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Abstract

We introduce a new inference algorithm for
Dirichlet process mixture models. While
Gibbs sampling and variational methods fo-
cus on local moves, the new algorithm makes
more global moves. This is done by intro-
ducing a permutation of the data points as an
auxiliary variable. The algorithm is a blocked
sampler which alternates between sampling
the clustering and sampling the permutation.
The key to the efficiency of this approach is
that it is possible to use dynamic program-
ming to consider all exponentially many clus-
terings consistent with a given permutation.
We also show that random projections can be
used to effectively sample the permutation.
The result is a stochastic hill-climbing algo-
rithm that yields burn-in times significantly
smaller than those of collapsed Gibbs sam-
pling.

1. Introduction

Dirichlet process (DP) mixture models (Antoniak,
1974) have been usefully employed as a clustering
methodology in a variety of applied areas such as bioin-
formatics (Xing et al., 2004), vision (Sudderth et al.,
2006), and topic modeling (Teh et al., 2006). By treat-
ing the number of mixture components as random,
DP mixtures provide an appealing nonparametric ap-
proach to mixture modeling in which the complexity
of the model adapts to the complexity inherent in the
data.

Posterior inference for DP mixtures is challenging, and
a variety of inference algorithms have been specialized
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to the DP mixture setting, including samplers (Ish-
waran & James, 2001; Escobar & West, 1995), varia-
tional approximations (Blei & Jordan, 2005; Kurihara
et al., 2007), and other search algorithms (Daume,
2007). A difficulty with all of these algorithms is their
tendency to get trapped in local optima. Variational
methods converge to local optima, and while samplers
are guaranteed to converge to the correct posterior in
the limit, they sometimes suffer from extremely slow
mixing. For example, the popular collapsed Gibbs
sampler (Escobar & West, 1995) reassigns only one
data point at a time. These local moves make it dif-
ficult to make large changes to the clustering with-
out having to step through low probability clusterings.
Various split-merge algorithms have been developed to
address this issue and provide more global moves (Jain
& Neal, 2000; Dahl, 2003a).

In this paper, we develop a novel methodology for pos-
terior inference in DP mixtures. Rather than focusing
on local moves, we develop a method which allows us to
sample an entire clustering at once, a move even more
global than that offered by split-merge. Our approach
is an instance of the general class of augmentation sam-
plers, a class which includes the Swendsen-Wang sam-
pler (Swendsen & Wang, 1987) and others (Tanner &
Wong, 1987; Liu & Wu, 1999). Specifically, we aug-
ment the DP mixture to include a permutation (or-
dering) of the data points. We then alternate between
sampling permutations and sampling clusterings. The
key to our approach is the following insight: given a
fixed permutation, all exponentially many clusterings
consistent with the permutation can be considered us-
ing dynamic programming.

In related work, Friedman and Koller (2000) have
exploited permutations in Bayesian network struc-
ture sampling to yield tractable subproblems. The
idea of using dynamic programming for clustering has
been used for finding the MAP clustering of univari-
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ate data (Dahl, 2003b). Dynamic programming can
also be applied on a tree rather than a sequence
(Heller & Ghahramani, 2005). An important distinc-
tion between these algorithms and ours is that our
permutation-augmented sampler converges to the ex-
act posterior over clusterings.

While the key to our work is the fact that the sampling
of a clustering conditioned on a permutation can be
done efficiently, it is also necessary to develop efficient
methods for sampling the permutation given the clus-
tering. We show that this can be done using random
projections (Johnson & Lindenstrauss, 1984) to con-
struct an effective stochastic hill-climbing algorithm.

2. DP mixture models

Given a measurable space Ω, a base distribution G0

and a concentration parameter α0, the Dirichlet pro-
cess, DP(α0, G0), is a distribution over distributions
on Ω uniquely defined by the following property: G ∼
DP(α0, G0) if and only if

(G(A1), . . . , G(AK)) ∼ Dir(α0G0(A1), . . . , α0G0(AK))

for all measurable partitions A1, . . . , AK of Ω (Fergu-
son, 1973).

Draws G from a Dirichlet process turn out to be dis-
crete with probability one, making the Dirichlet pro-
cess suitable for mixture modeling (Antoniak, 1974).
In this case, Ω is the space of parameters of mixture
components. The data points x = (x1, . . . , xn) are
generated as follows: draw a parameter θi ∼ G and
then generate xi ∼ F (·; θi), where F is the probabil-
ity model associated with a mixture component (e.g.,
Gaussian, multinomial, etc.).

