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Abstract— We investigate the fairness and throughput proper-
ties of a simple distributed scheduling policy, maximal scheduling,
in the context of a general ad-hoc wireless network. We design
a fully distributed algorithm that combines a token generation
scheme with maximal scheduling policy so as to attain max-
min fair rates within the feasible region of maximal scheduling.
We next present throughput guarantees of maximal scheduling
that quantify the performance loss of each session due to the
use of local information based scheduling. We show that the
performance loss for each session depends on the maximum
“interference degree” in its neighborhood. We also demonstrate
that the performance penalties can not be localized any further.

I. INTRODUCTION

Fairness and throughput are two important metrics that
characterize the performance of any wireless network. The
question of providing throughput and fairness guarantees
through intelligent link (packet) scheduling has received sig-
nificant attention in recent literature. However, most of the
scheduling algorithms proposed in this context have either
been centralized [8], [10], [11], [12], or did not have any
analytical guarantee [6], [7]. Characterization of the fairness
and throughput properties of distributed scheduling strategies
have remained largely unexplored; in this paper, we take a
step towards addressing these important issues.

We first investigate fair allocation of bandwidth using dis-
tributed scheduling in multi-hop wireless networks. Attaining
fairness guarantees using distributed scheduling requires ob-
taining throughput guarantees through distributed resolution of
medium access contention, and the latter remained an open
problem for some time. Recently, some progress has been
made towards solving the above open problem using a sim-
ple distributed scheduling strategy, maximal scheduling. The
maximal scheduling policy only ensures that if a transmitter
u has a packet to transmit to a receiver v, either (u, v) or a
transmitter-receiver pair that can not simultaneously transmit
with (u, v) is scheduled for transmission; the scheduling is
otherwise arbitrary. The maximal scheduling policy can be
implemented in a distributed manner with only local state
information at each node [9]. It has been shown that maximal
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scheduling is guaranteed to attain a certain fraction of the
throughput region in arbitrary wireless networks [4], [14]; this
fraction turns out to be a constant in certain special cases [4],
[5], [13]. Due to its simplicity and the analytical guarantees
obtained above, maximal scheduling is likely to find extensive
applications in large scale multihop wireless networks in near
future.

Nevertheless, maximal scheduling is really a class of poli-
cies, and some policies in this class could allocate bandwidth
very unfairly. Recently, Lin et al. [5] and Bui et. al. [2] have
shown that in a specific interference model, the node exclusive
spectrum sharing model, maximal scheduling can be used for
maximizing the network utility and congestion control. One of
our important contributions is to show that maxmin fairness
can be attained in wireless networks with arbitrary interference
models within the framework of maximal scheduling, without
sacrificing the simplicity and the distributed nature of these
policies. Using the characterizations for the throughput region
for maximal scheduling, we characterize the feasible set of
service rate allocations for maximal scheduling, and prove that
a combination of a token generation scheme together with
maximal scheduling attains maxmin fairness in this feasible
set. The token generation scheme allows each session to
estimate its maxmin fair rate in a distributed manner. Sessions
contend for channel access in accordance with this estimate,
and the contention is resolved using maximal scheduling. The
token generation and the contention resolution can be executed
in parallel. The maxmin fair rates need not be computed
explicitly, and no knowledge of the statistics of the packet
arrival process is necessary for executing the algorithm. The
computation need not restart when the topology or the arrival
rates change. The scheme is therefore robust.

We next compare the throughput region of maximal schedul-
ing with the maximum possible throughput region of the
network. This comparison characterizes the penalty due to the
use of only local information in the scheduling. A common
feature of all the existing results in this context has been that
same performance bounds are obtained for all sessions [2],
[4], [5], [13], [14]. This uniform characterization therefore
bounds the performance of the network in terms of that of
the worst session. However, depending on the interference in
individual neighborhoods, different sessions may be able to
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accommodate different arrival rates. The natural next question
now is whether it is possible to obtain better non-uniform
bounds by considering the constraints of individual sessions.
Let the interference degree of a link l in a session’s path be
the number of links that interfere with l but do not interfere
with each other. We prove that under maximal scheduling
the performance of each session can be characterized by the
interference degree of only the links in its path, and the
interference degrees of the neighbors of these links. Thus
the performance penalty for each session, due to the use
of local information based scheduling, depends only on the
neighborhoods of the links in its path. The result is somewhat
counterintuitive as the overall performances of sessions may
depend on each other even when they are separated by several
hops. Furthermore, we prove that the performance penalties
under maximal scheduling can not be localized any further.
Specifically, the interference degrees of the links of a session
alone can not determine its throughput guarantee.

The paper is organized as follows. We describe our system
model in Section II. We describe the fairness and throughput
guarantees in Sections III and IV respectively. We prove the
analytical results in the appendix.

II. SYSTEM MODEL

A wireless network can be modeled as a directed graph
G = (V, E), where V and E respectively denote the sets of
nodes and links. A link exists from a node u to another node v
if and only if v can receive u’s signals. The network consists
of N end-to-end sessions, indexed as 1, . . . , N . Each end-to-
end session can be viewed as a collection of several hop-by-
hop connections, one for each link it traverses; each of these
hop-by-hop connections is called a session-link of the session
considered. Each session-link is of the form (u, v), where u
and v represent the transmitter and the receiver, respectively,
of the corresponding session-links. For any session i, let Pi

denote the set of its session-links. Let q(j) denote the session
of session-link j, i.e., q(j) = {i : j ∈ Pi}. We assume that
there are a total of M session-links in the network (over all
sessions), and these are indexed by 1, . . . , M .

We now introduce the notion of interference. A session-
link j interferes with session-link k if k can not successfully
transmit a packet when j is transmitting. The interference set
of session-link j, Sj , denotes the set of session-links k such
that either k interferes with j or j interferes with k (Fig. 1(a)).

We now describe the arrival process. We assume that time
is slotted. Let Ai(n) be the number of packets that session i
generates in interval (0, n], i = 1, . . . , N. We assume that any
packet arriving in a slot arrives at the beginning of the slot, and
may be transmitted in the slot. We assume that at most αmax

packets arrive for any session in any slot. Further, there exists
a constant α̂ > 1 and an arrival rate vector �λ = (λ1, . . . , λN )
such that the empirical average of the arrivals in the system in
T slots converges to �λ at a rate faster than 1

T α̂ . Mathematically,
there exists t̂δ such that for every i ∈ {1, . . . , m}, T ≥ t̂δ,

and δ > 0,

P

{∣∣∣∣∣
∑T

t=1 Ai(t)
T

− λi

∣∣∣∣∣ > δ

}
<

1
T α̂

. (1)

Note that a large class of arrival processes, e.g., periodic, i.i.d.,
and Markovian arrival processes with finite state space, satisfy
the above assumption. For simplicity, we will sometimes con-
sider a special case of the above general model. Specifically,
we will consider the “bounded-burstiness” arrival model where
there exists a burstiness vector �σ = (σ1, . . . , σN ) such that

|Ai(t) − λit| ≤ σi ∀ t. (2)

Whenever we use the above special case, we will explicitly
state so.

A scheduling policy is an algorithm that decides in each
slot the subset of session-links that would transmit packets in
the slot. Clearly, a subset of session-links can transmit packets
in any slot if no two session-links in the subset interfere with
each other, and every session-link in the subset has a packet
to transmit.

We assume that every packet has length 1 slot. Let Dj(n) be
the number of packets that session-link j transmits in interval
(0, n], j = 1, . . . , M. Let Li be the session-link corresponding
to the last hop of session i. Clearly the transmissions depend
on the scheduling policy. If for some constant di, the limit
limn→∞ DLi(n)/n = di with probability 1, then di is denoted
as the departure rate of session i.

Definition 1: The network is said to be stable if there exists
a departure rate vector �d = (d1, . . . , dN ) such that with
probability 1, for each session i

lim
n→∞DLi(n)/n = di = λi, i = 1, . . . , N. (3)

Thus, a network is stable if the arrival and departures rates are
equal for each session.

Definition 2: The throughput region of a scheduling policy
is the set of arrival rate vectors �λ such that the network is
stable under the policy for any arrival process that satisfies
(1) and has arrival rate vector �λ. The maximum throughput
region is the union of the throughput region of all policies.

