February 2009

Sensitive dependence of the motion of a legged robot on granular media

Chen Li
Georgia Institute of Technology, cheng.li@gatech.edu

P B. Umbanhowar
umbanhowar@northwestern.edu

Haldun Komsuoglu
University of Pennsylvania, haldunk@seas.upenn.edu

Daniel E. Koditschek
University of Pennsylvania, kod@seas.upenn.edu

Daniel Goldman
Georgia Institute of Technology, daniel.goldman@physics.gatech.edu

Follow this and additional works at: http://repository.upenn.edu/ese_papers

Recommended Citation

This paper is posted at ScholarlyCommons, http://repository.upenn.edu/ese_papers/473

For more information, please contact repository@pobox.upenn.edu.
Sensitive dependence of the motion of a legged robot on granular media

Abstract
Legged locomotion on flowing ground (e.g., granular media) is unlike locomotion on hard ground because feet experience both solid- and fluid-like forces during surface penetration. Recent bioinspired legged robots display speed relative to body size on hard ground comparable with high-performing organisms like cockroaches but suffer significant performance loss on flowing materials like sand. In laboratory experiments, we study the performance (speed) of a small (2.3 kg) 6-legged robot, SandBot, as it runs on a bed of granular media (1-mm poppy seeds). For an alternating tripod gait on the granular bed, standard gait control parameters achieve speeds at best 2 orders of magnitude smaller than the 2 body lengths/s (≈60 cm/s) for motion on hard ground. However, empirical adjustment of these control parameters away from the hard ground settings restores good performance, yielding top speeds of 30 cm/s. Robot speed depends sensitively on the packing fraction ϕ and the limb frequency ω, and a dramatic transition from rotary walking to slow swimming occurs when ϕ becomes small enough and/or ω large enough. We propose a kinematic model of the rotary walking mode based on generic features of penetration and slip of a curved limb in granular media. The model captures the dependence of robot speed on limb frequency and the transition between walking and swimming modes but highlights the need for a deeper understanding of the physics of granular media.

Keywords
bioinspired robotics, robotic gait, locomotion on complex terrain, sand

This journal article is available at ScholarlyCommons: http://repository.upenn.edu/ese_papers/473
Sensitive dependence of the motion of a legged robot on granular media

Chen Li, Paul B. Umbanhowar, Haldun Komsuoglu, Daniel E. Koditschek, and Daniel I. Goldman

School of Physics, Georgia Institute of Technology, Atlanta, GA 30332; Department of Mechanical Engineering, Northwestern University, Evanston, IL 60208; and Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, PA 19104

Edited by Harry L. Swinney, University of Texas, Austin, TX, and approved December 29, 2008 (received for review September 12, 2008)

Legged locomotion on flowing ground (e.g., granular media) is unlike locomotion on hard ground because feet experience both solid- and fluid-like forces during surface penetration. Recent bioinspired legged robots display speed relative to body size on hard ground comparable with high-performing organisms like cockroaches but suffer significant performance loss on flowing materials like sand. In laboratory experiments, we study the performance (speed) of a small (2.3 kg) 6-legged robot, SandBot, as it runs on a bed of granular media (1-mm poppy seeds). For an alternating tripod gait on the granular bed, standard gait control parameters achieve speeds at best 2 orders of magnitude smaller than the 2 body lengths/s (~60 cm/s) for motion on hard ground. However, empirical adjustment of these control parameters away from the hard ground settings restores good performance, yielding top speeds of 30 cm/s. Robot speed depends sensitively on the packing fraction φ and the limb frequency ω, and a dramatic transition from rotary walking to slow swimming occurs when φ becomes small enough and/or ω large enough. We propose a kinematic model of the rotary walking mode based on generic features of penetration and slip of a curved limb in granular media. The model captures the dependence of robot speed on limb frequency and the transition between walking and swimming modes but highlights the need for a deeper understanding of the physics of granular media.

