March 1994

Application of SGML and OODB Techniques In a Textual Database

Jian Zhang

University of Pennsylvania

Follow this and additional works at: http://repository.upenn.edu/cis_reports

Recommended Citation

http://repository.upenn.edu/cis_reports/814

This paper is posted at ScholarlyCommons. http://repository.upenn.edu/cis_reports/814
For more information, please contact repository@pobox.upenn.edu.
Application of SGML and OODB Techniques In a Textual Database

Abstract
An electronic dictionary system (EDS) is developed using object-oriented database techniques based on ObjectStore. The EDS is basically composed of two parts: the Database Building Program (DBP), and the Database Querying Program (DQP). The DBP reads in a dictionary encoded in SGML tags, and builds a database composed of a collection of trees which holds dictionary entries and several lists which contain values of various lexical categories. With text exchangeability introduced by the SGML, the DBP is able to accommodate dictionaries of different structures, after modifying its configuration file. The DQP adopts SQL-like syntax and handles queries by exploiting the category lists through a optimization procedure. Initial tests show that compared with relation database, the DQP enjoys much faster speed and offers much higher flexibility in setting both lexical criterion and context requirements.

Comments
Application of SGML and OODB Techniques
In a Textual Database

MS-CIS-94-14

Jian Zhang

University of Pennsylvania
School of Engineering and Applied Science
Computer and Information Science Department
Philadelphia, PA 19104-6389

March 1994
Overwrite --- overwrite the existing database
Modify --- add new entries into the existing database
Exit --- exit the OODD program
Help --- to get this message

Overwrite Modify Exit Help > o
--- Spanish Dictionary ---
Reading dictionary ...
done

Entries 70
Words 1183
Characters 6259

Database /jian/dbl has been established. Bye!

query > a
; ERROR: invalid word a

query > help;
COMMAND: About sTatistics List Select Quit > a
about --- describ EDS
SYNTAX: about;

COMMAND: About sTatistics List Select Quit > t
statistics --- report statistics of the dictionary
SYNTAX: statistics;

COMMAND: About sTatistics List Select Quit > l
list --- list element values
SYNTAX: list <element> = <value>
e.g., list pos = V, i;

saul.cis.upenn.edu% edsload in card0 /jian/dbl
COMMAND: About sTatistics List Select Quit > s
select --- display selected entries or paths
SYNTAX: select <element list> [formatted]
 where <leaf element> = <value>[, <value>]
 [in <ancestor element>]
 [and ...]
e.g. 1) select form sense where geo = Arg.;
 2) select all formatted
 where style = fig. in form and
text = a*, b* in sense;
COMMAND: About sTatistics List Select Quit > q
query > about;

Electronic Dictionary System
(object-oriented tech.)

Author: Jian Zhang
Organization: CIS. UPENN.
Date: April, 1993

query > statistics;

DATABASE STATISTICS

Dictionary Size:

Entries 1462
Words 27720
Characters 150715
Avg. words/entry 19
Avg. word length 5

Element List Sizes:

text 7191
pos 19
grammar 25
domain 34
style 8
geography 21
language 14
foreign 283

query > list pos = *;
19 items found. Display? [y/(n)] > y
adj.
adv.
amb.
com.
conj.
f.
Interj.
m.
n. pr.
prefijo
prep.
s.
s. f.
s. m.
v. auxiliar.
v. i.
v. r.
v. substantivo
v. t.

query > select all where pos = prep.;
1 entry found.

Display Constraint Alternative Select Query Exit Help > d

SEG’UN prep. (lat. secundum) Con arreglo a: seg{‘u}n eso no vendr{‘a}.
||-- Adv. Como, con arreglo a: se le pagar{‘a} seg{‘u}n lo que haga.
|| Con arreglo a lo que dice otro: seg{‘u}n San Mateo.
|| Seg{‘u}n y como, m. adv. de igual manera. || Seg{‘u}n y conforme, m. adv. seg{‘u}n y como. Tambi{‘e}n se usa en sentido de duda: {?}Lo har{‘a}{‘s} ma{n}ana? -Seg{‘u}n y conforme. Abr{‘e}viase a veces en seg{‘u}n.

Display Constraint Alternative Select Query Exit Help > h

Display --- display the matched paths / entries
Constraint --- add more search constraints
Alternative --- add alternative search conditions
Select --- select elements for display
Query --- start a new query
Exit --- exit the OODD program
Help --- to get this message

Display Constraint Alternative Select Query Exit Help > s

select > help;
Select elements to display
SYNTAX: <element list> [formatted]
 e.g. 1) form sense;
 2) all formatted;

select > all formatted;
1 entry found.