We now describe the “maximal scheduling” policy we
consider. This policy schedules a subset S of session-links
such that (i) every session-link in S has a packet to transmit,
(ii) no session-link in S interferes with any other session-link
in S, (iii) if a session-link i has a packet to transmit, then
either i or a session-link in Si, is included in S. Clearly, many
subsets of session-links satisfy the above criteria in each slot.
Maximal scheduling can select any such subset, and can be
implemented in distributed manner using standard algorithms
[9].

Let Λ and ΛMS respectively denote the maximum through-
put region, and the throughput region attained by maximal
scheduling.

If a rate vector �λ = (λ1, . . . , λN ) satisfies∑
k∈Sj∪{j}

λq(k) ≤ 1, ∀ j = 1, . . . , M, (4)
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Fig. 1. In both figures, all sessions and session-links are unidirectional, and the arrows show the direction of data transfer. The circles indicate the interference
regions of session-links AB and HI (Fig. (a)) and S0, S1, ..., SL (Fig. (b)).
In Fig. (a), session S1 consists of two session-links, AB and BC, whereas sessions S2, S3, S4 are single-hop sessions. Session-link AB interferes with
session-links DE (session S2) and FG (session S3) and session-link HI (session S4) interferes with session-link BC. Now, SAB = {BC, DE, FG}, SBC =
{AB, HI}, SDE = SFG = {AB}, SHI = {BC}. Thus, token-buckets at nodes A, B, D, F, H consist of token-queues corresponding to session-links
{AB, BC, DE, FG}, { AB, BC, HI}, {AB, DE}, {AB, FG}, and {BC, HI}. Thus, token-buckets associated with session-link AB (BC) are at nodes A, B,
D, F (A, B, H); these are denoted buckets 1, . . . 4 of AB (1, 2 of BC). The token generation for AB at bucket 4 depends on that for AB at bucket 3 and BC
at bucket 1 of BC.
In Fig. (b), network consists of single-hop sessions only. Session S0 interferes with sessions T0, ..., TJ, whereas session Si interferes with session S(i-1), for
i=1,2, ..., L. Thus, Ki(N ) = 1 for i ∈ {T0, . . . TJ, SL}, Ki(N ) = 2 for i ∈ {S1, . . . S(L-1)}, KS0(N ) = J+2, βi(N ) = J+2 for i ∈ {T0, . . . TJ, S0, S1},
and βi(N ) = 2 for i ∈ S2, ..., SL, K(N ) = (J + 2). If J and L are large, but L � J, then Ki, βi for most sessions are substantially smaller than K(N ).

then �λ ∈ ΛMS [3], [4]. Thus, the above constraints specify
a sufficiency condition for the stability of a network under
maximal scheduling. The constraints follow since any maximal
scheduling always schedules at least one session-link in Sj ∪
{j} if session-link j has a packet to transmit. The above
constraints are also necessary for the stability of any network
under maximal scheduling in the following sense. Given any
network N , if an arrival rate vector �λ does not satisfy (4),
then for some maximal scheduling policy, �λ �∈ ΛMS in N [3].

Fairness issues are particularly relevant when the arrival rate
vector is not in ΛMS, because then maximal scheduling can
not serve all sessions at their arrival rates, and therefore it is
necessary to fairly allocate the service rates or departure rates
of sessions. We introduce the notion of the feasible set ∆MS

of departure rate vectors �d = (d1, . . . , dN ) which can be
described as follows:∑

k∈Sj∪{j}
dq(k) ≤ 1, ∀ j = 1, . . . , M, (5)

(interference constraints)

di ≤ λi ∀ i = 1, . . . , N. (6)

The “interference constraints” (5) capture the interference
relations and are analogous to constraints (4) for the stability
region. The constraints (6) follow since the departure rates can
not exceed the arrival rates.

Note that ∆MS ⊆ ΛMS. When �λ ∈ ΛMS, the departure
rate vector satisfies di = λi for each i and hence both (5)
and (6) hold. When �λ �∈ ΛMS, depending on the maximal
scheduling policy used, the departure rate vector can be any
element of ∆MS, and hence can be unfair for some sessions.
For example, when the network consists of only single-hop
sessions, if maximal scheduling provides absolute priority to
a session i, and λi > 1, then di = 1 and the departure rates
of sessions in Si are 0. This motivates our goal of ensuring

fairness using maximal scheduling.
We now formally define the notion of maxmin fairness

that we seek to attain. For any N -dimensional vector a,
let I(a) denote a non-decreasing ordering of the compo-
nents of a. Therefore, if a = (a1, a2, . . . , aN) and I(a) =
(â1, â2, . . . , âN ),then (â1, â2, . . . , âN) is a permutation of
(a1, a2, . . . , aN ), satisfying â1 ≤ â2 ≤ . . . ≤ âN . A departure
rate vector �d∗ is said to be maxmin fair if �d∗ ∈ ∆MS, and for
any other departure rate vector �d

′ ∈ ∆MS, the first non-zero
component in I(�d∗)−I(�d

′
) is positive. Intuitively, a departure

rate vector is maxmin fair if it is not possible to increase any
of its components without decreasing any other component of
equal or lesser value [1]. Note that �d∗ ∈ ΛMS as ∆MS ⊆ ΛMS.
Finally, if �λ ∈ ΛMS, then �d∗ = �λ.

Finally, we present a condition that is both necessary and
sufficient for any departure rate vector to be maxmin fair. We
first introduce the notion of a bottleneck constraint.

Definition 3: For any departure rate vector �d, an interfer-
ence constraint is a bottleneck constraint for a session i if (a)
a session-link j of i is involved in the constraint, (b) di ≥ dk

for all other sessions k whose session-links are associated with
the constraint and (c) the inequality in the constraint is an
equality.

Lemma 1: A departure rate vector �d ∈ ∆MS is maxmin fair
if and only if the following holds: for every session i, either
di = λi, or the session has a bottleneck constraint.

We omit the proof for the above lemma as the proof is
similar to that for the well-known bottleneck condition for
maxmin fairness in wireline networks [1].

III. MAX-MIN FAIRNESS UNDER MAXIMAL SCHEDULING

We propose a modular approach for attaining maxmin
fairness using maximal scheduling. The first module estimates
the maxmin fair bandwidth share of each session in each node
in the session’s path, and releases packets for transmission in
accordance with these estimates. The second module schedules



the transmission of the released packets so as to attain the
estimates. Note that the modules operate in parallel.

We first describe the algorithm for the special case that
λi > 1 for each i and thus every session always has a
packet to transmit (saturated sessions) and every session spans
one link. We summarize the algorithm in Figure 2. We next
motivate the changes required for the general case when all
sessions may not always have packets to transmit, and sessions
traverse multiple links. At the end of the section, we present
the performance guarantees.

Let every session consists of only one session-link (N =
M ) and λi > 1 for each i. Fair bandwidth is estimated
by a token generation process. The source node for each
session i maintains a token bucket for i (Fig. 1(a)). The token
bucket consists of a token-queue for each session in Si ∪ {i}.
Every token bucket generates tokens for all token-queues in
it. The token generation process is so designed that each
token-queue receives tokens at a rate that equals the maxmin
fair departure rate of the corresponding session (we shortly
describe how this can be done). Whenever a new token is
generated for a session i at the token bucket for i at i’s source,
i’s source releases a new packet for transmission. Thus, the
packet release rates are maxmin fair and hence belong to ΛMS.
Only the released packets are eligible for transmission. Thus,
maximal scheduling transmits the released packets at the rates
at which they are released. Hence, the rate allocations are
maxmin fair.

We now describe the token generation process for each
token-bucket. A session i is associated with bi = |Si| + 1
token-buckets, one for each of the sessions it interferes with,
and itself. Let us denote these token-buckets as 1, . . . , bi. Each
token-bucket samples all sessions in the bucket in a round
robin order. Let Ci,k(t) be the number of tokens generated for
session i at bucket k in the interval (0, t]. Let token-bucket k′

(1 < k′ < bi) associated with session i be sampled in slot t.
Then, k′ generates a token for session i in slot t if and only
if Ci,k′ (t) < W + min (Ci,k′−1(t), Ci,k′+1(t)) . Thus, session
i receives a token at bucket k′ unless the number of tokens
for session i at k′ substantially exceeds that at the adjacent
buckets; this prohibitive difference is the window parameter,
W. In slot t, k′ samples the next session in the bucket in a
round robin order if and only if k′ does not generate a token
for session i. Note that token-bucket 1 and bi have only one
adjacent token-bucket for session i, and thus decide whether
to generate a token based on the number of tokens at only
one adjacent token-bucket. Tokens are never removed from a
bucket.

