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Gait Transitions for Quasi-Static Hexapedal 
Locomotion on Level Ground 

G. C. Haynes, F. R. Cohen, and D. E. Koditschek 

Abstract As robot bodies become more capable, the motivation grows to better 
coordinate them-whether multiple limbs attached to a body or multiple bodies as­
signed to a task. This paper introduces a new formalism for coordination of periodic 
tasks. with specific application to gaitlransitions for legged platforms. Specifically. 
we make modest use of classical group theory to replace combinatorial search and 
optimization with a computationally simpler and conceptually more straightforward 
appeal to elementary algebra. 

We decompose the space of all periodic legged gaits into a cellular complex in­
dexed using "Young Tableaux", making transparent the proximity to steady state 
orbits and the neighborhood structure. We encounter the simple task of transition­
ing between these gaits while locomoting over level ground. Toward that end. we 
arrange a family of dynamical reference generators over the "Gait Complex" and 
construct automated coordination controllers to force the legged system to converge 
to a specified cell's gait, while assessing the relative static stability of gaits by ap­
proximating their stability margin via transit through a "Stance Complex". To in­
tegrate these two different constructs-the Gait Complex describing possible gaits, 
the Stance Complex defining safe locomotion-we utilize our compositional lexicon 
to plan switching policies for a hybrid control approach. Results include automated 
gait transitions for a variety of useful gaits, shown via tests on a hexapedal robot. 
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1 Introduction 

Gait transitions are ubiquitous among legged animals and essential for robots. 
Whereas there is a long and still lively debate about the reason for their value to an­
imal runners (optimized joint loads? [4]; optimized energetics? [5]; muscle function 
or bone strain? [21]), the more limited capabilities of legged robots ensure for years 
to come that different maneuvers in different environments at different speeds under 
varied loading conditions will require the adoption of distinct locomotion patterns, 
along with necessitating the ability to transition between them safely and efficiently. 
The great variety of gaits found in nature-quadrupedal walking, trotting, pacing, 
and galloping; hexapedal wave gaits and alternating tripods [15, II, 22]; and so 
on-persuades us of the importance in building a general framework to identify and 
produce reliable transitions amongst all gaits a robot can use. 

A variety of methods have been proposed for switching gaits in legged robots, 
however most have not considered underactuated systems, in which legs do not have 
full control over the timing of stance and recirculation throughout a full stride. Ex­
amples of underactuated legged robots include the RHex robotic hexapod [17] and 
the RiSE climbing robot [19], legged machines respectively capable of running and 
climbing on many unstructured terrains. In the case of RHex, each leg contains a sin­
gle actuator, thus modification of gait timing must occur during recirculation, so as 
to not produce inconsistent toe velocities during stance. For RiSE this is even more 
imperative when climbing a wall because inconsistencies of toe velocities while at­
tached to a climbing surface can cause a robot to lose grip and fall. For this reason, 
we have developed a variety of prior methods using only gait timing modification 
during leg recirculation [10, 9] in order to change gaits during locomotion. 

This paper focuses upon methods of merging low-level regulation control of 
gaits, as described above, with high-level task planning, in which hybrid control of 
various different gait strategies is necessary. We address the problem of producing 
safe, efficient gait control for underactuatcd robots via switching policies amongst 
families of gait limit cycle attractors. We do so by exploiting the algebraic structure 
of two distinct symbolic decompositions of the limb phase space: the Gait Com­
plex, introduced in Section 2; and the Stance Complex, introduced in Section 3. Our 
techniques in this paper build upon basic ideas presented in [12], but we introduce 
methods that are more general and more comprehensive in scope, particular to the 
application of gait switching. Our specific contributions lie in the introduction of 
these two cellular decompositions of the phase space that we use to 

i. enumerate the allowable gaits of a legged system; 
ii. design a mixed planning/control method to navigate amongst them; 

iii. execute these transitions in real-time during continuous legged locomotion. 

