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Determining interconnections in biochemical networks using linear
programming

Abstract
We present a methodology for efficient, robust determination of the interaction topology of networked
dynamical systems using time series data collected from experiments, under the assumption that these
networks are sparse, i.e., have much less edges than the full graph with the same vertex set. To achieve this, we
minimize the 1-norm of the decision variables while keeping the data in close Euler fit, thus putting more
emphasis on determining the interconnection pattern rather than the closeness of fit. First, we consider a
networked system in which the interconnection strength enters in an affine way in the system dynamics. We
demonstrate the ability of our method to identify a network structure through numerical examples. Second,
we extend our approach to the case of gene regulatory networks, in which the system dynamics are much
more complicated.
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Determining Interconnections in Biochemical Networks Using Linear

Programming

Elias August, Antonis Papachristodoulou, Ben Recht, Mark Roberts and Ali Jadbabaie

Abstract— We present a methodology for efficient, robust
determination of the interaction topology of networked dynam-
ical systems using time series data collected from experiments,
under the assumption that these networks are sparse, i.e., have
much less edges than the full graph with the same vertex set. To
achieve this, we minimize the 1-norm of the decision variables
while keeping the data in close Euler fit, thus putting more
emphasis on determining the interconnection pattern rather
than the closeness of fit. First, we consider a networked system
in which the interconnection strength enters in an affine way
in the system dynamics. We demonstrate the ability of our
method to identify a network structure through numerical
examples. Second, we extend our approach to the case of gene
regulatory networks, in which the system dynamics are much
more complicated.

I. INTRODUCTION

Determining the interaction topology in large-scale dy-

namical systems has been an active area of research for

some time now. Most available results in the case of high-

throughput experimental data concern information about the

behavior of the system after small perturbations from the

steady-state. In this case, several approaches have been

considered [1]–[3]. However the problem of determining the

network structure in the case where time-series data are

available is much harder and we address this case in this

paper.

A particular example of an area of research in which the

above problem is of fundamental importance is molecular

biology. One aims to robustly determine the interaction

topology of biochemical networks using time series data

collected from experiments. On one hand, such data are

often abundant due to the development of high-throughput,

effective experimental techniques. At the same time, a high

computational effort is required to extract information about

the network structure; moreover these data are often noisy

and do not contain rich information. In particular, deter-

mining the pathways in biochemical reaction networks and

gene regulatory networks from time series data has been an

active area of research for over a decade. A recent review of
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available techniques can be found in [4] or [5], but earlier

articles, such as [6], also list several approaches to this

network identification problem.

Apart from these, in [7], necessary and sufficient condi-

tions are presented for the ability to reconstruct the network

structure of linear dynamical systems from input-output data

only. A class of techniques that fall under the rubric of

‘stationary state Jacobian Matrix Elements’ analyzes the

system behavior when it is perturbed locally from steady-

state and look at whether the concentration of one species is

increased or decreased when another species concentration

is increased. In [8] and [9], Kholodenko et al have built

on this approach and determined the functional interactions

in cellular signaling and gene networks by taking into

account the ‘modular’ structure of the networks in question.

Alternatively, inferences about the topology of the network

can be made by introducing pulse changes in concentration

of a chemical species in the network, and observing the

networks response, concluding causal chemical connectivi-

ties [10]. In [11], an approach was presented to apply linear

programming to minimize the L1-norm such as to obtain the

sparsest interaction structure in the case of chemical reaction

networks. In [3], a linear dynamical system was considered

to represent a gene regulatory networks, and an approach

proposed to minimize the L1-norm in order to obtain the

sparsest network structure form genetic perturbation experi-

ments.