Data points are clustered by virtue of sharing iden-
tical values of the parameter θi. For the purpose of
this paper, it will be convenient to focus on this clus-
tering rather than the values of the parameters. A
clustering C contains |C| clusters, each cluster c ∈ C
being a subset of the indices {1, . . . , n}. Collectively,
the clusters partition the set of points. For example,
C = {{2, 3}, {1, 5}, {4}} is a clustering of 5 data points
into 3 clusters.

One computationally useful representation of the
Dirichlet process is the Chinese restaurant process
(CRP) (Pitman, 2002), which describes the induced
clustering C when G is marginalized out. The CRP
constructs the random clustering sequentially. Each
data point xi is placed in an existing cluster c ∈ C
with probability proportional to its size |c|, and a new
cluster is created with probability proportional to α0.
An important property of the CRP is that despite

its sequential definition, the distribution on partitions
that it induces is exchangeable; i.e., the probability
across partitions is the same for all orderings of the
data points.

2.1. Existing CRP-based sampling algorithms

The collapsed Gibbs sampler is based on exchange-
ability of the CRP. Indeed, since the data points are
exchangeable, we can compute the conditionals needed
by a Gibbs sampler by pretending that a given data
point is the final data point (Escobar & West, 1995).
The cluster assignment of point xi is thus sampled ac-
cording to the following probabilities:

p(i ∈ c) ∝ |c\{i}|
∫

F (xi; θ)G0(dθ | xc\{i}),

for an existing cluster c and

p(i ∈ cnew) ∝ α0

∫
F (xi; θ)G0(dθ)

for a new cluster cnew. While the Gibbs sampler is
very simple to implement, it can be slow to mix. Only
one point can be reassigned at a time, and thus it is
difficult to bring about large changes to the clustering.
For example, splitting a large cluster into two or merg-
ing two similar clusters into one might require stepping
through intermediate clusterings with low probability.

One way to address the slow mixing issue is to use
split-merge algorithms (Jain & Neal, 2000; Dahl,
2003a), which relies on Metropolis-Hastings propos-
als to merge two distinct clusters into one or split an
existing cluster into two. In the following section, we
present a different approach to speeding up sampling
by augmenting the sampler with an auxiliary variable
representing a permutation.

2.2. A combinatorial perspective

To develop our permutation-augmented sampler, we
consider a combinatorial view of the DP mixture
model. The prior over clusterings C induced by the
Dirichlet process can be expressed compactly as fol-
lows (Antoniak, 1974):

p(C) =
α
|C|
0

AF(α0, n)

∏
c∈C

(|c| − 1)!, (1)

where AF(α0, n) = α0(α0 + 1) · · · (α0 + n − 1) is the
ascending factorial function.

Conditioned on the clustering C, the marginal proba-
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bility of the data x is given as follows:

p(x | C) =
∏
c∈C

∫ ∏
i∈c

F (xi; θ)G0(dθ).︸ ︷︷ ︸
def
= p(xc)

(2)

Note that given the clustering, the data points in each
cluster are generated independently, a property that
will be exploited in Section 3. By marginalizing out
the mixture parameters θ, we obtain a function p(xc)
that depends only on the sufficient statistics of the
points in cluster c.1

The goal of inference is to compute the posterior over
clusterings:

p(C | x) =
p(C)p(x | C)∑

C′ p(C′)p(x | C′)
.

This quantity involves a normalization constant which
cannot be computed in practice because of the expo-
nential number of possible clusterings. In the following
section we show how our augmentation allows this dif-
ficulty to be circumvented.

3. Augmenting with a permutation

While we cannot hope to efficiently sum over all possi-
ble clusterings, we can efficiently sum over all cluster-
ings in an appropriately constrained subset. If we or-
der our data points and only consider consistent clus-
terings, i.e., clusterings that partition this ordering
into contiguous segments, then it turns out to be pos-
sible to sum over clusterings efficiently using dynamic
programming.

We thus augment the DP mixture model with a per-
mutation π = (π1, . . . , πn), where xπi

is the ith point
in the permutation (Figure 1). For now, let p(π | C)
be the uniform distribution over consistent permuta-
tions:2

p(π | C) =
1[π ∈ Π(C)]
|Π(C)|

=
1[π ∈ Π(C)]
|C|!