We now explain why the token generation rate for each
session at each token-bucket associated with the session equals
the session’s maxmin fair rate. Since λi > 1 for each i,
constraints (5) subsume constraints (6), and hence the latter
can be ignored. Note that each token-bucket corresponds to
constraint (5) for some j ∈ {1, . . . , M}. Since the goal is
to allocate maxmin-fair rates, each constraint should try to
allocate equal rates to all sessions in the constraint. This
motivates the round robin sampling of the sessions at each

Procedure Token Generation (node m)
begin

For all t and i, let Ci,0(t) = Ci,bi+1(t) = ∞.
Each bucket samples the sessions associated with it in round robin order.
When session i is sampled at its kth bucket in slot t:
if Ci,k(t) < Ci,k+1(t) + W and Ci,k(t) < Ci,k−1(t) + W , then

generate a token for session i at its kth bucket (Ci,k(t + 1) = Ci,k(t) + 1);
else

do not generate token for session i at its kth bucket (Ci,k(t + 1) = Ci,k(t)),
and
sample the next session at the kth bucket in the round robin order.

end

Procedure Packet Release (source i)
begin

Release a new session i packet for transmission at session i source node when a token
is generated for the session at the bucket at its source.

end

Procedure Packet Scheduling For Transmission
begin

Transmit the released packets using maximal scheduling.

end

Fig. 2. Pseudo code of the fair departure rate allocation algorithm for
saturated sessions

token-bucket. Again, all constraints involving a session must
offer the same rate to the session. This is attained by relating
the token generation process for a given session at a given
token-bucket to that at the adjacent token-buckets for the same
session. The number of tokens for a session at two adjacent
buckets associated with the session differ by at most W at any
time t, and the difference is at most biW for that at any two
buckets associated with the session. Thus, the rates of token
generation for a session are nearly the same at any two buckets
associated with the session.

Note that since λi > 1 for each i, every session has a
bottleneck constraint under the maxmin fair rate allocation.
Now, the maxmin fair rate of a session is determined by the
bandwidth offered by the bottleneck constraint which offers
the least bandwidth to the session. The bucket corresponding
to the bottleneck constraint of a session is denoted as the
bottleneck bucket for the session. Now, a session’s token
generation rate at any token-bucket equals that at its bottleneck
bucket, which turns out to be the session’s maxmin fair rate.
If a session has a low maxmin fair rate, then its bottleneck
constraint offers it a low rate, and it does not receive tokens
several times it is sampled at other buckets; other sessions
with less severe constraints receive these tokens.

Let d∗i be the max-min fair departure rate of session i. Then
the following result holds.

Lemma 2: Consider token-bucket k of session i. For the
bounded-burstiness arrival model, there exists constants �, W0,
such that if W ≥ W0, then for any interval (n1, n2],
|Ci,k(n2)−Ci,k(n1)

n2−n1
− d∗i | ≤ �

n2−n1
.

The token generation scheme here is based on the same
design principle as that for an existing centralized fair band-
width allocation algorithm [10], [12]. However, the constraints
characterizing the feasibility set for maximal scheduling are



Procedure Token generation for a session at the bucket at its
source node (bucket k)
begin

For all t and i, let Ci,0(t) = Ci,bi+1(t) = ∞.
Let the kth bucket of session i be at i’s source node.
Let ANR

i (t) be the number of packets of session i at slot t that have been generated
at its source but not been released.
Sampling procedure is the same as that in Figure 2 for all sessions associated with
the kth bucket.
Token generation procedure for all sessions other than i is similar to that in Figure 2.
When session i is sampled at its kth bucket in slot t:
if Ci,k(t) < Ci,k+1(t)+W and Ci,k(t) < Ci,k−1(t)+W and ANR

i (t) > 0,
then

generate token for session i at its kth bucket (Ci,k(t + 1) = Ci,k(t) + 1);
else

do not generate token for session i at its kth bucket (Ci,k(t + 1) = Ci,k(t)),
and
sample the next session in the round robin order.

end

Fig. 3. Pseudo code of the token generation process at the buckets associated
with the source nodes of sessions when sessions may not be saturated.

significantly different from those characterizing the feasibility
set in [10], [12]; therefore, the scheme differs significantly in
the two cases.

We now describe the packet scheduling policy. Whenever
the source node of a session i generates a new token for
i at i’s token-bucket at the source (the one associated with
sessions in Si∪{i}), i releases a new packet. Only the sessions
that have released packets waiting for transmission contend
for scheduling, and are scheduled as per maximal scheduling.
When these sessions are scheduled, they transmit only released
packets.

Packets that contend for scheduling and are transmitted by
maximal scheduling arrive as per the release process. The
release rate vector is maxmin fair (Lemma 2) and is therefore
in ΛMS. Maximal scheduling therefore provides departure rates
equal to the packet release rates. Thus, as the following
result states, a combination of token generation and maximal
scheduling attains the maxmin fair departure rates for every
session.

Theorem 1: For the bounded-burstiness arrival model,
there exists a constant W0, such that when W ≥ W0,
limn→∞ DLi(n)/n = d∗

i , i = 1, . . .N.
We now consider two important generalizations. First, as-

sume that λi ≤ 1 for some or all sessions i. Thus, sessions may
not always have packets to transmit. The only modification in
the algorithm is that the bucket at the source node of a session
now does not generate a new token for the session if all of its
packets have already been released (Figure 3). Note that the
modification applies to all sessions; therefore, the algorithm
need not know which sessions are saturated. If a session is
saturated, then the modification will not be executed as its
source will always have packets that have not been released.

We next allow sessions to traverse multiple hops. Thus,
N ≥ M and a session consists of multiple session-links.
We first describe the modifications in the token-generation
procedure. We must consider session-links instead of sessions
in this case. Therefore, session-links, rather than sessions,

Procedure Token Generation (node m)
begin

For session-link i, let l and m respectively be the previous and next session-links of
the same session.
For each slot t and session-link i,
if i is the first-session-link of its session, then

Ci,0(t) = ∞, Ci,bi+1(t) = Cm,0(t)
else

if i is the last session-link of its session, then
Ci,0(t) = Cl,bl+1(t), Ci,bi+1(t) = ∞

else
Ci,0(t) = Cl,bl

(t) and Ci,bi+1(t) = Cm,0(t).

Let ANR
i (t) be the number of packets of session-link i at slot t that are in its waiting-

queue.
Let Θi,k(t) = ANR

i (t) if the kth bucket of session-link i is at i’s source-node, and
Θi,k(t) = ∞ otherwise.
Each bucket samples the session-links associated with it in round robin order.
When session-link i is sampled at its kth bucket in slot t:
if Θi,k(t) > 0 and Ci,k(t) < Ci,k+1(t)+W and Ci,k(t) < Ci,k−1(t)+W ,
then

generate a token for session-link i at its kth bucket (Ci,k(t+1) = Ci,k(t)+1);
else

do not generate token for session i at its kth bucket (Ci,k(t + 1) = Ci,k(t)),
and
sample the next session-link at the kth bucket in the round robin order.

end

Procedure Queue Management (session-link i)
begin

When a new packet is generated for session-link i or a new packet arrives at the source
of session-link i from a previous session-link, add the new-packet in the waiting-queue
for session-link i.
Transfer a session-link i packet from its waiting-queue to its release-queue at its source
node when a token is generated for it at the bucket at its source.

end

Procedure Packet Scheduling For Transmission
begin

Transmit the packets in the release-queues of the session-links using maximal schedul-
ing.

end

Fig. 4. Pseudo code of the fair departure rate allocation algorithm when
sessions traverse multiple hops

are associated with token-buckets, and the source of each
session-link j maintains the bucket consisting of session-links
in Sj ∪ {j}. Again, token-buckets sample session-links rather
than sessions. The token generation process for the session-
links are now similar to that for single-hop sessions. The only
difference is that the token-generation process for a session-
link j at the first (last) token-bucket of j must also depend
on the number of tokens generated at the last (first) token-
bucket for the previous (next) session-link k of the same
session (Fig. 1(a)). We now describe the packet scheduling
policy. The source of each session-link maintains two packets
queues: a waiting packet queue, and a released packet queue.
On arrival, a packet is queued at the waiting packet queue.
A packet is forwarded from the waiting to the released queue
when a new token is generated at the token-bucket for the
session-link at the session-link’s source. Only session-links
with non-empty released queues contend for scheduling. The
rest of the scheduling remains the same as that for the case of
single-hop sessions. Refer to Figure 4 for a pseudo-code.

