalities. The constraint is incorporated
into the Lagrangian in (3) and becomes a maximization objec-
tive in the primal ESO iteration in (6). As a consequence, it is
satisfied in an ergodic sense. Ergodic limits of sequences
satisfy but individual variables might or might
not satisfy . The constraint is not incorpo-
rated into and is an implicit constraint in the
primal ESO iteration in (6). It is thus satisfied for all times, i.e.,

, for all . This is an important distinction in applica-
tions, e.g., transmitted power in wireless communications must
comply with both, ergodic and instantaneous power constraints.

Remark 2: As mentioned in the introduction particular cases
of the optimization problem in (1) that appear in wireless com-
munication and networking can be solved through stochastic
network optimization algorithms [14], [15]. These algorithms
use backpressure to handle nonconvex constraints that appear in
the definition of a capacity region. In ESO the nonconvex con-
straints may appear as part of the definition of a capacity region,
as in, e.g., [2]; or they may appear in a different form, as in, e.g.,
[27]. When the problem formulations coincide, as in [2], the pro-
posed algorithm is slightly different because backpressure does
not play a role in the solution here. Furthermore, ESO and sto-
chastic network optimization deal differently with nonconvex
constraints and .
In stochastic network optimization, the nonconvex constraints
are eliminated through the introduction of a capacity region
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and are left implicit in the definition of the dual function. In
ESO, the nonconvex constraints are incorporated in the defini-
tion of the dual function. The treatment of the convex constraints

is also different in [14] and [15] necessitating the in-
troduction of auxiliary variables.

Convergence properties of ESO and stochastic network opti-
mization differ too. Results in stochastic network optimization
establish negative Lyapunov drifts to prove that the expected
value of ergodic limits satisfy problem constraints and that the
expected value of the time average of iterates yields a utility
that is close to optimal [14], [15]. Here we use supermartingales
and ergodic theory, which allows for almost sure performance
claims. The feasibility results for ESO iterates claim that con-
straints are almost surely and exactly satisfied by ergodic limits
[cf. (10) and (11)], while ergodic averages almost surely con-
verge to a near optimal point [cf. (12)]. Almost sure convergence
is an important guarantee in practice.

A. Example: Wireless Broadcast Channel

As an application of the ESO algorithm consider a wireless
broadcast channel using OFDM. A common AP administers a
group of frequency tones and an average power budget .
The goal is to design an algorithm that allocates power and fre-
quency to maximize a given ergodic rate utility metric. Specif-
ically, consider nodes served by the given AP. At
time the AP observes fading channels for all frequencies

and nodes . Depending on the values of these fading
channels it decides on frequency allocation
and power allocation . Variable
if and only if frequency is allocated to node at time .
If , the power allocated for such communication is

. Since no more than one communication can utilize a
given frequency, at most one can be different from zero
for given and . To capture this constraint define the vector

and require with the
set defined as

(13)

With channel realization and power allocation
units of information are delivered to . The

function mapping channels and powers to
transmission rates depends on the type of modulation and codes
used. As an example, consider adaptive modulation and coding
(AMC) that relies on a set of communication modes. The
-th mode supports a rate and is used when the signal to

noise ratio (SNR) at the receiver end is between and .
Normalizing channels so that noise power is ,
the communication rate function for AMC can
be written as

(14)

The amount of information in (14) is de-
livered to only if . The information delivered

to at time over all frequencies is therefore given by
. The AMC’s rate function in (14)

is an example, the following discussion holds true for this or
any other function taking finite values for finite argument.

While units of information are
delivered by the AP, units of information are ac-
cepted for delivery and queued to await transmission. To guar-
antee delivery of packets it suffices to ensure stability of infor-
mation queues which in turn can be guaranteed by requiring

(15)

where we have defined the ergodic limit
. Similarly, the amount of

power consumed at time is the sum of powers used on
all frequencies for communication with all terminals, i.e.,

. This cannot exceed allocated power thus
yielding the constraint

(16)

Assuming the time scale of communication to be much smaller
than the time scale of operation, perceived quality of service
is determined by the ergodic limit . Assigning value
to ergodic rate the goal is to determine sequences of fre-
quency allocations , powers and rates such
that: (i) the ergodic limits of sequences maximize a sum
utility ; (ii) constraints in (15) and (16) are satis-
fied; and (iii) instantaneous frequency allocations are feasible,
i.e., for in (13). The ESO algorithm solves prob-
lems of this form.

Let aggregate channel variables for all and and de-
fine frequency and power allocations and . Also, let

aggregate all and represent all . Define
then the optimization problem

(17)

The optimization in (17) is with respect to ergodic limits
and probability distributions restricted

to and . This optimization problem
is of the form in (1). Introducing multipliers associated
with the capacity constraint and associated with the power
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constraint, the primal iteration of the ESO algorithm is [cf. (6)
and (7)]

(18)

(19)

Since for fixed at most one variable can be 1 in (19), de-
termination of and can be separated further. Powers

that maximize
are first computed for all and frequency is then allocated to
the maximum of . Formally,
compute

(20)

(21)

and set and for all other . No-
tice that while the maximization in (20) involves the non con-
cave discontinuous function , it is nonethe-
less simple to solve as the maximand depends on a single vari-
able . The ESO algorithm for optimal resource alloca-
tion in broadcast channels is completed with an iteration in the
dual domain [cf. (8) and (9)]

(22)

As per Theorem 1 iterative application of (18) and (20)–(22)
yields sequences and such that: (i) the sum
utility for the ergodic limits of is almost surely within a
small constant of optimal; (ii) the ergodic constraints in (15)
and (16) are almost surely satisfied; and (iii) instantaneous fre-
quency values of are feasible, i.e., . The stated
goal is then satisfied with probability 1. This result is true despite
the presence of the nonconvex integer constraint ,
the nonconcave function , lack of access to the
channel’s probability distribution and the infinite dimension-
ality of the optimization problem.