A variety of data-driven approaches attempt to extract

structure from existing experimental data without the ability

to tailor experiments to the modeling task. For example,

researchers have used time series measurements of con-

centrations to construct correlation functions of concen-

trations [12]. An approach using Artificial Neural Net-

works [13] tries to ‘learn’ patterns from the complicated

and noisy data and to detect trends in the chemical reaction

pathways. Related to this is a genetic algorithm approach

to study the evolutionary development of a reaction mecha-

nism [14]. In [1], the Singular Value Decomposition was used

to obtain a family of candidate networks. Since the optimal

networks were typically much more dense than would be

realistically expected, the sparsest network in the family

was identified using robust regression. In [15], the Sparse

Vector Autoregressive method was applied to estimate gene

regulatory networks for cases when gene interactions are

sparse and experimental data are rare.

This paper contains two results. The first part of our study
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focuses on dynamical systems of the following form

ẋ = Af(x), x ∈ R
n, A ∈ R

n×m, (1)

where the unknown matrix is A and functions f (which

need to satisfy appropriate smoothness conditions to ensure

local existence and uniqueness of solutions) are known. This

makes (1) linear in the unknown parameters, which is not a

significant assumption as many such modelling frameworks

are widely used in practice. For example, chemical reaction

networks with mass action kinetics (see references [16]

and [17]), are systems that have such a structure. Our main

objective in such a procedure is to identify the interconnec-

tion topology that is encapsulated in A, given experimental

time-series data. In the particular case of biochemical reac-

tion networks, we seek to identify the chemical pathways and

mechanisms, that is, how the chemical complexes interact

within the chemical network. This was the topic of an earlier

paper [11] where it was argued that identifying the intercon-

nection topology in biological and biochemical systems is of

greater importance than extracting the parameters (the rates

of the various reactions) that best fit the particular time series

data. There are several reasons for this: first, the parameters

are often collected under noisy experimental conditions and

are sensitive to laboratory conditions such as temperature

and the environment. Second, as is often the case with large

networks, persistence of observed phenomena is robust to a

large range of most parameter values and therefore identify-

ing these parameters exactly is not of great interest. Indeed,

chemical reaction networks often have the same functionality

in the neighborhood of most of the nominal reaction rates.

But most importantly, networks are rarely robust to the

random rewiring of the underlying interconnection structure

and hence determining the network structure is much more

important than determining the kinetic parameters that fit

the particular data. An important property of the network

given by A is sparseness, i.e., it has much less edges than

the full graph with the same vertex set. In this paper we

first extend the results in [11] to general and large-scale

networks; moreover, we put more emphasis on the case when

data from measurements is rare. As highlighted in the paper

cited, the importance here is that a linear program can be

solved efficiently while searching for the sparsest network

that fits data is a combinatorial problem.

In the second part of the paper, we draw our attention to

models of gene regulatory networks. A gene encodes the

information necessary to produce a specific protein. The

process, in which the information is used to synthesize a

protein, is highly controlled and this control allows the cell to

vary the level of a particular protein in the cell depending on

the cell’s need for this protein. The first step of synthesizing

a protein from a gene is RNA polymerase transcribing

gene information from DNA to mRNA (see Figure 1a).

This mRNA is then translated into synthesised proteins by

ribosomes. Control can occur at a number of stages including

the synthesis of mRNA, subsequent processing of the mRNA,

control of the ribosome and control of mRNA stability. Some

proteins, called transcription factors, are responsible for the

regulation of the initiation of transcription. A transcription

factor binds to the DNA, at the promoter site, in order to

either inhibit or activate (or alternatively increase the rate

of) the transcription of mRNA that is responsible for the

synthesis of a specific protein (see Figure 1b). (Note that self

regulation is also possible.) The collection of DNA segments

which interact with each other in the manner described is

called the gene regulatory network.

The three main information levels that need to be identified

to understand the dynamics and behavior of a gene regulatory

network are:

1) The network of connections in form of a directed

graph;

2) Whether an edge from node i to node j means that

transcription factor i is activating or repressing j;

3) What are the activation/repression rates for the tran-

scription factors.

Time-series obtained from DNA microarrays [18], [19]

are extremely helpful to obtain the structure of a gene

regulatory network. This is because DNA microarrays allow

observation of the presence of specific mRNA within the

cell and in particular, time-series data allow measuremens

on how these change over time after a perturbation, or when

following the cell cycle. We provide an approach using

Linear Programming to obtain the gene regulatory network

structure from DNA microarray time-series data.

