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Abstract

We address the problem of semi-supervised learning in aergdsal setting. In-
stead of assuming that labels are missing at random, we zmalyess favor-
able scenario where the label information can be missintgtisgirand arbitrarily,
which is motivated by several practical examples. We presearly matching
upper and lower generalization bounds for learning in tkitirsg under reason-
able assumptions about available label information. Magd by the analysis, we
formulate a convex optimization problem for parametemeation, derive an effi-
cient algorithm, and analyze its convergence. We provigermental results on
several standard data sets showing the robustness of auitlaihg to the pattern
of missing label information, outperforming several sgdraselines.

1 Introduction

Semi-supervised learning algorithms use both labeled atmbaled examples. Most theoretical
analyses of semi-supervised learning assumerthatn labeled examples are drawn i.i.d. from a
distribution, and then a subset of sizés chosen uniformly at random and their labels are erased
[1]. This missing-at-randonassumption is best suited for a situation where the labelseguired

by annotating a random subset of all available data. But inyn@goplications of semi-supervised
learning, the partially-labeled data is “naturally océngf’, and the learning algorithm has no control
over which examples were labeled.

For example, pictures on popular websites like Faceboolikdare tagged by users at their dis-
cretion, and it is difficult to know how users decide whichtpies to tag. A similar problem occurs
when data is submitted to an online labor marketplace, sachnaazon Mechanical Turk, to be
manually labeled. The workers who label the data are oftemlyponotivated, and may deliberately
skip examples that are difficult to correctly label. In suctetting, a learning algorithm should not
assume that the examples were labeled at random.

Additionally, in many semi-supervised learning settirths,partial label information is not provided
on a per-example basis. For examplepinltiple instance learning?], examples are presented to
a learning algorithm in sets, with either zero or one positaxamples per set. lgraph-based
regularization[3], a learning algorithm is given information about whickaenples are likely to
have the same label, but not necessarily the identity ofléiel. Recently, there has been much
interest in algorithms that learn frotabeled feature$4]; in this setting, the learning algorithm is
given information about the expected value of several featwith respect to the true distribution
on labeled examples.

To summarize, in a typical semi-supervised learning problabel information is often missing in
an arbitrary fashion, and even when present, does not alnayesa simple form, like one label per
example.Our goal in this paper is to develop and analyze a learningoatym that is explicitly



designed for these types of probleriige derive our learning algorithm within a framework that is
expressive enough to permit a very general notion of laliefimation, allowing us to make minimal
assumptions about which examples in a data set have bedadabew they have been labeled,
and why. We present both theoretical upper and lower boumde&rning in this framework, and
motivated by these bounds, derive a simple yet provablymadtiearning algorithm. We also provide
experimental results on several standard data sets, whak that our algorithm is effective and
robust when the label information has been provided by “lazyunhelpful” labelers.

Related Work: Our learning framework is related to tmealicious label noisesetting, in which
the labeler is allowed to mislabel a small fraction of thenireg set (this is a special case of the
even more challengingalicious noisesetting [5], where an adverary can inject a small number
of arbitrary examples into the training set). Learning witiis type of label noise is known to be
quite difficult, and positive results often make quite riestre assumptions about the underlying
data distribution [6, 7]. By contrast, our results applyrfare generally, at the expense of assuming
a more benign (but possibly more realistic) model of labé@owhere the labeler can adversarially
eraselabels, but not change them. In other words, we assume thédleler equivocates, but does
not lie. The difference in these assumptions shows up gl&églg in our analysis: As we point out
in Section 3, our bounds become vacuous if the labeler isvatido mislabel data.

In Section 2 we describe how our framework encodes labetrmdtion in alabel regularization
function, which closely resembles the idea afempatibilityfunction introduced by Balcan & Blum
[8]. However, they did not analyze a setting where this fioncis selected adversarially.

