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ABSTRACT 
In order to monitor patients in the Intensive Care Unit, healthcare 
practitioners set threshold alarms on each of many individual vital 
sign monitors.  The current alarm algorithms elicit numerous false 
positive alarms producing an inefficient healthcare sy stem, where 
nurses habitually ignore low level alarms due to their 
overabundance. 

In this paper, we describe an  algorithm that considers multiple 
vital signs when monitoring a post coronary  artery bypass graft 
(post-CABG) surgery patient.  The algorithm employ s a Fuzzy  
Expert System to m imic the deci sion processes of nurses.  In 
addition, it includes a Clinical Decision Support tool that uses 
Bayesian theory to display  the possible CABG-related 
complications the patient might be undergoing at any point in 
time, as well as the m ost relevant risk factors.  As a result, this 
multivariate approach decreases clinical alarms by an average of 
59% with a standard deviation of 17% (Sample of 32 patients, 
1,451 hours of vital sign data). Interviews comparing our 
proposed system with the approach  currently used in hospitals 
have also confirm ed the potential efficiency  gains from  this 
approach. 

Categories and Subject Descriptors 
J.3 [Computer Applications]: Life and Medical Sciences– 
Medical Information Systems.  

General Terms 

Experimentation, Human Factors, 

Keywords 
Clinical Data Integration, Clinical Decision Support, Vital Sign 
Monitor, Fuzzy Logic, Bayesian Theory 

1. INTRODUCTION 
Currently, critical care professionals are inundated with alarms 
from a variety of medical devices. Most of these alarms are only 
based on the output of individual v ital sign monitors and turn out 
to be false-positives.  The purpose of  this project is to devise an 
optimized algorithm for a s mart alarm system that m imics the 
established decision processing of caregivers nationwide.  
Additionally, this sy stem will prioritize im portant alarms for 
caregiver’s immediate attention by  combining the outputs of 
multiple monitors.  We hope for our algorithm  to be implemented 
in a Smart Alarm Manager within every  patient room within the 
Intensive Care Unit. 

The role of a nurse in an inte nsive care unit is vital to the 
monitoring of a recovering patient.  After an invasive surgery, 
many unforeseen complications can arise requiring to nurse to 
intervene with a range of solutions.  In order to simultaneously 
monitor multiple patients, these nurses routinely set threshold 
based alarms on individual vital sign m onitors that will sound 
when any one of up to eight monitored vital signs leaves a 
predetermined range.   

These simple threshold alarms produce many false positives.  A 
study by the Penn E-lert eICU, which remotely  monitors 80 ICU 
beds across four Penn sites, f ound that over a period of 12 hours, 
2,100 alarms occurred through the monitors.  Furthermore, only  
10% of these alarms proved to be clinically  relevant, requiring 
nurse intervention [1] .  Nurs es across the P enn Health System 
have validated this finding as a universal truth: alarms based on 
single vital sign variables are not efficient. 

The Smart Alarms project is centered on an alarm algorithm that 
considers multiple vital signs, m imicking the routine thought 
process of a nurse.  Instead of sounding an alarm as soon as single 
vital sign exceeds a thres hold, the algorithm  considers every 
relevant vital sign to determ ine both the clinical pertinence and 
the severity of the situation.  The announcement of these alarms is 
similar in sound to the current three tiered alarm  system in place 
in most hospitals.  However, th e Smart Alarms solution chooses 
the appropriate level using the sam e multivariate vital sign 
analysis and the requests of nurses.  The Smart Alarms algorithm, 
in turn, reduces false positives a nd encourages a m ore efficient 
health system, where every alarm is clinically justified.   

Clinical efficiency is also increased with the inclus ion of the 
Clinical Decision Support subsystem. This tool outputs a list of 
possible complications as well as the significant risk factors for a 
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patient every time a Smart Alarm is fired.  This will decrease the 
time healthcare providers spend diagnosing the patient.  

This algorithm focuses on patients coming out of coronary  artery 
bypass graft surgery (CABG surgery).  Additionally, most alarms 
are initiated by one of four vital signs: blood pressure, heart rate, 
respiration rate, oxygen saturation rate.   