Initial results are presented for a walking hexapod, while future applications in­
clude feedback-driven general terrain locomotion for walking. running, and climb­
ing robots, while requiring minimal sensory information and computational power. 
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2 Hybrid Control Over the Gait Complex 

2.1 The Gait Complex, Gaitsn ['Jl'] 

In [2], we endow Tn+ 1I'll' ~ Tn with the structure of a cell complex, denoted 
Gaitsn['ll'l, the disjoint union of its j-skeleta 

Gaits,,['ll'] = II
n 

Gaitsn['ll'P, 
j=O 

collections of j-dimensional submanifolds assembled in Gaits" ['ll'jj, with appropri­
atc "gluing" identifications at their boundaries 161. Although the cardinality of this 
cell complex must grow combinatorially in the degrees of freedom. n. it is suffi­
ciently regular to enjoy the additional structure of a Delta Complex wherein each 
cell of each of the skeleta is the image of a standard unit simplex whose boundaries 
are formally associated via a family of "characteristic maps" [6]. 

We find it useful to index the various cells of the complex. Gaitsn ['ll'j. by means 
of equivalence classes of Young Tabloids [16], T E 'J~:i, arrays of (typically) 
unevenly long strings of integers taken from the set {I, ... ,n + I} with no replace­
ment, each of whose k + 1 rows denotes a "virtual leg" (a subset of legs that is 
locked in steady state at the same relative phase for the gait being described), and 
whose row order corresponds to the cyclic order of virtual legs in the gait. We show 
formaJly in [2] that a certain quotient (that is, a complete transversal of left cosets 
[16] arising from a particular subgroup) of the permutation group L'n+l x L'k+l is 
in one-to-one correspondence with the gait complex Gaitsn['ll'lk, but for purposes of 
this paper it suffices to provide the following intuitive characterization of the equiv­
alence classes as follows. Tho tabloids. T, T' E T;;~i, index the same cell in the 

k-skeleton, Gaitsn['ll'Jk if and only if: (i) there is a bijection between their rows (each 
considered as an unordered collection of integers): and (ii) the bijection is some 
power of the "full shift", (E L'k+l : (1,2, ... , k, k + 1) I--> (k + 1,1,2, ... , k). 

In this paper, we make twofold use of the Young Tabloids. First, each Tabloid 
provides an algorithmic specification of a gait generator over the cell it indexes. 
We will sketch the nature of this algorithm in Section 2.2 and provide some illus­
trative examples in Table 6. Second, a computationally simple Tabloid operator, 

a : ~:i -> ir;+! computes the set of tabloids indexing the boundary cells in 

Gaitsn+dTjk of the cell in Gaitsn +dll'lk+l indexed by its argument. We will use 
this operator as the key computational component in the transition planner presented 
in Section 4. Given length constraints, it does not seem possible in this paper to 
present any more formal an account of these ideas (which are formaJly developed in 
[2]) and we seek rather to provide an intuitive feeling for what the machinery offers 
through the use of examples and the informal pictures and tables in the Appendix. 
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2.2 The Gait Fields 

While not required for qualification as a Delta Complex, we find in this application 
the need for a family of "nonnal" maps Tl.T : ,][,71+1 -> ']['n-k associated with each 
cell indexed by its tabloid T E T;;:t whose Jacobian yields the normal bundle, 
TpTJ. defined by the corresponding inclusion map. Specifically. we use them here 
to build gradient vector fields that "force" the resulting flows toward the designated 
cell wherein the flow of the desired reference field is known to produce a desired 
gaiL To do so, first observe (as shown formally in [2]) that 

1 m 
V11l : ']['111 -; [0,1]: (Til ... ,Tm) f-4 1 L COSLT; (I) 

m ;=1 

is a perfect Morse function with critical points in {O, 7l'} 111 each of which have Morse 
index specified by number of 7l' entries. It follows that the How associated with 
the gradient vector field. grad v m, takes almost all initial conditions in Tm to the 
'd . (271'.0 211"10) Th' bl 'd T rrn+l h M f .I entlty, e , , .. , e . us, given a ta 01, E J k+l ' t e orse unction 
VT := vn-k 0 Tl.T defines a gradient vector field whose flow brings almost every 
initial condition in T n ",1 to the cell in ,][,71+1 IT that T indexes. Examples of the 
normal maps associated with each cell of the three-legged complex, Gaits2 [T] are 
listed in Table I. 