2 Learning Framework

Let X be the set of all possible examples, @athe set of all possible labels, whdpg| = k. LetD
be an unknown distribution o’ x ). We writex andy as abbreviations fofz1, ..., z,,) € ™
and(yi,...,ym) € Y™, respectively. We writ¢x,y) ~ D™ to denote that eacfy;, y;) is drawn
i.i.d. from the distributiorD on X x ), andx ~ D™ to denote that each; is drawn i.i.d. from the
marginal distribution of> on X'.

Let (x,y) ~ D™ be them labeled training examples. In supervised learning, onerass access to
the entire training setx, y). In semi-supervised learning, one assumes access to anky sbthe
labelsy, and in most theoretical analyses, the missing componéntsace assumed to have been
selected uniformly at random.

We make a much weaker assumption about what label informéiavailable. We assume that,
after the labeled training s¢k, y) has been drawn, the learning algorithm is only given acaess t
the examplex and to dabel regularization functior?. The functionR encodes some information
about the labelg of %, and is selected by a potentially adversaladeler from a family R(x,y).

A label regularization functiok maps each possibsoft labelingg of the training examplez to a
real numberR(q) (a soft labeling is natual generalization of a labeling tatwill define formally

in a moment). Except for knowing th&t belongs tdR (%, y), the learner can mak® assumptions
about how the labeler seledis We give examples of label regularization functions in #ecp.1.

Let A denote the set of distributions @i A soft labelingqg € A™ of the training examples
is a doubly-indexed vector, wheuéi, y) is interpreted as the probability that examplehas label
y € Y. The correct soft labeling hagi,y) = 1{y = g, }, where the indicator functiom{-} is 1
when its argument is true aridotherwise; we overload notation and writeo denote the correct
soft labeling.

Although the labeler is possibly adversarial, the fanfilyx, y) of label regularization functions
restricts the choices the labeler can make. We are inter@stdesigning learning algorithms that
work well when eactR € R(x,y) assigns a low value to the correct labelingin the examples we
describe in Section 2.1, the correct labeljngill be near the minimum of?, but there will be many
other minima and near-minima as wellhis is the sense in which label information is “missing” —
it is difficult for any learning algorithm to distinguish amg these minima.

We emphasize that, while our algorithms work best wién close to the minimum of eacRk <
R(%,¥), nothing in our frameworkequiresthis to be true; in Section 3 we will see that our learning
bounds degrade gracefully as this condition is violated.



We are interested in learning a parameterized model thdiqtsea labely given an example. Let
L(6,x,y) be thelossof parameted € R with respect to labeled example, y). While some of
the development in this paper will apply to generic loss fioms, but two loss functions that will
particularly interest us are the negative log-likelihodé dog-linear model

. exp(8” (. y))
>, exp(07g(x. )
whereg(x,y) € R? is the feature function, and the 0-1 loss of a linear classifie
Lo.1(6,2,y) = Hargmax 6" ¢(, ') # y}-

Lijke(8,7,y) = —logpe(ylz) =

Given training exampleg, label regularization functiof, and loss functiorL, the goal of a learn-
ing algorithm is to find a paramet@rthat minimizes the expected lo&%[L(6, =, y)], whereEp[]
denotes expectation with respect{igy) ~ D.

Let Ex o[f(x,y)] denote the expected value ¢ifz,y) when example: is chosen uniformly at
random from the training exampl&sand — supposing that this is examplge— labely is chosen
from the distributiomy(z, -). Accordingly, Ex 5 [f (z, y)] denotes the expected valuefdfr, y) when
labeled exampléz, y) is chosen uniformly at random from the labeled training eplasi(x, y).

2.1 Examples of Label Regularization Functions

To make the concept of a label regularization function méearc we describe several well-known
learning settings in which the information provided to tearhing algorithm is less than the fully
labeled training set. We show that, for each these settihgse is a natural definition dR that
captures the information that is provided to the learniggpathm, and thus each of these settings
can be seen as special cases of our framework.

Before proceeding with the partially labeled cases, we arphow supervised learningan be
expressed in our framework. In the supervised learningngetthe label of every example in the
training set is revealed to the learner. In this settingldbel regularization function familR (x, y)
contains a single functioRy such thatRy(q) = 0if g = y, andRy(q) = oo otherwise.

