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Abstract

We address the problem of semi-supervised learning in an adversarial setting. In-
stead of assuming that labels are missing at random, we analyze a less favor-
able scenario where the label information can be missing partially and arbitrarily,
which is motivated by several practical examples. We present nearly matching
upper and lower generalization bounds for learning in this setting under reason-
able assumptions about available label information. Motivated by the analysis, we
formulate a convex optimization problem for parameter estimation, derive an effi-
cient algorithm, and analyze its convergence. We provide experimental results on
several standard data sets showing the robustness of our algorithm to the pattern
of missing label information, outperforming several strong baselines.

1 Introduction

Semi-supervised learning algorithms use both labeled and unlabeled examples. Most theoretical
analyses of semi-supervised learning assume thatm + n labeled examples are drawn i.i.d. from a
distribution, and then a subset of sizen is chosen uniformly at random and their labels are erased
[1]. This missing-at-randomassumption is best suited for a situation where the labels are acquired
by annotating a random subset of all available data. But in many applications of semi-supervised
learning, the partially-labeled data is “naturally occurring”, and the learning algorithm has no control
over which examples were labeled.

For example, pictures on popular websites like Facebook andFlikr are tagged by users at their dis-
cretion, and it is difficult to know how users decide which pictures to tag. A similar problem occurs
when data is submitted to an online labor marketplace, such as Amazon Mechanical Turk, to be
manually labeled. The workers who label the data are often poorly motivated, and may deliberately
skip examples that are difficult to correctly label. In such asetting, a learning algorithm should not
assume that the examples were labeled at random.

Additionally, in many semi-supervised learning settings,the partial label information is not provided
on a per-example basis. For example, inmultiple instance learning[2], examples are presented to
a learning algorithm in sets, with either zero or one positive examples per set. Ingraph-based
regularization [3], a learning algorithm is given information about which examples are likely to
have the same label, but not necessarily the identity of thatlabel. Recently, there has been much
interest in algorithms that learn fromlabeled features[4]; in this setting, the learning algorithm is
given information about the expected value of several features with respect to the true distribution
on labeled examples.

To summarize, in a typical semi-supervised learning problem, label information is often missing in
an arbitrary fashion, and even when present, does not alwayshave a simple form, like one label per
example.Our goal in this paper is to develop and analyze a learning algorithm that is explicitly
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designed for these types of problems.We derive our learning algorithm within a framework that is
expressive enough to permit a very general notion of label information, allowing us to make minimal
assumptions about which examples in a data set have been labeled, how they have been labeled,
and why. We present both theoretical upper and lower bounds for learning in this framework, and
motivated by these bounds, derive a simple yet provably optimal learning algorithm. We also provide
experimental results on several standard data sets, which show that our algorithm is effective and
robust when the label information has been provided by “lazy” or “unhelpful” labelers.

Related Work: Our learning framework is related to themalicious label noisesetting, in which
the labeler is allowed to mislabel a small fraction of the training set (this is a special case of the
even more challengingmalicious noisesetting [5], where an adverary can inject a small number
of arbitrary examples into the training set). Learning withthis type of label noise is known to be
quite difficult, and positive results often make quite restrictive assumptions about the underlying
data distribution [6, 7]. By contrast, our results apply farmore generally, at the expense of assuming
a more benign (but possibly more realistic) model of label noise, where the labeler can adversarially
eraselabels, but not change them. In other words, we assume that the labeler equivocates, but does
not lie. The difference in these assumptions shows up quite clearly in our analysis: As we point out
in Section 3, our bounds become vacuous if the labeler is allowed to mislabel data.

In Section 2 we describe how our framework encodes label information in alabel regularization
function, which closely resembles the idea of acompatibilityfunction introduced by Balcan & Blum
[8]. However, they did not analyze a setting where this function is selected adversarially.

2 Learning Framework

LetX be the set of all possible examples, andY the set of all possible labels, where|Y| = k. LetD
be an unknown distribution onX × Y. We writex andy as abbreviations for(x1, . . . , xm) ∈ Xm

and(y1, . . . , ym) ∈ Ym, respectively. We write(x,y) ∼ Dm to denote that each(xi, yi) is drawn
i.i.d. from the distributionD onX × Y, andx ∼ Dm to denote that eachxi is drawn i.i.d. from the
marginal distribution ofD onX .