B. Numerical Results

The ESO algorithm for optimal resource allocation in broad-
cast channels defined by (18) and (20)–(22) is simulated for a
system with nodes using 3 frequency tones for com-
munication. Three AMC modes corresponding to capacities 1,
2, and 3 bits/s/Hz are used with transitions at SINR 1, 3, and
7. Fading channels are generated as i.i.d. Rayleigh with average
powers 1 for the first four nodes, i.e., , and 2, 3, and
4 for subsequent groups of 4 nodes. Noise power is
for all frequency bands and average power available is .
Rate of packet acceptance is constrained to be

Fig. 1. Evolution of dual variables � ��� and corresponding capacities � ���
for representative nodes � with average channels �� ���� � � and� with
�� ���� � �. Ergodic averages �� ��� � ����� � ��� also shown.

Multipliers � ��� and capacities � ��� do not converge, but ergodic rates
�� ��� do. Multiplier � ��� associated with node � is larger than multiplier
� ��� of node � . This improves fairness of resource allocation by increasing
the chances of allocating � even when channels � ��� are smaller than
� ���—recall that channel � ��� is stronger on average.

Fig. 2. Objective value � ��� ���� and dual function’s value 	��� 	�
	�������
 �����. Lines showing optimal objective and 90% of optimal objective
are also shown. The objective value decreases towards the maximum objective.
This is not a contradiction, because variables �� ��� are infeasible but approach
feasibility as � grows. Dual function’s values upper bound maximum utility.
Eventually, the objective value becomes smaller than the dual value.

bits/s/Hz. The optimality criteria is proportional fair scheduling,
i.e., for all . Steps size is .

Fig. 1 shows evolution of dual variables and corre-
sponding capacities for representative nodes with
average channels and with .
The ergodic average is also shown.
Neither multipliers nor capacities converge, but
ergodic rates do converge. Multiplier associated
with node is larger than multiplier of node .
This improves fairness of resource allocation by increasing
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Fig. 3. Power and capacity constraints. Feasibility as time grows is corroborated for the power constraints in (15) (left) and capacity constraint in (16) (right). For
the capacity constraint we show the maximum and minimum value of constraint violation.

Fig. 4. Power allocations. Power allocated as a function of channel realization is shown for channels with average power �� ���� � � (left) and �� ���� � �
(right). The resulting power allocation is opportunistic in that power is allocated only when channel realizations are above average.

the chances of allocating even when channels are
smaller than —recall that channel is stronger on
average. Convergence of the algorithm is ratified by Figs. 2 and
3. Fig. 2 shows evolution of the objective and
the dual function value . Notice that the
objective value is decreasing towards the maximum objective.
This is not a contradiction, because variables are infeasible
but approach feasibility as grows. The dual function’s value is
an upper bound on the maximum utility and it can be observed
to approach the objective as grows. Eventually, the objective
value becomes smaller than the dual value as expected. Fig. 3
corroborates satisfaction of the constraints in (15) and (16).
The amount by which the power constraint (16) is violated is
shown in the left. In the right we show the corresponding figure
for the capacity constraint in (15). Since there are of these
constraints we show the minimum and maximum violation. All
constraints are satisfied as grows. Resulting power allocations
appear in Fig. 4 for a channel with average power
and for a channel with . Power allocation is
opportunistic in that power is allocated only when channel
realizations are above average.

III. CONVERGENCE OF DUAL VARIABLES AND ALMOST

SURE FEASIBILITY

While the goal of the ESO algorithm is to find feasible
optimal primal sequences and , it does so by de-
scending on the convex dual function . It is therefore

expected that to prove feasibility and optimality of and
it is necessary to characterize convergence properties of

the sequence of dual variables . Thus, let us start proving
that stochastic subgradients are, as their name indicates,
average descent directions of the convex dual function. This
property is formally stated in the following proposition.

Proposition 1: Let be given and define .
Then, the conditional expected value of the sto-
chastic subgradient in (8) is a subgradient of the dual func-
tion. Specifically, for arbitrary

(23)

Proof: Start noting that the maximization of the La-
grangian in (4) can be simplified. In the
terms and appear in separate summands [cf. (3)]
implying that the maximizations with respect to and

in (4) can be carried out as sep-
arate maximizations with respect to and of the corre-
sponding summands. Also, since the expected value operator is
linear, to maximize with respect
to the family of power allocation distributions
it suffices to maximize with respect
to each individual distribution . Thus

(24)
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Further note that for any probability measure in the
set it holds

(25)

with equality achieved by assigning probability 1 to any of the
arguments . This property al-
lows us to write the dual function as

(26)

Consequently, when performing the maximization in (24) it is
not necessary to consider all pdfs sufficing to maxi-
mize over resource allocations as
is done in (26).