Denote by Rhc : ']['1 -> ITl the "Buehler Clock" reference generator first 
introduced in [18] that encodes a one dimensional circulation flow undergoing a 
phase interval of slow "stance" motion corresponding to the behavior we presume 
appropriate when a leg is in contact with the ground, followed by a complementary 
phase interval of fast "recirculation" corresponding to the time interval over which 
a leg will be lifted off from the ground and returned ready for its next stance phase. 
This simple rhythm generator can be "pushed forward" to ']['2 via the inclusion (5) 

2 1 t 22 d .as RBc := Pl:I§ . Rae 0 P [ill)' The sum, FPR Rae - gra V [ill) , which can 
be written in angular coordinates (see footnote 3) as 

(2) 

induces a flow under which almost every pair of phases is brought to a bipedal 
"pronk"-a limit cycle characterized by both legs recirculating in phase-a cycle 
over the cell in Ga itsl [T] indexed by [ill) E 'if. 

In contrast, let us construct the alternating phase bipedal gait generator displaying 
the archetype of a gait in the "antiphase" cell of Gaits! [']['l indexed by rn E 'if. By 

conjugation,R~p:= DhtR·F~RO(htR)-! , through the translation, hh :T2-> 

T2 : (x I, X2) >-> (Xl, 7l' + X2), we define a new vector field 

R~P(Xl'X2) = Rhc(xd [i J sin(xl - x2 + 7l') [ \ J . (3) 

that shifts the roles of the two invariant sub manifolds of the pronking field, F;, R' 
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Table 6 provides a detailed listing of the various intermediate fields required to 
construct two of the most familiar hexapedaJ gaits: the alternating tripod, R~ p [18], 
and the stair climbing gait, R~tai1' fI4]. All of the gaits used in the experiments 
reported here are generated in a similar manner. 

3 The Task of Locomotion and the Stance Complex 

The Gait Complex, Gaitsn_l [11'], describes all possible gaits for an n-Iegged robot. 
Locomotive differences exist, however, amongst the various gaits. We introduce a 
second cellular decomposition of 11''', the Stance Complex, Stance" [11'], to describe 
the inherent discreteness of legged locomotion and note all possible leg support con­
figurations. We utilize this complex to identify a priori which cells of Gaitsn _) [11'] 
produce viable statically stable locomotion. 

Computation of static stability margin of locomotion can be determined by pro­
jecting the mass center onto a support polygon defined by a robot's surface con­
tacts, a computation that can be quite expensive in the presence of complex sur­
face interactions [1]. For a particular contact configuration of limbs, a single cell 
of Stancen [11'], we argue, this stability margin is locally a continuous function of 
posture, but varies more dramatically (and discretely) when toe contacts are added 
or removed, other cells of Stancen [11']. In the case of underactuated robots. where 
available postures are limited by low numbers of degrees of freedom, this is partic­
ularly true. Even for high degree of freedom system, the workspace of individual 
limb motions can be quite small when compared to body size, thus expounding the 
small variation in stability margin within a cell of Stancen [11'] compared to dramatic 
changes when making or breaking contact. 

3.1 The Stance Complex 

The Gait Complex of Section 2 describes all possible gait timings, noting specific 
leg phase relationships. Of the immense number of possible gaits, 1082 for a 6­
legged robot, not all are locomotively viable, as many may recirculate legs together 
which produce unstable configurations of the robot's body. Stancen [11'] provides us 
with accurate constraints regarding this aspect of the locomotion task. 