Let (x̂, ŷ) ∼ Dm be them labeled training examples. In supervised learning, one assumes access to
the entire training set(x̂, ŷ). In semi-supervised learning, one assumes access to only some of the
labelsŷ, and in most theoretical analyses, the missing components of ŷ are assumed to have been
selected uniformly at random.

We make a much weaker assumption about what label information is available. We assume that,
after the labeled training set(x̂, ŷ) has been drawn, the learning algorithm is only given access to
the exampleŝx and to alabel regularization functionR. The functionR encodes some information
about the labelŝy of x̂, and is selected by a potentially adversariallabeler from a familyR(x̂, ŷ).
A label regularization functionR maps each possiblesoft labelingq of the training exampleŝx to a
real numberR(q) (a soft labeling is natual generalization of a labeling thatwe will define formally
in a moment). Except for knowing thatR belongs toR(x̂, ŷ), the learner can makenoassumptions
about how the labeler selectsR. We give examples of label regularization functions in Section 2.1.

Let ∆ denote the set of distributions onY. A soft labelingq ∈ ∆m of the training exampleŝx
is a doubly-indexed vector, whereq(i, y) is interpreted as the probability that examplex̂i has label
y ∈ Y. The correct soft labeling hasq(i, y) = 1{y = ŷi}, where the indicator function1{·} is 1
when its argument is true and0 otherwise; we overload notation and writeŷ to denote the correct
soft labeling.

Although the labeler is possibly adversarial, the familyR(x̂, ŷ) of label regularization functions
restricts the choices the labeler can make. We are interested in designing learning algorithms that
work well when eachR ∈ R(x̂, ŷ) assigns a low value to the correct labelingŷ. In the examples we
describe in Section 2.1, the correct labelingŷ will be near the minimum ofR, but there will be many
other minima and near-minima as well. This is the sense in which label information is “missing” —
it is difficult for any learning algorithm to distinguish among these minima.

We emphasize that, while our algorithms work best whenŷ is close to the minimum of eachR ∈
R(x̂, ŷ), nothing in our frameworkrequiresthis to be true; in Section 3 we will see that our learning
bounds degrade gracefully as this condition is violated.
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We are interested in learning a parameterized model that predicts a labely given an examplex. Let
L(θ, x, y) be thelossof parameterθ ∈ R

d with respect to labeled example(x, y). While some of
the development in this paper will apply to generic loss functions, but two loss functions that will
particularly interest us are the negative log-likelihood of a log-linear model

Llike(θ, x, y) = − log pθ(y|x) = − log
exp(θTφφφ(x, y))

∑

y′ exp(θ
Tφφφ(x, y′))

whereφφφ(x, y) ∈ R
d is the feature function, and the 0-1 loss of a linear classifier

L0,1(θ, x, y) = 1{argmax
y′∈Y

θ
Tφφφ(x, y′) 6= y}.

Given training exampleŝx, label regularization functionR, and loss functionL, the goal of a learn-
ing algorithm is to find a parameterθ that minimizes the expected lossED[L(θ, x, y)], whereED[·]
denotes expectation with respect to(x, y) ∼ D.

Let Ex̂,q[f(x, y)] denote the expected value off(x, y) when examplex is chosen uniformly at
random from the training exampleŝx and — supposing that this is examplex̂i — labely is chosen
from the distributionq(i, ·). Accordingly,Ex̂,ŷ[f(x, y)] denotes the expected value off(x, y) when
labeled example(x, y) is chosen uniformly at random from the labeled training examples(x̂, ŷ).

2.1 Examples of Label Regularization Functions

To make the concept of a label regularization function more clear, we describe several well-known
learning settings in which the information provided to the learning algorithm is less than the fully
labeled training set. We show that, for each these settings,there is a natural definition ofR that
captures the information that is provided to the learning algorithm, and thus each of these settings
can be seen as special cases of our framework.

Before proceeding with the partially labeled cases, we explain how supervised learningcan be
expressed in our framework. In the supervised learning setting, the label of every example in the
training set is revealed to the learner. In this setting, thelabel regularization function familyR(x̂, ŷ)
contains a single functionRŷ such thatRŷ(q) = 0 if q = ŷ, andRŷ(q) = ∞ otherwise.