2. RELATED WORK 
The problem of having multiple alarms in intensive care units has 
been acknowledged and discussed by health care professionals 
since the advent of widespread patient monitoring technologies in 
the late 1980s and early  1990s. The existing threshold-based 
alarms compromise the quality  and safety  of patient care due to 
the associated high rate of false positives. Excessive false 
positives lead nurses to turn off devices, set the thresholds for 
alarms unreasonably high or low, and become desensitized to the 
sounds. Moreover, the alarms do not alway s match the criticality 
of the patient’s condition, hindering the nurses’ ability  to react 
rapidly with the appropriate clinical intervention [2]. Since then, a 
variety of statistical, artificial intelligence, and hum an-computer 
interface methods have been proposed to gain high specificity  
surrounding alarm detection and annunciation. 

2.1 Statistical Approaches 
The Smart Alarms system will incorporate a data preprocessing 
step in order to filter noisy physiologic data into crisp values that 
can be used for further logical analy sis. Below is  a summary of 
some successful approaches that have been implemented to 
reduce noise in the monitoring devices and decrease the incidence 
of clinically irrelevant alarms. 

2.1.1 Univariate Analysis 
The application of m edian filters for data preprocessing was 
explored by Davies and Fried in their 2003 study  of robust signal 
extraction for vital sign monitoring devices. They  found that the 
application of a tim e-varying filter to noisy  vital sign data could 
be further improved by eliminating the time delay associated with 
estimation [3]. This implied that increasingly fast algorithms for 
the computation of the repeated m edian could play a crucial role 
in effective alarm detection. [4]  
Trend-based alarm algorithms have  also been explored. In 1999, 
Schoeberg et al. described an algorithm in which trends were 
defined by a set of occurrences re garding specific variables, such 
as the percentage change in cardiac output or the absolute drop in 
mean arterial pressure. At regular intervals , each variable was  
evaluated against the predetermined set of criteria and a score was 
assigned depending on the extent to  which trends deviated from 
the baseline. Alarms were then activated when the s um of these 
scores exceed a certain threshold. [5] 
More recently, the results of another trend-bas ed alarm system 
were published by Charbonnier and Gentil, researchers from  the 
Automatic Control Laboratory of Grenoble. The proposed sy stem 
required a vital sign input expected to remain stable, and used a 
series of three points in the data series to fit a straight line. The 
error of subsequent data points w ith respect to this line was then 
monitored at regular intervals.  When the running tally of the 
errors passed a certain threshold, a new line was  calculated and 
the trend direction was recorded. They  found that the trend-based 
alarm system reduced fals e alarms significantly, while keeping 

the false negative rate of clinica lly relevant alarm s in line with 
that achieved by traditional threshold alarms [6]. 

2.1.2 Multivariate Analysis 
In 1997, Feldman, Ebrahim and Bar-Kana published their findings 
regarding the improvement of h eart rate estimation using Robust 
Sensor Fusion, a method that entails combining data from 
multiple sensors with redundant data to im prove the quality  of 
alarm detection. The res earch team recorded heart rate data from 
the electrocardiogram, pulse oximeter and intra-arterial catheter 
and ran a sensor fusion algorith m based upon consensus between 
sensors, consistency with past estimates, and phy siologic 
consistency (two other vital signs, blood pressure and oxygen 
saturation, were also recorded). The result was a fused estimate of 
heart rate that was consistently better than the estimates available 
from any individual sensor and that reduced the incidence of false 
positive alarms [7]. 

2.2 Artificial Intelligence Approaches 
The primary value of the Sm art Alarms system will be the 
integration of individual vital sign alarms into a single alarm 
management system. The Sm art Alarm Manager (SAM), will 
contain expert medical knowledge  regarding the detection and 
prioritization of critical states. A summary of the most prominent 
approaches for the introduction of artificial intelligence to clinical 
alarms is included below. 