Display Constraint Alternative Select Query Exit Help > d

{SEG’UN}

(prep.)
lat. secundum
Con arreglo a: seg{‘u}n eso no vendr{‘a}.

(Adv.)

1. Como, con arreglo a: se le pagar{‘a} seg{‘u}n lo que haga.

2. Con arreglo a lo que dice otro: seg{‘u}n San Mateo.

3. Seg{‘u}n y como, m. adv. de igual manera.
4. Según y conforme, m. adv. según y como. También según y conforme. Abruépsiase a veces en según.

Display Constraint Alternative Select Query Exit Help > q
query > select path where text = *ción in sense;
2 paths found.
Display Constraint Alternative Select Query Exit Help > d
SALA f. Habitacion donde se constituye un tribunal:

ŠALVACI'ON f. Acci'on y efecto de salvar o salvarse: 'án'cora de salvacion. SIN'ON. V. Rescate.

Display Constraint Alternative Select Query Exit Help > q
query > list text = *cis*;
245 items found. Display? [y/(n)] > n

query > list text = *cis*;
8 items found. Display? [y/(n)] > y
decisi'on
francisco
galicismo
precisa
precisar
preciso
solecismo
trapecista

query > quit;
Bye, use me again!
Appendix B. SGML DCD for the Sample Dictionary

<!-- SGML Document Type Definition -->
<!-- Pequeño Larousse Ilustrado Spanish Dictionary 1991/
(ISBN 970-607-006-0) -->
<!-- Language Analysis Center, 9/15/92 -->
<!-- Authors: Jian Zhang, Heather Davenport -->
<!-- NOTE: changes in tags (deleting space in tags, due to XGML naming convention)
 <cross reference> becomes <crossReference>
 <related entry> becomes <relatedEntry> -->

<!DOCTYPE LarousseSpanDict [
<!ELEMENT LarousseSpanDict o o (entry|crossReference)+ >
<!ELEMENT entry -- (#PCDATA, F, #PCDATA, S, #PCDATA, ((S|relatedEntry|note), #PCDATA)*) >
<!ELEMENT crossReference -- (#PCDATA, F, #PCDATA, (unote, #PCDATA)*, (note, #PCDATA)+) >
<!ELEMENT F -- (#PCDATA, pform, #PCDATA, ((pform|pron|gnote|unote|lg|note|etym),#PCDATA)*)>
<!ELEMENT relatedEntry -- (#PCDATA, ((gnote,#PCDATA)+, ((S|relatedEntry),#PCDATA)+, (note,#PCDATA)*) | note,#PCDATA, ((syn|ant|par|note),#PCDATA)+))) >
<!ELEMENT S -- (#PCDATA, ((gnote|unote|lg|note|descrip|relatedEntry),#PCDATA)+) >
<!ELEMENT descrip -- -- (#PCDATA, ((gnote|unote|note|eg),#PCDATA)*) >
<!ELEMENT etym -- (#PCDATA, lg, #PCDATA, orth, #PCDATA, ((lg|orth|gloss|pron|note), #PCDATA)*) >
<!ELEMENT gnote -- (#PCDATA, (pos|gram), #PCDATA, ((pos|gram|note|orth), #PCDATA)*) >
<!ELEMENT unote -- (#PCDATA, (dom|styl|geog), #PCDATA, ((dom|styl|geog), #PCDATA)*) >
<!ELEMENT (pform|eg) -- -- (#PCDATA, (note, #PCDATA)*) >
<!ELEMENT note -- (gnote|lg|note|orth|pron|S|eg|xref|#PCDATA)+ >
<!ELEMENT (orth|pron|xref|syn|ant|par|gloss|pos|gram|dom|styl|geog|lg) -- (#PCDATA) >]>
Appendix C. Document Instance of the Sample Dictionary

<entry>
 <F>
 <pform> ACTIVIDAD </pform>
 </F>
 <gnote>
 <pos> f. </pos>
 </gnote>
</entry>

<entry>
 <S>
 <descrip> Facultad de obrar:
 <eg> la actividad del fuego. </eg>
 </descrip>
 </S>
</entry>

<entry>
 <S>
 <descrip> Diligencia, eficacia. </descrip>
 </S>
</entry>

<entry>
 <S>
 <descrip> Prontitud en el obrar:
 <eg> actividad en el espíritu. </eg>
 </descrip>
 </S>
</entry>