In thesemi-supervised learningsetting, the labels of only some of the training examples arerevealed.
In this case, there is a functionRI ∈ R(x̂, ŷ) for eachI ⊆ [m] such thatRI(q) = 0 if q(i, y) =
1{y = ŷi} for all i ∈ I andy ∈ Y, andRI(q) = ∞ otherwise. In other words,RI(q) is zero
if and only if the soft labelingq agrees witĥy on the examples inI. This implies thatRI(q) is
independent of howq labels examples not inI — these are the examples whose labels are missing.

In the ambiguous learningsetting [9, 10], which is a generalization of semi-supervised learning,
the labeler reveals a label setŶi ⊆ Y for each training examplêxi such thatŷi ∈ Ŷi. That is,
for each training example, the learning algorithm is given aset of possibile labels the example can
have (semi-supervised learning is the special case where each label set has size1 or k). Letting
Ŷ = (Ŷ1, . . . , Ŷm) be all the label sets revealed to the learner, there is a functionRŶ ∈ R(x̂, ŷ) for
each possiblêY such thatRŶ (q) = 0 if supp(qi) ⊆ Ŷi for all i ∈ [m] andRY(q) = ∞ otherwise.
Hereqi , q(i, ·) andsupp(qi) is the support of label distributionqi. In other words,RŶ (q) is
zero if and only if the soft labelingq is supported on the setŝY1, . . . , Ŷm.

The label regularization functions described above essentially give only local information; they spec-
ify, for each example in the training set, which labels are possible for that example. In some cases,
we may want to allow the labeler to provide more global information about the correct labeling.

One example of providing global information isLaplacian regularization, a kind of graph-based
regularization [3] that encodes information about which examples are likely to have the same labels.
For any soft labelingq, letq[y] be them-length vector whoseith component isq(i, y). The Lapla-
cian regularizer is defined to beRL(q) =

∑

y∈Y q[y]TL(x̂)q[y], whereL(x̂) is anm×m positive
semi-definite matrix defined so thatRL(q) is large whenever examples in̂x that are believed to have
the same label are assigned different label distributions by q.

Another possibility isposterior regularization. Define a feature functionf(x, y) ∈ R
ℓ; these features

may or may not be related to the model featuresφφφ defined in Section 2. As noted by several authors
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[4, 11, 12], it is often convenient for a labeler to provide information about the expected value of
f(x, y) with respect to the true distribution. A typical posterior regularizer of this type will have
the formRf ,b(q) = ‖Ex̂,q[f(x, y)]− b‖

2
2, where the vectorb ∈ R

ℓ is the labeler’s estimate of the
expected value off . This term penalizes soft labelingsq which cause the expected value off on the
training set to deviate fromb.

Label regularization functions can also be added together.So, for instance, ambiguous learning can
be combined with a Laplacian, and in this case the learner is given a label regularization function of
the formRŶ (q)+RL(q). We will experiment with these kinds of combined regularization functions
in Section 5.

Note that, in all the examples described above, while the correct labelingŷ is at or close to the
minimum of each functionR ∈ R(x̂, ŷ), there may be many labelings meeting this condition.
Again, this is the sense in which label information is “missing”.

It is also important to note that we have only specifiedwhat information the labeler can reveal to the
learner (some function from the setR(x̂, ŷ)), but we do not specifyhow that information is chosen
by the labeler (which functionR ∈ R(x̂, ŷ)?). This will have a significant impact on our analysis of
this framework. To see why, consider the example of semi-supervised learning. Using the notation
defined above, most analyses of semi-supervised learning assume thatRI is chosen be selecting a
random subsetI of the training examples [13, 14]. By constrast, we make no assumptions about
howRI is chosen, because we are interested in settings where such assumptions are not realistic.

3 Upper and Lower Bounds

In this section, we state upper and lower bounds for learningin our framework. But first, we provide
a definition of the well-known concept of uniform convergence.

Definition 1 (Uniform Convergence). Loss functionL hasǫ-uniform convergenceif with probability
1− δ

sup
θ∈Θ

∣

∣

∣

∣

∣

ED[L(θ, x, y)]− Ex̂,ŷ[L(θ, x, y)]

∣

∣

∣

∣

∣

≤ ǫ(δ,m)

where(x̂, ŷ) ∼ Dm andǫ(·, ·) is an expression bounding the rate of convergence.

