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RHex: A Simple and Highly Mobile Hexapod Robot

Abstract
In this paper, the authors describe the design and control of RHex, a power autonomous, untethered,
compliant-legged hexapod robot. RHex has only six actuators—one motor located at each hip—achieving
mechanical simplicity that promotes reliable and robust operation in real-world tasks. Empirically stable and
highly maneuverable locomotion arises from a very simple clock-driven, openloop tripod gait. The legs rotate
full circle, thereby preventing the common problem of toe stubbing in the protraction (swing) phase. An
extensive suite of experimental results documents the robot’s significant “intrinsic mobility”—the traversal of
rugged, broken, and obstacle-ridden ground without any terrain sensing or actively controlled adaptation.
RHex achieves fast and robust forward locomotion traveling at speeds up to one body length per second and
traversing height variations well exceeding its body clearance.
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Hexapod Robot

Abstract
In this paper, the authors describe the design and control of RHex,
a power autonomous, untethered, compliant-legged hexapod robot.
RHex has only six actuators—one motor located at each hip—
achieving mechanical simplicity that promotes reliable and robust
operation in real-world tasks. Empirically stable and highly maneu-
verable locomotion arises from a very simple clock-driven, open-
loop tripod gait. The legs rotate full circle, thereby preventing the
common problem of toe stubbing in the protraction (swing) phase.
An extensive suite of experimental results documents the robot’s sig-
nificant “intrinsic mobility”—the traversal of rugged, broken, and
obstacle-ridden ground without any terrain sensing or actively con-
trolled adaptation. RHex achieves fast and robust forward loco-
motion traveling at speeds up to one body length per second and
traversing height variations well exceeding its body clearance.

KEY WORDS—legged locomotion, hexapod robot, clock
driven, mobility, autonomy, biomimesis

1. Introduction
In this paper, we report on a power autonomous legged vehi-
cle, RHex (Fig. 1), that easily traverses terrain approaching
the complexity and diversity of the natural landscape. Ta-
ble 1 substantiates in part our belief that this machine breaks
the speed record to date for power autonomous legged robot
locomotion over uneven terrain by a considerable margin.1

The International Journal of Robotics Research
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©2001 Sage Publications
1. Unfortunately, there is not enough performance detail documented in the
published robotics literature to unconditionally establish this claim. To the
best of our knowledge, the very few robots that have been demonstrated to
negotiate uneven terrain at all travel at speeds far less than those we report
here.

RHex travels at speeds approaching one body length per sec-
ond over height variations exceeding its body clearance (see
Extensions 12 and 2). Moreover, RHex does not make unreal-
istically high demands of its limited energy supply (two 12-V
sealed lead-acid batteries in series, rated at 2.2 Ah): at the
time of this writing (spring 2000), RHex achieves sustained
locomotion at maximum speed under power autonomous op-
eration for more than 15 minutes.

The robot’s design consists of a rigid body with six com-
pliant legs, each possessing only one independently actu-
ated revolute degree of freedom. The attachment points
of the legs as well as the joint orientations are all fixed
relative to the body. The use of spoked wheels (or even
highly treaded wheels) is of course an old idea. Com-
parable morphologies such as rimless wheels (Coleman,
Chatterjee, and Ruina 1997) or single-spoked wheels (Hon-
eywell 1920) have been previously proposed for mobile plat-
forms. Some compliant legged designs have been proposed
for toys (Grimm 1958), and some rigid, rimless wheel de-
signs have actually been commercialized by the toy indus-
try (Mattel’s Major Matt Mason’s No. 6304 Space Crawler).
However, the major difference between a single leg and a
wheel with more than two spokes arises from the far greater
range of control over the ground reaction forces (GRF) that
the former affords relative to the latter. Wheels afford con-
trol primarily over the horizontal component of the GRF (as-
suming flat ground) through friction, incurring an essentially
uncontrolled concomitant vertical component. In contrast, a
leg, by admitting selection over the angle of contact, yields a
GRF whose direction as well as magnitude may be substan-
tially controlled. As soon as multiple spokes are added, the

2. Please see the Index to Multimedia Extensions at the end of this article.
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Fig. 1. RHex experimental platform (www.RHex.net).