Both Lemma 2 and Theorem 1 hold for both these gen-
eralizations (we prove Lemma 2 and Theorem 1 for the



first generalization); for the second generalization the term
‘session’ must now be replaced with ‘session-link’ in the
statement of Lemma 2.

Before we conclude this section, we make a few remarks
on our maxmin fair packet scheduling algorithm. Note that the
token-buckets associated with a session-link i need to know
the number of tokens generated for i at other token-buckets
associated with i. Also note that a token bucket associated
with i is either at i’s source or at j’s source, where j ∈ Si.
Thus, a token bucket at the source of a session-link k need
only know the number of tokens generated at a token-bucket
at the source of a session-link l if and only if both k and l
interfere with each other or with a common session-link. Since
only session-links in close proximity interfere with each other
in a wireless network, the token-generation process requires
communication among nodes in proximity as well. Finally, the
analytical guarantees hold even when nodes know the number
of tokens generated at other nodes after some delay, as long
as the delay is upper-bounded by a constant.

IV. NON-UNIFORM THROUGHPUT GUARANTEES WITH
MAXIMAL SCHEDULING

In this section, we relate the throughput region attained
by maximal scheduling to the maximum throughput region
by providing neighborhood-specific throughput guarantee for
each session under maximal scheduling.

We consider the notion of “interference degree” of a session-
link, as introduced in [4]. The interference degree of a session-
link i in network N , Ki(N ) is (i) the maximum number
of sessions in its interference set Si that can simultaneously
transmit, if Si is non-empty, and (ii) 1, if Si is empty. The
two-hop interference degree of session-link i, is defined as
βi(N ) = maxj∈Si∪{i} Ki(N ). The interference degree of a
network N , K(N ), is the maximum interference degree of
session-links in the network.

First consider maximal scheduling without any enhance-
ments. We have earlier shown in networks with single-hop
sessions that if �λ ∈ Λ, then �λ/K(N ) ∈ ΛMS [4]. Note that
Ki(N ) determines the congestion in the neighborhood of a
session-link i. Thus, the existing bound characterizes the per-
formance of the entire network in terms of the worst session-
link, the session-link that has interference degree K(N ).
In many networks Ki(N ) and βi(N ) may be significantly
less than K(N ) for most session-links i (Figure 1(b)). Our
contribution in this paper has been to conclusively determine
whether the performance of individual session-links can be
characterized in terms of the interference-degrees in their
neighborhoods. We prove that the performance of each session
can be characterized by the βi(N )s, but not by the Ki(N )s,
of the corresponding session-links.

We initially assume that each session traverses only one
link, and therefore consists of a single session-link.

Theorem 2: If (λ1, . . . , λN ) ∈ Λ, then
(λ1/β1(N ), . . . , λN/βN (N )) ∈ ΛMS.

Thus, due to the use of local information based scheduling,
the performance of each session i decreases by a factor of

βi(N ); the penalty for each session therefore depends only
on its two-hop neighborhood. The following result shows
that a similar characterization in terms of the single-hop
neighborhood does not hold in general.

Theorem 3: There exists a wireless network N and an
arrival rate vector (λ1, . . . , λN ) such that (λ1, . . . , λN ) ∈ Λ
in N , but (λ1/K1(N ), . . . , λN/KN(N )) �∈ ΛMS.

Next we consider the case where a session can traverse
several hops. Now, let β̃i(N ) denote the maximum two-
hop interference degree of all session-links of session i, i.e.,
β̃i(N ) = maxj∈Pi βj(N ). In this case, we first show that
maximal scheduling attains a weaker notion of stability, as
described below. For any session-link j = 1, . . . , M , let Âj(n)
denote the number of arrivals for the session-link in the time
interval (0, n]. Furthermore, we define a random variable Bj,t

as follows. If session-link j has a packet to transmit at time t,
then Bj,t is the length of its remaining busy period, otherwise
Bj,t = 0.

Theorem 4: Let the arrival rate vector (λ
′
1, . . . , λ

′
N ) be

such that λ
′
1 < λ1/β̃1(N ), . . . , λ

′
N < λN/β̃N (N ), where

(λ1, . . . , λN ) ∈ Λ. Then under maximal scheduling, the packet
queue of every session-link will almost surely become empty
infinitely often. Furthermore, for every session-link j and time
t, E[Bj,t] < ∞.

The above result implies that almost surely
lim supn→∞

Dj(n)−Âj(n)
n = 0 ∀ j = 1, . . . , M . Thus,

if the arrival rate vector satisfies the condition in Theorem 4,
and for each session link the limits of the departure and
the arrival rates exist almost surely, then almost surely
limn→∞ DLi(n)/n = λi ∀ i = 1, . . .N , and the system is
stable under maximal scheduling. But, there is no guarantee
that these limits exist. Thus, this is a weaker notion of
stability than the one defined in Secton II. Whether the
stronger notion of stability, holds in this case or not, remains
an open question.

We now consider some enhancements of maximal schedul-
ing that obtain strong stability results for multi-hop sessions
for any arrival rate vector (λ′

1, . . . , λ
′
N ) for which λ

′
1 ≤

λ1/β̃1(N ), . . . , λ
′
N ≤ λN/β̃N (N ), where (λ1, . . . , λN ) ∈

Λ. Both enhancements combine maximal scheduling with a
token-generation scheme. The first enhancement is the algo-
rithm proposed in Section III. The second enhancement has
been proposed by Wu et. al. [13], and uses a different token
generation strategy, but has the same scheduling strategy as the
algorithm in Section III. We now describe the token generation
scheme for the second enhancement. Every session-link has
a regulator that generates tokens at the arrival-rate of the
session. As stated before, Wu et. al. [13], [14] show that
this enhancement bounds the performance of all sessions in
terms of that of the worst session in the network. We however
prove that for both these enhancements the performance of
each session can be bounded in terms of the worst-case two-
hop interference degree of all session-links of a session.

Theorem 5: If (λ1, . . . , λN ) ∈ Λ, then
(λ1/β̃1(N ), . . . , λN/β̃N (N )) ∈ ΛMS in N .

We prove Theorem 5 in technical report [3].



APPENDIX

A. Proof of Lemma 2

We prove Lemma 2 for arbitrary �λ and when each session
spans one link. First, we show that if a session generates
packets at rate r or higher, and if it is sampled at rate r
or higher at every bucket associated with it, then it receives
tokens at rate r or higher from each of its buckets (Lemma 3).
We next show that a session’s sampling rate at any of its
buckets equals its maxmin fair rate (Lemma 4). Now, the result
follows, as by definition, a session’s maxmin fair rate is less
than or equal to its packet generation rate. We prove Lemmas 3
and 4 in sections B and C. Thus, like in the current section,
throughout sections B and C, we will assume that every session
spans one link.

We introduce some terminologies and subsequently state
Lemmas 3 and 4. Let Si,n(t) be the number of times session
i is sampled at token-bucket n in the interval (0, t], L =
maxi bi, σ = maxi σi, and β, γ are constants that are specified
later.

Lemma 3: Consider an arbitrary K and a sequence of K
disjoint intervals, (tl, wl], l = 1, . . . , K, that satisfies the
following property for session i, for every positive integer
M ′ and every sequence of sub-intervals (xm, ym], m =
1, . . . , M ′, (xm, ym] ⊂ (tl, wl], for some l: At every bucket
n associated with i,

M ′∑
m=1

(Si,n(ym) − Si,n(xm)) ≥ r

M ′∑
m=1

(ym − xm) − e − M ′f,

(7)
where e and f are constants that do not depend on M ′ and
the sub intervals (xm, ym], m = 1, . . . , M ′. Let λi ≥ r and
W ≥ 3bi−1(f + σi)/2. Then, at every bucket n associated
with i,

K∑
l=1

(Ci,n(wl) − Ci,n(tl)) ≥ r

K∑
l=1

(wl − tl) − 2bi−1e

−K3bi−1(f + σi). (8)
Lemma 4: Consider any positive integer K, and an arbi-

trary non-decreasing sequence of times x1, y1, . . . , xK , yK .
Let W ≥ 3L−1(ε1(F )+ σ)/2, where ε1(F ) is defined in (12)
to (17). For every bucket n associated with session i,

K∑
k=1

(Si,n(yk) − Si,n(xk)) ≥ d∗i
K∑

k=1

(yk − xk) − β

−Kγ, (9)
K∑

k=1

(Ci,n(yk) − Ci,n(xk)) ≥ d∗i
K∑

k=1

(yk − xk) − β

−Kγ, (10)
K∑

k=1

(Ci,n(yk) − Ci,n(xk)) ≤ d∗i
K∑

k=1

(yk − xk) + β

+Kγ. (11)

Here, β and γ are constants that do not depend on
x1, y1, . . . , xK , yK .