For example, if‖φφφ(x, y)‖ ≤ c for all (x, y) ∈ X × Y andΘ = {θ : ‖θ‖ ≤ 1} ⊆ R
d, then the

loss functionLlike hasǫ-uniform convergence withǫ(δ,m) = O

(

c

√

d logm+log(1/δ)
m

)

, which fol-

lows from standard results about Rademacher complexity andcovering numbers. Other commonly
used loss functions, such as hinge loss and 0-1 loss, also have ǫ-uniform convergence under similar
boundedness assumptions onφφφ andΘ.

We are now ready to state an upper bound for learning in our framework. The proof is contained in
the supplement.

Theorem 1. Suppose loss functionL hasǫ-uniform convergence. If(x̂, ŷ) ∼ Dm then with proba-
bility at least1− δ for all parametersθ ∈ Θ and label regularization functionsR ∈ R(x̂, ŷ)

ED[L(θ, x, y)] ≤ max
q∈∆m

(Ex̂,q[L(θ, x, y)]−R(q)) +R(ŷ) + ǫ(δ,m).

Theorem 2 below states a lower bound that nearly matches the upper bound in Theorem 1, in certain
cases. As we will see, the existence of a matching lower bounddepends strongly on the structure
of the label regularization function familyR. Note that, given a labeled training set(x,y), the set
R(x,y) essentially constrains what information the labeler can reveal to the learning algorithm,
thereby encoding our assumptions about how the labeler willbehave. We make three such assump-
tions, described below. For the remainder of this section, we let the set of all possible examples
X = {x̃1, . . . , x̃N} be finite.

Recall that all the label regularization functions described in Section 2.1 use the value∞ to indicate
which labelings of the training set are impossible. Our firstassumption is that, for eachR ∈ R(x,y),
the set of possible labelings underR is separableover examples.
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Assumption 1 (∞-Separability). For all labeled training sets(x,y) andR ∈ R(x,y) there ex-
ists a collection of label sets{Yx̃ : x̃ ∈ X} and real-valued functionF such thatR(q) =
∑m

i=1 χ{supp(qi) ⊆ Yxi
} + F (q), where the characteristic functionχ{·} is 0 when its argument

is true and∞ otherwise, andF (q) < ∞ for all q ∈ ∆m.

It is easy to verify that all the examples of label regularization function families given in Section 2.1
satisfy Assumption 1. Also note that Assumption 1 allows thefinite part ofR (denoted byF ) to
depend on the entire soft labelingq in a basically arbitrarily manner.

Before describing our second assumption, we need a few additional definitions. We writeh to
denote alabeling functionthat maps examplesX to labelsY. Also, for any labeling functionh and
unlabeled training setx ∈ Xm, we leth(x) ∈ Ym denote the vector of labels whoseith component
is h(xi). Let px be anN -length vector that represents unlabeled training setx as a distribution on
X , whoseith component ispx(i) ,

|{j : xj=x̃i}|
m .

Our second assumption is the labeler’s behavior isstable: If training sets(x,y) and (x′,y′) are
“close” (by which we mean that they are consistently labeledand‖px − px′‖∞ is small) then the
label regularization functions available to the labeler for each training set are the “same”, in the
sense that the sets of possible labelings under each of them are identical.
Assumption 2(γ-Stability). For any labeling functionh∗ and unlabeled training setsx,x′ such that
‖px − px′‖∞ ≤ γ the following holds: For allR ∈ R(x,h∗(x)) there existsR′ ∈ R(x′,h∗(x′))
such thatR(h(x)) < ∞ if and only ifR′(h(x′)) < ∞, for all labeling functionsh.

Our final assumption, which we callreciprocity, states there is no way to deduce which of the
possible labelings underR is the correct one only by examiningR.
Assumption 3 (Reciprocity). For all labeled training sets(x,y) andR ∈ R(x,y), if R(y′) < ∞
thenR ∈ R(x,y′).

Of all our assumptions, reciprocity seems to be the most unnatural and unmotivated. We argue it is
necessary for two reasons: Firstly, all the examples of label regularization function families given in
Section 2.1 satisfy this assumption, and secondly, in Theorem 3 we show that lifting the reciprocity
assumption makes the upper bound in Theorem 1 very loose.