2.2.1 Knowledge-based systems 
Expert systems are algorithm s designed to mimic human 
reasoning through the use of a comprehensive knowledge base in 
the field of interest. In 1994, Koski et. al presented a knowledge-
based alarm system for cardiac s urgery patients that organized 
expert knowledge into an explicit decision tree [8] . The system 
improved the detection of critical events using a simple, 
deterministic approach; however, it did not result in a commercial 
application [9]. 
Subsequently, an expert sy stem based on the integration of seven 
vital signs was developed in 1997 by  researchers from the 
Department of Electrical Engineering and the School of Medicine 
of the Catholic University  of Chile [10] . The expert system 
designed in this study  employed fuzzy logic, which allows the 
modeling of imprecise concepts or dependencies. Fuzzy  logic 
reverses the paradigm of binary logic by  letting the algorithm 
estimate the “ degree” to which an event occurs . For example, a 
patient does not have to be either  hypertensive or not, but rather 
he or she can be “somewhat” hypertensive or “extremely ” 
hypertensive. The Chilean researchers assigned the patients’ vital 
sign readings to different “ fuzzy” sets. They used the res ults as 
inputs to a series of if-then ru les (the “knowledge base”) that 
assigned the patient to one of  several possible states and 
determined alarm activation. The resulting sy stem improved 
alarm reliability and reduced the incidence of false alarm s in 
patients undergoing cardiac surgery. 
Another integrated systems methodology based on the principles 
of rule-based systems was presented during the 2006 [11] . Rules 
regarding vital sign thresholds and trends were developed by  
clinical experts, resulting in an alarm system that integrated vital 
signs data from multiple devices coupled with expert knowledge 
about the relevance of different events.   



2.2.2 Bayesian Networks 
Bayes’ theorem can be us eful in critical care m onitoring to 
calculate the probabilities of events of interest, such as 
cardiovascular complications or device m easurement errors. 
Bayesian networks allow for continuous monitoring of these 
probabilities; that is, every  time a new set of physiologic data is 
compiled, the event probabilities are recalculated and displayed to 
the user as a decision-support tool  for diagnosis. The drawback to 
this approach is that a large amount of information regarding 
dependencies between phy siologic variables and patient 
conditions is required [12] . An application of Bayesian networks 
for medical alarms was presente d by Laursen in 1994, in which 
mean arterial pressure and central venous pressure were 
monitored and used for cardiovascular event detection [13] . The 
system proved useful for single-parameter event detection, but 
remained unable to detect long-term, slow changes in the patients’ 
condition accurately. 

2.2.3 Neural Networks 
While other artificial intelligence approaches require the 
compilation and organization of  expert knowledge prior to 
implementation, neural networ ks attempt to “ learn” the 
relationship between combinations of vital signs and the 
consequent patient state from “training data sets” that contain 
sample entries of inputs (i.e., vital sign values) together with the 
corresponding outputs (i.e., high, medi um or low priority  alarms 
or no alarm at all) [14] . This approach has been used to develop 
alarm systems for specific clinical purpos es, such as fault 
detection in anesthesia breathing circuits and vital signs 
monitoring in pediatric ICUs [15,16] . The main hindrance to 
widespread adoption of neural ne tworks is the required training 
phase, difficulty in finding appropria te data sets to cover a wide 
range of clinical contexts, and the difficulty  in determ ining the 
specific hypothesis the system has learnt. 

2.2.4 Clinician-computer interaction 
Behavioral studies about human responsiveness to alarms and 
their implications for medical devices have been identified as  a 
promising path to achieve the principal objective of alarm s: to 
communicate critical changes  in a patient’s condition early and 
reliably. In addition to m aking alarms more reliable, the Sm art 
Alarm system will make them recognizable and identifiable. 
Some of the observed issues with the annunciation of existing 
clinical alarms include: alarm s are m anually turned off because 
they are too loud and irritating, there are too many  going on at the 
same time for the user to determ ine which to address first, and 
there is little or no correlation between the degree of urgency  of 

the patient’s state and that implied by  the alarm sound or light 
[17]. 
Edworthy and Hellier have proposed the use of auditory icons, or 
sounds which bear some relationshi p to the associated function, 
just like breathing sounds relate to  ventilators [18]. The potential 
benefit of applying the principles of sonification (the science of 
turning data into sound) to medical alarms has also been discussed 
[19]. This application would likely  result in an alarm  system in 
which each vital sign is assigned to a different acoustic parameter 
(such as pitch, loudness, speed, harmonic content, among others). 
However, both fields of research are still in the early  stages of 
development and we could not fi nd studies that demonstrated 
quantifiable improvements in alarm responsiveness through the 
use of either method.  