We introduce the notion of “rank” of a session for defining
β and γ. A session has rank p if its maxmin fair rate is d̂p, the
pth lowest among the maxmin fair rates of different sessions.
Let F be the number of distinct ranks, F ≤ N.

ς1(1) = 0. (12)
ε1(1) = 1. (13)
ς2(p) = 2L−1ς1(p). (14)
ε2(p) = 3L−1(ε1(p) + σ). (15)
ς3(p) = 2σ + max(L, 2) (ς2(p) + ε2(p))

+2LW. (16)
ε3(p) = ε2(p). (17)

ς1(p + 1) = (L − 1)ς3(p). (18)
ε1(p + 1) = (L − 1)ε3(p) + 1. (19)

Now, β = ς3(F ) and γ = ε3(F ).
Now, for any given �λ, Lemma 2 follows from (10) and (11)

of Lemma 4 with � = β + γ and W0 = 3L−1(ε1(F ) + σ)/2.

B. Proof of Lemma 3

We first present the intuition behind the proof. The proof
is by induction on the number of buckets associated with a
session. The sessions with one bucket form the base case. Note
that any such session receives a token at its bucket every time
it is sampled at its bucket and has a packet that has not been
released, since no adjacent bucket applies back-pressure. Now,
the lemma follows for the base case from the lower bounds on
the sampling and packet generation rates. We next assume that
the lemma holds for all sessions with p buckets, and then prove
the lemma for sessions with p+1 buckets. Consider a session
with p+1 buckets and adjacent buckets n and n+1 associated
with it. Bucket n + 1 does not prevent the generation of any
token at n unless the number of tokens at n is W more than
that at n+1. If the number of tokens at n is W more than that
at n+1, n does not prevent any token generation at n+1, and
the buckets n + 1, n + 2, . . . generate tokens oblivious to the
presence of the buckets 1, . . . , n, as though they constitute a
session with fewer buckets. By induction hypothesis, and from
the sampling and packet generation rates, the session receives
tokens at rate r or higher at n+1 in these intervals. In all these
slots, the number of tokens at n exceeds that at n + 1 by W.
Thus, n’s token generation rate is lower bounded by n + 1’s
token generation rate which is at least r. In other slots, n + 1
does not prevent the generation of any token at n. Thus, the
token generation at the buckets 1, . . . , n resembles that for a
session with fewer buckets. Thus, by induction hypothesis and
the assumption on the sampling rate, in all slots, n generates
tokens at rate r or higher for the session.

Proof: We prove by induction on the number of buckets
p associated with a session.

First consider a session i with one bucket n. Let n not be at
the source node of i. The lemma holds from the assumption on
the sampling rate (condition (7)). Now, let n be at the source
node of i. Let ANR

i (t) be the number of packets of session i
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Fig. 5. We show two intervals (t1, w1] and (t2, w2], and some type 1
and 2 slots. We also show the corresponding u and v slots. Here (t1, u11],
(t2, u21], (v21, u22] are example sub-intervals that end in u−slots and start
from the nearest v−slot or ti−slot.

at its source at time t that have not been released. We now
define a slot zl. If ANR

i (t) > 0 for all t ∈ (tl, wl], zl = tl, else
zl = max

t∈(tl,wl],ANR
i (t)=0

t. If zl > tl,

Ci,n(zl) − Ci,n(tl) = Ai(zl) − Ai(tl) + ANR
i (tl)

≥ Ai(zl) − Ai(tl)
≥ r(zl − tl) − σi. (20)

The last inequality follows from (2) and since r ≤ λi. Clearly,
(20) also holds if zl = tl. Bucket n generates a token for
session i every time it samples i in (zl, wl], ∀ l.

K∑
l=1

(Ci,n(wl) − Ci,n(zl))

=
K∑

l=1

(Si,n(wl) − Si,n(zl))

≥ r

K∑
l=1

(wl − zl) − e − Kf (from (7)). (21)

K∑
l=1

(Ci,n(wl) − Ci,n(tl))

=
K∑

l=1

(Ci,n(wl) − Ci,n(zl)) +
K∑

l=1

(Ci,n(zl) − Ci,n(tl))

≥ r
K∑

l=1

(wl − tl) − e − K(f + σi) (from (20) and (21)).

Thus, (8) holds in the base case.
We now assume that (8) holds for all sessions with p or

fewer buckets, and prove (8) for an arbitrary session i with
p + 1 buckets. Consider an arbitrary bucket n associated with
i. If the number of tokens of i at n does not exceed that at
buckets adjacent to n by W or more in the intervals (tl, wl),
l = 1, . . . , K, then the token generation process for i at n is
not affected by back-pressure, and the proof is similar to the
base case. Thus, we assume that there exists a bucket B that
is adjacent to n, and Ci,n(t) = Ci,B(t)+W at some time t in
these intervals. Clearly B ∈ {n − 1, n + 1}. We consider the
case that B = n + 1. The proof when B = n − 1 is similar.

Let a slot t where Ci,n(t) exceeds Ci,n+1(t) by W be a type
1 slot, and a slot t where Ci,n+1(t) exceeds Ci,n(t) by W be
a type 2 slot; a slot may neither be type 1 nor type 2. Consider
each (tl, wl] interval separately. Consider the sequences of type
1 and 2 slots that are obtained after removing the slots without

numbers. The last slot in such a sequence of type−1 (2) slots
is denoted a “u” (“v”) slot. The mth “u-slot” (“v-slot”) of the
lth interval is ulm (vlm) (Figure 5). Note that

Ci,n(ulm) = Ci,n+1(ulm) + W ∀ l, m. (22)
Ci,n+1(vlm) = Ci,n(vlm) + W ∀ l, m. (23)

Ci,n(t) ≤ Ci,n+1(t) + W, ∀ t. (24)

Consider a sub-interval that ends at a u slot and starts from
a tj (not inclusive) or a v−slot (not inclusive), whichever is
the nearest to the u−slot (Figure 5). Let there be Jl such sub-
intervals in (tl, wl], and

∑K
l=1 Jl = I1. These sub-intervals

do not consist of any type 2 slot. Thus, n does not prevent
any session i token generation at n + 1 in these sub-intervals.
Hence, in these sub-intervals, the token generation for i in
buckets n + 1, . . . , p + 1 resembles that in the buckets of a
session with p + 1 − n buckets, where n > 0. Condition (7)
holds for i in each of these buckets for every set of sub-
intervals of these I1 sub-intervals, since any such sub-interval
is in (tl, wl] for some l. Thus, the number of tokens generated
for i in these I1 sub-intervals in each of these buckets can
be lower bounded using the induction hypothesis. The sub-
intervals in (tl, wl] are (tl, ul1] and (vlm−1, ulm], m > 1, if
vl1 > ul1 as in Figure 5; the sub-intervals are (vlm, ulm],
m ≥ 1, otherwise. We assume that vl1 > ul1 for all l; the
argument is similar if vl1 < ul1 for some or all l. From
induction hypothesis,

K∑
l=1

((Ci,n+1(ul1) − Ci,n+1(tl))

+
Jl∑

m=2

(Ci,n+1(ulm) − Ci,n+1(vlm−1)))

≥ r

K∑
l=1

(
(ul1 − tl) +

Jl∑
m=2

(ulm − vlm−1)

)
−2p−1e − I13p−1(f + σi). (25)

Ci,n(ul1) − Ci,n(tl)
≥ Ci,n+1(ul1) + W − Ci,n+1(tl) − W (from (22) and (24))
= Ci,n+1(ul1) − Ci,n+1(tl). (26)

From (22) and (23),

Ci,n(ulm) − Ci,n(vlm−1) = Ci,n+1(ulm) − Ci,n+1(vlm−1)
+2W. (27)