∏
c∈C |c|!

, (3)

where Π(C) is the set of permutations consistent with
C. In this augmented model, we can run a blocked
Gibbs sampler where we alternate between sampling
π given (C,x) and sampling C given (π,x). Sampling
π is easy: choose a random permutation of the clusters;
for each cluster, choose a random permutation of the
points in the cluster. Sampling C turns out to be also
tractable via dynamic programming.

1This computation can be done easily in closed form if
G0 and F form a standard conjugate pair.

2In Section 4, we consider generating permutations from
non-uniform distributions, in particular ones that depend
on the data x.

C

x

C

π x

(a) DP mixture model (b) Permutation-augmented

Figure 1. We introduce an auxiliary variable for the permu-
tation π and perform sampling in the augmented model.

3.1. Sampling a clustering using dynamic
programming

We now present the dynamic program for sampling
the clustering C given the permutation π and data
x. Combining Equations 1, 2, and 3 we obtain the
following joint distribution:

p(C, π,x) =
α
|C|
0

AF(α0, n)|C|!︸ ︷︷ ︸
def
= A(|C|)

∏
c∈C

p(xc)
|c|︸ ︷︷ ︸

def
= B(c)

(4)

if π ∈ Π(C) and 0 otherwise.

In order to sample from p(C | π,x), we need to com-
pute the normalization constant:

p(π,x) =
∑

C:π∈Π(C)

A(|C|)
∏
c∈C

B(c).

Unlike
∏

c∈C B(c), A(|C|) does not decompose into
a product of per-cluster factors. It requires
global information—namely the number of clusters.
Nonetheless, we can still apply dynamic programming
conditioned on the number of clusters:

p(π,x) =
n∑

K=1

A(K)
∑

C:π∈Π(C),|C|=K

∏
c∈C

B(c)

︸ ︷︷ ︸
def
= g(n,K)

.

The quantity g(r, K) is a sum over all clusterings of the
first r data points (with respect to the permutation
π) with exactly K clusters. We compute this value
recursively by summing over all possible sizes m of the
last cluster:

g(r, K) =
r∑

m=1

g(r −m,K − 1)B({πr−m+1, . . . , πr}).

Given the size m, we sum recursively over clusterings
of the first r −m points and account for the points in
the last cluster using the function B.
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After computing all the entries in the dynamic pro-
gramming table g(r, K), we can sample a clustering by
following the recurrence. Starting at r = n, we select a
size m for the last cluster with probability proportional
to its contribution g(r−m,K−1)B({πr−m+1, . . . , πr})
to the summation, then with r = n−m, and so on.

It is interesting to note that a clustering is sampled
with probability proportional to p(C, π,x), which in-
cludes p(π | C). This fact has an intuitive inter-
pretation. In particular, the p(π | C) factor down-
weights clusterings with either very few or very many
clusters—exactly those that are consistent with a large
number of permutations. These clusterings would be
oversampled without the p(π | C) weighting.3

It is also worth noting that the augmentation method
that we have described can be applied to a broad class
of models beyond DP mixtures. Our approach applies
as long as the prior decomposes into factors A and
B as in Equation 4. In particular, the approach can
be used for finite mixture models and mixture models
based on Pitman-Yor process (Pitman & Yor, 1997).

The basic permutation-augmentation that we have
introduced in this section requires O(n2) space and
O(n3) time to sample a clustering. While the benefit
obtained for this computation is a potentially large
move, the computational burden is overly large to
make this basic approach feasible in general. We thus
turn to the discussion of several optimizations that we
have developed that make the approach practical for
large data sets.

3.2. Optimization 1: Metropolis-Hastings

The time and space complexities for computing p(π,x)
arise because of the need to sum over all possible clus-
ter sizes. The culprit is the 1

|C|! factor in A(|C|). If
we replace |C|! with β|C|, then we would be able to
move this factor, along with α

|C|
0 , into B(c). Doing so

results in an approximate joint distribution:

qβ(C, π,x) =
1

AF(α0, n)︸ ︷︷ ︸
def
= A′

∏
c∈C

p(xc)α0

|c|β︸ ︷︷ ︸
def
= B′(c)

. (5)

Note that A′ does not depend on C, and the depen-
dence on C factors according to the clusters. This
allows us to compute qβ(π,x) using a much simpler
dynamic program, one which requires only O(n) space