3. OUR APPROACH 
3.1 Focus on CABG Surgery 
CABG surgery is performed on patients with narrow or blocked 
heart arteries. The surgery  involves grafting a larger vessel from 
another area of the body onto the heart and bypassing the blocked 
artery to optimize blood flow and oxy gen to the heart. Post-
operative management of the patient is challenging in that clinical 
changes and complications may  develop rapidly. Continuous 
monitoring of physiologic data allows the clinician to detect early  
changes in the patient’s condition and intervene in a tim ely 
manner to prevent com plications. The primary post-operative 
goals are to restore adequate ventilation and hemodynamic 
stability. Blood pressure lim its are maintained within a narrow 
range; high enough to ensure that enough oxygen is getting to the 
tissues but low enough to prevent bleeding or disruption of the 
graft. The heart rate and rhy thm are continuously  monitored for 
abnormal rhythms which may  contribute to poor tissue 
oxygenation.  Respiratory rate and pulse oximetry data are used to 
wean the patient from the mechanical ventilator and return to 
normal breathing patterns.  
As the patient moves from the operating room to the ICU, the 
nurse connects the patient and the invasive lines to the monitoring 
equipment.  Many false alarms are generated at this time, mainly 
due to manipulation or disconnec tion of the monitoring leads.  
The nurse then sets each of the vital s ign alarm parameters (heart 
rate, blood pressure, respira tions and pulse oximetry ) 
individually. Each parameter that falls outside of the pre-set limit 
will generate an alarm . A patient’s heart rate m ay drop one 
number below the lim it and an alarm will generate, even though 
all other parameters remain the same and within range. This alarm 
would be classified as a “false” alarm, as it does not represent a 

 
Figure 1. Smart Alarms System Block Diagram 



change in the condition. In the in tensive care unit, the majority of 
alarms (85%) are false or are of lim ited utility [20]. The high 
number of false alarms leads to “alarm fatigue”:  the number of 
alarms overwhelms clinicians, po ssibly leading to alarms being 
disabled, silenced, or ignored [21]. 

3.2 System Block Diagram 
The diagram above is a high level view of the Smart Alarm 
System. The system initially takes in four param eters from the 
electrocardiogram, the arterial line and the puls e oximeter. These 
four vital s igns are already collected from the respective devices 
and presented in a unified display  screen by  most patient 
monitors. 
The algorithm does not only  take in the four vital signs, but also 
includes contextual patient data such  as age, weight, fitness level, 
and medical history. It us es fuzzy logic to activate alarm s only 
when needed and to differentiate the urgency  of the alarm s 
through a visual and auditory  output. Bayesian theories were also 
used in the algorithm to output a Clinical Decision Support for 
nurses’ decision-making. The Clinical Decision Support was 
designed to assist nurses’ decision process and to improve their 
response time in critical situati ons. This tool, however, was not 
intended to replace hum an reasoning and ins ight in the care of 
critical patients. 

3.3 Fuzzy logic and expert system 
The Smart Alarm algorithm performs a multivariate analysis that 
determines whether an alarm should be activated and the 
associated urgency of the event.   Its inputs are four different 
parameters from bedside monito rs: heart rate, blood pressure, 
respiration rate, and oxy gen saturation rate (SpO2). These 
parameters were s elected based on their clinical relevance 
discussed in “Caring for a patient after coronary  artery surgery” 
[22]. These vital signs are used  to diagnose the most severe 
complications that could arise after a coronary artery bypass graft, 
such as cardiac tam ponade, atrial fibrillation, and respiratory 
impairment.  
Fuzzy logic was implemented to deal with imprecise concepts that 
are associated with m onitoring patients in the ICU. F uzzy logic 
uses multi-valued reasoning to address complex issues that cannot 
be discretely defined.  Unlike clas sical reasoning where a 
statement is determ ined to be either true or false, fuzzy  logic 