K∑
l=1

((Ci,n(ul1) − Ci,n(tl))

+
Jl∑

m=2

(Ci,n(ulm) − Ci,n(vlm−1)))

≥
K∑

l=1

((Ci,n+1(ul1) − Ci,n+1(tl)))



+
Jl∑

m=2

(Ci,n+1(ulm) − Ci,n+1(vlm−1)))

+2W (I1 − K) (from (26) and (27))

≥ r

K∑
l=1

(
(ul1 − tl) +

Jl∑
m=2

(ulm − vlm−1)

)
−2p−1e − K3p−1(f + σi)
+(I1 − K)(2W − 3p−1f − 3p−1σi) (from (25)).(28)

Now, consider the sub-intervals obtained after removing
these I1 sub-intervals from ∪K

l=1(tl, wl]. These new sub-
intervals do not contain any type 1 slot. Thus, n + 1 does
not prevent any session i token generation at n. Hence, the
session i token generation in buckets 1, . . . , n resembles that
of a session with n buckets, where n ≤ p. The number of
session i tokens generated at n in these sub-intervals can
be lower bounded from the induction hypothesis. There are
at most I1 + K such sub-intervals, which are of the form
(ulm, vlm] and (uJl

, wl], since we assume that vl1 > ul1 ∀ l.

Thus,
K∑

l=1

((Ci,n(wl) − Ci,n(uJl
))

+
Jl−1∑
m=1

(Ci,n(vlm) − Ci,n(ulm))

)

≥ r

K∑
l=1

(
(wl − uJl

) +
Jl−1∑
m=1

(vlm − ulm)

)
−2p−1e − (I1 − K)3p−1(f + σi)
−2K3p−1(f + σi). (29)

Adding (28) and (29),

K∑
l=1

(Ci,n(wl) − Ci,n(tl))

≥ r

K∑
l=1

(wl − tl) − 2pe − K3p(f + σi)

+(I1 − K)(2W − 3p (f + σi)). (30)

Note that p + 1 ≤ bi and thus, W ≥ 3p(f + σi)/2. We have
implicitly assumed that at least one type−1 slot exists in each
interval (tl, wl]; this justifies the summation from l = 1 to K
in (25). Under this assumption, I1 ≥ K. Hence, (8) holds for
session i at bucket n. If there is no type−1 slot in (tl, wl] for
some l, then the summation in (25) must be over the intervals
(tl, wl] that have at least one type−1 slot. Let K1 be the
number of such intervals. Now, (I1−K) must be replaced with
(I1 −K1). Since I1 ≥ K1, (8) holds at all buckets associated
with i.

C. Proof of Lemma 4

We outline the proof for the special case that all sessions
always have packets to transmit. We use induction on the rank
p of a session. For the base case (p = 1), using a property

of the round robin sampling, we show that all sessions are
sampled at a rate d̂1 or higher at every bucket. Now, (10),
the lower bound on the token generation rate follows from
Lemma 3. Next, we show (11), i.e., the token generation rates
are upper bounded by d̂1 for all sessions with rank 1. This
follows because the sampling and hence the token generation
rate is upper bounded by d̂1 at the bottleneck bucket, and due
to back-pressure the token generation rates for a session are
equal at different buckets in the session’s path. Now, consider
the induction case, i.e., arbitrary p. The token generation rates
of sessions with rank lower than p are upper bounded by their
respective maxmin fair rates which are upper bounded by d̂p.
Sessions of rank p or higher are sampled in a certain minimum
fraction of the slots in which the sessions with rank lower
than p do not receive tokens. Therefore, the lower bound on
the sampling rate of sessions with rank p or higher follows.
Again, the lower bound on the token generation rate follows
from Lemma 3. We prove, as in the base case, the upper bound
on the token generation rate for sessions with rank p.

In the formal proof, we relax the assumption that all sessions
always have packets to transmit, i.e., we consider arbitrary �λ.
We would like to clarify the usage of a particular notation
before proceeding further. We have so far numbered token-
buckets based on the sessions traversing them. In this terminol-
ogy, bucket n of session i is i’s nth bucket, and Ci,n(t), Si,n(t)
are the number of tokens generated for session i at and
the number of times session i is sampled at its nth bucket
respectively. In the following proof, we number token-buckets
separately. Thus, for example, we consider token-bucket n
and all sessions associated with n. Now, n(i) will denote
the number for the bucket n among i’s buckets. Thus, we
need to use Ci,n(i)(t), Si,n(i)(t) instead of Ci,n(t), Si,n(t). For
simplicity, we still use Ci,n(t), Si,n(t). Thus, in the following
proof, Ci,n(t), Si,n(t) really stand for Ci,n(i)(t), Si,n(i)(t)
respectively. Note that this inconsistency is limited to the
following proof only, and does not lead to any error, because
none of the analytical guarantees in other lemmas (including
those that are used in the following proof and those whose
proof use Lemma 4) depend on the token-bucket number.

Proof: We prove the following for ranks p = 1, . . . , F,
by induction on p.

For each bucket n, for each session i that is associated
with n and has rank greater than or equal to p, for any
positive integer K, and for any nondecreasing sequence of
times x1, y1, . . . , xK , yK ,

K∑
k=1

(Si,n(yk) − Si,n(xk)) ≥ d̂p

K∑
k=1

(yk−xk)−ς1(p)−Kε1(p).

(31)

For each bucket n, for each session i that is associated
with n and has rank greater than or equal to p, for any
positive integer K, and for any nondecreasing sequence of



times x1, y1, . . . , xK , yK ,

K∑
k=1

(Ci,n(yk) − Ci,n(xk)) ≥ d̂p

K∑
k=1

(yk−xk)−ς2(p)−Kε2(p).

(32)
If a session i has rank p, and d∗

i = λi,

ANR
i (t) ≤ σi + ς2(p) + ε2(p) ∀ t. (33)

For each bucket n, for each session i that is associated with
n and has rank p, for any positive integer K, and for any
nondecreasing sequence of times x1, y1, . . . , xK , yK ,

K∑
k=1

(Ci,n(yk) − Ci,n(xk)) ≤ d̂p

K∑
k=1

(yk−xk)+ς3(p)+Kε3(p).

(34)
We first prove (31) to (34) for p = 1. Note that d̂1 =

min(1/L, mini λi). Consider a bucket n. Let X be the set
of sessions associated with n. Since at least one session is
sampled at n in a slot, in any interval (xk, yk],∑

j∈X
(Sj,n(yk) − Sj,n(xk)) ≥ yk − xk.

Since sessions are sampled in round robin order, Si,n(yk) −
Si,n(xk) ≥ Sj,n(yk) − Sj,n(xk) − 1 for any two sessions i, j
associated with n. Thus, for any session i associated with n,

|X | (Si,n(yk) − Si,n(xk) + 1) ≥ yk − xk,

Si,n(yk) − Si,n(xk) ≥ yk − xk

|X | − 1.

Thus, every session associated with bucket n is sampled at
least

∑Q
k=1(yk−xk)/|X |−Q times for any arbitrary sequence

of nondecreasing times x1, y1, . . . , xQ, yQ, and any arbitrary
Q. Since |X | ≤ L, d̂1 ≤ 1/|X |. Thus, (31) holds with ς1(1) =
0, ε1(1) = 1.

Since εF (1) ≥ ε1(1), W ≥ 3L−1(ε1(1)+σ)/2. Hence, (32)
follows from Lemma 3 with ς2(1) = 2L−1ς1(1) and ε2(1) =
3L−1(ε1(1) + σ).

Now, we prove (33) for p = 1. Consider a session i with
rank 1 and d∗

i = λi. Thus, d̂1 = λi. Let n be the bucket at
the source node of i.

ANR
i (t) = Ai(t) − Ci,n(t)

≤ (λi − d̂1)t + σi + ς2(1) + ε2(1)
(from (2) and (32) for p = 1)

= σi + ς2(1) + ε2(1) (since d̂1 = λi).

Thus, (33) follows for p = 1.

Now, we prove (34) for p = 1. Consider a session i with
rank 1. Let n be a bucket associated with i. Consider a

sequence of non-decreasing times x1, y1, . . . , xK , yK .