We are nearly ready to state our lower bound. LetA be a (possibly randomized) learning algorithm
that takes a set of unlabeled training examplesx̂ and a label regularization functionR as input, and
outputs an estimated parameterθ̂. Also, if under distributionD each examplex ∈ X is associated
with exactly one labelh∗(x) ∈ Y, then we writeD = DX · h∗, where thedata distributionDX is
the marginal distribution ofD onX . Theorem 2 proves the existence of a true labeling functionh∗

such that a nearly tight lower bound holds for all learning algorithmsA and all data distributions
DX whenever the training set is drawn fromDX · h∗. The fact that our lower bound holds for all
data distributions significantly complicates the analysis, but this generality is important: sinceDX

is typically easy to estimate, it is possible that the learning algorithmA has been tuned forDX . The
proof of Theorem 2 is contained in the supplement.
Theorem 2. Suppose Assumptions 1, 2 and 3 hold for label regularizationfunction familyR, the
loss functionL is 0-1 loss, and the set of all possible examplesX is finite. For all learning algorithms
A and data distributionsDX there exists a labeling functionh∗ such that if(x̂, ŷ) ∼ Dm (where
D = DX · h∗) andm ≥ O( 1

γ2 log
|X |
δ ) then with probability at least14 − 2δ

ED[L(θ̂, x, y)] ≥
1

4
max
q∈∆m

(

Ex̂,q[L(θ̂, x, y)]−R(q)
)

+ min
q∈∆m

R(q)− ǫ(δ,m)

for someR ∈ R(x̂, ŷ), whereθ̂ is the parameter output byA, andγ is the constant from Assumption
2.

Obviously, Assumptions 1, 2 and 3 restrict the kinds of labelregularization function families to
which Theorem 2 can be applied. However, some restriction isnecessary in order to prove a mean-
ingful lower bound, as Theorem 3 below shows. This theorem states that if Assumption 3 does not
hold, then it may happen that each familyR(x,y) has a structure which a clever (but computation-
ally infeasible) learning algorithm can exploit to performmuch better than the upper bound given in
Theorem 1. The proof of Theorem 3, which is contained in the supplement, constructs an example
of such a family.
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Theorem 3. Suppose the loss functionL is 0-1 loss. There exists a label regularization function
familyR that satisfies Assumptions 1 and 2, but not Assumption 3, and alearning algorithmA such
that for all distributionsD if (x̂, ŷ) ∼ Dm then with probability at least1− δ

ED[L(θ̂, x, y)] ≤ max
q∈∆m

(

Ex̂,q[L(θ̂, x, y)]−R(q)
)

+ min
q∈∆m

R(q) + ǫ(δ,m)− 1

for someR ∈ R(x̂, ŷ), whereθ̂ is the parameter output byA.

Wheneverlimm→∞ ǫ(δ,m) = 0 the gap between the upper and lower bounds in Theorems 1 and
2 approachesR(ŷ) −minq R(q) asm → ∞ (ignoring constant factors). Therefore, these bounds
are asymptotically matching if the labeler always chooses alabel regularization functionR such
thatR(ŷ) = minq R(q). We emphasize that this is true even ifŷ is anonuniqueminimum ofR.
Several of the example learning settings described in Section 2.1, such as semi-supervised learning
and ambiguous learning, meet this criteria. On the other hand, if R(ŷ) −minq R(q) is large, then
the gap is very large, and the utility of our analysis degrades. In the extreme case thatR(ŷ) = ∞
(i.e., the correct labeling of the training set is not possible underR), our upper bound is vacuous. In
this sense, our framework is best suited to settings in whichthe information provided by the labeler
is equivocal, but not actuallyuntruthful, as it is in the malicious label noise setting [6, 7].

Finally, note that iflimm→∞ ǫ(δ,m) = 0, then the upper bound in Theorem 3 is smaller than
the lower bound in Theorem 2 for all sufficiently largem, which establishes the importance of
Assumption 3.

4 Algorithm

Given the unlabeled training examplesx̂ and label regularization functionR, the bounds in Section
3 suggest an obvious learning algorithm: Find a parameterθ

∗ that realizes the minimum

min
θ

max
q∈∆m

(Ex̂,q[L(θ, x, y)]−R(q)) + α ‖θ‖
2
. (1)

The objective (1) is simply the minimization of the upper bound in Theorem 1, with one difference:
for algorithmic convenience, we do not minimize over the setΘ, but instead add the quantityα ‖θ‖

2

to the objective and leaveθ unconstrained (here, and in the rest of the paper,‖·‖ denotesL2 norm).
If we assume thatΘ = {θ : ‖θ‖ ≤ c} for somec > 0, then this modification is without loss of
generality, since there exists a constantαc for which this is an equivalent formulation.