assigns partial membership to a value. The degree of membership 
ranges from 0 to 1 and is used to measure the extent to which 
something is found to be true. For example, consider a patient 
with a blood pressure of 135/89 mmHg, imply ing he is 80% 
hypertensive as he is nearing the hypertensive threshold levels of 
140/90 mmHg [23] . This example depicts a typical scenario 
where there is no concrete answer and fuzzy  logic should be 
applied. In fuzzy logic, non-numerical values called linguistic 
variables are used to explain the s ituation. Each variable is  
assigned one or more descriptive values. In the example above, 
blood pressure is the variable and hypertension or hypotension 
would be the values assigned to it.  
Fuzzy expert s ystems use if-then statements and operators of 
Boolean logic, such as AND,  OR, NOT to define the reasoning 
involved in assigning membership to one or more sets. Fuzzy  
logic is the ideal m ethod of m edical reasoning because it is 
difficult to discretely  define a specific num ber to be the limit of 
whether a patient is  treated or not, es pecially since each patient 
varies in context and has dissimilar reactions. It is additionally  a 
good representation of human behavior since it takes into account 
both quantitative and qualitative values, and thus is relevant for 
critical decision making, specifically when deciding whether an 
alarm should go off and its urgency. [24]  
In contrast to the current medical alarms which are based on exact 
thresholds, the Smart Alarm Manager creates fuzzy sets, or 
membership value ranges for each of the four inputs. An 
illustrative example of the fuzzy  sets for blood pressure is 
included above in Figure 2. This graph display s the partial 
membership function, mapping the range of Mean Arterial Blood 
Pressure to an appropriate Fu zzy Value ranging from Very  Low 
to High.  
Partial membership functions can also be expressed by piecewise 
equations. The output of the equa tion is a real number between 0 
and 1 which describes the degree of membership of a particular 
value of blood pressure to the fuzzy  sets named Low 
(corresponding to hypotension), Normal, and High (corresponding 
to hypertension). 
The vital signs knowledge used to generate the actual fuzzy  sets 
for the Smart Alarm Manager wa s attained through interviews 
with medical doctors and nurses at  the Penn Presbyterian Medical 
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Center and from  a textbook widely  used in the field of critical 
care called Monitoring the Critically Ill Patient [25].  
A sample of the rules that will be incorporated into the Sm art 
Alarm Manager’s knowledge base are included in Table 1. 
The clinicians we interviewed at the Penn Presby terian Medical 
Center and the Penn eICU supplied the expert knowledge 
necessary for understanding the care of patients that have 
undergone coronary artery bypass graft surgery . This knowledge 
has come in the form  of acceptable and un-acceptable threshold 
levels for each of the four vital signs and the corresponding 
medical conclusions whenever one or m ore vital signs exceed 
their thresholds. This inform ation was used in the Smart Alarm 
algorithm to assess the extent to which a patient’s condition 
merits an alarm . The algorithm  implements typical nurses’ 
decisions--whether to react or ignore an alarm—through the use 
of if-then rules that integrate patient inform ation from all four 
vital signs. For example, whenever a patient is  determined to be 
over 50% tachy cardic, the algorithm checks the patient’s degree 
of membership in the hy potensive set and the low oxygen 
saturation set in order to assess the criticality of the patient’s state.  
In addition to fuzzy reasoning, the Smart Alarm Manager uses the 
patient’s clinical context to evaluate the relevance of alarms. 
Although all of the patients simulated in our sy stem are post-
CABG surgery patients, they  have different age, weight, body  
mass index, and medical history. A patient’s clinical context is 
important because it plays a critical role in the correct detection of 
alarms. For example, since children tend to have higher heart 
rates than adults, when evaluating their heart rate, the degrees  of 
membership should be higher and different from that of adults 
[26]. 

3.4 Clinical Decision Support Tool 
Once it has been determined that an alarm  must be activated, the 
algorithm will additionally output a list of possible com plications 
the patient might be undergoing. The Smart Alarm algorithm 
focuses on the eleven most relevant com plications that aris e in 
CABG patients in the im mediate post-operative period. For the 
purposes of this study , the immediate post-op period refers to the 
average ICU stay for any given patient, 48-60 hours [27] . 
Additionally, the complications included are only those that can 
be pinpointed by  these four vital signs and do not require 
additional information, for exampl e sepsis. In order to determine 
what complications are possible based on the vital sign behavior, 
extensive interviews with three nurses in the ICU were conducted.  
Table 2 shows when complications are relevant according to the 
relevant fuzzy levels. 
After the algorithm compiles the list of possible com plications 
based on the vital signs, the list w ill be shown in decreasing order 

of likelihood. In order to do so, the Smart Alarm algorithm 
applies Bayesian network principl es that represent probabilistic 
relationships between random variables [28]. 
Once the list of possible complications has been determined and 
sorted, the algorithm  will also crosscheck the m edical record of 
the patient to find the key  risk factors significant for each 
complication that are present in the patient. The lis t of s pecific 
risk factors considered for each com plication was compiled 
through research of several medical journals. A sample list of risk 
factors for the same two complications are shown in order of 
significance in Table 3.  
Given that the Sm art Alarm algorithm will output the list of 
possible complications with the corresponding risk factors, the 
CDS can improve healthcare providers ’ efficiency. Nurses can 
consider complications they might otherwise forget as  well as  
identify the most important c ontextual information. Although 
there are many other factors  that com e into play  in patient 
diagnosis, the Smart Alarm algor ithm can increase the response 
time of caregivers by  extracting their thought process and 
displaying it on a screen. Inexperienced nurses that might need 
some time to connect relations hips between vital signs and 
complications could benefit from th is feature. S imilarly, nurses 
who care for multiple patients at a time will not need to memorize 
or look up the patients’ contextual information and can gain from 
the CDS as well. 