Keywords: bioinspired robotics | robotic gait | locomotion on complex terrain | volume fraction | sand

Compared with agile terrestrial organisms, most man-made vehicles possess limited mobility on complex terrain (1) and are easily thwarted by materials like rubble and sand. Increased locomotive performance of engineered platforms demands better understanding of interaction with complex environments. At the same time, there is increasing evidence that small legged machines can have greater maneuverability than large wheeled vehicles in many natural environments (2). However, although wheeled and treaded locomotion on sand has been well studied by pioneers like Bekker (3), study of the interaction of animals or legged devices with complex media like sand is in its infancy (4), in part because the physics of penetration and drag in granular media is largely unexplored for realistic conditions. Nearly all previous experiments and models of terrestrial locomotion were developed for running and walking on rigid, flat, nonslip substrates in which the possibility of substrate flow was ignored (5–9).

Rainforest, grassland, polar tundra, mountains, and desert are examples of complex Earth terrains with flowing substrates that challenge locomotors; the limited experience of the Mars Rovers supports the presumption that extraterrestrial landscapes will be even more daunting. Deserts, common in nature and occupying ~10% of land surface on Earth (10), consist largely of granular media, a representative complex substrate. Granular materials, defined as collections of discrete particles, can exhibit solid-like behavior below a critical yield stress (11, 12), whereas fluid-like (13), gas-like (14), and even glass-like (15) behaviors are possible during flow. Yet, compared with other complex materials like debris, mud, or snow, granular materials are simple enough that fundamental understanding of the collective physics can be achieved through interplay of experiment and theory. Unlike more heterogeneous real-world environments, granular media can be precisely controlled using laboratory scale devices (15, 16) to create states of varying material strength that mimic different deformable flowing materials produced during locomotion on complex terrains. Here, we systematically explore the performance of a small legged device, SandBot, on granular media prepared in different packing states with volume fraction ranges typical of desert sand (40). Despite SandBot’s [and its predecessor RHex’s (17)] ability to move nimbly and rapidly over a wide range of natural terrain, we find that on granular media, the locomotion is remarkably sensitive to substrate preparation and gait characteristics, which points to both the need for a more sophisticated understanding of the physics of motion within granular media and the possibility of better robotic design and control paradigms for locomotion on complex terrains.

Results and Discussion

The robot we study, SandBot (Fig. L4), is the smallest (mass 2.3 kg) in a successful series of biologically inspired (18) hexapedal robots, the RHex class (17). RHex incorporates the pogo stick-like dynamics observed in a diversity of biological organisms running on hard ground (19). This dynamics, called the spring-loaded inverted pendulum (SLIP) template (41), is hypothesized to confer passive self-stabilization properties to both biological and robotic locomotors (20). RHex was the first legged machine to achieve autonomous locomotion at speeds >1 body length/s (17), and it and its “descendants” such as EduBot/SandBot, Whegs (21), and iSprawl (22) are still the leaders in legged mobility (roughly, speed and efficacy) on general terrain. In fact, before the recent development of the much larger BigDog (23) platform (1 m long, 75 kg), RHex remained the only class of legged machine with documented ability to navigate on complex, natural, outdoor terrain of any kind and has been used as the standard legged platform in comparisons with commercial wheeled and tracked vehicles like Packbot (24).

SandBot moves using an alternating tripod gait in which 2 sets of 3 approximately c-shaped legs rotate synchronously and π out of phase. A clock signal (Fig. 1C), defined by 3 gait parameters (see Materials and Methods), prescribes the angular trajectory of each tripod. The c-legs distribute contact (25) over their surfaces and allow the robot to move effectively on a variety of terrain.

Author contributions: C.L., P.B.U., H.K., and D.I.G. designed research; C.L. performed research; C.L., P.B.U., and D.I.G. analyzed data; and C.L., P.B.U., D.E.K., and D.I.G. wrote the paper.

The authors declare no conflict of interest.

This article is a PNAS Direct Submission.

Freely available online through the PNAS open access option.

1 To whom correspondence should be addressed. E-mail: daniel.goldman@physics.gatech.edu.

This article contains supporting information online at www.pnas.org/cgi/content/full/0809095106/DCSupplemental.