In order to estimateθ∗, throughout this section we make the following assumption about the loss
functionL and label regularization functionR.

Assumption 4. The loss functionL is convex inθ, and the label regularization functionR is convex
in q.

It is easy to verify that all of the loss functions and label regularization functions we gave as examples
in Sections 2 and 2.1 satisfy Assumption 4.

Instead of findingθ∗ directly, our approach will be to “swap” the min and max in (1), find the
soft labelingq∗ that realizes the maximum, and then useq∗ to computeθ∗. For convenience, we
abbreviate the function that appears in the objective (1) asF (θ,q) , Ex̂,q[L(θ, x, y)] − R(q) +

α ‖θ‖
2. A high-level version of our learning algorithm — called GAME due to the use of a game-

theoretic minimax theorem in its proof of correctness — is given in Algorithm 1; the implementation
details for each step are given below Theorem 4.

Algorithm 1 GAME: Game for Adversarially Missing Evidence
1: Given: Constantsǫ1, ǫ2 > 0.
2: Find q̃ such thatminθ F (θ, q̃) ≥ maxq∈∆m minθ F (θ,q)− ǫ1

3: Find θ̃ such thatF (θ̃, q̃) ≤ minθ F (θ, q̃) + ǫ2
4: Return: Parameter estimatẽθ.

In the first step of Algorithm 1, we modify the objective (1) byswapping the min and max, and then
find a soft labeling̃q that approximately maximizes this modified objective. In the next step, we
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find a parameter̃θ that approximately minimizes the original objective with respect to the fixed soft
labelingq̃. The next theorem proves that Algorithm 1 produces a good estimate ofθ∗, the minimum
of the objective (1). Its proof is in the supplement.

Theorem 4. The parameter̃θ output by Algorithm 1 satisfies‖θ̃ − θ
∗‖ ≤

√

8
α (ǫ1 + ǫ2).

We now briefly explain how the steps of Algorithm 1 can be implemented using off-the-shelf algo-
rithms. For concreteness, we focus on an implementation forthe loss functionL = Llike, which is
also the loss function we use in our experiments in Section 5.

The second step of Algorithm 1 is the easier one, so we explainit first. In this step, we need to
minimizeF (θ, q̃) overθ. Sinceq̃ is fixed in this minimization, we can ignore theR(q̃) term in
the definition ofF , and we see that this minimization amounts to maximizing thelikelihood of a
log-linear model. This is a very well-studied problem, and there are numerous efficient methods
available for solving it, such as stochastic gradient descent.

The first step of Algorithm 1 is more complicated, as it requires finding the maximum of a max-
min objective. Our approach is to first take the dual of the inner minimization; after doing this the
function to maximize becomesG(p,q) , H(p) − 1

α ‖∆φφφ(p,q)‖
2
− R(q), where we letH(p) ,

−
∑

i,y p(i, y) log p(i, y) and∆φφφ(p,q) , Ex̂,p[φφφ(x, y)] − Ex̂,q[φφφ(x, y)]. By convex duality we
havemaxq minθ F (θ,q) = maxp,q G(p,q). This dual has been previously derived by several
authors; see [15] for more details. Note thatG is concave function, and we need to maximize it
over simplex constraints. Exponentiated-gradient-stylealgorithms [16, 15] are well-suited for this
kind of problem, as they “natively” maintain the simplex constraint, and converged quickly in the
experiments described in Section 5.

5 Experiments

We tested our GAME algorithm (Algorithm 1) on several standard learning data sets. In all of our
experiments, we labeled a fraction of the training examplessets in a non-random manner that was
designed to simulate various types of difficult — even adversarial — labelers.

Our first set of experiments involved two binary classification data sets that belong to a benchmark
suite1 accompanying a widely-used semi-supervied learning book [1]: the Columbia object image
library (COIL) [17], and a data set of EEG scans of a human subject connected to a brain-computer
interface (BCI) [18]. For each data set, a training set was formed by randomly sampling a subset of
the data in a way that produced a skewed class distribution. We defined theoutlier scoreof a training
example to be the fraction of its nearest neighbors that belong to a different class. For several values
of p ∈ [0, 1] and for each training set, we labeled only thep-fraction of examples with thehighest
outlier score. In this way, we simulated an “unhelpful” labeler who only labels examples that are
exceptions to the general rule, thinking (perhaps sincerely, but erroneously) that this is the most
effective use of her effort.