3.5 Alarm Interface 
The final s tep in the S mart Alarm Algorithm is the clear and 
effective annunciation of alarms to the nurses. For this purpose, 
some of the principles of hum an computer interface were be 
implemented, including the use of colors in the patient m onitor 
and graduated alarm sounds to convey the urgency and nature of 
the patient’s critical condition. A model for alarm differentiation 
that was developed at the Hospital of the University  of 
Pennsylvania (HUP) classifies all alarm s in the clinical area as  
level I, II, or III [29]. Following a similar methodology, the Smart 
Alarm Manager outputs three different levels of alarms according 
to whether they command an intervention, a rapid intervention, or 
an immediate retention. Given the sy stem’s ability to analy ze 
information from four different physiologic parameters, the Smart 
Alarm evaluates the need for clinical intervention more accurately 
than existing individual monitors. 

Table 2. Sample CDS Complications Rules 

Complication 

Blood 
Pressur

e 
(mABP) 

Heart 
Rate 

SpO2 
Respirator

y Rate 

Pain Above 
Normal 

Above 
Normal 

Less 
than 
High 

Above 
Normal 

Hypertension Above 
Normal 

NOT 
Normal Any Any 

Table 1. Rule Samples 

Blood 
Pressure 
(mABP) 

Heart 
Rate 

SpO2 
Respirator

y Rate 
Alarm 

Normal Low Normal NOT Very 
Low 

None 

Low OR 
High 

Normal Normal Normal Level 1 

Normal Normal Very 
Low 

High Level 2 

Low Normal Low Very Low Level 3 

Table 3. Sample CDS Risk Factors 

Complication Risk Factors 

Pain Less than 60 years old, Male, Previous 
Myocardial Infarction 

Hypertension Hypertensive, Smoker 



The alarm sounds used in the de monstration of our system are 
different from the ones currently  used in hospitals so that the 
immediate clinical severity of each alarm  is accurately 
communicated. In 2003, the International Electrotechnical 
Commission (IEC) published  standard s for the safety  of Medical 
Electrical Equipment, which c ontained a section about Alarm 
Systems (See section IEC 60601-1-8 in [30]). The IEC advocates 
the use of different combinations of musical notes to denote the 
category of the alarm  (e.g., cardiovas cular, temperature, drug 
delivery, etc) and the use of speed and repetition to denote the 
urgency level of the alarm. The Smart Alarm Algorithm uses 
these IEC-compliant sounds. 
Currently, many clinically irrelevant alarm s are triggered by  
nurse’s interactions with patients, like when blood is drawn from 
the arterial line for lab tests. While nurses tend to ignore them 
with ease, these alarms may cause great anxiety  to the patients  
and their family if they do not know the sound was produced by  
an intervention. F or this reason, most nurses silence the alarms 
temporarily when they walk into the patient’s room  for som e 
procedure. When implemented in hos pitals, the Smart Alarm 
Manager will therefore keep the function found in existing vital 
sign monitors that allows nurses to temporarily silence alarms 
with a single command.  
The visual interface of the S mart Alarm Monitor maintains the 
standards currently expected by  nurses—black background and 
bright colors for each vital sign—and adds two new features: 
color-coded descriptive boxes for each vital sign and a list of 
potential complications in order of likelihood (the clinical 
decision support subsy stem). Inclusion of the first feature is 
supported by research on hum an-computer interfaces from the 
chemical industry (in nuclear and petrochemical plants) and from 
the aviation industry (in pilot dashboards), which has shown that 
individuals process colors more rapidly than numbers or words. 
Inclusion of the second feature was validated by  our medical 
experts as a tool that can help  nurses respond faster to potential 
complications by extracting relevant portions of a patient’s 
medical chart and displaying them on-screen in real time. 