© 2009 by The National Academy of Sciences of the USA
Locomotion of a legged robot on granular media is sensitive to substrate packing and limb frequency. (A) The 6-legged robot, SandBot, moves with an alternating tripod gait (alternate triplets of limbs rotate out of phase); arrows indicate members of 1 tripod. (B) Pulses of air through the bottom of the fluidized bed trackway control the initial volume fraction \(\phi \) of the granular substrate; air is turned off before the robot begins to move. (C) Tripod leg-shaft angle \(\omega \) vs. time is controlled to follow a prescribed trajectory with 2 phases: a slow stance phase and a fast swing phase. Overlapping trajectories from trials with \(\omega = 0.633 \) (red) and \(\omega = 0.600 \) (blue) at limb frequency \(\omega = 16 \) rad/s demonstrate that the controller maintains the desired kinematics independent of material state. (D) Identical tripod trajectories produce different motion for \(\phi = 0.633 \) (red) and \(\phi = 0.600 \) (blue). For fixed limb frequency \(\omega = 4, 8, 12, 16, 20, 24, \) and \(30 \) rad/s) the robot speed is remarkably sensitive to \(\phi \). Red and blue circles show the corresponding states in C and D.

On rigid, no-slip ground, SandBot’s limb trajectories are tuned to create a bouncing locomotion (17) that generates speeds up to 2 body lengths/s (= 60 cm/s). We tested this clock signal on granular media but found that the robot, instead of bouncing, adopts a swimming gait in which the legs always slip backward relative to the stationary grain bed and for which performance is reduced by a factor of 30 to \(~2\) cm/s [see supporting information (SI) Movie S1]. We surmised that this was due to an interval of double stance (both tripods in simultaneous contact with the ground), which is useful on hard ground during bouncing gaits but apparently causes tripod interference on granular media. Changing the clock signal to remove the double stance allowed SandBot to move (see Movie S2) in the granular media at speeds up to 1 body length/s (= 30 cm/s) in a rotary walking gait that resembles the pendular gait of the robot on hard ground (26) but with important kinematic differences (discussed below).

No amount of clock signal adjustment produced rapid bouncing locomotion on granular media. We hypothesize that the \(~50\)% decrease in top speed relative to hard ground is associated with the inability of the robot to undergo the aeroelastic phenomena associated with the bouncing gait. Study of biological locomotion has revealed a similar loss of performance and has shown that speeds of desert-adapted lizards like Callisaurus draconoides on granular media are typically \(~75\)% of top speeds on hard ground.

In the desert, animals and man-made devices can encounter granular media which exist in a wide range of volume fractions (40), and some desert adapted animals (like lizards) can traverse a range of granular media with little loss in performance (16). To test the robot performance on controlled volume fraction granular media, we employ a 2.5-m-long fluidized bed trackway (Fig. 1B) (27), which allows the flow of air through a bed of granular media, in this case \(\sim\)1-mm poppy seeds. With initial fluidization followed by repeated pulses of air (28), we prepare controlled volume fraction states with different penetration properties (29).

In this study, we test the performance (forward speed \(v_f \)) of SandBot with varied limb angular frequency \(\omega \) for volume fraction \(\phi \) states ranging from loosely to closely packed (\(\phi = 0.580 \) to \(\phi = 0.633 \)) which fall in the range of \(\phi \) observed in desert dunes (40). We chose forward speed as a metric of performance because it could be readily measured by video imaging. We hypothesized that limb frequency would be important to robot locomotion because the substrate yield strength increases with volume fraction and the yield stress \(\times \) robot limb area divided by the robot mass \(\times \) velocity is proportional to the maximum limb frequency for efficient locomotion.

We find that robot speed is remarkably sensitive to \(\phi \) (see Movie S3). For example, at \(\omega = 16 \) rad/s, \(v_f(t) \) shows a change in average speed \(\bar{v}_f \) of nearly a factor of 5 as \(\phi \) changes by just \(~5\)% (Fig. 1D and E). For a closely packed state (\(\phi = 0.633 \)), \(v_f \approx 20 \) cm/s with 5-cm/s oscillations during each tripod rotation, whereas for a more loosely packed state (\(\phi = 0.600 \)), \(v_f \approx 2 \) cm/s with 1-cm/s oscillations.