Table 1. Summary of Published Performance Reports: Hexapedal Robot

Name L (m)b M (kg)b V (m/s)b V /L

Case Western Robot II (Chiel et al. 1992) 0.5 1 0.083 0.16
Dante II (Bares and Wettergreen 1999) 3 770 0.017 0.006
Atillaa (Angle 1991) 0.36 2.5 0.03 0.083
Genghisa (Angle 1989) 0.39 1.8 0.038 0.097
Adaptive Suspension Vehiclea (Pugh et al. 1990) 5 3200 1.1 0.22
Boadicea (Binnard 1995) 0.5 4.9 0.11 0.22
Sprawlita (Clark et al. 2001) 0.17 0.27 0.42 2.5
RHexa 0.53 7 0.55 1.04

a. Power autonomous.
b. L = body length, M = robot mass, V = maximum speed.

interspoke angle restricts the range of contact angles, thereby
diminishing control affordance. Our design preserves the pos-
sibility of achieving full GRF range while adding the virtues
of tuned compliance, heretofore associated only with wheels.

The closest extant robots, one significant source of inspira-
tion for the RHex design, are Buehler’s (Buehler et al. 1998;
Buehler et al. 1999; Papadopoulos and Buehler 2000) Scout
class quadrupeds (www.cim.mcgill.ca/˜arlweb), which also
feature compliant legs and reduce mechanical complexity by
the restriction of one actuator per leg.3 The central differ-
ence with respect to this design is the possibility of recircu-
lating (i.e., treating the singly actuated leg as a single-spoked
“rimless wheel”). A second key design influence whose care-
ful consideration exceeds the scope of this paper arises from
biomechanics. R. J. Full’s video of a Blaberus cockroach rac-
ing seemingly effortlessly over the rough surface illustrated in
Figure 2 was shown at the spring 1998 meeting of the National

3. Scout II travels at just under two body lengths per second but traverses
only level ground.

Science Foundation Institute for Mathematics and Its Appli-
cations, motivating and initiating the development of RHex.
The present design may be seen as instantiating the notion
of a “preflex” (Brown and Loeb 2000)—implemented here
in the clock-driven, mechanically self-stabilizing, compliant
sprawled-posture mechanics that Full et al. (1998) proposed.4

The notion of a clock-driven mechanism arises in our choice of
control strategies, deriving appropriate advantage of RHex’s
mechanical design. At the time of this writing, RHex operates
by tracking (via local proportional-derivative [PD] control) at
each hip joint a copy of the reference trajectory depicted in
Figure 4 that enforces an alternating tripod gait in an other-
wise open-loop manner. The two tripods are driven in relative
antiphase. The three legs of a tripod are driven simultaneously
through a slow “retraction” phase, putatively corresponding
to ground contact, followed by a fast “protraction” phase de-
signed to recirculate the legs away from the ground around the

4. See Altendorfer et al. 2000 for a technical discussion of some aspects
relating the bioinspiration behind this design to its performance.
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Fig. 2. Comparative views of locomotion in the rough: the
cockroach Blaberus discoidalis (top photo, courtesy of
R. J. Full) runs at 3.7 body lengths (∼24 cm) per second (Full
et al. 1998), whereas RHex (bottom photo) presently runs at
only one body length (∼50 cm) per second over comparably
scaled broken terrain (see Extensions 3 and 4).

axle just in time to reach the next retraction phase, putatively
as the opposing tripod begins its protraction by rotating away
from ground contact. No design we are aware of has hereto-
fore incorporated this combination of controller simplicity,
leg compliance, limited actuation, and overall morphology,
and no previously implemented legged vehicle has achieved
the performance we now report.

Table 1 (modeled on but extended from Binnard 1995)
summarizes performance data of previous hexapedal vehicles
for which we are aware of documented performance, with ci-
tations to refereed publications. It would be of considerable
interest to compare across a broader range of machines. Un-
fortunately, it is not straightforward to normalize against mor-
phology. For example, “body lengths per second” is clearly
not an appropriately normalized measure of bipedal speed.
We look forward to the eventual adoption of appropriately
general performance metrics for legged locomotion within
the robotics research community. For the present, it seems
most useful to compare the design of RHex with some of its
more closely related forebears.

Fig. 3. Compliant hexapod design.