In thesemi-supervised learnirggtting, the labels of only some of the training examplesearealed.

In this case, there is a functidR; € R(x,y) for eachl C [m] such thatR;(q) = 0 if ¢(i,y) =

1{y = g;} foralli € T andy € Y, andR;(q) = oo otherwise. In other wordsR;(q) is zero

if and only if the soft labelingy agrees withy on the examples id. This implies thatR;(q) is
independent of how labels examples not ih— these are the examples whose labels are missing.

In the ambiguous learningetting [9, 10], which is a generalization of semi-supegisearning,
the labeler reveals a label sBt C Y for each training examplé; such thaty; € Y;. That is,
for each training example, the learning algorithm is givesetof possibile labels the example can
have (seml superwsed learning is the special case whetelabel set has size or k). Letting

Y = (Yl, ..., Y,,) be all the label sets revealed to the learner, there is aitmft, € R(x,y) for
each possibl&” such thatR, v(q) = 0if supp(q;) € Y; for all i € [m] andRy (q) = oo otherwise.
Hereq; = q(i,-) andsupp(qz) is the support of label d|str|but|oql In other words,Ry-(q) is

zero if and only if the soft labeling is supported on the sel§, ..., Y,,.

The label regularization functions described above e&gdbrgive only local information; they spec-
ify, for each example in the training set, which labels arsgilale for that example. In some cases,
we may want to allow the labeler to provide more global infation about the correct labeling.

One example of providing global information isplacian regularization a kind of graph-based
regularization [3] that encodes information about whichraples are likely to have the same labels.
For any soft labelingy, let q[y] be them-length vector whosé&h component ig(i,y). The Lapla-
cian regularizer is defined to ey, (q) = Zyey qly]TL(%)q[y], whereL(x) is anm x m positive
semi-definite matrix defined so th&j, (q) is large whenever examplesxrthat are believed to have
the same label are assigned different label distributigng.b

Another possibility igoosterior regularization Define a feature functiof(z, y) € R’; these features
may or may not be related to the model featupeefined in Section 2. As noted by several authors



[4, 11, 12], it is often convenient for a labeler to providéoimation about the expected value of
f(z,y) with respect to the true distribution. A typical posteriegularizer of this type will have
the formR¢ 1 (q) = || Ex q[f (2, y)] — b||§, where the vectob € R’ is the labeler’s estimate of the
expected value df. This term penalizes soft labelingsvhich cause the expected valuefain the
training set to deviate frorb.

Label regularization functions can also be added toge8wrfor instance, ambiguous learning can
be combined with a Laplacian, and in this case the learnavén@ label regularization function of
the formRy (q)+Rr(q). We will experiment with these kinds of combined regulatiaafunctions

in Section 5.

Note that, in all the examples described above, while theecbtabelingy is at or close to the
minimum of each functiol? € R(x,y), there may be many labelings meeting this condition.
Again, this is the sense in which label information is “mmggi

Itis also important to note that we have only specifidthtinformation the labeler can reveal to the
learner (some function from the sBf{x, y)), but we do not specifliowthat information is chosen
by the labeler (which functiof® € R(x,y)?). This will have a significant impact on our analysis of
this framework. To see why, consider the example of semesiged learning. Using the notation
defined above, most analyses of semi-supervised learngugresthatR?; is chosen be selecting a
random subsef of the training examples [13, 14]. By constrast, we make rsu@ptions about
how R; is chosen, because we are interested in settings where ssimptions are not realistic.

3 Upper and Lower Bounds

In this section, we state upper and lower bounds for learmiogir framework. But first, we provide
a definition of the well-known concept of uniform convergenc

Definition 1 (Uniform Convergence)Loss function hase-uniform convergenci with probability
1-9

sup ED [L(a, xZ, y)] - Ef(.,y [L(ev Zz, y)]
0coO

< e€(d,m)

where(x,y) ~ D™ ande(-, -) is an expression bounding the rate of convergence.