Consider now the value of the dual function
at time and compare the expression for the dual function in
(26) with the definition of the primal iterates in (6)–(7). Making
the substitutions and
maximands in (6)–(7) and (26) coincide. We can thus write after
reordering terms

(27)

Let be given and consider the conditional expected value
of the stochastic subgradient . Focus first on the
second component . With given, primal variables
are unequivocally determined [cf. (6)] thus implying [cf. (8)]

(28)

The first component , however, depends on and
[cf. (8)] with further dependent on and [cf. (7)].
Thus

(29)

where the second equality follows from
and the fact that with given, expectation with respect to the
processes’ probability distribution is equivalent to expectation
with respect to .

Substitute now the expressions in (28) and (29) into (27) to
rewrite the dual function value as

(30)

To finalize the proof consider the dual function value for
arbitrary that we can bound as

(31)

The inequality in (31) is true because evaluating the RHS of (26)
for and lower bounds the
maxima that yields the dual function’s value . Subtracting
(31) from (30) yields (23).
Proposition 1 establishes that the expected value of the sto-
chastic subgradient is a descent direction of the dual function.
To see this substitute into (23). For we have

and since is the minimum of the dual function it
follows that

(32)

If the inner product between vectors and is
positive on average, the angle between them tends to be smaller
than . Thus, standing on points, on average, to-
wards . Because the dual function is always convex we expect
that a descent algorithm constructed by replacing
for in (9), would eventually approach an optimal dual vari-
able as is indeed not difficult to prove ([17], Ch. 2). Since
the stochastic subgradient varies randomly around its mean

it is reasonable to expect iterates of (9) to also
come close to . This argument can be formalized to establish
the following result.

Theorem 2: Consider the ESO algorithm as defined by
(6)–(9) with the same hypotheses and definitions of Theorem
1. Assume the dual variable at given time is given
and define the best value of the dual function at time as

. Such best value almost
surely converges to within of , i.e.

(33)

Proof: See the Appendix.
According to Theorem 2 it holds that for almost all processes
and arbitrary falls below at least
once as grows. Furthermore, this happens infinite many times
because at any time there exists a future time at which

. Note that (33) is true if and only if
the limit infimum for almost all
sequences. The explicit formulation in (33) is more convenient
to establish forthcoming proofs in Section III-A.

The result in (33) is a weak characterization of the dual iter-
ates. All that is claimed by Theorem 2 is that the dual iterates

eventually visit a neighborhood of the optimal set . In be-
tween these visits no claim is made about . While a stronger
characterization is possible, for the purpose of studying con-
vergence properties of primal sequences and , The-
orem 2 is sufficient. We pursue these proofs after the following
remark.
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Remark 3: As pointed out in the introduction the ESO
algorithm (S1)–(S3) is related to subgradient descent on the
dual function. The primal iteration of subgradient descent
consists of finding arguments that maximize the Lagrangian

[cf. step (S1)]. The constraints are then
evaluated at these maximizing arguments to compute a dual
function subgradient [cf. step (S2)] and the dual variables
descend opposite the subgradient direction [cf. step (S3)]. To
appreciate similarities and differences let us develop dual sub-
gradient descent equations for the problem in (1). To compute
a subgradient for the dual function we find primal arguments

and that maximize the Lagrangian, i.e.,

(34)

As noted in (24) in the proof of Proposition 1 the Lagrangian
exhibits a separable structure. Variables

and appear in different summands and the maximization
of can be reduced to separate maxi-
mizations with respect to each individual distribution .
Therefore, the maximizers in (34) can be computed separately
as

(35)

(36)

A subgradient of the dual
function can now obtained by evaluating the constraints at the
maximizing arguments and , ([17, Ch.
2]). Components and are therefore given by

(37)

The dual update has the same functional form of (9) with
replacing . The subgradient descent algorithm for (1) con-
sists of iterative application of the primal iteration (35)–(37) and
a dual iteration having the same form as (9) with replacing

.
Stochastic subgradients are easier to compute. To deter-

mine it is necessary to solve the maximization in (36) for
a large number of states in order to obtain a good approxima-
tion of the expected value in (37). To compute only one
such maximization, for is required. Further note that
the maximization in (36) is with respect to probability distribu-
tions while the maximization in (7) is with respect to
values . Also, while to implement subgradient descent
the state probability distribution is needed to compute the
expected value in (29), the stochastic version requires access
only to current state realizations .

A. Feasibility

To prove that sequences and are almost surely
feasible in the sense of (10) and (11), the idea is to show that if
ESO sequences and generated by iterative applica-

tion of (6)–(9) are not feasible in that sense, the corresponding
dual iterates grow unbounded. Assuming that the set of op-
timal multipliers is bounded, i.e., for all optimal ,
this would imply that the distance between and any op-
timal becomes arbitrarily large. Because the dual function is
convex the latter would in turn imply that grows
unbounded. But if this happens, then (33) of Theorem 2 is not
true and since the set of sequences for which (33) is true has
probability 1, realizations with infeasible and
have zero probability.