One of the better documented, faster power autonomous
hexapods is the Ohio State University Adaptive Suspension
Vehicle (ASV), which was designed to operate in the stat-
ically stable regime. The deleterious consequences of de-
sign complexity have been observed in Dante II (Bares and
Wettergreen 1999), a tethered hexapod whose exposure to se-
vere environmental conditions has apparently been the most
extreme of any robot yet documented in the archival litera-
ture. On a smaller scale, there have been many platforms
inspired by insect locomotion (Angle 1989, 1991; Binnard
1995), all designed for statically stable gaits. Their speeds
were thus limited even though their design afforded greater
kinematic freedom over limb motions. A notable exception
in the smaller scale is Sprawlita (Clark et al. 2001), a teth-
ered hexapod that can achieve a very impressive 2.5 body
lengths per second locomotion speed as a result of its careful
(compliant leg) design and construction (offboard pneumatic
actuation and small size).

For most of these machines, rough-terrain performance and
obstacle-crossing capabilities are not carefully documented in
the literature. There are only a few examples in which such
capabilities are reported in detail (Pugh et al. 1990; Bares and
Wettergreen 1999), but even these are not suitable for assess-
ing relative performance due to differences in scale and the
lack of a consistent set of experiments and measures. With-
out more or less uniform standards of reporting, it becomes
very difficult to test the claim that the relative speed (we use
body lengths per second), relative endurance (we use specific
resistance but also provide actual runtime data), and relative
mobility (we provide a metric characterization of the various
terrain features) of one design are superior to another. Thus,
beyond the specifics of design and performance, we believe
that the paper makes a distinct contribution to the robotics
literature by establishing new standards of rigor in empirical
performance reporting for legged vehicles.

In summary, we believe this new design opens up a large
range of new possibilities for control of locomotion while still

http://www.ijrr.org/v20/7/saranli/index.htm
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meeting the constraints imposed by contemporary actuation
and energy storage technology on engineering autonomous
robotic platforms. At the present time, we are unable to pro-
vide a mathematically informed analysis of how and why
RHex performs over the range of reported behaviors. In-
stead, in this first archival paper, we present careful empir-
ical documentation of a narrow but very useful behavioral
suite—a base range of locomotion capabilities at relatively
high speeds over relatively challenging terrain—and observe
that no other power autonomous legged design has ever be-
fore been demonstrated to exhibit a comparable breadth of
mobility behaviors.

2. Design and Modeling

2.1. Design Concept and Morphology

In all robotics applications, mechanical complexity is one
of the major sources of failure and considerably increases
the cost. Our design emphasizes mechanical simplicity and
thereby promotes robustness. Autonomy, a critical compo-
nent of our aspiration toward real-world tasks in unstruc-
tured environments outside the laboratory, imposes very strict
design constraints on the hardware and software compo-
nents. Autonomy is often impossible to achieve with sim-
ple modifications to a system otherwise designed for nonau-
tonomous operation. These constraints also justify our prefer-
ence for overall simplicity—in particular toward minimizing
the amount of actuation and limited reliance on sensing.

Our design, depicted in Figure 3, consists of a rigid body
with six compliant legs, each possessing only one indepen-
dently actuated revolute degree of freedom. The attachment
points of the legs as well as the joint orientations are all fixed
relative to the body.

Fig. 4. Motion profiles for left and right tripods.

This configuration admits an alternating tripod gait for for-
ward and backward locomotion, and possibly other more elab-
orate behaviors such as leaping, stair climbing, and so on.
Moreover, the symmetry of this idealized model allows iden-
tical upside-down operation and imposes no restrictions on
forward directionality. We explore some of this behavioral
repertoire both in simulation and experimentally in Section 4
and Section 5, respectively.

2.2. Compliant Hexapod Model

In this section, we present a dynamical model of the morphol-
ogy described in the previous section. Prior to the construc-
tion of the experimental prototype, this model enabled us to
assess the viability of the design through simulation studies.
Augmented with the actuator model of Section 4.1, it proved
to be an invaluable tool in the design process.

Two reference frames, B and W, are defined in Figure 3,
the former attached to the hexapod body and the latter an
inertial frame where the dynamics are formulated. In B, we
define the +y-direction to be forward and the +x-direction
to be the right side of the robot. The position and orientation
of the rigid body are described by rb∈ R

3 and Rb∈ SO(3),
respectively, expressed in W. Table 2 details the notation used
throughout the paper.