Each axis of the n-tofus corresponds to the possible gait timings fOf an individual 
leg during locomotion, containing both stance and recirculation as discrete regions 
on the axis. The duty factor of a gait, 6 E (0, 27T), reflects the percentage of stride 
spent in stance versus recirculation, thus for an individual leg i. if Xi < 15 the leg 
is considered to be in stance. This demarcation is defined ror each axis of the torus, 
thus producing a complex Stancen [11'] of 2n total cubical cells, as well as intersect­
ing faces and edges. As an example of a cubical member of Stancen [11']. consider 
the cell where "Iix; < Ii. This cell corresponds to all legs in stance, while "IiXi ? 6 
is all legs in recirculation. 
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3.2 Examples: Stance2 [11'] and Stance3 [11'] 

If we consider the 2-torus, the space of gait timings for a bipedal robot, there exist 
four cells shown. One cell on this torus has both legs in stance, two cells have a 
single leg recirculating. and one cell has both legs recirculating. Assuming a quasi­
static locomotory system, it would be dangerous for the robot to use a gait that tries 
to recirculate both legs at once, thus this last cell should be avoided. 

Fig. 1 Stance2[1I'J: Demar­
cations between stance and re­
circulation produce 4 unique 
cells in the Stance Complex. 
With a stance duty factor 
of 50% (0 = 71'), there exists 
only a single gait (dashed line) 
that does not pass through the 
cell corresponding to both 
legs recirculating together 
(upper right). 

Considering a similar system on the 3-torus, depicted as a cube with faces identi­
fied in Fig. 2, we demarcate each axis with regions dedicated to stance and recircu­
lation to produce a total of 8 cubical cells in the Stance Complex. Depending upon 
the exact mechanics of the robot, it may be undesirable to recirculate certain sets of 
legs together. In the figure we highlight potentially dangerous cells that recirculate 
2 or 3 of the legs together at the same time. The cell where all legs are in stance, or 
only a single leg recirculates, would be considered safe cells, 

Fig. 2 Stance3 [1I'J; A total 
of 8 unique cubical cells exist 
in the Stance Complex for 
the 3-torus. In this figure 
are highlighted the 4 cells 
which recirculate 2 or more 
legs of a 3-legged robot 
simultaneously. A safe gait, 
in this scenario. would try to 
on ly recirculate a single leg at 
a time. two such gaits possible 
when 0 = 1271'. 
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3.3 Static Stability Metric 

We utilize Stancen [11'] to define in general the global properties of static stability 
for an n-Iegged robot. This approach allows us to evaluate gait stability simply by 
studying the cells through which a given gait passes. 

Fig. 3 For basic analysis of 
static stability, we consider a 
robot with single actuators per 
hip, similar to the RHex-style 
robot shown. With such a 
model, the stability margin of 
gaits is computed. 

4J ~Ccllfl 

(a) Basic model of rotary joint (b) Picture of a RHex­
quadruped style hexapedaJ robot 

CJ CJ~ ~ ~ 

~ ~ 
00 o. 00 oe 00 00 00 oe ee 00 00 00 00 

oe • 0 00 o • 00 00 00 00 00 .0 00 00 
Cdll Cdl2 Cdl4 Cell ~ Cdl) Cell" Ceilfl {'x!! 9 Cdl )(1 Q<li i2 Cdl? Cdlll Celll:t Ce!l14 C:!.L~ 

Slance Complex Cell 

Fig. 4: Stance4 [1I'J: There exist 16 cubical cells within Stance4 [11'], with varying 
stability values between all. Cells with more legs in stance (represented as shaded 
circles on si mple representations of robot at bottom) have greater stability margins. 