This sensitivity to volume fraction is shown in the average robot speed vs. volume fraction (Fig. 1E). For fixed \(\omega \), \(\bar{v}_f \) is effectively constant for \(\phi \) above a critical volume fraction \(\phi_c(\omega) \), but is close to zero for \(\phi < \phi_c(\omega) \). For fixed \(\omega \), \(\phi_c(\omega) \) separates volume fraction into 2 regimes: the “walking” regime (\(\phi \geq \phi_c \), \(\bar{v}_f \gg 0 \)) and the “swimming” regime (\(\phi < \phi_c(\omega) \), \(\bar{v}_f \approx 2 \) cm/s). See Movie S4 and Movie S5 for examples of rotary walking and swimming modes.

The rotary walking mode is dominant at low \(\omega \) and high \(\phi \). In this mode, a tripod of limbs penetrates down and backward into the ground until the granular yield stress exceeds the limb transmitted inertial, gravitational, and frictional stresses at a depth \(\Delta(\omega, \phi) \). At this point, rather than rolling forward like a wheel, the c-leg abruptly stops translating relative to the grains and begins slipping tangentially in the circular depression surrounding it; at the same time, the center of rotation moves from the axle to the now stationary center of curvature (see Fig. 3A).

The simultaneous halt in both vertical and horizontal leg motion is apparently due to the large reduction in wheel friction forces that occurs when the weight of the robot is supported by the limbs rather than the underside of the body or the other tripod. The ensuing rotary motion propels the axle and consequently the rest of the robot body along a circular trajectory in the x-z plane with speed \(R \omega \), where \(R = 3.55 \) cm is the c-leg radius. The forward body motion ends when, depending on \(\phi \) and \(\omega \), either
discussion of the model, see Materials and Methods), indicates that reduction of step length through increased penetration depth is the cause of the sublinear increase in \(\dot{v}_i \) with \(\omega \) and the rapid loss of performance above \(\omega_c \). The model assumes that the 2 tripods act independently, that the motion of each tripod can be understood by examining the motion of a single c-leg supporting a mass \(m \) equal to one-third of SandBot’s total mass and that the underside of the robot rests on the surface at the beginning of limb-ground contact.

Using the geometry of rotary walking (see Fig. 3A), the walking step length per c-leg rotation is

\[
s = 2\sqrt{R^2 - (d + h - R)^2}
\]

where \(d \) is the maximum depth of the lowest point on the leg. After the robot has advanced a distance \(s \), the body again contacts the ground and the c-leg moves upward. Because during each clock signal period there are two leg rotations (1 for each tripod), the average horizontal velocity is \(2s \times \text{limb frequency} \) or \(v_{\text{avg}} = \frac{2s}{T} \). The maximum limb penetration depth \(d \) is thus the key model component because it controls the step length (see Fig. 3B) and consequently the speed. Maximum limb penetration depth is determined by balancing the vertical acceleration of the robot center of mass \(ma \) with the difference of the gravitational force \(mg \) and the vertical granular penetration force \(k_d \) (30), where \(g \) is the acceleration due to gravity, and \(k_d(d) \) is a constant characterizing the penetration resistance of the granular material of volume fraction \(\phi \).

At small \(\omega \), \(-ma \approx 2F_1 - mg - kd\), so \(d = mg/k \), which is the minimum penetration depth. For finite \(\omega \), the penetration depth is greater because an additional force must be supplied by the ground to accelerate the robot body to the leg speed \(v_{\text{c-leg}} \) when the c-leg stops translating in the material. Taking \(a = \Delta v/\Delta t \), with \(\Delta v = R\omega - 0 \) and \(\Delta t \) the characteristic elastic response time of the limb and grain bed, gives the acceleration magnitude \(a = R\omega/\Delta t \). The direction of the acceleration depends on the position of the c-leg. To keep the model simple, we approximate the vertical component of the acceleration with its magnitude.