A technical detail in this chain of argument is the need
to ensure boundedness of the optimal set of dual variables,
i.e., . A sufficient condition for the latter is the
existence of a strictly feasible set of primal variables and

such that for some strictly positive constant
and .

Recall that this is a hypothesis of Theorem 1. If such strictly
feasible variables exist they can be used to bound the norm
of by the value of the dual function . To do this,
note that being
the maximum value of the Lagrangian over primal vari-
ables, it has to be . Writing

in explicit form and using the bounds
and yields

(38)

Because it follows that each component of is smaller
than the sum . Using this fact and reordering terms in (38)
yields

(39)

where the inequality denotes a componentwise bound on the
vector by the scalar value . The in-
equality in (39) tells us that if strictly feasible and
exist, as required by hypothesis, then a finite value of the dual
function implies a finite argument . In particular, optimal
arguments are bounded because is. Relying on this obser-
vation we can formalize the former argument to establish almost
sure feasibility of and in the sense of (10) and (11).

Proof (Result (i) of Theorem 1): Before proceeding with
the proof, recall that Theorem 2 assures the almost sure exis-
tence of a time , for arbitrarily selected at which

. Combining this result with the dual value
bound on dual variables shown in (39), we can equivalently
guarantee that for almost all sequences and arbitrarily large time

there exists a time at which

(40)

Start the proof proper by noting that (10) would be true if

(41)
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For (11) notice that it holds

(42)

where the equality follows from continuity of —continuity
being implied by concavity—and the inequality from its con-
cavity. From the latter inequality in (42) we conclude that (11)
would follow if

(43)

Comparing the inequalities (41) and (43) with the definition of
the stochastic subgradient in (8) we see that the summands
in (41) and (43) coincide with the correspondent components

and . Therefore, it is just a matter of definition that
(41) and (43) can be more compactly written as

(44)

Almost sure feasibility follows if we establish that (44) is true.
To do this, assume that it is not. Hypothesize then the exis-
tence of a nonzero probability set of sequences for which (44) is
not true. Existence of this set implies existence of a sufficiently
small positive constant such that with nonzero probability
we have

(45)

For each of the sequences for which (45) is true there exists a
time , possibly different for each sequence, such that for all

(46)

Consider now the dual iteration in (9) for a generic time index
. Since projection to the positive orthant increases the value of

, it holds

(47)

where the second inequality follows from a recursive argument.
Combining (46) and (47), we conclude that for any sequence for
which (45) holds, we have a time , such that for all

(48)

where the second inequality is true because we dropped the
nonnegative . Select now a time index , that also
satisfies

(49)

For all times , we then have [cf. (48) and (49)]

(50)

The hypothesized existence of a nonzero probability set of se-
quences with the property in (45) implies that a nonzero prob-
ability subset satisfies (50). Elements of this set also satisfy
(40) almost surely because of Theorem 2. Selecting ,
in (40)—which we can do because may be arbitrarily se-
lected—it follows that sequences in this set comply with the in-
equality in (50) for all and the inequality in (40) for
some . This is absurd. Therefore the hypothe-
sized existence of a nonzero probability set of sequences with
the property in (45) is also absurd. The opposite, i.e., that al-
most all sequences satisfy (44), is true. The proof follows be-
cause (44) implies (10) and (11) as already shown.

The just proved feasibility claim stated in Result (i) of
Theorem 1 assures that sequences and satisfy
problem constraints with probability 1 [cf. (10) and (11)].
This is a stronger claim when compared with the optimality
results for primal and dual variables that establish a typically
small but not null performance gap [cf. (12) of Theorem 1
and (33) of Theorem 2]. It is also worth remarking that this
is true independently of the step size . While we think of
as a small number, and it is indeed desirable to select small ,
this is not necessary to ensure feasibility of and .
The strength of Result (i) of Theorem 1 is important from a
practical standpoint. A small optimality gap is acceptable in
general, but a small violation of problem constraints results in
a set of variables incompatible with the physical constraints of
the system.

IV. OPTIMALITY

We now turn attention to establish optimality of the ergodic
limit . As per Result (ii) of The-
orem 1 we want to show that with probability 1 is within

of optimal. Since is a concave function it is pos-
sible to write

(51)

where we have defined the ergodic average of the optimality
gaps . The bound in (51) can
be read as stating that the optimality gap of the ergodic average

is smaller than the ergodic average of
the optimality gaps .

Comparing (12) with (51) it follows that to prove near-opti-
mality of the ergodic limit as per (12) it suffices to bound
by a small positive constant for all sufficiently large .

The latter will be established through an ergodic argument,
i.e., by translating properties of into proper-
ties of . A prerequisite for that is to establish that
the expected value of the ergodic average does
become small as grows. This is the subject of the following
theorem.
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Theorem 3 (Average Near-Optimality): Consider sequences
and generated by the ESO algorithm defined by

(6)–(9) and assume the same hypotheses and definitions of The-
orem 1. Then,

(52)

I.e., the expected value of the ergodic averages of , con-
ditioned on arbitrary dual variable at arbitrary time ,
converges to a point with optimality gap smaller than .