For example, if|¢(z, y)|| < cforall (z,y) € X x Y and® = {6 : ||| < 1} C RY, then the

loss functionZy;,. hase-uniform convergence with(é, m) = O <c\/‘“°g"”;qw , Which fol-

lows from standard results about Rademacher complexitycanering numbers. Other commonly
used loss functions, such as hinge loss and 0-1 loss, alsahumiform convergence under similar
boundedness assumptionsgand©.

We are now ready to state an upper bound for learning in oordveork. The proof is contained in
the supplement.

Theorem 1. Suppose loss functiah hase-uniform convergence. (&, y) ~ D™ then with proba-
bility at leastl — § for all parametersd € © and label regularization function® € R(x,y)

Ep[L(0,2,y)] < max (Egqll(0,2,9)] - R(a) + R(F) + €(d,m).

Theorem 2 below states a lower bound that nearly matchegter bound in Theorem 1, in certain
cases. As we will see, the existence of a matching lower boepends strongly on the structure
of the label regularization function familg. Note that, given a labeled training g&t y), the set
R(x,y) essentially constrains what information the labeler careakto the learning algorithm,
thereby encoding our assumptions about how the labelebefiave. We make three such assump-
tions, described below. For the remainder of this sectiam et the set of all possible examples
X ={21,...,2Zn} befinite.

Recall that all the label regularization functions desediiln Section 2.1 use the valae to indicate
which labelings of the training set are impossible. Our isgumption is that, for eadh € R(x,y),
the set of possible labelings undRiis separableover examples.



Assumption 1 (co-Separability) For all labeled training set§x,y) and R € R(x,y) there ex-
ists a collection of label set§Yz : & € X'} and real-valued functiorF" such thatR(q) =
St x{supp(a;) C Y, } + F(q), where the characteristic functiop{-} is 0 when its argument
is true andoo otherwise, and”(q) < oo for all g € A™.

Itis easy to verify that all the examples of label regulai@afunction families given in Section 2.1
satisfy Assumption 1. Also note that Assumption 1 allowsfthite part of R (denoted byF') to
depend on the entire soft labeliagn a basically arbitrarily manner.

Before describing our second assumption, we need a fewiadalitdefinitions. We writeh to
denote dabeling functionthat maps example¥ to labels). Also, for any labeling functiork and
unlabeled training set € X, we leth(x) € Y™ denote the vector of labels who&h component
is h(x;). Let px be anN-length vector that represents unlabeled trainingksas$ a distribution on

X, whoseith component iy (i) £ 1 :zi=2l

m

Our second assumption is the labeler's behavigtable If training sets(x,y) and (x’,y’) are
“close” (by which we mean that they are consistently labeled|px — px/ ||, is small) then the
label regularization functions available to the labelar dach training set are the “same”, in the
sense that the sets of possible labelings under each of tiecitlemtical.

Assumption 2(v-Stability). For any labeling functiork* and unlabeled training sets, x’ such that
lpx — Px'||,, < 7 the following holds: For allR € R(x,h*(x)) there exists®’ € R(x’,h*(x’))
such thatR(h(x)) < oo if and only if R’ (h(x’)) < oo, for all labeling functionsh.

Our final assumption, which we caléciprocity, states there is no way to deduce which of the
possible labelings undet is the correct one only by examinirig,

Assumption 3 (Reciprocity) For all labeled training set¢x,y) and R € R(x,y), if R(y’) < oo
thenR € R(x,y’).

Of all our assumptions, reciprocity seems to be the mostturaleand unmotivated. We argue it is
necessary for two reasons: Firstly, all the examples of lagilarization function families given in

Section 2.1 satisfy this assumption, and secondly, in Téara@ we show that lifting the reciprocity
assumption makes the upper bound in Theorem 1 very loose.