Equating the vertical forces with mass \(\times \) acceleration (see Fig. 3C), \(-ma_{\text{avg}} = mg - kd\), gives c-leg penetration depth

\[
d = \left(\frac{w_{\text{leg}}}{k_d(\phi)} + g \right) \left(\frac{h}{R} \right)
\]

with average horizontal velocity

\[
\dot{v}_i = \frac{2R\omega}{\pi} \sqrt{1 - \left[\frac{m}{k_d(\phi)} \left(\frac{\omega}{\Delta t} + \frac{g}{R} \right) \right]^2 + \left(\frac{h}{R} - 1 \right)^2}
\]

Fits of the experimental data to this model are indicated by dashed lines in Fig. 2B. The expression captures the sublinear increase in \(\dot{v}_i \) with \(\omega \) at fixed \(k_d(\phi) \), the increase in speed at fixed \(\omega \) as the material strengthens (increasing \(k \) with increasing \(\phi \)), and the limit of zero rotary walking speed when \(\omega \) is sufficiently large.

The expression for \(\dot{v}_i \) is determined by the fit parameters \(k \) and \(\Delta t \). The parameter \(k \) characterizing the penetration resistance increases monotonically with \(\phi \) from 170 to 220 N/m and varies rapidly below \(\phi = 0.6 \) and less rapidly above. Its average value of \(\sim 200 \text{ N/m} \) corresponds to a shear stress per unit depth of \(\alpha = 470 \text{ kN/m}^2 \) (using leg area \(= wR \), where \(w \) is the leg width) which is in good agreement with penetration experiments we performed on poppy seeds that yield \(\alpha = 300 \text{ and } 480 \text{ kN/m}^2 \) for \(\phi = 0.580 \text{ and } 0.622 \), respectively, and is comparable with previous measurements of slow penetration into glass beads (31), where \(\alpha = 250 \text{ kN/m}^2 \). In contrast, \(\Delta t \) varies little with \(\phi \) and has an average value of 0.4 s compared with the robot’s measured hard ground oscillation period of 0.2 s when supported on a single tripod. The differences in \(\Delta t \) can be understood as follows. In our model we assume the 2 tripods do not simultaneously contact the ground; however, in soft ground this is not the case, which consequently reduces the effective step length per period from 2s to a lesser value. The fit value of \(\Delta t \) is sensitive to this variation;

\[\text{Fig. 2. Average robot speed vs. limb frequency. (A)} \text{ For a given volume fraction } \phi, \text{ \(\dot{v}_i \) increases sublinearly with } \omega \text{ to a maximal average speed \(\dot{v}_i^* \) at a critical limb frequency } \omega_c \text{ above which the robot walks \(v_i = 2 \text{ cm/s} \). The solid lines and symbols are for } \phi = 0.580, 0.590, 0.600, 0.611, 0.616, 0.622, \text{ and } 0.633. \text{ The dashed lines are fits from a simplified model discussed in the text. (B and C) The dependence of } \omega_c \text{ and } \dot{v}_i^* \text{ on } \phi \text{ shows transitions at } \phi = 0.6 \text{ (dashed lines).} \]
Fig. 3. Robot speed is determined by step size which depends sensitively on c-leg penetration depth. (A) Schematic of a single robot leg during a step in granular media. After reaching penetration depth \(d \), the leg rotates about its center and propels the robot forward a step length \(s \). The solid shape denotes the initial stage of the rotational motion and the dashed shape indicates when the leg begins to withdraw from the material (end of forward body motion). (B) Step length vs. penetration depth (blue) with critical step length (green dashed horizontal) and critical penetration depth (green dashed vertical) indicating where the leg begins to encounter ground disturbed by the previous step. (C) Granular penetration force for \(k = 1.75, 2.00, 2.25, 2.50, 2.75 \times 10^3 \text{N/m} \) (blue) and force required to initiate rotary walking for \(\omega = 0, 8, 16, 24, 32 \text{ rad/s} \) (red) vs. penetration depth using simplified walking model with \(\Delta t = 0.2 \text{s} \). The penetration depth at constant \(\phi \) is determined by the intersections of the corresponding blue line with the red lines. Beyond the critical depth (green dashed line) limbs encounter disturbed material and move to lower blue lines. (D) Step length as a function of \(\omega \) derived from \(2s = 2\pi v_0/\omega \) reveals the condition for the onset of swimming for \(\phi \approx 0.6 \) as \(s/R \approx 1 \). The solid lines and symbols are for \(\phi \) values of 0.580, 0.590, 0.600, 0.611, 0.616, 0.622, and 0.633.