K∑
k=1

(Ci,n(yk) − Ci,n(xk))

= Ci,n(yK) − Ci,n(x1) −
K−1∑
k=1

(Ci,n(xk+1) − Ci,n(yk))

≤ Ci,n(yK) − Ci,n(x1) − d̂1

K−1∑
k=1

(xk+1 − yk)

+ς2(1) + (K − 1)ε2(1) (from (32) for p = 1). (35)

Since d̂1 = d∗i and d∗i ≤ λi, d̂1 ≤ λi. First, let d̂1 < λi.
Thus, from Lemma 1, i has a bottleneck constraint and hence
a bottleneck bucket, B. Let X be the set of sessions associated
with B. Since i has rank 1, |X | = L, rank(j) = 1 ∀ j ∈ X ,
and d̂1 = 1/L.

Ci,B(yK) − Ci,B(x1)

≤ yK − x1 −
∑

m∈X\{i}
(Cm,B(yK) − Cm,B(x1))

≤ yK − x1

−(L − 1)
(
d̂1(yK − x1) − ς2(1) − ε2(1)

)
(from (32) since rank(j) = 1, ∀ j ∈ X )

= d̂1(yK − x1) + (L − 1) (ς2(1) + ε2(1)) (36)

(since d̂1 = 1/L).

Now, let d̂1 = λi. Let B be the bucket at the source of i.

Ci,B(yK) − Ci,B(x1)
≤ ANR

i (x1) + Ai(yK) − Ai(x1)
≤ σi + ς2(1) + ε2(1) + λi(yK − x1) + σi

(from (33) and (2))
= d̂1(yK − x1) + 2σi + ς2(1) + ε2(1) (since d̂1 = λi). (37)

From (36) and (37), there exists a bucket B associated with
i such that

Ci,B(yK) − Ci,B(x1)

≤ d̂1(yK − x1) + 2σi

+ max(L − 1, 1) (ς2(1) + ε2(1)) . (38)

Now, |Ci,n(t) − Ci,B(t)| ≤ biW ∀ t. (39)

Ci,n(yK) − Ci,n(x1)
≤ Ci,B(yK) − Ci,B(x1) + 2biW (from (39))

≤ d̂1(yK − x1) + max(L − 1, 1) (ς2(1) + ε2(1))
+2biW + 2σi (from (38)). (40)

From (35) and (40),
K∑

k=1

(Ci,n(yk) − Ci,n(xk))

≤ d̂1

K∑
k=1

(yk − xk) + max(L, 2) (ς2(1) + ε2(1))

+2biW + 2σi + Kε2(1). (41)



Thus, for p = 1, (34) follows from (41) with ς3(1) =
max(L, 2) (ς2(1) + ε2(1)) + 2LW + 2σ and ε3(1) = ε2(1).

Now, we assume (31) to (34) for 1, . . . , p, and show that
(31) to (34) hold for p + 1.

We first prove (31). Consider a session i with rank greater
than or equal to p + 1. Consider a bucket n associated with
i. Let Y= {w : w is associated with n, rank(w) ≤ p} and
Z= {w : w is associated with n, rank(w) ≥ p + 1}. In any
interval (xk, yk],∑

j∈Z
(Sj,n(yk) − Sj,n(xk)) +

∑
j∈Y

(Cj,n(yk) − Cj,n(xk))

≥ yk − xk.

Since sessions are sampled in round robin order, Si,n(yk) −
Si,n(xk) ≥ Sj,n(yk) − Sj,n(xk) − 1 for any two sessions i, j
associated with n. Thus,

|Z| (Si,n(yk) − Si,n(xk) + 1)

≥ yk − xk −
∑
j∈Y

(Cj,n(yk) − Cj,n(xk)) .

Thus,
K∑

k=1

(Si,n(yk) − Si,n(xk))

≥ 1
|Z|

(
K∑

k=1

(yk − xk) − K|Z|

−
∑
j∈Y

K∑
k=1

(Cj,n(yk) − Cj,n(xk))

⎞⎠
≥

(
1 − ∑

j∈Y d∗j
)∑K

k=1(yk − xk)

|Z|
− |Y|
|Z| ς3(p) − K

|Z| + |Y|ε3(p)
|Z| .

The last inequality follows since rank(w) ≤ p, and d∗
w =

d̂rank(w), ∀ w ∈Y. Also, ς3(j) ≥ ς3(j−1), ε3(j) ≥ ε3(j−1),
∀j. Thus, induction hypothesis (inequality (34)) applies. Now,

K∑
k=1

(Si,n(yk) − Si,n(xk))

≥
∑

j∈Z d∗j
∑K

k=1(yk − xk)
|Z| − |Y|

|Z| ς3(p)

−K
|Z| + |Y|ε3(p)

|Z| (since
∑
w∈Z

d∗w +
∑
w∈Y

d∗w ≤ 1)

≥ d̂p+1

K∑
k=1

(yk − xk) − |Y|
|Z| ς3(p)

−K
|Z| + |Y|)ε3(p)

|Z| . (42)

The last step follows since rank(w) ≥ p + 1, and hence
d∗w ≥ d̂p+1, ∀ w ∈Z. Thus, from (42), (31) holds for p + 1,
with ς1(p+1) = (L−1)ς3(p), and ε1(p+1) = (L−1)ε3(p)+1.

Consider a session i with rank greater than or equal to p+1.
Note that λi ≥ d̂p+1, and W ≥ 3L−1(ε1(p+1)+σ)/2. Thus,
(32) follows from Lemma 3, with ς2(p + 1) = 2L−1ς1(p + 1)
and ε2(p + 1) = 3L−1(ε1(p + 1) + σ).

The proof for (33) is similar to that in the base case.
Now, we prove (34) for p + 1. The argument is similar

to that for the base case. We point out the differences.
Consider a session i with rank p + 1. Let n be a bucket
associated with i. Consider any sequence of non-decreasing
times x1, y1, . . . , xK , yK .

K∑
k=1

(Ci,n(yk) − Ci,n(xk))

= Ci,n(yK) − Ci,n(x1) −
K−1∑
k=1

(Ci,n(xk+1) − Ci,n(yk))

≤ Ci,n(yK) − Ci,n(x1) − d̂p+1

K−1∑
k=1

(xk+1 − yk)

+ς2(p + 1) + (K − 1)ε2(p + 1). (43)

The last inequality follows from (32) for p + 1.

Since d̂p+1 = d∗i and d∗i ≤ λi, d̂p+1 ≤ λi. Now, first
let d̂p+1 < λi. Since d∗i = d̂p+1, d∗i < λi. Thus, from
Lemma 1, i is associated with a bottleneck constraint, and
hence a bottleneck bucket, B. Let X be the set of sessions
associated with B. Since i has rank p+1, ranks of all sessions
associated with B are less than or equal to p + 1.

Ci,B(yK) − Ci,B(x1)

≤ yK − x1 −
∑

m∈X\{i}
(Cm,B(yK) − Cm,B(x1))

≤ yK − x1

−
∑

m∈X\{i}
(d∗m(yK − x1) − ς2(p + 1) − ε2(p + 1))

(from (32))
= d̂p+1(yK − x1)

+(|X | − 1)(ς2(p + 1) + ε2(p + 1)). (44)

The last step follows since d̂p+1 +
∑

m∈X\{i} d∗m = 1.

Now, let d̂p+1 = λi. Let B be the bucket at the source node
of i. Like in the base case, using (32) and (2), we can prove
that

Ci,B(yK) − Ci,B(x1) ≤ d̂p+1(yK − x1) + 2σi

+ς2(p + 1) + ε2(p + 1).(45)

From (44) and (45), there exists a bucket B associated with
i such that,

Ci,B(yK) − Ci,B(x1)

≤ d̂p+1(yK − x1) + 2σi

+ max(L − 1, 1) (ς2(p + 1) + ε2(p + 1)) . (46)



From (46), like in the base case,

Ci,n(yK) − Ci,n(x1)

≤ d̂p+1(yK − x1) + 2σi + 2biW

+ max(L − 1, 1) (ς2(p + 1) + ε2(p + 1)) . (47)

From (43) and (47),

K∑
k=1

(Ci,n(yk) − Ci,n(xk))

≤ d̂p+1

K∑
k=1

(yk − xk) + 2biW + 2σi + Kε2(p + 1)

+ max(L, 2) (ς2(p + 1) + ε2(p + 1)) . (48)

Thus, (34) follows from (48) with ς3(p + 1) =
max(L, 2) (ς2(p + 1) + ε2(p + 1)) + 2LW + 2σ and ε3(p +
1) = ε2(p + 1). Thus, (31) to (34) hold in the induction case.