Figure 4 shows analysis of the Stance Complex on 11'4. Using our simple model 
of a quadrupedal robot (Fig. 3), each cell is tested for static stability, consisting 
of a total of 160, 000 tested configurations for the 16 cubical cells, taking into full 
consideration the entire gait space of 11'4. Cells with more legs in stance offer greater 
static stability. Similarly, certain cells with two legs in stance perform better than 
others, for instance showing that the cells corresponding to a trot gait, cells 6 and 9, 
have greater stability than those for pace and bound gaits. 
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4 Planning and Control Approach 

Utilizing both the Gait Complex and Stance Complex. we develop a mixed planning 
and control approach to automate safe switching between gaits. We intersect cells 
of 8- 1 (Gaitsn_r[T]) with unsafe cells of Stancen[T] in order to prune gait cells 
that do not produce safe locomotion. A search algorithm is then used to plan routes 
amongst the remaining cells to generate a sequence of Young Tabloids that are used 
in a hybrid switching controller that transitions between gaits, while avoiding dan­
gerous, unstable cells of the Stance Complex. 

4.1 Transitions on Hasse Diagram ofGaits 

The planning component of our hybrid controller relies heavily upon the partial or­
der relation of adjacency by boundary (that we denote by >-) in the Gait Complex, 
Topologically, it is impossible to pass from one cell to an adjacent neighbor of equal 
dimension without passing through a "neighbor" on the shared boundary. The very 
notion of cell adjacency is characterized by this partial order-conveniently cap­
tured by the formalism of the Hasse Diagram [16]. As different leg combinations 
incur very different locomotion behaviors (different passages through Stance,.,[T] 
in the present problem dealing with static stability) the choice of intermediate cells 
along the way from one to another gait-i.e.• the particular path through the Hasse 
Diagram-requires a level of methodical scrutiny that we entrust in the present pa­
per to a planner. The strong correspondence between the cellular structure of the 
Gait Complex. Gaitsn[T], and the tabloids, T" we use to index it affords our plan­
ner a very simple operation over the latter that faithfully represents the boundary 
operation over the former which we now outline. 

Given a tabloid, T E r,:::, indexing a cell in Gaitsn[T]k there is a very simple 
operation, 

+1 IJ"tt+la: r,:+1 -+ 2' k ; 0:::; k :::; n 

yielding the tabloids that index all its boundary cells in a manner we merely sketch 
here (but present rigorously along with a proof of correctness in [2]) as follows. For 
each pair of contiguous rows of T. collapse the entries into one row comprising the 
union of the entries of the pair. Compute such a collapsed tabloid for each successive 
continguous pair of rows, including, finally, the first and the last row, so as to achieve 
a set of k + 1 tabloids in r,:+l. Each of these indexes one and only one adjacent 
(boundary) cell in the (k I)-skeleton, Gaitsn[Tjk-l. Hopefully, it is intuitively 
clear that the "tabular inverse" of this operation. 

yields the one-row-longer tabloids that index the cells that share a boundary com­
ponent indexed by the argument. For example the partial order adjacency relation at 
the quadrupedal "half-bound" gait (for example reported in [8]) is computed as 
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Considering legs in recirculation, this definition of adjacency makes intuitive 
sense: when multiple legs enter recirculation together, as legs within the same row 
of a tabloid would, it is possible for one leg to speed up while another slows, thus 
splitting the row apart as the current gait cell changes. Conversely, legs entering 
recirculation may wait indcfinitely for othcr legs-so long as the robot remains stat­
ically stable-such that they synchronize, merging rows of a tabloid. 

Using this definition of adjacency between tabloids, and starting from the initial 
"pronk" tabloid on 1r6 

, 1112131415161, we build an adjacency matrix amongst all 1082 
cells of Gaitss[1r], shown in Fig. 5a. This matrix is block adjacent, since a given 
tabloid may only be adjacent to cells with either one less or one more length in 
rows. If we extend our definition of adjacency to allow multiple sequential rows to 
be compressed together (or a single row split into more than rows)-a reflection 
that more than two groups of legs can split or join in a given operation (or, more 
topologically, that we will allow immediate passage to boundaries of boundaries 
of cells in the gait complex)-this expands the definition of the Hasse Diagram to 
include other adjacencies, shown in Fig. 5b. 