Our model indicates that for deep penetration, the walking step length is sensitive to penetration depth (e.g., Fig. 3B). The increase in robot speed with decreasing \(\phi \) and increasing \(\omega \) can explain the weak dependence of \(\phi \) on \(\omega \) in the swimming mode. The increase in speed with decreasing \(\phi \) is bounded by the condition that the robot speed in a reference frame at rest with respect to the ground cannot exceed the horizontal leg speed in a reference frame at rest with respect to the robot’s center of mass. This condition ensures the existence of and eventual transition to a walking mode as \(\phi \) is decreased.

The transition from walking to swimming appears gradual for \(\phi \approx 0.6 \) because the penetration depth increases slowly with \(\omega \) at small \(\omega \) (\(R\omega/\Delta t \ll g \)) and the \(\omega^{-2} \) contribution to the per-cycle displacement from swimming is relatively large (see, e.g., the data at \(\omega = 12 \text{ rad/s} \) in Fig. 3B). However, for \(\phi \approx 0.6 \), the transition is abrupt. This sharp transition occurs because the step size is reduced sufficiently that the legs encounter material disturbed by the previous step; we hypothesize that the disturbed material has lower \(\phi \) and \(k \). At higher \(\phi \), the volume fraction of the disturbed ground is significantly less than the bulk, which increases penetration and consequently greatly reduces \(s \). This is not the case for the transition from walking to swimming at lower \(\phi \) and low \(\omega \) where the volume fraction of the disturbed material is largely unchanged relative to its initial value. For the robot to avoid disturbed ground, it must advance a distance \(R \) on each step, i.e., \(s \approx R \), or in terms of the penetration depth, \(d \approx (\sqrt{3}/2 + 1)R - h = 5.0 \text{ cm} \) (green dashed lines in Fig. 3B and C). The disturbed ground hypothesis is supported by calculations of the step length derived from the average velocity \(\frac{2s}{2\pi v_0/\omega} \), which show a critical step length near \(s/R = 1 \) at the walking/swimming transition (Fig. 3D) for \(\phi \approx 0.6 \). The somewhat smaller value of \(s/R = 0.9 \) evident in the figure can be understood by recognizing that for \(s \) slightly smaller than \(R \) the majority of the c-leg still encounters undisturbed material. Signatures of the walking/swimming transition are also evident in lateral views of the robot kinematics (see Movie S3, Movie S4, and Movie S5).

At higher \(\omega \) in the swimming mode, limbs move with sufficient speed to fling material out of their path and form a depression that reduces thrust because the limbs are not as deeply immersed on subsequent passes through the material. However, as limb speed increases further, thrust forces become rate dependent and increase because the inertia imparted to the displaced grains is proportional to \(\omega^2 \). Between strokes, the excavated depression refills at a rate that depends on the difference between the local surface angle and the angle of repose (33), and the depression size. Investigating the competition between these different processes at high \(\omega \), and their consequences for locomotion could be relevant to understanding how to avoid becoming stranded or to free a stranded device.