Note that ςi(x), εi(x) are increasing in both i and x. Thus,
from (31), (32) and (34), Lemma 4 holds with β = ς3(F ) and
γ = ε3(F ).

D. Proof of Theorem 1

We present the proof for arbitrary �λ and when each session
spans one link. Let AR

i (t) be the number of packets of session
i that have been released at its source node in (0, t]. Note
that a packet is released for session i at its source if and only
if a new token is generated for session i at the bucket at its
source. Thus, ∀ t, AR

i (t) = Ci,n(t) where n is the bucket at
i’s source. Now, from Lemma 2, there exists constants �, W0,
such that when W ≥ W0, ∀ t, |AR

i (t)
t − d∗i | ≤ �

t . Thus,
the packet release rate vector is �d∗ ∈ ΛMS. Since only the
released packets are available for scheduling and the release
rate vector is in ΛMS, the departure rate vector exists and
equals the release rate vector. The result follows.

E. Proof of Theorem 2

We prove Theorem 2 using a supporting lemma, Lemma 5,
which we state and prove first. The lemma and its proof do
not assume that the sessions are single-hop, and therefore hold
for multi-hop sessions as well.

Lemma 5: If (λ1, . . . , λN ) ∈ Λ, then
(λ1/β̃1(N ), . . . , λN/β̃N (N )) satisfies (4).

Proof: Let
(
λ1/β̃1(N ), . . . , λN/β̃N(N )

)
not satisfy

(4). We will show that �λ �∈ Λ.

Now, since
(
λ1/β̃1(N ), . . . , λN/β̃N (N )

)
not satisfy (4),

there exists a session-link i such that∑
j∈Si∪{i}

λq(j)

β̃q(j)(N )
> 1.

Since βj ≤ β̃q(j),
∑

j∈Si∪{i}

λq(j)

βj(N )
> 1.

Now, note that Ki(N ) ≤ βj(N ) for every session-link j ∈
Si ∪ {i}. This is because if j ∈ Si, then i ∈ Sj . Thus,∑

j∈Si∪{i}

λq(j)

Ki(N )
> 1.

⇒
∑

j∈Si∪{i}
λq(j) > Ki(N ). (49)

Now consider an arbitrary scheduling policy π. Under π,∑
j∈Si∪{i} Dj(n) ≤ nKi(N ) for every n ≥ 0 as at most

Ki(N ) nodes among Si ∪ {i} can be scheduled concurrently.

Thus, lim inf
n→∞

∑
j∈Si∪{i}

Dj(n)
n

≤ Ki(N )

⇒
∑

j∈Si∪{i}
lim inf
n→∞

Dj(n)
n

≤ Ki(N )

<
∑

j∈Si∪{i}
λq(j) (from (49)).

⇒ lim inf
n→∞

Dj(n)
n

< λq(j) for some j ∈ Si ∪ {i}

⇒ lim inf
n→∞

DLj (n)
n

< λq(j).

The last inequality follows since DLj (n) ≤ Dj(n) for all

j, n. Thus, if limn→∞
DLj

(n)

n exists, then its value is less than
λq(j). Thus, the network is not stable under π. Alternatively,
if the limit does not exist, then also the network is not stable
under π. Thus, �λ �∈ Λ. The result follows.

Note that for the special case of single-hop sessions, ses-
sions and session-links are identical, and for any single-hop
session j, β̃j = βj . Thus, Theorem 2 follows from Lemma 5
since whenever any �λ satisfies (4), �λ ∈ ΛMS.

F. Proof of Theorem 3

Consider a network N with three single-hop sessions i1, i2
and i3 such that Si1 = {i2, i3} and Si2 = Si3 = {i1}. Thus,
Ki1(N ) = 2 and Ki2(N ) = Ki3(N ) = 1. Let λi1 = λi2 =
λi3 = 1/2. Note that a policy that schedules session i1 in
odd slots and i2 and i3 in the even slots stabilizes the system.
Hence, �λ ∈ Λ.

Now, consider the arrival rate vector
(λi1/Ki1(N ), λi2/Ki2(N ), λi3/Ki3(N )) = (1/4, 1/2, 1/2),
which corresponds to the following arrival process: i2
(i3, resp.) generates a packet every even (odd, resp.)
slot, and i1 generates a packet in slots 1, 5, 9, . . . . Note
that a maximal scheduling policy that schedules i1
only when i2 and i3 do not have a packet to transmit,
never schedules i1 and is therefore unstable. Thus,
(λi1/Ki1(N ), λi2/Ki2(N ), λi3/Ki3(N )) �∈ ΛMS.

G. Proof of Theorem 4

We prove Theorem 4 using Lemma 5 and another supporting
lemma, Lemma 6, which we state and prove next.

Lemma 6: Let �λ′ strictly satisfy (4) (i.e., the inequalities
are strict). Then the packet queue of every session-link will



almost surely become empty infinitely often. Furthermore, for
every session-link j and time t, E[Bj,t] < ∞.

Proof: Let �λ′ strictly satisfy (4). Let αj(t) and D̃j(t)
denote the number of arrivals and departures respectively for
session-link j in slot t. Let Qj(t) be the number of packets
for the session of session-link j waiting for transmission at
the source of session-link j at the end of slot t. Let Sj ∪
{j} = Xj , and n̂ = |Xj |. First, we obtain relations among
these parameters. If session-link j satisfy Qj(ν) > 0 for every
ν ∈ [t, t + τ ], then for every ν ∈ [t, t + τ ],∑

k∈Xj

D̃k(ν) ≥ 1. (50)

Qj(t) +
t+τ∑

ν=t+1

αj(ν) ≤
t+τ∑
ν=1

Aq(j)(ν)

≤ tαmax +
t+τ∑

ν=t+1

Aq(j)(ν). (51)

Now we have,

P {Bj,t > τ}

≤ P

⎧⎨⎩
t+τ⋂
v=t

⎧⎨⎩
⎡⎣ ∑

k∈Xj

Qk(t) +
v∑

ν=t+1

∑
k∈Xj

αk(ν)

−
v∑

ν=t+1

∑
k∈Xj

D̃k(ν) > 0

⎤⎦⎫⎬⎭
⎫⎬⎭

≤ P

⎧⎨⎩
t+τ⋂

v=t+1

⎧⎨⎩ ∑
k∈Xj

Qk(t)

+
v∑

ν=t+1

⎛⎝ ∑
k∈Xj

αk(ν) − 1

⎞⎠ > 0

⎫⎬⎭
⎫⎬⎭ (from (50))

≤ P

⎧⎨⎩ ∑
k∈Xj

Qk(t) +
t+τ∑

ν=t+1

∑
k∈Xj

αk(ν) − τ > 0

⎫⎬⎭
≤ P

⎧⎨⎩ tn̂αmax

τ
+

1
τ

t+τ∑
ν=t+1

∑
k∈Xj

Aq(k)(ν) − 1 > 0

⎫⎬⎭
(from (51))

= P

⎧⎨⎩ tn̂αmax

τ
+

∑
k∈Xj

(
1
τ

t+τ∑
ν=t+1

Aq(k)(ν) − λ′
q(k)

)

> 1 −
∑

k∈Xj

λ′
q(k)

⎫⎬⎭ .

Let δ = 1 − ∑
k∈Xj

λ′
q(k). Clearly, δ > 0. Thus,

P {Bj,t > τ}
≤ P

{{
tn̂αmax

τ
>

δ

n̂ + 1

}

⋃
k∈Xj

{
1
τ

t+τ∑
ν=t+1

Aq(k)(ν) − λ′
q(k) >

δ

n̂ + 1

}⎫⎬⎭
≤ P

{
tn̂αmax

τ
>

δ

n̂ + 1

}
+

∑
k∈Xj

P

{
1
τ

t+τ∑
ν=t+1

Aq(k)(ν) − λ′
q(k) >

δ

n̂ + 1

}

=
∑

k∈Xj

P

{
1
τ

t+τ∑
ν=t+1

Aq(k)(ν) − λ′
q(k) >

δ

n̂ + 1

}

if τ >
tαmax

δ
.

Now, from (1), the packet queue of every session-link will
almost surely become empty infinitely often. Also,

E[Bj,t] =
∞∑

τ=1

P {Bj,t > τ} < ∞.

Theorem 4 follows from Lemmas 5 and 6.
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