<entry>
 <S>
 <descrip> Diligencia, eficacia. </descrip>
 <related entry>
 <note> SIN'ON. </note>
 <syn> acción. </syn>
 </related entry>
 </S>
</entry>

<entry>
 <S>
 <descrip> Poner cerca lo que estaba lejos, aproximiar:
 <eg> acercar la silla. </eg>
 </descrip>
 </S>
</entry>

<entry>
 <S>
 <descrip> Prontitud en el obrar:
 <eg> actividad en el espíritu. </eg>
 </descrip>
 <related entry>
 <note> CONTR. </note>
 <ant> Pereza. </ant>
 <ant> desidia. </ant>
 </related entry>
 </S>
</entry>

<entry>
 <F>
 <pform> ACERCAR </pform>
 </F>
 <gnote>
 <pos> v. t. </pos>
 </gnote>
</entry>

<entry>
 <S>
 <descrip> Poner cerca lo que estaba lejos, aproximiar:
 <eg> acercar la silla. </eg>
 </descrip>
 <related entry>
 <note> CONTR. </note>
 <ant> Alejar. </ant>
 </related entry>
 </S>
</entry>

<cross reference>
 <F>
 <pform> ACAB'OSE </pform>
 </F>
 <note>
 <pos> m. </pos>
 </note>
 <xref> ACABAR. </xref>
</cross reference>
Appendix D. Header File of the EDS

```c
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <malloc.h>
#include <ctype.h>
#include <iostream.h>
#include <ostore/ostore.hh>
#include <ostore/coll.hh>
#include <ostore/relat.hh>

#define W 80
#define M 20
#define ANY 999
#define OFFSET 20
#define COMMON_REF_N 9999
#define EXIT 0
#define NEXT 1

extern database* dbl;

/**----------------------------- CLASSES -----------------------------*/

class ITEM;
class NODE;
class PROF;
class delim;
class disp;
class hide;
class paren;
class cond;

class ITEM {
    char *itext indexable;
    os_Set<NODE*> nodes;
    public:
        char *Text () { return itext; }
        os_Set<NODE*> Nodes () { return nodes; }
        int has_ref (NODE *cp) { return nodes.contains(cp); }
        void add_ref (NODE *cp) { nodes.insert(cp); }
        void show () { cout << itext << endl << flush; }
        ITEM (char*);
    }

class NODE {
    char -symb;
    char *ntext;
    os_List<ITEM*> items;
    os_List<NODE*> children inverse member parent;
    NODE *parent inverse member children;
    public:
        char Symb () { return _symb; }
        char *Text () { return ntext; }
        NODE *Parent () { return parent; }
        void insert_item (ITEM *ip) { items.insert(ip); }
        void set parent (NODE *par) { parent = par; }
        void set_text (char*);
        void leaf_text (char*, char*);
        void restore_text (char*);
        int has_anc (NODE*);
        int has_anc2 (char);
        int has_sib ();
        void find_route (char*);
        os_List<NODE*> get_path (NODE*, os_List<NODE*>);
    }
```
class PROF {
 char *-tag;
 char *-next;
 char *-symb;
 int lid;
 char *-name;
public:
 persistent<dbl> os Set<PROF*> extent;
 char *Tag () { return _tag; }
 char *Next () { return _next; }
 char *Symb () { return _symb; }
 int Lid () { return lid; }
 char *Name () { return _name; }
PROF (char*,char*,char,Int,char*);
};

class delim {
 char *-symbl;
 char *-symb2;
 char *-deli;
public:
 char Symbl () { return symbl; }
 char Symb2 () { return symb2; }
 char *Deli () { return deli; }
delim (char,char,char*);
};

class disp {
 char *-tsymbs; // symbols of target components
 char *-psymb; // symbol of an intermediate parent component
 char *-disps; // symbols of showable children of the intermediate
public:
 char *Tsymb () { return tsymbs; }
 char Psymbl () { return psymb; }
 char *Disps () { return disps; }
disp (char*,char,char*);
};

class hide {
 char *-tsymb;
 char *-asymbl;
 char *-hsymb;
 char *-asymb2;
public:
 char Tsymbl () { return tsymb; }
 char Hsymbl () { return hsymb; }
 char Asymbl () { return asymbl; }
 char Asymb2 () { return asymbl2; }
 hide (char,char,char,char);
};

class paren {
 char *-open; // opening parenthesis of text
};
char _close; // closing parenthesis of text
char *_route; // route from root to the text component
public:
 char Open () { return _open; }
 char Close () { return _close; }
 char *Route () { return _route; }
paren (char,char,char*);
};

class cond {
 char _leavesymb;
 os_Set<char*> _values;
 char _ancsym;
 os_Set<ITEM*> _items;
 int ref_n;
 public:
 char Leaf_sym () { return _leaf_sym; }
 os_Set<char*> Values () { return _values; }
 char Anc_sym () { return _anc_sym; }
 os_Set<ITEM*> Items () { return _items; }
 int Ref_n () { return ref_n; }
 void insert_items (os_Set<ITEM*> its) { _items |= its; }
 void incr_ref_n (int n) { ref_n += n; }
 void set_value (char*);
 cond (char,os_Set<char*>,char);
 };