Conclusions

Our study systematically investigates the performance of a legged robot on granular media, varying both properties of the legged robot on granular media, varying both properties of the
medium (volume fraction) and properties of the robot (limb frequency and gait). Our experiments reveal how precarious it can be to move on granular media: changes in ϕ of $<1\%$ result in either rapid motion or failure to move, and slight kinematic changes have a similar effect. A kinematic model captures the speed dependence of SandBot on granular material as a function of ϕ and ω. The model reveals that the sublinear dependence of speed on ω and the rapid failure for sufficiently small ϕ and/or large ω are consequences of increasing limb penetration with decreasing ϕ and/or increasing ω, and changes to local ϕ due to penetration and removal of limbs. Although detailed studies of impact and penetration of simple rigid objects exist (30, 34), further advances in performance (including increases in efficiency) and design of limb morphology will require a more detailed understanding of the physics associated with penetration, drag, and crater formation and collapse, especially their dependence on ϕ. Better understanding of this physics can guide development of the theory of interaction with complex media advanced enough to predict limb design (35) and control (36) strategies, similar to the well-developed models of aerial and aquatic craft. Analysis of physical models such as SandBot can also inform locomotion biology in understanding how animals appear to move effortlessly across a diversity of complex substrates (25, 37). Such devices will begin to have capabilities comparable with organisms; these ideas could be used for more efficient exploration of challenging terrestrial (e.g., rubble and disaster sites) and extraterrestrial (e.g., the Moon and Mars) environments.

Materials and Methods

Limb Kinematics. SandBot’s 6 motors are controlled by a clock signal to follow the same prescribed kinematic path during each rotation and, as shown in previous work on RHex, changes in these kinematics have substantial effects on robot locomotor performance (38). The controlling clock signal consists of a fast phase and a slow phase with respective angular frequencies. The fast phase corresponds to the swing phase, and the slow phase corresponds to the stance phase. A set of 3 gait parameters uniquely determines the clock signal configuration: ω, the angular span of the slow phase; d_x, the leg-shaft angle of the center of the slow phase; and d_f, the duty cycle of the slow phase. Specifying the cycle average limb angular frequency ω fully determines the limb motion.

In pilot experiments, we tested 2 sets of clock signals: a hard ground clock signal (HGC5) with (ω, d_x, d_f) = (0.85 rad, -0.13 rad, 0.56) which generates a fast bouncing gait (60 cm/s) on hard ground (17) but very slow (0.45 cm/s) on granular media at the far end of the trackway with both tripods in the same prescribed angular trajectories for both sets of gait parameters show a high performance vs. substrate volume fraction, we employ a 2.5-m-long, 0.5-m-wide fluidized bed trackway with a porous plastic (Porex) flow distributor (thickness 1.2 cm) and the axles of the right-side front and rear motors (lateral landmarks) are marked with reflective material (Wite-Out). A rail-pulley system allows the robot’s power and communication cables to follow the robot as it moves to minimize the drag from the cables. For each trial, we prepare the trackway with the desired volume fraction and place the robot on the prepared granular media at the far end of the trackway with both tripods in the same standing position. An LED on the robot synchronizes the video and robot landmark coordinates from the video frames and calculate $v_y(\theta)$. Three trials were run for each combination of (d_x, ω) that was tested.

Trackway Volume Fraction Control. To systematically test SandBot’s performance vs. substrate volume fraction, we employ a 2.5-m-long, 0.5-m-wide fluidized bed trackway with a porous plastic (Porex) flow distributor (thickness 0.64 cm, average pore size 90 µm). Four 300-L/min leaf blowers (Toro) provide the requisite air flow. Poppy seeds are chosen as the granular media because they are similar in size to natural sand (39) and are of low enough density to be fluidized. The air flow across the fluidized bed is measured with an anemometer (FMA-900-V; Omega Engineering) and is uniform to within 10%.

A computer controlled fluidization protocol sets the volume fraction and thus the mechanical properties of the granular media. A continuous air flow initially fluidizes the granular media in the bubbling regime. The flow is slowly turned off, leaving the granular media in a loose medium at a constant ϕ_0. Short air pulses (ON/OFF time $\approx 0.1/0.3$) pack the material (28). Increasing the number of pulses increases ϕ up to a maximum of $\phi = 0.633$. Volume fraction is calculated by dividing the total grain mass by the bed volume and the intrinsic poppy seed density. The mass is measured with a precision scale (Sretar). The density of the granular media is measured by means of displacement in water. In experiment, because the horizontal area of the fluidized bed trackway is fixed, volume fraction is set by controlling the height of the granular media (e.g., volume = area \times height).