3Note that in the setting of Bayesian network structural
inference, a similar weighting is needed to guard against a
bias towards structures with fewer edges. Friedman and
Koller (2000) omit this weighting, resulting in a bias.

and O(n2) time:

g′(r) =
r∑

m=1

g′(r −m)B′({πr−m+1, . . . , πr}). (6)

We can sample from the approximate distribution
qβ(C | π,x) rather than our desired distribution p(C |
π,x). This introduces a bias, but we can correct for
this bias using Metropolis-Hastings. Specifically, we
accept a new clustering Cnew ∼ qβ with probability

min
{

1,
p(Cnew, π,x)qβ(Cold, π,x)
p(Cold, π,x)qβ(Cnew, π,x)

}
.

The only issue now is to choose β so that p and qβ are
not very far apart. Our solution is to Taylor expand
the log of the factorial function around the current
number of clusters: log |Cnew|! u log Γ(|Cold| + 1) +
Ψ(|Cold| + 1)(|Cnew| − |Cold|), where Ψ(x) = Γ′(x)

Γ(x) is
the digamma function, the derivative of log Γ(x). Let-
ting β = expΨ(|Cold|), we have |Cnew|! u aβ|Cnew|+1,
where a is a constant which can be absorbed into A′.
The approximation is good when we expect the distri-
bution of |C| to be concentrated around the current
number of clusters.

While this approach yields a significant reduction in
complexity, it is important to note that the adaptation
of β yields a sampler that does not necessarily have
the correct stationary distribution. In practice, we
adapt β only during the burn-in phase of the Markov
chain. Thereafter, we fix β to the average value of |C|
observed during burn-in.

3.3. Optimization 2: using a beam

The Metropolis-Hastings optimization yields a sam-
pling algorithm that has a complexity of O(n2) time
per sample. We now develop a second optimization
that improves the running time to roughly O(n). This
optimization is motivated by two empirical observa-
tions. First, the sum for computing g′(r) (Equation 6)
is dominated by only a few terms (most of the time
just a single term). Second, the vector of terms in
the summation for computing g′(r) (which we call the
summation profile) and that of g′(r + 1) are usually
very similar. Figure 2 shows the summation profile for
several values of r.

The first observation suggests representing the sum-
mation profile of g′(r) by a small subset of cluster sizes
Mr ⊂ {1, . . . , r} sufficient to capture at least 1 − ε of
the full sum. Then we are guaranteed to lose at most
a 1− (1− ε)n fraction of g′(n).
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Figure 2. An example of the summation profile (the con-
tribution g′(r − m)B′({πr−m+1, . . . , πr}) as m varies) for
several values of r. Top: log of the contribution. Bottom:
the contribution normalized by g′(r). For each r, we wish
to find a few values of m that have large contributions.
Since small differences in log space (a) are magnified in
(b), finding the values of m with the largest contributions
is crucial.

The second observation suggests computing the sets
M1,M2, . . . incrementally as follows: given Mr, let
Mr+1 be the smallest subset of Nr = {m + 1 : m ∈
Mr} ∪ {1} that captures at least 1− ε of the sum over
Nr. This procedure is heuristic because we choose Mr

based on Nr rather than {1, . . . , r}.

Empirically, we have found this approximation to be
quite effective. On a data set with n = 500 points and
ε = 10−32, the approximate g′(n) was 0.97 of the true
g′(n). This was obtained by keeping |Mr| u 5 cluster
sizes instead of the 250 that would have been required
for the full O(n2) computation.

4. Data-dependent permutations

Thus far we have focused on the problem of sampling
the clustering; we now turn to the problem of sampling
the permutation. We propose doing this in a data-
dependent way. Intuitively, “similar” points should be
placed next to each other in the permutation, so that
they will have a better chance of ending up in the same

cluster when we sample the clustering. We present two
ways of fleshing out this intuition: the first is based on
constructing a permutation sequentially; the second is
based on random projections.

4.1. Markov Gibbs scans

If we want to leverage dynamic programming when
sampling the clustering, we must take care to generate
a permutation π so that the factors of p(π | C) respect
the A(|C|)

∏
c∈C B(c) template.

With that in mind, we generate the permutation as
follows: we first choose one of the |C|! cluster permu-
tations uniformly at random.4 Then for each cluster
c ∈ C, we choose the first point uniformly from c. We
choose the next point with probability proportional to
the predictive likelihood given the previous point, and
repeat until all points in the cluster have been chosen.