(a) Hasse Diagram of Young Tabloids (b) Hasse Diagram including multi­
dimensional adjacency 

Fig. 5: Hasse Diagrams over the set of Young Tabloids. A 1082 x 1082 matrix repre­
sents the graph of gait cells, white dots representing adjacency. Cells are in order of 
increasing dimensionality, block-wise groupings shown here, prior to filtering based 
upon the Stance Complex. 

Lastly, before applying a discrete planner over this set of gait cells, we prune 
based upon static stability. In our basic implementation of the Stance Complex, we 
limit ourselves to cells that do not recirculate either ipsilateral nor contralateral legs 
(excluding the middle pair) together, thus only allowing 18 out of the 64 cells of 
Stance" [1r]. This conservative restriction on the Stance Complex, when intersected 
with the Gait Complex, reduces allowable gait cells to only 477 of the original 1082, 
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however all 477 are statically stable gaits. Another result of the conservative esti­
mate of gait stability is the existence of disconnected clusters of gaits in the Gait 
Complex. Of the 477 gaits, 301 exist in one large cluster (including the most com­
monly accessed legged gaits for N 6) with another two symmetric clusters of 87 
gaits, while each of the two circular crawls is likewise disconnected from all other 
gaits. By our estimation of static stability, it is impossible to reach one cluster from 
another, due to our constraints on ipsilateral and contralateral legs. 

4.2 Planning Gait Complex Switching 

We consider the problem of an underactuated robot, where freedom to control leg 
phasing only occurs during recirculation. To discretely plan over this set of opera­
tions, we utilize an A * planner that computes cost. in terms of total transition time. 
between arbitrary cells of the Gait Complex. 

The cost of an individual transition between two cells depends upon the initial 
phase of the first gait. Given thaI legs must recin;ulate together to switch. we sum the 
wait time until legs begin recirculation with total time of recirculation to get actual 
cost. An admissible heuristic in this case is cost of 1.0, as adjacent cell transitions 
cannot take more than one stride. 

4.3 Controller Activation 

Our controllers take a given sequence of tabloids. as output by the A * planner, and 
construct individual reference field controllers, following from the examples in Sec­
tion 2.2. Several additional controller moditications arc as follows. 

Foremost. active control of leg phase occurs only during recirculation. We as­
sume legs in stance to be "rigidly" attached to the surface. particularly relevant 
when considering climbing robots where inappropriate torquing of individual feet 
may cause them to lose grasp. In this way. the gradient field simply zeros any action 
along axes for legs currently in stance. 

The duty factor of the system is also modified when the robot approaches new 
gaits. A virtual biped gait. such as the alternating tripod, will use a gait with 50% 
duty factor when close in phase space. A simple controller that provides an algebraic 
relationship between duty factor and phase is detailed in [7]. 

Lastly, in our definition of the reference field controllers, we leave freedom in the 
choice of the exaet structure of an individual tableaux. I 

t ([ffiJ) = {tffi], 

Each tableaux describes the same system. consisting of the same limit cycle gait. 
with different enumerations of legs within the rows of the tableux. The distinction 

Following the terminology of [16]. a tabloid is the equivalence class of all numerically filled-in 
diagrams whose rows are identical. disregarding the order of the integer entries of each row. 
I 
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between individual tableaux, however. affects the construction of the related refer­
ence field controllers. as the first element of each row is chosen as leader (formally 
specified by the choice of left inverse as exemplified by p in equation (5». To 
effect a rational choice of "leader" in any new instantiation a gait. we consider all 
identified tableaux of a speci fie tabloid T, and make use of the one whose potential 
function has the lowest value. 

argmin vp(r) 
T'Et(T) 

By selecting the minimum cost potential function from which to generate our 
reference field, we achieve an online adjustment of the transient behaviors of the 
system such that it follows near-minimum distance paths between gaits. without in­
troducing local minima (as each possible x has the same stable critical point and our 
system always decreases in potential). For an alternating tripod gait. this operation 
includes a total of 36 function evaluations in order to choose an ordering. 