Proof: In (6), is defined as a maximizing argument.
Therefore, evaluating the maximand at upper bounds
the maximand values for any other yielding

(53)

Likewise, resource allocation is a maximizing argument
for the expression in (7). It then follows that for arbitrary

it holds

(54)

The above being true for all implies that it is
still true after integrating over arbitrary probability distribution

. Then, for any pdf we have

(55)

Summing up the inequalities in (53) and (55) we obtain after
reordering terms

(56)

The second and third summands in the left-hand side (LHS) of
(56) coincide with the expression for the stochastic subgradient

in (8). This allows rewriting (56) in the more compact form

(57)

Let be given and consider the conditional expected value
of both sides of (57). With given, probability distributions
of terms in (57) depend only on the pdf . Thus, con-
ditional expectations can be computed by integrating with re-
spect to only; i.e., . Further
note that because is a deterministic function of it holds

and that on the RHS of (57) and
are arbitrary and given. Using these observations we

can write

(58)

where we also used the fact that states are i.i.d. to drop
the time index . Restrict now attention to feasible primal vari-
ables, i.e., to those variables and that be-
sides constraints and ,
also satisfy and .
Because dual variables and are non-
negative, it follows that for feasible primal variables the terms

and
. Using these bounds and reordering terms in (58) it follows

(59)

As discussed here, (59) is true for any satis-
fying and for which exist resource alloca-
tion pdfs such that

. In particular, for optimal er-
godic limits and resource allocation distributions ,
it holds and

(60)

The latter is true for all time indexes . Fixing arbitrary and
summing between and yields

(61)

The expected value of the latter conditional on with
yields after reordering terms

(62)

To finalize the proof we need to bound
in the

RHS of (62). Establishing this bound requires a rather lengthy
argument that we present in the next lemma.

Lemma 1 (Average Complementary Slackness): Consider se-
quences and generated by (6)–(9) and the same hy-
potheses and definitions of Theorem 1. For arbitrary dual vari-
able and time it holds

(63)
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Proof: Start considering the square of the dual iterates’
norm at time . Using the expression for the
dual iteration in (9) we can write

(64)

where the inequality follows by expanding the square after using
the fact that projecting in the positive orthant reduces the norm
of .

Compute the conditional expected value of both sides of (64)
with given. By hypothesis, the second term in the RHS is
bounded as . Therefore, we can bound

as

(65)

Note that the latter bound in (65) is true for all time indexes .
Conditioning on and integrating (65) over all possible

yields

(66)

We can now bound the first expected value in the RHS of (66)
using the expression in (65) to obtain

(67)

We can now repeat the arguments leading from (65) to (66), i.e.,
conditioning in the previous iterate, in this case, and
integrating over the iterate under consideration, in this
case. The resulting expression will contain a term of the form

that can be bounded using (65) as was
done in obtaining (67) from (66). This process can be repeated
iteratively times to yield

(68)

Observe now that the LHS of (68) is nonnegative because it is
the expected value of a squared norm. After reordering terms
and dividing by this observation leads to

(69)

To obtain the result in (63) interchange sum and expected value
in (69) and consider the limit as .

To prove Theorem 3 substitute the bound (63) of Lemma 1
into (62) and observe that for any given

to
obtain (52).

Characterizing the mean of a stochastic process across dif-
ferent realizations in the manner of Theorem 3 is of limited
value. In practice, a single sequence is observed and the interest
is therefore in claims about individual paths. This is the differ-
ence between the just proved Theorem 3 and Result (ii) of The-
orem 1. The interest in Theorem 3 is as an intermediate step to
establish almost sure optimality, as is pursued next.

A. Almost Sure Optimality

The ergodic average of the optimality gap at time is a
random variable whose probability distribution is determined by
the probability distribution of the state process . The er-
godic limit
exists almost surely because is a deterministic func-
tion of dual variables that form a Markov process with
time invariant transition probabilities. Therefore,
is also a properly defined random variable. Our goal is to show
that with probability one this random variable is smaller than

. Having proved that the limit of the expected optimality
gap converges to a small value in Theorem
3 the simplest path would be to use an ergodicity argument.
A stochastic process is ergodic when the ergodic limits, e.g.,

, are equal for all process realizations. In such
case, would not be random and its equivalence
with would follow. But there is no indication
that ergodicity holds for motivating a more involved ar-
gument that we develop in this section. The idea is to prove that
even though different ergodic limits are possible
all of them are smaller than . The proof of this is based in
the following three arguments.

(A1) If exists for a given sequence, then
gets arbitrarily close to its limit for sufficiently large. There-
fore, it is possible to find a time such that with probability
arbitrarily close to 1 all ergodic averages are close to their
limit. This is proved in Lemma 2.

(A2) Let denote a given dual variable, a large time
index and consider two sequences and that go
through at time , i.e., . Is it possible
for these sequences to have ergodic limits and

that are significantly far apart? The answer is
with large probability no. Ergodic limits for

depend only on future values . From
this observation and the Markov property it follows that since

it is equally likely for a sequence with history
to end up having the ergodic limit as

it is for a sequence with history . Thus,
and are both possible limits for a sequence
with history for which the current average is .
According to (A1), for sufficiently large the current value

of the ergodic average is expected to be close to both of
these possible limits and . But if
the limits and are not close to
each other then is not close to at least one of them. This
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contradicts (A1). Hence, for sufficiently large ergodic limits
of sequences and that go through a particular
dual variable at time are close to each other. This is proved
in Lemma 3.