DNA promoter gene 

RNA polymerase 

transcription  

inhibitor 

(increased) transcription  
activator/
enhancer 

a) 

b) 

Fig. 1. Diagram showing the process of transcription. 1a) The RNA
polymerase binds to the promoter sequence on the DNA and transcribes a
gene. 1b) Transcription can be controlled by inhibitors or activators acting
at the promoter sequence.

The paper is organized as follows. In Section II, we

describe an algorithm to obtain the network structure (matrix

A in (1)) of a dynamical system with affine and sparse

interconnections. Considering a linear dynamical system, we

provide an example utilising our method and evaluating it.

We then consider the more complicated case of a gene

regulatory system in Section III, where the dynamics are not
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affine in the unknown parameters, show how to approach this

case, and provide examples. Finally, we conclude the paper

and suggest future work in Section IV.

A. Notation

R, R
n, R

m×n real numbers, real vector of

length n, m × n real matrices

Aij , A ∈ R
m×n (i, j)th entry of matrix A

vec(A) is a vector which contains the

columns of A stacked one

below each other

A ◦ B, A,B ∈ R
m×n Hadamard product:











A11B11 A12B12 · · · A1nB1n

A21B21 A22B22 · · · A2nB2n

...
...

...

Am1Bm1 Am2Bm2 · · · AmnBmn











II. DETERMINING AFFINE AND SPARSE

INTERCONNECTIONS IN DYNAMICAL SYSTEMS

Consider a dynamical system of the following form:

dx

dt
, ẋ = Af(x), x ∈ R

n, A ∈ R
n×m, (2)

where f(·) ∈ R
m is a vector of known functions, which

satisfy appropriate smoothness conditions to ensure local

existence and uniqueness of solutions. Let neither the value

of the entries nor the structure of matrix A be known. What

we wish to find is the structure and entries in matrix A, given

experimental data.

For this purpose, the following discrete-time system was

considered in [11]:

x(tk+1) = x(tk) + (tk+1 − tk)Af(x(tk)), (3)

which is the Euler discretization of (2).

Now, the measurements, which we denote by x̂, can be

used to fit the unknown entries to A such as to minimize the

error between the data and the model predictions, which are

given by (3). It is popular to solve the minimization problem

which results in the least 2-norm on the error (least squares)

between xi(tk+1) and x̂i(tk+1). We can write such an error

metric as:

min ‖Ma − b‖2 (4)

where a ∈ R
nm is a vector containing Aij , which we

treat as decision variables, and M ∈ R
({p−1}×n)×nm and

b ∈ R
({p−1}×n) are defined by ‘stacking’ all such condi-

tions obtained by manipulating the data as per (3). Here p

corresponds to the number of measurements. This problem

has the following analytical solution:

a∗ = M†b , (MTM)−1MTb. (5)

However, the solution puts emphasis on minimizing the

error between data and model prediction and not on the

structure of A. Both converge as the number of measure-

ments increase and the time interval between measurements

approaches zero; in other words, as the amount of data

increases. Note that if data points are rare (for example, when

running experiments is very costly), that is p ≤ m, and there

aren’t any constraints on matrix A then the error between

the data and the model predictions can be made zero and (5)

does not have a unique solution.

Let the entries to A be sparse and measurement data rare

(that is, p ≤ m). Then the following program tries to recover

this property of the matrix:

min ‖vec(A)‖1

s. t. x̂(tk+1) = x̂(tk) + (tk+1 − tk)Af(x̂(tk)),

∀k, k = 1, . . . , p − 1. (6)

Thus, if it is known that matrix A is sparse then (6) could

provide meaningful results with respect to the structure of

A. Let us denote the solution of (6) by ALP . The following

remark shows how sparseness of A might keep the error

between A and ALP small in the case when measurement

data are rare.