/*--------------------- Global Variables -------------------------------*/
persistent<dbl> os_Set<ITEM*> _word_list ;
persistent<dbl> os_Set<ITEM*> _pos_list ;
persistent<dbl> os_Set<ITEM*> _gram_list ;
persistent<dbl> os_Set<ITEM*> _dom_list ;
persistent<dbl> os_Set<ITEM*> _sty_list ;
persistent<dbl> os_Set<ITEM*> _geog_list ;
persistent<dbl> os_Set<ITEM*> _lg_list ;
persistent<dbl> os_Set<ITEM*> _orth_list ;
persistent<dbl> os_Set<char*> _common_words ;
persistent<dbl> int ent_n , wd_n , ch_n ;
extern os_Set<delim*> _delim ;
extern os_Set<disp*> _disp ;
extern os_Set<hide*> _hide ;
extern os_Set<paren*> _paren ;
extern FILE *dict , *card ;
extern char valid_punct[] , dummy[] , chstr[] ,
 rt_syms[] , re_sym , sen_sym , des_sym ,
 leaves[] , abbrevs[] , gunotes[] , hdwd_route[] ,
 listnames[] , dict_title[] ;
extern os_Set<ITEM*> _lists [] ;
extern inline_list_n , max_ref , line , column , indent , sn , dn ;

/*=================== Function Prototypes =====================*/
void open_files (int , char**);
void init_db (char*);
void init_lists ();
ITEM *new_item (char*);
NODE *new_node (char);

// ----- member method/extension module -----
int stol (char);
int ntoi (char*);
int ttos (char*,char*,char*);
int ttol (char*,char*,int*);
char ltol (int);
char ntos(char*);
char *ston (char);
char *get_del (NODE*, NODE*);

// ----- input reading module -----
void read_card();
void read_dictionary();
void read_tagged(NODE*);
void read_text(NODE*, char, int);
void link_list(char*, int, NODE*, int);
void read_next(char*);
int shrink(char*, char*);
int cap_pattern(char*);

// ----- query module -----
void querying();
int select(char**);
list (char**);

void get_query(char*, char*);
int get_sele_symbs(char**, char*);
int get_format(char**);
int get_condition(char**, os::List<cond*>*);
int get_values(char**, os::Set<char*>*);
void insert_condition(cond*, os::List<cond*>*);

int get_matches(char**, int*, os::Set<NODE**>);
int search_list(int, char*, os::Set<NODE**>);
void get_items(cond*);
void get_nodes(cond*, os::Set<NODE**>, int);
void check_nodes(NODE*, Cond*, int, os::Set<NODE*>);
void search_global(cond*, os::Set<NODE*>);

void report_matches(char, int, os::Set<NODE*>);
void show_matches(char*, int, int, os::Set<NODE*>);
void show_path(os::List<NODE*>, int);

void convert_to_root(os::Set<NODE*>);
void sort_nodes(os::List<NODE*>);
void sort_words(os::List<char*>);

// ----- help module -----
void about();
void statistics();
void prompt_help(char*);
void query_help();
void select_help();
void and_help();
void or_help();
void where_help();
void eg_help();
void title1();
void title2();
void title3();

// ----- utility module -----
char menu(char*, char*, int);
void menu_help(int);
int skip();
char *skip2(char*);
void scan_quote(char**, char*, int*);
void scan_abbrv(char**, char*, int*);
void sscanf3(char**, char*, int*);

void print(char*, int);
void indenting();
void error(int, char*);
int err_msg(char*,char*);

void del_punct(char*, int);
void restore_cap(char*, char*, char);
void tolowerS(char*, char*);
char *ctos(char);
char *tail(char*);
int is_punct(char*);

int in_text(char*, NODE*);
int next_is(char*, char*);
int check_next(char**, char*);
int strcmps(char*, char*);

char *alloc(char*);
char *alloc2(char*);