5 Experimental Results 

Using a hexapedal robot platform, we have implemented our gait transition method 
and shown its efficacy in producing near arbitrary transitions between safe gaits 
while preventing loss of static stability. We discuss examples of such transitions, 
compare with a naIve coupled oscillator approach. and project directions in which 
this research will enable new behaviors for both walking and climbing legged robots. 

5.1 Gait Switching 

Our new gait switching methods attempt to rectify deficiencies in our prior ap­
proaches. For the domain of climbing robots, we have constructed hand-designed 
transitions between gaits rIO]. but these transitions were not easily generated nor 
guaranteed. Further work produced control laws that converged to desired gaits [71, 
but was limited to a small number of gaits with no choice of which exact gait to con­
verge. The methods described here attempt to automate the generation of transitions, 
allow transitions between arbitrary pairs of gaits. while preventing static instability. 

Fig. 6 shows the transition from a crawl gait to the alternating tripod gait.The 
top of the figure shows the sequence of tabloids that the planner has determined to 
converge the fastest. The bottom plot shows roll, pitch. and yaw angles. relatively 
stable while undergoing a transition of gait. 

Fig. 7 shows two different attempts to produce a non-trivial gait transition. The 
first uses the tabloid-derived control law to simply converge to the desired gait. 
however it has the undesireable results of poorly designed paths of convergence. 
following from a basic coupled oscillator approach [12]. The second uses a sequence 
of planned intermediary gaits to produce a transition that retains static stability. 
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(a) Direct Controller Transition (b) Planned Sequence of Controllers 

Fig. 7: Two transitions between gaits. The planned sequence (right) prevents loss of 
static stability, while the direct approach (left) loses static instability, as measured 
by pitch-roll-yaw angles from a Vicon system. 

As can be seen in the plots, the unplanned version recirculates too many legs 
together, loses static stability, and pitches, rolls, and yaws during the transition. The 
planned version remains relatively level throughout the entire transition. Inconve­
nient and disruptive during a level ground walk. such perturbations would be catas­
trophic in a climbing setting, or even, most likely. in a high performance dynamical 
level ground setting. 
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6 Conclusions and Future Work 

We have introduced a combined planning and control method that uses both discrete 
and continuous representations to plan and execute transitions amongst gaits imple­
mented on an underactuated legged robot. Introduction of both the Gait Complex, a 
structure that characterizes all the possible one-cycles achievable with an n-legged 
machine, as well as the Stance Complex, classifying the ground contact status of all 
legs, brings about a greater understanding of the space of gails, and points the way 
to global approaches for gait control. 

In these preliminary experimental results, it seems possible that na'ive transitions 
using gaits that simply avoid bad cells of the Stance Complex may perform just as 
well as the planner's sophisticated use of cell adjacency. Furthermore, the situation 
is of course a good deal more complex than we allow in this first paper on these 
cellular decompositions. For example, the present gait reference fields (Sec. 2) yield 
steady state limit cycles whose paths maintain rigid phase relationship amongst legs. 
There is no reason not to consider more general gaits whose orbits may wind about 
the torus in different ways in order to avoid bad cells of the Stance Complex. 2 

We are currently studying methods of extending our level-ground transitions to 
domains in which the terrain varies, such as climbing over rubble-like obstacles 
or transitions between level-ground locomotion and vertical climbing, in which we 
expect different sets of viable gaits to be available to us. In both of these cases, 
studying how body geometry and contact mechanics affect the allowable cells of 
the Gait and Stance Complexes is part of our future work. 

Acknowledgements This work was supported in part by the ONR HUNT project. the DARPA 
SToMP project. and an Intelligence Community Postdoctoral Fellowship held by the first author. 