Remark 1: Suppose that the initial f(x0) is in a “suffi-

ciently random” configuration and that the interconnection

topology has a constant number of nonzeros per reactant (lets

say this constant is s). Then with high probability, there is

a constant C1 such that C1s log(n) experiments will suffice

to determine the structure of A assuming no noise and no

error due to the Euler approximation. In the case that we

have no noise, but there is additive error due to the Euler

approximation

∑

k

(

xtk+1
− xtk

tk+1 − tk
− Af(xtk

)

)2

< γ2,

then solving the SOCP

min ‖vec(A)‖1

s. t.
∑

k

(

xtk+1
−xtk

tk+1−tk
− Af(xtk

)
)2

< γ2

with data from C1s log(n) experiments finds an ASOCP that

satisfies

||A − ASOCP ||2 ≤ C2γ .

for a known constant C2. This is a straightforward applica-

tion of Theorem 1.1 in [20].

In the following, we provide an example to illustrate the

results presented in this section.

A. A linear dynamical system with a sparse but otherwise

unknown interaction matrix

Consider the following linear dynamical system

ẋ = Ax, x ∈ R
n, A ∈ R

n×n, (7)

where matrix A is sparse but otherwise unknown. We wish to

identify the structure of A from measurements as described

above. Let the ‘true’ A be given by

Atrue = (8)






























−.2 0 0 0 −.08 0 −.06 .08 0 −.07

0 −.2 0 0 0 0 0 0 0 0

0 0 −.2 .1 0 0 0 0 0 .06

0 0 .09 −.2 −.1 0 0 0 0 0

.1 0 0 0 −.18 0 0 −.06 .06 0

0 0 0 0 0 −.2 0 0 0 0

.02 0 0 −.06 .08 0 −.23 .05 −.1 0

0 0 0 .06 0 0 0 −.2 0 0

0 −.02 .03 −.07 0 0 0 −.05 −.2 0

0 0 0 0 0 0 0 .09 0 −.2































.
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The network in Figure 2 represents the interaction between

variables given by the Atrue. An arrow from node i to j

indicates that Aji is nonzero. (Here, entries to the diagonal,

which would result in self-loops, are ignored.) Solid arrows

denote a positive entry and dash pointed arrows with a

hammer head denote a negative entry.

Fig. 2. Network of interactions represented by Atrue. An arrow from node
i to j indicates that Aji is nonzero. (Here, entries to the diagonal, which
would result in self-loops, are ignored.) Solid arrows denote a positive entry
and dash pointed arrows with a hammer head denote a negative entry.

Now, we produce a mock-up data set with ‘measurements’

taken every ∆t = 5 between t = 0 and t = 45 (time is

in arbitrary units). With this data, we wish to to solve the

linear program given by (6) in order to estimate (8). To do

so, we use the solver SEDUMI [21] and obtain the matrix

Aestimated (not shown). Figure 3 represents the interaction

between variables given by matrix Aestimated. Most links that

existed in the original matrix (8) were identified, only two are

missing. Fifteen additional links were wrongly identified. It is

important to note however that the all identified connections

that overlap with connections given by Atrue have the right

sign.

Fig. 3. Network of interactions represented by Aestimated: 2 links
are missing, 15 additional links were wrongly identified, however, the
connections that were identified and overlap with connections given by
Atrue have the right sign.

Overall, this example shows that the linear program (6) is a

powerful tool to identify interconnections between variables

of a dynamical system from measurements, if the former are

sparse, even when data are rare.

III. OBTAINING THE STRUCTURE OF GENE REGULATORY

NETWORKS

Consider the model of a gene regulatory network as

described in [22] and [23], where nodes represent genes.

Knowledge about the three hierarchal levels of information

mentioned previously are necessary to fully describe the

network. The first level determines whether there is an

interaction between proteins X1 and X2. An interaction of

the form ‘X1 → X2’ means that protein X1 activates the

production of protein X2 and ‘X1 ⊣ X2’ that X1 inhibits it.