(A3) Assume now that a certain sequence has ergodic
limit . For sufficiently large it
must hold . Consider then all sequences with

. All such sequences have ergodic limits close
to and, therefore, for
all sequences with . This would imply that

contradicting the mean optimality
result of Theorem 3. This argument is presented as the proof of
Result (ii) of Theorem 1.
Let us then start with the proof of (A1) formally stated in the
following Lemma.

Lemma 2: Let be the ergodic average of optimality gaps
in (51). For arbitrary positive constants and there
exits a sufficiently large time index such that for all

(70)

Proof: The claim is a straightforward restatement of the
existence of the ergodic limits for almost all se-
quences. If the ergodic averages of almost all sequences con-
verge, then the averages of almost all sequences eventually come
within of their limits. Equivalently, for sufficiently large
time index , only sequences with an arbitrarily small measure
, have ergodic averages that are more than away from their

respective limits. To formalize this argument start fixing arbi-
trary and noting that for any sequence with convergent
ergodic averages there exist a time such that

(71)

While the set of sequences with convergent ergodic averages
has probability 1, the set of times is not necessarily
bounded as the ergodic averages of some sequences may take
arbitrarily long time to converge. Still, finite exist
for almost all sequences implying that the probability
of exceeding vanishes as the latter grows; i.e.,

. Thus, given arbitrary
we can select a sufficiently large time such that the set of
sequences with has probability less than

(72)

For any sequence with , it holds
for all . Negating both

parts of the previous statement we obtain the equivalent fact that
if a sequence is such that
for some , then . Therefore

(73)

Combining (72) with (73) the claim in (70) follows.
We now focus on the claim in (A2) that all the ergodic limits

for which at some large time index
span a small range . The idea here is that there might be some
dual values such that if then it is possible to have
ergodic limits separated more than . But these values form a

transient set in that as grows the probability of having
for some in this set, vanishes.

The ergodic limit is a random variable. Restricting attention
to sequences with is tantamount to considering
the corresponding conditional random variable that we de-
note as . For future reference,
note that since is Markov the probability distribution
of , being conditioned on ,
is independent of . Our interest is in the almost sure
range of , i.e., the smallest interval
that contains a probability 1 set of possible ergodic limits

. If and are possible ergodic
limits for sequences that go through we want to study the
maximum possible difference between them
for limits and that happen with meaningful probability.
This is complicated by the need to left out isolated zero proba-
bility events prompting the following definition:

(74)

To obtain all possible ergodic limits at-
tainable from are considered. We then look at all the pos-
sible that lower bound these limits almost surely. The tightest
bound is selected as . Likewise, define the tightest almost
sure upper bound on the ergodic limits as

(75)

The definitions of and implicitly assume
that they do not depend on the conditioning time at which

. This is correct since is Markov with time in-
variant transition probabilities.

Using the lower and upper bounds definitions in (74) and (75)
we can write the almost sure range of the sequences that go
through at some point in time as . Focus
first on those values of for which the ergodic limit range is
significant. Consider thus an arbitrary and define the set

(76)

We can think of variables as those for which all the pos-
sible ergodic limits attainable from are close to each other.
Equivalently, variables are those for which there is
nonzero probability of attaining significantly different ergodic
limits. At given time , the ergodic average depends only
in the past values of the sequence . The ergodic limit

, however, is completely determined by the fu-
ture values of the sequence . Given that for
there exist possible limits separated by more than , some of
this limits have to be separated from by more than .
However, as per claim (70) of Lemma 2 the probability of the er-
godic average coming arbitrarily close to the ergodic limit

becomes arbitrarily close to 1. We formalize this
contradiction in the following lemma to prove that

vanishes as .
Lemma 3: For the ergodic average in (51) and arbitrary

define the set of transient dual variables as in (76). As
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time goes to infinity, the probability of taking on an element
of vanishes, i.e.

(77)

Proof: As per its definition in (76) the set contains dual
variables from which ergodic limits separated
by more than are attainable with nonzero probability. For-
mally stated, we have that for any there exists
such that

(78)
The inequality in (78) is true for all time indices because the
ergodic limits and depend only
on future iterates.

Consider now an arbitrary constant and use the triangle
inequality to write

(79)

The above implies that whenever the difference between limits
at least one of the dif-

ferences in the LHS, or
is greater than . In particular, for every pair of sequences

and that go through at time and whose limits
are separated by more than , at least one of them is separated
from by at least . In terms of sets this observation can be
written as

(80)

Combining (78) and (80), it follows that for arbitrary and all
there exists such that

(81)

The probability in (81) holds true for any . In particular if we
consider given , substitute and recall that the
probability distribution of is inde-
pendent of , we conclude

(82)

Since the above inequality holds for all we can integrate
over the marginal distribution of to write

(83)

Consider now the unconditional probability of the difference
between the limit and the current time average

exceeding . This can be written as a marginal integration
over possible values of

(84)

If the thesis in (77) is not true, then the probability
is bounded away from 0 for at least some arbitrarily large time
indexes. Thus there must exist a such that for any arbi-
trarily large , there exists a time for which

. Considering the inequality in (84) for such we see that
the RHS involves the integration of strictly positive numbers

over a set of positive measure
. It therefore amounts to a strictly positive number. Call it

so as to write

(85)

The latter contradicts (70) of Lemma 2 because in (85) is
arbitrary. The assumption for arbitrarily
large is then incorrect. The opposite, which implies (77), is
true.