We tested three algorithms on these data sets: GAME, whereR(x̂, ŷ) was chosen to match the
semi-supervised learning setting with a Laplacian regularizer (see Section 2.1); Laplacian SVM
[3]; and Transductive SVM [19]. When constructing the Laplacian matrix and choosing values for
hyperparameters, we adhered closely to the model-selection procedure described in [1, Sections
21.2.1 and 21.2.5]. The results of our experiments are givenin Figures 1(a) and 1(b).

We also tested the GAME algorithm on a multiclass data set, namely a subset of the Labeled Faces
in the Wild data set [20], a standard corpus of face photographs. Our subset contained 500 faces
of the top 10 characters from the corpus, but with a randomly skewed distribution, so that some
faces appeared more often than others. The feature representation for each photograph was PCA
on the pixel values (i.e., eigenfaces). We used an ambiguously-labeled version of this data set,
where each face in the training set is associated with one or more labels, only one of which is correct
(see Section 2.1 for a definition of ambiguous learning). We labeled trainined examples to simulate a
“lazy” labeler, in the following way: For each pair of labels(y, y′), we sorted the examples with true

1This benchmark suite contains several data sets; we selected these two because they contain a large number
of examples that meet our definition of outliers.
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Figure 1: (a) Accuracy vs. fraction of unlabeled data for BCIdata set. (b) Accuracy vs. fraction of
unlabeled data for COIL data set. (c) Accuracy vs. fraction of partially labeled data for Faces in the
Wild data set. In all plots, error bars represent 1 standard deviation over 10 trials.

labely with respect to their distance, in feature space, from the centroid of the cluster of examples
with true labely′. For several values ofp ∈ [0, 1], we added the labely′ to the topp-fraction of
this list. The net effect of this procedure is that examples on the “border” of the two clusters are
givenboth labelsy andy′ in the training set. The idea behind this labeling procedureis to mimic
a (realistic, in our view) situation where a “lazy” labeler declines to commit to one label for those
examples that are especially difficult to distinguish.

We tested the GAME algorithm on this data set, whereR(x̂, ŷ) was chosen to match the ambiguous
learning setting with a Laplacian regularizer (see Section2.1). We compared with two algorithms
from [9]: UNIFORM, which assumes each label in the ambiguouslabel set is equally likely, and
learns a maximum likelihood log-linear model; and a discrimitive EM algorithm that guesses the
true labels, learns the most likely parameter, updates the guess, and repeats. The results of our
experiments are given in Figure 1(c).

Perhaps the best way to characterize the difference betweenGAME and the algorithms we compared
it to is that the other algorithms are “optimistic”, by whichwe mean they assume that the missing
labels most likely agree with the estimated parameter, while GAME is a “pessimistic” algorithm
that, because it was designed for an adverarial setting, assumes exactly the opposite. The results of
our experiments indicate that, for certain labeling styles, as the fraction of fully labeled examples
decreases, the GAME algorithm’s pessimistic approach is substantially more effective. Importantly,
Figures 1(a)-(c) show that the GAME algorithm’s performance advantage is most significant when
the number of labeled examples is very small. Semi-supervised learning algorithms are often pro-
moted as being able to learn from only a handful of labeled examples. Our results show that this
ability may be quite sensitive to how these examples are labeled.

6 Future Work

Our framework lends itself to several natural extensions. For example, it can be straightforwardly
extended to thestructured predictionsetting [21], in which both examples and labels have some
internal structure, such as sequences or trees. One can showthat both steps of the GAME algorithm
can be implemented efficiently even when the number of labelsis combinatorial, provided that
both the loss function and label regularization function decompose appropriately over the structure.
Another possibility is tointeractivelypoll the labeler for label information, resulting in a sequence
of successively more informative label regularization functions, with the aim of extracting the most
useful label information from the labeler with a minimum of labeling effort. Also, it would be
interesting to design Amazon Mechanical Turk experiments that test whether the “unhelpful” and
“lazy” labeling styles described in Section 5 in fact occur in practice. Finally, of the three technical
assumptions we introduced in Section 3 to aid our analysis, we only proved (in Theorem 3) that one
of them is necessary. We would like to determine whether the other assumptions are necessary as
well, or can be relaxed.
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