We are nearly ready to state our lower bound. Adie a (possibly randomized) learning algorithm
that takes a set of unlabeled training examgesd a label regularization functid® as input, and

outputs an estimated parameerAlso, if under distributiorD each example: € X is associated
with exactly one labek*(z) € ), then we writeD = Dy - h*, where thedata distributionDy is
the marginal distribution oD on X'. Theorem 2 proves the existence of a true labeling fungtion
such that a nearly tight lower bound holds for all learningpaithms A and all data distributions
Dx whenever the training set is drawn fraBy - h*. The fact that our lower bound holds for all
data distributions significantly complicates the analylig this generality is important: sindey

is typically easy to estimate, it is possible that the laagralgorithmA has been tuned fdp . The
proof of Theorem 2 is contained in the supplement.

Theorem 2. Suppose Assumptions 1, 2 and 3 hold for label regularizdtioation familyR, the
loss function’. is 0-1 loss, and the set of all possible examplds finite. For all learning algorithms
A and data distribution®y there exists a labeling functiol® such that if(x,y) ~ D™ (where

D =Dy -h*)andm > O(; log 121y then with probability at leasf — 24

. 1 .
> . - i -
Ep[L(0,2.y)] >] max (ExalL(0.2.9)] -~ R(@)) + min R(a) - e(3.m)
for someR € R(x,¥), whered is the parameter output by, and-~ is the constant from Assumption
2.

Obviously, Assumptions 1, 2 and 3 restrict the kinds of laeglularization function families to
which Theorem 2 can be applied. However, some restrictioedgssary in order to prove a mean-
ingful lower bound, as Theorem 3 below shows. This theoretestthat if Assumption 3 does not
hold, then it may happen that each famityx, y) has a structure which a clever (but computation-
ally infeasible) learning algorithm can exploit to perfomuch better than the upper bound given in
Theorem 1. The proof of Theorem 3, which is contained in thgpment, constructs an example
of such a family.



Theorem 3. Suppose the loss functidnis 0-1 loss. There exists a label regularization function
family R that satisfies Assumptions 1 and 2, but not Assumption 3, &atring algorithmA such
that for all distributionsD if (x,y) ~ D™ then with probability at least — §

Ep|L(8,z,y)] < max (E;(,q[L(é,x,y)] _R(q)) + min R(q) + (8, m) — 1

qeEA™ qEA™

for someR € R(x,y), wheref is the parameter output hy.

Wheneverim,, ., ¢(d, m) = 0 the gap between the upper and lower bounds in Theorems 1 and
2 approache®(y) — ming R(q) asm — oo (ignoring constant factors). Therefore, these bounds
are asymptotically matching if the labeler always choosébal regularization functio? such

that R(y) = ming R(q). We emphasize that this is true everyiis anonuniqueminimum of R.
Several of the example learning settings described in @eetil, such as semi-supervised learning
and ambiguous learning, meet this criteria. On the othed &R (y) — ming R(q) is large, then

the gap is very large, and the utility of our analysis degsade the extreme case th&{(y) = co

(i.e., the correct labeling of the training set is not polesimderR), our upper bound is vacuous. In
this sense, our framework is best suited to settings in wihiefinformation provided by the labeler

is equivoca] but not actuallyuntruthful as it is in the malicious label noise setting [6, 7].

Finally, note that iflim,, . €(6,m) = 0, then the upper bound in Theorem 3 is smaller than
the lower bound in Theorem 2 for all sufficiently large, which establishes the importance of
Assumption 3.

4  Algorithm

Given the unlabeled training examplesnd label regularization functioR, the bounds in Section
3 suggest an obvious learning algorithm: Find a parantt¢hat realizes the minimum

min max (ExqL(8,2,9)] — R(@) +a 6] (1)

qeEA™

The objective (1) is simply the minimization of the upper bdun Theorem 1, with one difference:
for algorithmic convenience, we do not minimize over the&ghut instead add the quantity||@||*
to the objective and leav@ unconstrained (here, and in the rest of the papérienotes., norm).
If we assume tha® = {6 : ||@|| < c} for somec > 0, then this modification is without loss of
generality, since there exists a constapnfor which this is an equivalent formulation.

In order to estimat®™, throughout this section we make the following assumptiooua the loss
function L and label regularization functioR.

Assumption 4. The loss functiord is convex irf, and the label regularization functioR is convex
inq.