Lemma 3 justifies the denomination of as a set of transient
variables because as time increases the probability of having
iterates vanishes. An alternative interpretation of
Lemma 3 is that for large , knowing is sufficient to predict
the ergodic limit with precision .

We are now able to prove Result (ii) of Theorem 1 using
the results of Theorem 3 and Lemma 3. As per argument
(A3) the idea is to consider the set of sequences with ergodic
limits not satisfying (12), i.e., . We
then fix a certain time and separate analysis into those
sequences with and those with . The
first set, i.e., has vanishing probability as per
Lemma 3 reducing consideration to the second set with

. For these sequences we know that with proba-
bility 1 the ergodic limits are within
of each other. Thus, if for some sequence the ergodic limit is

, then for all sequences that
go through it holds . From
here we conclude that . This
contradicts Theorem 3, consequently, it is not possible to have
sequences with . But since
is arbitrarily selected, the claim in (12) follows. This argument
is formalized in the following proof.

Proof (Result (ii) of Theorem 1): We want to prove that the
nonzero probability range of is bounded above
by . Equivalently define the set of sequences whose
ergodic averages fall “above” by at least

(86)
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The result follows if we prove that for all .
This is in turn equivalent to proving that for all and
arbitrary it holds . We will prove this latter
statement.

For that purpose fix time index and consider the conditional
random variable obtained by restricting attention to sequences
with . Denote this variable as

. The probability of the set can be then computed by con-
ditioning on leading to the expression

(87)

The latter integral can be separated between the multiplier
values that belong to the transient set and those that do
not, yielding

(88)

The inequality in (88) follows from the fact that the second term
in the RHS of (88) integrates a probability over the set

. Its value, then, cannot be larger than the measure of the set
.

Note now that according to Lemma 3 the probability of the
transient set vanishes. Therefore, we can select sufficiently large

to bound that term by therefore yielding

(89)

We will now prove that the probability for any
is null. Assume the probability is not null. If this

were true there would be a set of sequences going through
with limits

(90)

But according to the definition of , if , then all
the limits of sequences that go through are almost surely
within of each other [cf. (74)–(76)]. In particular, the latter
implies that

(91)

But if all the limits are larger than

(92)

The latter contradicts Theorem 3. Therefore, we must have
for all . Substituting this into

(89) yields . As argued before the latter implies that
the ergodic average almost surely converges to a value
below as indicated in (12).

V. CONCLUSION

We have developed ESO algorithms to realize optimal re-
source allocations in problems with long time horizons allowing
optimality criteria defined in terms of ergodic limits. In the prob-
lems considered, a certain resource is allocated at time , in
response to a random state realization . State and resource
allocation constrain the production of a certain good that
we seek to optimize. We proposed an algorithm using stochastic
subgradient descent in the dual function and showed that with
probability 1 problem constraints are satisfied and close to op-
timal production achieved. ESO algorithms do not require ac-
cess to the state probability distribution and while they assume
convexity of objective functions and constraints with respect to

, they do not require convexity with respect to the resource
allocation .

The type of optimal resource allocation problem solved by
the ESO algorithm arise frequently in signal processing. An ap-
plication to find the optimal operating point of an orthogonal
frequency division multiplexing broadcast channel was consid-
ered as an example of a large scale nonconvex optimization
problem that can be solved with reasonable computational cost.
We have also considered applications to general wireless net-
working problems in [2] and to random access channels in [27].
Applications to different problems, e.g., cognitive radio, beam-
forming, and multiple input multiple access channels are left for
further research.

APPENDIX

CONVERGENCE OF DUAL ITERATES

As shown by (32) the stochastic subgradient in (8) is, on av-
erage, a descent direction for . A preliminary step in the
proof of Theorem 2 is to quantify the descent associated with the
dual iteration in (9). This is introduced in the following theorem.

Theorem 4: Conisder the ESO algorithm as defined by
(6)–(9) with the same hypothesis and definitions of Theorem
1. Denote as any optimal argument of the convex function

. Then, the distances between iterates
and the optimal argument satisfy the recursive inequality

(93)

Proof: Steps are similar to those used to prove a similar
result for deterministic subgradients [17, Ch. 2]. Consider the
2-norm distance at time . Using (9) it is
possible to relate with the distance
in the previous time slot

(94)

(95)

(96)

The inequality in (95) follows because setting negative compo-
nents of to zero reduces the distance to (positive)

. Expanding the square in (95) yields (96).
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For given the relations in (94)–(96) hold for all realiza-
tions of . Therefore, the expectation of (96) conditional on

can be written as

(97)

The second moment of the norm of is assumed bounded
by hypothesis. The second term on the RHS of (97) can then
be substituted for . For the third term

use (23) of Proposition 1 with
and . Plugging both bounds in (97) yields
(93).