3.6 Smart Alarm Manager 
In order to test and validate our algorithm, the Smart Alarm 
Manager was programmed using Microsoft Excel and Vis ual 
Basic.  The program was designed to mimic a s imilar system at 
the patient’s bedside, both in the algorithm employ ed and visual 

output.  There are three iterative versions of the Smart Alarm ICU 
Program.  The first version of the program processes a single 
patient’s time in the hospital and display s an output made to 
resemble a standard Vital Sign Monitor already in use, the second 
adds the ability to view three “ checked in” patients 
simultaneously, and the third version was created to efficiently  
process vital sign data from  multiple patients through a batch 
process.  This program has been used to demonstrate and test the 
Smart Alarm Manager algorithm with previously recorded data. 
Additionally, in order to facilitate validation experim ents, we 
implemented a version of the smart alarm as a Java application for 
a tablet com puter.  The J ava version 1) em ulates the vis ual 
appearance of a standard m ulti-variate vital signs m onitor, 2) 
exploits the tablet’s touch capab ilities to emulate the interactivity 
of a s tandard vital s igns monitor 3) can replay  recorded clinical 
scenarios and 4) autom atically records how clinicians interact 
with the program (i.e., acknowledge alarms).     

4. EVALUATION 
4.1 PhysioNet Data 
PhysioNet data was used to validate our m odel. Since the data 
obtained from this databank c ontained vital sign data and 
contextual factors, it was only  used to validate the reduction of 
total alarms. The total number of alarms that would have sounded 
for each patient us ing the current s ystem and the Smart Alarm 
system was measured and compared.  
The current s ystem uses threshold levels that are typically 
inputted manually by nurses. Th e threshold levels used for 
validation purposes were those deemed “standard” for CABG 
patients by the nurses of the Penn Presby terian SICU. For the 
current threshold-based system, any time a single vital sign 
surpassed one of these thresholds, the alarm count was 
incremented by one. Since there are different levels  of alarms in 
the Smart Alarm algorithm, the counting m echanism was more 
complex: In the cases where a vital s ign transitioned from “high” 
to “very high” or from “low” to “very  low”, the count was only  
incremented once, although the alarm sound might have 
fluctuated through 1 or 2 urgency  levels. This methodology  
ensured that the alarm counts of the current sy stem and of our 
Smart Alarm algorithm were truly comparable. 
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Figure 5: Comparison of Total Number of Alarms under both 

systems (n = 32 patients, 87,061 min) 

From the total num ber of alarm s for each patient, we then 
computed the decrease in alarms as a percentage of the initial total 
number. The average and s tandard deviation of this percentage 
reduction was computed for the entire population of Phy sioNet 
patients. From a total of 1,451 hours of actual data comprising 32 
patients, the Smart Alarm algor ithm was found to have reduced 
total alarms by 57.13% with a standard deviation of 17.57%.  

4.2 Presbyterian Medical Center Data 
While PhysioNet data provided a valuable source of data to 
validate our reduction in the total number of alarms, it was only 
through live data collection that we could validate that the 
foregone alarms had been false positives. After obtaining 
expedited approval from the Internal Review Board of the Penn 
Presbyterian Medical Center, we gained access to vital s ign data 
and annotated clinical interventions in real time for 4 different 
post-CABG patients in the Presbyterian SICU, resulting in 7 
hours of annotated data. The data was annotated for clinical 
interventions in real time during 2-hours shifts using the 
worksheet in Appendix 7. 
Although the sample size was adm ittedly small, this data was 
crucial to the validation of our s ystem, because it provided 
confirmation that no false negativ es (i.e., m issed true alarm s) 
were generated. The alarm counting methodology was the same 
as the one used for the PhysioNet patient data. After running the 7 
hours of vital sign data through our Smart Alarm Manager and 
comparing it to the current sy stem, the following results were 
obtained: 

 Reduction in total alarms: 49.2% on average, 26.2% 
standard deviation 

 Reduction in false positives: 52.1% on average, 26.6% 
standard deviation 

 Zero false negatives (no true alarms were missed) 