This information belongs to the second level. The activation

and repression Hill input functions are given mathematically

by (see [22], p. 13):

kxn
1

1 + kxn
1

, and
1

1 + kxn
1

, (9)

respectively,1 where x1 is the concentrations of X1. Knowl-

edge about the magnitude of activation or repression coeffi-

cient k, k > 0, and exponent n, n > 0, is part of the third

level of information.

If there exists more than one connection to a particular

gene/node then all transcription factors associated with the

connections could be necessary to fulfill a specific task

(activation or inhibition) or it might be that any of them

is sufficient to do the job; more complex combinations are

also possible. In [22] (p. 255), a generalised input function

of the following form is presented, which takes the possible

interplay of different transcription factors into account:

fi(x) =

∑

j bijx
nij

j

1 +
∑

j kijx
mij

j

. (10)

Here, activation of protein Xi by protein Xj is represented

by nij = mij > 0, and repression by nij = 0, mij > 0.

The contribution of the different proteins is denoted by

bij . The mathematical description of the dynamics of the

concentrations of protein Xi of an arbitrary large gene

regulatory network is as follows:

ẋi = γi + fi(x) − dixi, (11)

where γi > 0 is the basal production rate and di > 0 is the

degradation rate.

In the following we extend the results of the previous

section to a more complicated case, where the dynamical

system is nonlinear in the unknowns. Let ∆t = tℓ+1 − tℓ. A

discrete-time system that approximates (11) is:

xi(tℓ+1) = xi(tℓ) + ∆t(γi + fi(xi(tℓ)) − dixi(tℓ)). (12)

Note that if bij , kij and mij are unknowns then (12) is not

affine in the unknown parameters as is the case in (3). Now,

we may rewrite (12) as follows:

1In [23], the notation 1

K
is used instead of k. For clarity, we have adopted

a ‘simpler’ notation.
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(xi(tℓ)(1 − ∆tdi) − xi(tℓ+1) + ∆tγi) ◦ (1 +
∑

j

kijx
mij

j )

+∆t
∑

j

bijx
ñij

j + ∆tbi = 0, (13)

where, ñij corresponds to an exponent nij such that nij > 0,

bi =
∑

j bijx
nij

j , for which nij = 0. For all i, j, let an entry

to matrix B be bij for which nij > 0, and let an entry of

matrix K be kij . As before, given a set of measurements,

which we denote by x̂, this set can be used to approximate

the structure of the gene regulatory network determined by

bij , bi and kij if the hill coefficients mij (and thus, nij)

are known and the basal production and degradation rates

are known or considered an uncertainty. For instance, we

can try to recover B, K through a LP. The following LP

puts emphasis on minimizing the 1-norm of vec(B), b, and

vec(K), which are independent of each other, while we keep

the Euler discretisation error, µ, as small as possible.

min ‖vec([B K b])‖1

s. t. µ > 0, (0 ≤ ǫ1i ≤ γi ≤ ǫ2i, 0 ≤ ε1i ≤ di ≤ ε2i, ∀i)

−µ < (x̂i(tℓ)(1 − ∆tdi) − x̂i(tℓ+1) + ∆tγi) ◦ (1

+
∑

j

kij x̂
nij

j ) + ∆t
∑

j

bij x̂
ñij

j + ∆tbi < µ, ∀i, ℓ,

bij ≥ 0, kij ≥ 0, bi ≥ 0, ∀i, j, ℓ. (14)

(The requirements in brackets correspond to the case of

uncertain production and degradation rates.) Now, note that

per definition (10) is such that

kij = 0 if and only if bij = 0 or bi = 0, ∀i, j. (15)

The following remark deals with the case when the solution

of (14) violates (15). The rationale behind the idea is that

by following these rules we can determine unambiguously

whether activation or repression takes place between two

proteins.