Kinematics Measurements. To characterize SandBot’s motion, we record simultaneous dorsal and lateral views with synchronized high speed video cameras (AOS) at 100 frames per second. The center of mass (dorsal landmark) and the axles of the right-side front and rear motors (lateral landmarks) are marked with reflective material (Wite-Out). A rail-pulley system allows the robot’s power and communication cables to follow the robot as it moves to minimize the drag from the cables. For each trial, we prepare the trackway with the desired volume fraction and place the robot on the prepared granular media at the far end of the trackway with both tripods in the same standing position. An LED on the robot synchronizes the video and robot motor encoder data. After each trial, MATLAB (MathWorks) is used to obtain landmark coordinates from the video frames and calculate $v_y(\theta)$. Three trials were run for each combination of (d_x, ω) that was tested.

Detailed Discussion of Rotary Walking Locomotion Model. The model presented in the main body of the manuscript simplifies the underlying physics while capturing the essential features determining robot speed. Here, we describe a more complete model (which lacks a simple expression for $v_y(\theta)$) and compare its predictions to those of the simple model. The exact expression for the vertical acceleration component of the body when the limbs gain purchase is $ma_y = ma_y \sin \theta = m \sqrt{2(2R + z) - \frac{R^2}{2} \sin^2 \theta}$ or equivalently $ma_y = ma_y \sin \theta = m \sqrt{2(2R + z) - \frac{R^2}{2} \sin^2 \theta}$ instead of the approximation $ma_y = ma_y \sin \theta$ used in the simple model. Using the exact expression, the vertical gravity force necessary for walking still has the same peak value of $m(a + g)$ but decreases to mg when the limb is at its lowest point.

The second approximation we used in the simple model is that the grain force on the leg is k_z. This expression is only strictly valid for a flat-bottomed vertically penetrating intruder (30). Because the leg is a circular arc, the leg-grain contact area and the vertical component of the grain force are functions of limb length and leg-shaft angle. Generalizing k_z to a local isotropic yield stress given by $\sigma = \frac{y}{2(1+\nu)}$ (12), the vertical force on a small segment of the limb ρ_θ on length at depth z is $dF_z = -\rho_\theta R_z\cos \psi w_z \sin \phi$, where w_z is the limb width and ψ the angular position of the segment with respect to a vertical line passing through the axle. The total vertical force of the leg on the base is then $F_z = \int_{\psi_1}^{\psi_2} \rho_\theta R_z d\psi \cos \psi w_z \sin \phi$. Substituting $z = \frac{\rho_\theta R_z}{w_z} \cos \psi - \frac{\rho_\theta R_z}{w_z} \sin \phi$ and integrates $F_z = \frac{\rho_\theta R_z}{w_z} \cos \psi - \frac{\rho_\theta R_z}{w_z} \sin \phi \left(\frac{d\psi}{\sin \phi} \right)$, where $\theta = \frac{\rho_\theta R_z}{w_z} \cos \psi - \frac{\rho_\theta R_z}{w_z} \sin \phi$ and $\phi = \frac{\rho_\theta R_z}{w_z} \cos \psi - \frac{\rho_\theta R_z}{w_z} \sin \phi$ when the tip is above the center of the c-leg and $\phi = \frac{\rho_\theta R_z}{w_z} \cos \psi - \frac{\rho_\theta R_z}{w_z} \sin \phi$ when the tip is below the center of the c-leg. Δ_θ is the angular extent of the limb beyond $\frac{\rho_\theta R_z}{w_z} \cos \psi - \frac{\rho_\theta R_z}{w_z} \sin \phi$ for a semicircular limb).

Fig. A4 shows that the full model using realistic parameters shares the same essential physics as the simple model. For a given material strength (blue...
curves), the penetration depth increases with increasing ω (intersection of blue and red curves) until the step length is reduced below the critical value (vertical green dashed line). Fig. 4B presents fits to the experimental data of the average speed v_B vs. ω for the full and simple models for $v_B \leq v_L$ at each ϕ. The fits and fit parameters for the simple ($\Delta t = 0.4$ s, $\alpha = 470$ kNm$^{-2}$) and full ($\Delta t = 0.2$ s, $\alpha = 330$ kNm$^{-2}$) models are in good agreement when the step length is less than the critical value $s = R$.