Itis easy to verify that all of the loss functions and labelularization functions we gave as examples
in Sections 2 and 2.1 satisfy Assumption 4.

Instead of findingd™ directly, our approach will be to “swap” the min and max in,(fipd the
soft labelingg* that realizes the maximum, and then ugeto computed™. For convenience, we
abbreviate the function that appears in the objective (I5@ q) = Fx o[L(0,z,y)] — R(q) +

o ||6]|*. A high-level version of our learning algorithm — called GAMiue to the use of a game-
theoretic minimax theorem in its proof of correctness —&giin Algorithm 1; the implementation
details for each step are given below Theorem 4.

Algorithm 1 GAME: Game for Adversarially Missing Evidence
1: Given: Constantgq, es > 0.
2: Find g such thatming F'(6,q) > maxqeca= ming F'(6,q) — €1
3: Find @ such thatF'(8, ) < ming F(6,q) + €2
4: Return: Parameter estimat®

In the first step of Algorithm 1, we modify the objective (1) ®yapping the min and max, and then
find a soft labelingg that approximately maximizes this modified objective. Ia tiext step, we



find a parametef that approximately minimizes the original objective wigspect to the fixed soft
labelingq. The next theorem proves that Algorithm 1 produces a godchatt of6*, the minimum
of the objective (1). Its proof is in the supplement.

Theorem 4. The paramete® output by Algorithm 1 satisfig® — 6| < /£ (e1 + e2).

We now briefly explain how the steps of Algorithm 1 can be impdaited using off-the-shelf algo-
rithms. For concreteness, we focus on an implementatiothéoloss function, = Ly;., which is
also the loss function we use in our experiments in Section 5.

The second step of Algorithm 1 is the easier one, so we expldinst. In this step, we need to
minimize F'(0, q) over@. Sinceq is fixed in this minimization, we can ignore th(q) term in
the definition of F', and we see that this minimization amounts to maximizinglittedinood of a
log-linear model. This is a very well-studied problem, ahdre are numerous efficient methods
available for solving it, such as stochastic gradient dasce

The first step of Algorithm 1 is more complicated, as it regsifinding the maximum of a max-
min objective. Our approach is to first take the dual of theerminimization; after doing this the

function to maximize becomeS(p,q) 2 H(p) — 1 [|As(p,a)||> — R(q), where we let (p) £

=2, (i) log (i, y) and Ag(p,q) = Expld(,y)] — Exqlé(z,y)]. By convex duality we
havemaxq ming F'(6,q) = max, o G(p,q). This dual has been previously derived by several
authors; see [15] for more details. Note tliais concave function, and we need to maximize it
over simplex constraints. Exponentiated-gradient-styg@rithms [16, 15] are well-suited for this
kind of problem, as they “natively” maintain the simplex stmaint, and converged quickly in the
experiments described in Section 5.

5 Experiments

We tested our GAME algorithm (Algorithm 1) on several staxddaarning data sets. In all of our
experiments, we labeled a fraction of the training exampégs in a non-random manner that was
designed to simulate various types of difficult — even adveas— labelers.

Our first set of experiments involved two binary classificattdata sets that belong to a benchmark
suité* accompanying a widely-used semi-supervied learning bapkthe Columbia object image
library (COIL) [17], and a data set of EEG scans of a humanestilgjonnected to a brain-computer
interface (BCI) [18]. For each data set, a training set wasnéal by randomly sampling a subset of
the data in a way that produced a skewed class distributi@deéfined theutlier scoreof a training
example to be the fraction of its nearest neighbors thatigeio a different class. For several values
of p € [0, 1] and for each training set, we labeled only gh&action of examples with thhighest
outlier score. In this way, we simulated an “unhelpful” lsyenvho only labels examples that are
exceptions to the general rule, thinking (perhaps singelelt erroneously) that this is the most
effective use of her effort.