This particular choice is motivated by the fact that
it encourages similar points to appear next to each
other. It is simple to evaluate the likelihood p(π | C),
which is needed exactly (not just up to a normalization
constant) for sampling C given π. The running time
unfortunately increases from O(|c|) to O(|c|2), which
means that this technique will be effective only when
clusters are moderately-sized.

4.2. Random projections

Random projections are a powerful technique that al-
low one to project n high-dimensional data points into
O(log n) dimensions and preserve the pairwise dis-
tances (Johnson & Lindenstrauss, 1984). We use this
to technique to project the data points down to one
dimension, which induces a random permutation on
the points. A vectorial representation of our data is
needed, which is natural in most common cases (e.g.,
Gaussian or multinomial data). Specifically, we gener-
ate the permutation as follows:

• Choose a random unit vector u.
• For each cluster c ∈ C, let vc be the vectorial

representation of the average sufficient statistics
of xc (e.g., the mean for Gaussian data).

• Sort the clusters by increasing u · vc.
• For each cluster c ∈ C:

– Let vi be the vectorial representation of xi.
– Sort the data points i ∈ c by increasing u ·vi.

4A non-uniform distribution that tends to place similar
clusters next to each other would be preferable, but then
p(π | C) would not be amenable to dynamic programming.
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Unlike in the case of Markov Gibbs scans, it is a non-
trivial task to compute p(π | C), which is the propor-
tion of the unit ball {u : ||u|| ≤ 1} that would produce
the permutation π (characterized by linear constraints
such as u · vπc

1
< · · · < u · vπc

|c|
). This would require

computing the volume of a convex body.5

Nonetheless, as we will show in Section 5, random pro-
jections can be very effective during the initial burn-in
phase of the Markov chain for reaching good cluster-
ings. For this phase, we propose the following stochas-
tic hill-climbing algorithm: alternate between sam-
pling from p(π | C,x) using random projections and
sampling a clustering C with probability proportional
to p(C,x)1[π ∈ Π(C)]. An advantage of this approach
is that p(C,x)1[π ∈ Π(C)] does not depend on |C|, so
we can forgo the first optimization (Section 3.2). Af-
ter burn-in, we can switch to the data-independent or
Markov Gibbs scan permutation sampling schemes to
explore the state space in an unbiased manner.

5. Experiments

All ergodic samplers converge to the correct posterior
over clusterings; the important question is how fast
this happens. A typical sample path of a Markov chain
can be broken into two phases, a burn-in phase and a
mixing phase. A prerequisite to convergence is visiting
high probability regions of the state space. During the
burn-in phase, the sampler essentially does stochastic
hill-climbing starting from a low probability clustering.
In practice, when immediate progress has ceased (re-
gardless of whether the chain has actually converged)
the mixing phase begins, in which samples are used to
compute averages of desired quantities. Our experi-
ments show that using permutation augmentation can
help quite a bit during the burn-in phase (Section 5.1)
and is competitive in the mixing phase (Section 5.2).

We compared our permutation-augmented sampler
with Gibbs (Escobar & West, 1995) and split-merge
(Dahl, 2003a). Since neither of the samplers work well
alone, we formed the following hybrids for compar-
ison: Gibbs, Gibbs+SplitMerge, Gibbs+Perm,
and Gibbs+SplitMerge+Perm. For the samplers
that use more than one type of move, we interleaved
the moves, dividing the CPU time roughly evenly
among them.

After each iteration of sampling, we also sample the
concentration parameter α0 (West, 1995). We have
devised a way of integrating out α0 as part of the dy-
namic program for sampling clusterings; we omit the

5A general O(n5) algorithm exists for this task (Kannan
et al., 1997) but is impractical for our purposes.

details for reasons of space.

5.1. Burn-in phase

We use the stochastic hill-climbing permutation-
augmented algorithm with random projections (Sec-
tion 4.2) during the burn-in phase. Though biased,
sampling the permutation in this data-dependent way
is crucial for performance.

Synthetic data We generated 10,000 points from
a finite mixture of Gaussians with a N (0, 2) prior on
the mean (but used N (0, 100) during inference) and
identity covariance matrix. To understand the regimes
in which the various algorithms perform well, we varied
three settings: sampler initialization, number of true
clusters, and number of dimensions. Figure 3(a)–(h)
demonstrates the rates of convergence of the different
samplers across these conditions.