For iterates with large optimality gap , or equiv-
alently for small enough stepsize , the term dom-
inates . In such case we expect a reduction of the distance

between iterates and any optimal dual argu-
ment . Reasoning along this line it seems plausible to estab-
lish some form of convergence of to . A first complica-
tion is that as the optimality gap is reduced, the de-
creasing term eventually becomes smaller than the
fixed term suggesting that does not converge to but
to a neighborhood of it. Because this is in line with the claim in
(33) this is not a significant issue. A more challenging compli-
cation is the fact that (93) holds on average while our interest is
in establishing almost sure convergence results. This mismatch
can be addressed by resorting to an argument based on super-
matingales as discussed in the following section.

A. Supermartingales and Proof of Theorem 2

A stochastic process with realizations and a se-
quence of nested -algebras measuring at least the first
elements of are said to form a supermartingale if

. The inequality
implies that given the past history of the process as mea-

sured by , the next value is, on average, not larger
than . If the process elements are deterministic functions
they have to be monotone nonincreasing. In that sense, super-
martingales can be interpreted as generalizing the concept of
monotone nonincreasing function to stochastic processes. If we
further lower bound the process, e.g., , then it is intu-
itively expected that exists. This is, in fact, a fun-
damental result in stochastic processes that we repeat here for
convenience; see, e.g., [28, Th. E7.4].

Theorem 5 (Supermartingale Convergence Theorem): Con-
sider nonnegative stochastic processes and with re-
alizations and having values and
and a sequence of nested -algebras measuring at least

and . If

(98)

the sequence converges almost surely and is almost
surely summable, i.e., a.s.
To prove convergence of stochastic descent algorithms super-
martingale arguments are commonly used, e.g., ([28, Appendix
E]). For stochastic subgradients using vanishing step sizes a

Fig. 5. Definition of the sequence ���� in the proof of Theorem 2 [cf. (99)]. At
time �� ���� �� falls below ��� 	� for the first time. For times smaller than
������ coincides with �


���� 


 � . For times larger than ������ � �. A
stochastic process with realizations �� � is proved to be a supermartingale.

simple proof of convergence using the supermartingale con-
vergence theorem can be found in [17, Ch. 3]. For constant
step sizes as considered here the proof is complicated by the
fact that the relation in (93) is somewhat different from the
definition of a supermartingale. The sequence in (98) is
akin to the squared distance in (93). Likewise,

is akin to the term . However, the
statistical relations in (93) and (98) are not identical because

may become negative for small duality
gap while the sequence in Theorem 5
is required to be nonnegative.

Notwithstanding, if at some time we have
, then the inequality in

(33) follows for the given sequence. If the opposite is
true, i.e., then it must be

for all time indexes . In such
case, the squared distances satisfy the super-
martingale hypothesis in (98) for . It appears, then,
that Theorem 5 can be used to study the path of the sequence

during those times for which . This is
done in the following proof that uses Theorem 5 as the basis to
establish Theorem 2.

Proof (Theorem 2): For simplicity of exposition let .
Start defining the sequence to track until the
optimality gap falls below for the first time, i.e.

(99)

To explain the definition of in (99) define
as the first time for which the optimality

gap drops below ; see Fig. 5. For times
it clearly holds , the indicator variable
in (99) is 1 and the sequence coincides with .
For the best dual iterate is

, the indicator variable is 0 and . Consequently,
coincides with until the optimality gap

falls below for the first time. From this time on we set
.

Similarly, define the sequence

(100)
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that follows until falls below
for the first time. Let also, be a sequence of

-algebras measuring and . It will
be shown that and comply with the hypotheses of
Theorem 5 with respect to the sequence of -algebras

The values of and are completely determined by
. Therefore, conditioning on is equivalent to con-

ditioning on . Further recalling the Markov assump-
tion on the process it follows that

. The latter expectation is fur-
ther separated in the cases when and to write

(101)

Start considering the case when . The definitions in
(99) and (100) dictate that if , then it must be
and . To see this formally note that if then,
either , or so that the
indicator function is 0, or both are true. If
then it must be , in which case

in turn implying that . In any
event, implies that . From here
it follows that when . Further noting that

it follows that implies
. The following equality is therefore evident because all

terms are zero

(102)

When the conditional expected value of is

(103)

(104)

(105)

(106)

The equality in (103) follows from the definition of in
(99) and noting that because
if and only if . The first inequality in (104)
is true because the indicator term is not larger than 1. The second
inequality in (105) follows from the expected distance reduction
expression in (93) of Theorem 4. The last equality (106) follows
from the definitions of and in (99) and (100) after
noting that implies .

Substituting (102) and (106) into (101), it finally follows

(107)

Given (107) and the fact that and are nonnegative by
definition if follows from Theorem 5 that: (i) converges
almost surely; and (ii) the sum is almost surely

finite. Writing the latter consequence in terms of the explicit
value of in (100) yields

(108)

In particular, the almost sure convergence of the sum in (108)
implies that

(109)

The latter is true if either for suffi-
ciently large —so that the indicator function is null—or if

. From any of these
two events, (33) follows.
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