We tested three algorithms on these data sets: GAME, wR¢fey) was chosen to match the
semi-supervised learning setting with a Laplacian regzgar(see Section 2.1); Laplacian SVM
[3]; and Transductive SVM [19]. When constructing the Laammatrix and choosing values for
hyperparameters, we adhered closely to the model-sefeptiacedure described in [1, Sections
21.2.1 and 21.2.5]. The results of our experiments are div&igures 1(a) and 1(b).

We also tested the GAME algorithm on a multiclass data setghaa subset of the Labeled Faces
in the Wild data set [20], a standard corpus of face photdga®ur subset contained 500 faces
of the top 10 characters from the corpus, but with a randorkéyved distribution, so that some
faces appeared more often than others. The feature repatisarfor each photograph was PCA
on the pixel values (i.e., eigenfaces). We used an ambidyxalseled version of this data set,
where each face in the training set is associated with oneoe fabels, only one of which is correct
(see Section 2.1 for a definition of ambiguous learning). &eled trainined examples to simulate a
“lazy” labeler, in the following way: For each pair of labélg '), we sorted the examples with true

This benchmark suite contains several data sets; we selected theseausdthey contain a large number
of examples that meet our definition of outliers.
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Figure 1: (a) Accuracy vs. fraction of unlabeled data for B@ta set. (b) Accuracy vs. fraction of
unlabeled data for COIL data set. (¢) Accuracy vs. fractibpastially labeled data for Faces in the
Wild data set. In all plots, error bars represent 1 standavéhtion over 10 trials.

labely with respect to their distance, in feature space, from tiiroil of the cluster of examples
with true labely’. For several values gf € [0, 1], we added the labe)’ to the topp-fraction of
this list. The net effect of this procedure is that exampleghe “border” of the two clusters are
givenbothlabelsy andy’ in the training set. The idea behind this labeling procedsite mimic

a (realistic, in our view) situation where a “lazy” labelexdines to commit to one label for those
examples that are especially difficult to distinguish.

We tested the GAME algorithm on this data set, whRf&, y) was chosen to match the ambiguous
learning setting with a Laplacian regularizer (see Sectidn). We compared with two algorithms
from [9]: UNIFORM, which assumes each label in the ambigulabeg! set is equally likely, and
learns a maximum likelihood log-linear model; and a disdiwva EM algorithm that guesses the
true labels, learns the most likely parameter, updates tiesgy and repeats. The results of our
experiments are given in Figure 1(c).

Perhaps the best way to characterize the difference bet@AME and the algorithms we compared
it to is that the other algorithms are “optimistic”, by whigle mean they assume that the missing
labels most likely agree with the estimated parameter,eM@IRME is a “pessimistic” algorithm
that, because it was designed for an adverarial settingnassexactly the opposite. The results of
our experiments indicate that, for certain labeling styesthe fraction of fully labeled examples
decreases, the GAME algorithm’s pessimistic approachtistantially more effective. Importantly,
Figures 1(a)-(c) show that the GAME algorithm'’s performaacvantage is most significant when
the number of labeled examples is very small. Semi-supehMisarning algorithms are often pro-
moted as being able to learn from only a handful of labeledrgtes. Our results show that this
ability may be quite sensitive to how these examples ardddbe

6 Future Work

Our framework lends itself to several natural extensiors. éxample, it can be straightforwardly
extended to thestructured predictiorsetting [21], in which both examples and labels have some
internal structure, such as sequences or trees. One cartlshidvoth steps of the GAME algorithm
can be implemented efficiently even when the number of lalsetombinatorial, provided that
both the loss function and label regularization functionaepose appropriately over the structure.
Another possibility is tanteractivelypoll the labeler for label information, resulting in a seqoe

of successively more informative label regularizationdtions, with the aim of extracting the most
useful label information from the labeler with a minimum abkling effort. Also, it would be
interesting to design Amazon Mechanical Turk experimelmds test whether the “unhelpful” and
“lazy” labeling styles described in Section 5 in fact ocaupractice. Finally, of the three technical
assumptions we introduced in Section 3 to aid our analygnly proved (in Theorem 3) that one
of them is necessary. We would like to determine whether theraassumptions are necessary as
well, or can be relaxed.
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