An often neglected issue is the question of initializa-
tion, which can impact performance significantly. For
example, when initialized with a single cluster con-
taining all the data points, Gibbs cannot easily form
new clusters. On the other hand, initializing with too
many clusters makes both Gibbs and split-merge ineffi-
cient: Gibbs takes O(n2) time per iteration and since
split-merge proposes merging clusters at random, it
will reject most of the time. As Figure 3(a)–(c) shows,
Gibbs+Perm and Gibbs+SplitMerge+Perm, the
two samplers with permutation moves, are largely
insensitive to the type of initialization. We see
that Gibbs+SplitMerge catches up slowly, but its
performance degrades with more initial clusters (c).
Gibbs remains stuck in a local optima, although it
does much better with more initial clusters.

For all of the remaining experiments, we initialized
using sequential prediction: a clustering is sampled
according to the CRP but weighting the probability of
choosing a cluster by the predictive likelihood of the
new point given the existing points in the cluster.

Figure 3(d)–(f) shows the performance on 40-
dimensional data for different numbers of true clusters.
This experiment confirms our intuition that having
more true clusters worsens the convergence of sam-
plers with split-merge moves but does not affect the
samplers with permutation moves.

Figure 3(g)–(h) shows the performance for 10 and 80
dimensional data sets with 40 true clusters. The gains
resulting from permutation moves are sharpened in
higher dimensions (h). We speculate that this is be-
cause random projections are more effective at sepa-
rating out the true clusters in this regime.
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Real-world data To test the samplers on real-world
data, we took 10,000 handwritten digits from the
MNIST data set (collected by Yann LeCun), normal-
ized the data, and ran PCA to reduce the dimension-
ality from 28 × 28 to 50. The covariance of the DP
mixture model is fixed to 16I. Figure 3(i) shows that
using permutation moves improves performance.

For multinomial data, we clustered 2246 AP news
documents (collected by David Blei). Each doc-
ument is represented as a 10,473-dimensional vec-
tor of word counts. Figure 3(j) shows that
Gibbs+Perm underperforms Gibbs+SplitMerge,
but is competitive when combined with split-merge
(Gibbs+SplitMerge+Perm). We suspect that ran-
dom projections are less effective at separating AP
data, which consists of raw word counts and overlap-
ping topics.

5.2. Mixing phase

We now evaluate the ability of the four samplers to
mix after burn-in. We took 1000 examples from the
MNIST data set and reduced the dimensionality to
two.6 Instead of using random projections, we sample
the permutation uniformly in order to sample from the
exact posterior.

Figure 3(k)–(l) shows the autocorrelation7 of two
statistics: the number of clusters and largest cluster
size. Smaller values of autocorrelation indicate faster
mixing. We see that for the number of clusters, there
is little difference between the various algorithms. In
the case of the largest cluster size, the samplers that
include split-merge moves mix faster.

6. Discussion

We have presented a new sampling algorithm for DP
mixtures by introducing an auxiliary variable repre-
senting the permutation of the data points. This en-
ables us to use dynamic programming to sum over an
exponential number of clusterings. We also proposed
the use of random projections to yield an efficient ap-
proach to sampling the permutation.

Our method can be extended to hierarchical Dirichlet
processes by defining a global permutation on the data

6We reduced to two dimensions in this experiment so
that we could ensure that a chain converges to the station-
ary distribution. This allows us to accurately estimate the
mean and variance of the two statistics for computing the
autocorrelation.

7Autocorrelation at lag τ of a sequence x1, . . . , xn is

defined as 1
n−τ−1

Pn−τ
i=1

(xi−µ)(xi+τ−µ)

σ2 , where µ and σ2 are
the mean and variance of x1, . . . , xn.

points in all groups. In more complex models such as
these, local optima are likely to be a bigger issue.

The permutation augmentation defines a tractable
subset of clusterings which can be summed over ef-
ficiently. It would also be worthwhile to explore other
types of augmentation schemes that yield tractable
subproblems. For example, trees might define richer
subsets of clusterings. As DP mixtures become more
prevalent, the need for fast inference procedures be-
comes more pressing. This work is the first step in a
new direction, which we hope will lead to many more
algorithms.
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Figure 3. Plots (a)–(j) show the log probability during the burn-in phase for the four samplers on various data sets and
initializations. Plots (k)–(l) show autocorrelations during the mixing phase. The error bars show the range of values
obtained across five runs with different random seeds for both initialization and sampling.
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