Appendix A: The Gait Complex and its Defining Inclusions 

The gait complex Gaits" [T] is a cellular decomposition of Tn built upon the image 
of T n + 1 under the "shearing map" [3], 

(4) 

The cells of Gaitsn [T] arise by "shearing" down all of the "diagonal" subspaces 
of T,,+l-that is, all of those orbits wherein some subset of entries maintain the 
identical phase-and thus represent via a single n-tuple, an "orbit" of (n + 1 )-tuples 
that circulate while maintaining the same relative phase. 3 

l For an example of a more complicated family of reference gait generators capable of producing 

such "winding" limit cycles. consider the example in Fig. 3 of [201. 


) We will shift back and forth as a matter of convenience between representing phase as an "angle" 

x. or as a point on the unit circle in the complex plane. r = e2 'rrix, where e is the standard 
exponential map. 
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For example, the bipedal steady state gaits may be coarsely distinguished by 
whether or not the legs are held in the same phase ("pronking") during circulation 
through periodic stride. Following the account at the beginning of Section 2.2, we 
use the Young Tabloid T = I:iTIl E 'If to index the bipedal "Pronk" by defining a 
parametrization of the appropriate diagonal, 

PI:iTIl : ']['1 -> ']['2: r 1-+ (r, r)j 

(5) 
(that we display along with its Jacobian matrix, PI:iTIl' and a choice of left inverse 
, pt1:iTIl' made apparent in the discussion of Section 2.2) which is then "sheared 
down" to get the representative cell, Gaitsl [1']0 {32 0 P!J]]J (']['1) }-in this case. 

2 21fiOthe single"vertex" 3 0 P[lli] (r) e • In contrast. if the legs are out of phase in 
steady state, then we locate the gait in the sheared image of the identity map of the 
two-torus to get Gaitsl [1']1 {32 0 PT(']['2)} for T = tE E 'J~, which evaluates to 
the entire "circle" 82 0PT(rj, r2) = e(2r.i(XI X2)). The Delta Complex formalism 
[6] requires these inclusions be made from the domain of a simplex, 

d[m] {(Xl, Xl + X2, ... , Xl + ... +Xm) E [0, 11 m 
: 

0:::: Xl + . " + Xj :::: 1, j = 1,,,. m} 

and given a Young Tabloid, T E r,::i with toral inclusion, PT : 1'k+1 -> ']['n+l, the 

associated "characteristic function" is fiT := PT 0 expk+l where expm : d[m] -> 

']['m : (Xl, ... , Xm) 1-+ (e27fi:rl, ... , e21fi
.'J: m ). Continuing along this specific exam­

ple. for m n + 1 2, the Delta Complex formalism now re-assembles these two 
sets-the zero-skeleton, Gaitsl ['][']0, and the one-skeleton GaitsdlljI-into the cell 
complex. Gaitsl [ll] = Gaitsl ['][']0 II Gaitsl [ll]l by identifying their shared point 
e21fO via the characteristic maps as detailed in [2]. The corresponding generalization 
of this construction to the 3-legged gait complex is listed in Table 1 and depicted in 
Figure 8 which also provides a view of the 4-Iegged gait complex. 
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Tabloid I InclusionMaps NormalMap Gait 
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Revers. Flip 

Incline 

Flip 

Ripple 

StairClimbing 

Table I: The Gait Complex Gaits2[1I'] 
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Gait Change of Coordinates 
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Three-Legged Crawll 14] 3 3 (3 )1DhTl,+ ' Hpll 0 hTll + 
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HexapedaiAltematingTriPOdllSJI H~p IP11!415j . H;,p optITIill] grad v,11 141 511 
236 ~ 2 3 6 

3 , tHexapedal Stair Gail 113] oR~!rJ,il' PI!2 • He II 0 l' 12 -grad 
:3 4 ·3 .; 
U 0 G 6 
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