4.3 Clinical Interviews 
In order to begin tes ting the accuracy  of our S mart Alarms rule 
table, we also built a sm all testing applet to conduct interviews.  
This applet would have each ICU clinician input their preferred 
fuzzy set values (‘Low,’ ‘High,’ etc) for each vital sign given the 
medical context information of the current patient.  Then, the 
applet would randomly select real Vital Sign value combinations 
from previously recorded data, displayed them on screen with the 
recent waveforms, and as ked the clinician to des ignate an 
appropriate level of alarm ra nging from no alarm to a Level 3 
alarm. 
We ran this initial interview with  ten ICU clinicians over a week 
long period.  While the small sample size was not enough to lead 

to any conclusive results, the survey  did help define our future 
direction.  F irst, more than 95% of the time, each clinician 
proposed the alarm level that our rule database would have fired.  
Also, the clinicians always agreed with the certain scenarios that 
would have led to no alarm in our new sy stem, but leads to a 
normal alarm with threshold alarm system in place today.   
This initial validation in our sy stem not only came from accurate 
rules, but also the clinician’s ability  to set their appropriate ‘fuzzy 
values’ for the patient.  We found that clinicians who had worked 
within the ICU environment for more than 15 years often set more 
extreme bounds for ‘Low’ and ‘High’ values of each vital sign, 
while clinicians who had worked for less than 5 y ears set m ore 
stringent alarms with tighter bounds for the ‘normal’ range.  This 
difference in fuzzy values occasionally led the lower alarm levels 
for the more senior clinicians, which they  repeatedly requested in 
the survey. 
This initial survey has also aided in the developm ent of our Java 
Applet that we will use to conduct a full clinical study, comparing 
the efficacy of clinicians responding to alarm s from both the 
threshold system and our Smart Al arms system using previously  
recorded medical data. 

5. CONCLUSION AND FURTHER 
RESEARCH 
The Smart Alarm project m et the stated goals of creating a 
multivariate alarm algorithm reducing alarms by at least 25% 
accompanied by a 3-level alarm  priority system. The algorithm , 
called the Smart Alarm Manager, was tested using 1,451 hours of 
actual vital sign data from 32 pos t-CABG patients obtained from 
the clinical database Phy sioNet, resulting in an impressive 57% 
average reduction in the total number of alarms (standard 
deviation of 17%). The Smart Al arm Manager was further tested 
with 7 hours of vital sign data (annotated in real time for clinical 
interventions) from 4 post-CABG patients in the SICU of Penn 
Presbyterian Medical Center, resulting in an average reduction of 
52% in false positive alarms (standard deviation of 27%) and no 
increase in the number of false negatives, or missed alarms. 
The Smart Alarm Manager is an Expert System that uses both 
Fuzzy and Bayesian reasoning to evaluate a patient’s condition at 
every point in time. The process that led to its design, that is, the 
extensive nurse interviews a nd research into the m edical 
literature, produced the following key insights: 

 Alarm overabundance: The inordinate number of 
clinically irrelevant alarms in ICUs presents several issues 
relating to patient safety , patient satisfaction and 
efficiency in care. 

 Patient Safety: To avoid excessive alarms, nurses may set 
overly wide alarm thresholds in the vital sign monitors 
manually. While this approach reduces alarms, it 
compromises patient safety  because it leaves the door 
open for missing true alarms. Alternatively, nurses m ay 
keep standard alarm thresholds, but become desensitized 
to the sounds, such that thei r response tim es to critical 
events grow longer, again compromising patient safety. 
The Smart Alarm Manager decreases the num ber of 
alarms without compromising patient safety by looking at 
the instantaneous vital sign va lues, the vital sign trends, 
and the medical history holistically. 

 Patient Satisfaction: According to our medical experts, 
noise is one of the chief complaints of ICU patients and 
their families. Investing in a sy stem that reduces alarms, 



one of the main sources of noise, would increase the level 
of patient satisfaction. 

 Efficiency: In our interviews with nurses, we found 
varying degrees of dissatisfaction with the current alarm 
system. Most nurses agreed that a reduction in the number 
of false positive alarm s would improve their working 
conditions. They also agreed with our hypothesis that the 
integration of the patient’s m edical history with the vital 
sign monitor would save time and help train new nurses. 

 
The Smart Alarm Manager can be further improved in several 
ways: 

 The knowledge base of vital sign rules and potential 
complications can be improved by  incorporating insights 
from a larger number of medical experts. 

 The system can be expanded to cover other clinical 
scenarios besides the CABG postoperative period. 

 We are currently continuing to investigate into the clinical 
accuracy of the alarms outputted in with s ystem.  Us ing 
the Java Applet, we are collecting information on: (1) the 
clinical relevance of the alarms that were generated by the 
system and (2) the com plications that were experienced 
by the patient during that tim e. This data m ay be able to 
be used to generate training sets for improved alarm 
systems based on machine learning approaches. 
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