Remark 2: Since requirement (15) cannot be implemented

in a LP, we deduce the following from the solution of (14)

about the connectivity of the network when (15) is violated:

– if kij 6= 0, bij = 0 and bi = 0 then the production of

Xi is not affected by Xj ; that is, it is the same case as

when kij = 0,

– if bij 6= 0 and kij = 0 then Xj enhances the production

of Xi; i. e., it is the same case as when kij 6= 0,

– if bi 6= 0 and kij = 0 for all i then the production of

Xi is not affected by Xj ; that is, it is the same case as

when bi = 0.

In the following, we provide examples applying (14) to

mock-up data from simulation experiments.

A. Sample gene regulatory network

Consider the artificial gene regulatory network given by

ẋ1 = γ1 − d1x1,

ẋ2 = γ2 +
b12x1

1 + k12x1
− d2x2,

ẋ3 = γ3 +
b43x4 + b13x1 + b3

1 + k43x4 + k13x1 + k53x5
− d3x3,

ẋ4 = γ4 +
b54x5

1 + k54x5
− d4x4,

ẋ5 = γ5 +
b15x1 + b5

1 + k15x1 + k25x2
− d5x5, (16)

where

B =













0 0.51 0.87 0 0.80
0 0 0 0 0
0 0 0 0 0
0 0 0.20 0 0
0 0 0 0.22 0













,

K =













0 0.31 0.87 0 0.15
0 0 0 0 0.77
0 0 0 0 0
0 0 0.97 0 0
0 0 0.79 0.44 0













,

b3 = 0.71, b5 = 0.80, γi = 0.1 and di = 1. The network is

depicted in Figure 4, where solid lines with an arrow head

denote activation and dash pointed lines with a hammer head

denote inhibition.

Fig. 4. Artificial gene regulatory network. Solid lines with an arrow
head denote activation and dash pointed lines with a hammer head denote
inhibition.

We assume that di are known but, for all i, γi = γ and

0.095 ≤ γ ≤ 0.105. We take ‘measurements’ every ∆t =
0.05 between t = 0 and t = 5 (time is in arbitrary units) from

four different random initial conditions between 0 and 1 in

order to obtain mock-up data. Solving (14) using the solver

SEDUMI [21], we obtain the following results for matrices
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B and K:

B =













0 0.48 0.22 0 1.15
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0.11 0













,

K =













0 0 0 0 0.61
0 0 0 0 0.75
0 0 0 0 0
0 0 0.32 0 0
0 0 0.35 0 0













;

and b3 = 0.64, b5 = 0.80 (all other bi = 0). Following

the rules given by Remark 2, we are able to reconstruct

the network shown in Figure 4. As the example show, we

were able to determine the interaction network given by

(16) through the LP (14) even when degradation rates were

considered uncertain.

IV. CONCLUSIONS AND FUTURE RESEARCH

A. Conclusions

In this paper, we first presented a methodology for ro-

bust determination of the interaction topology of dynamical

systems, which are models for biological systems, and that

are affine in the unknown parameters using time series

data collected from experiments. We extended the results

in [11] to large-scale and general networks; moreover, linear

program (6) considered rareness of data in addition to sparse-

ness of interconnections. We demonstrated the ability of our

method to identify a network structure through examples. We

extended our approach to the more complicated case of gene

regulatory networks.

B. Future Research

In Section III, we used a relatively simple mathematical

model for a gene regulatory network. More realistic models

would include additional complexities, first, by making the

Hill coefficient in the activation and repression terms a free

variable; and second, because when two transcription factors

act on DNA either both are required (AND) or any of

them is sufficient (OR) for action. Thus, a valuable research

direction is to investigate this case and establish whether

similar analysis techniques to the ones presented in this

paper can be used. Moreover, a recent approach, the so

called ‘lasso’ considers an objective function to minimize,

which consists of the sum of the L1-norm of the vector

of unknowns and the least squares of the error (see for

example reference [3], [24]). However, the effectiveness of

this approach to determine sparse networks is still mainly

heuristic and has to be investigated in more depth. Finally,

an important future study will be to validate the approaches

presented with experimental data.
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