Each leg is assumed to be massless and has three degrees
of freedom. The leg state is described in spherical coordinates
[θi, φi, ρi]T whose origin is at ai in the body frame.5

2.3. Equations of Motion

Our formulation of the equations of motion for the hexapod
model is based on individually incorporating the ground re-
action forces at each leg. To this end, it will suffice to analyze
a generic leg parameterized by its attachment and touchdown
points, ai and fi, respectively. As a consequence of the as-
sumption that the leg is massless, the rigid body experiences
the ground reaction force on the leg, resulting in effective
force and torque vectors acting on the center of mass. For
each leg i = 1, ..., 6, following projections on B, we have

Fi =



− cos θi sin φi sin θi sin φi − cos φi

sin θi cos θi 0
cos θi cos φi − sin θi cos φi − sin φi


 .




Fri

τθi
/ρi

τφi
/(ρi cos θi)




τi = (v̄i + ai) × Fi ,

which are the force and torque contributions of a single leg
to the overall system dynamics, respectively. The cumulative

5. Note that (rb, Rb), vi and fi are related through the coordinate transfor-
mation − Rb( ai+ v̄i) = fi+ rb.



620 THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH / July 2001

Table 2. Notation
States

rb, Rb Body position and orientation
α Body yaw angle

Leg states and parameters
ai Leg attachment point in B
fi Toe position in W
vi := [θi, φi, ρi]T leg state in spherical

coordinates
v̄i := [vxi

, vyi
, vzi

]T leg state in Cartesian
coordinates

legi Stance flag for leg i

Forces and torques
Fri Radial leg spring force
τθi

Bend torque in θi-direction
τφi

Hip torque in φi-direction
Controller parameters

tc Period of rotation for a single leg
ts Duration of slow leg swing
φs Leg sweep angle for slow leg swing
φo Leg angle offset
u := [tc, ts , φs, φo] control vector
�φo Differential change in φo for turning
�ts Differential change in ts for turning

effect of all the legs on the body is simply the sum of the indi-
vidual contributions from the legs in contact with the ground,
together with the gravitational force:

FT = [
0 0 −mg

]T + Rb

6∑
i=1

legiFi (1)

τT = Rb

6∑
i=1

legiτi . (2)

The contact states of the legs are indicated by legi . In con-
sequence, the dynamics of the hexapod are governed by the
standard rigid-body dynamics under external torque and force
inputs (Goldstein 1980). Note also that the discrete transitions
in the contact states of the legs result in a hybrid dynamical
system whose behavior can be substantially different than that
of its continuous constituents alone.

3. Control Strategy

The present prototype robot has no external sensors by which
its body state may be estimated. Thus, in our simulations and
experiments, we have used joint space closed-loop (“proprio-
ceptive”) but task space open- loop control strategies. The
algorithms that we describe in this section are tailored to
demonstrate the intrinsic reliability of the compliant hexa-
pod morphology and emphasize its ability to operate without

a sensor-rich environment. Specifically, we present a four-
parameter family of controllers that yields translation and
turning of the hexapod on flat terrain without explicit enforce-
ment of quasi-static stability. In Section 5.3, we demonstrate
the capabilities of this family of controllers on our experimen-
tal platform over a wide range of terrain conditions, from flat
terrain to a rough, broken surface.

All controllers generate periodic desired trajectories for
each hip joint, which are then enforced by six local PD
controllers (one for each individual hip actuator). In this
respect, the present controller family represents one near-
extreme along the spectrum of possible control strategies,
ranging from purely feedforward (i.e., taking no notice of
body state) to purely feedback (i.e., producing torque solely
in reaction to leg and rigid-body state). It seems likely that
neither of these extremes is best and a combination should
be adopted. The simulations and experiments presented in
this paper attempt to characterize the properties associated
with the sensorless feedforward extreme, which, when RHex
has been endowed with sensors, we hope to complement with
feedback to explore the aforementioned range.

An alternating tripod pattern governs both the translation
and turning controllers, whereby the legs forming the left and
right tripods are synchronized with each other and are 180
degrees out of phase with the opposite tripod, as shown in
Figure 4.

3.1. Forward Alternating Tripod Gait

The open-loop controller’s target trajectories for each tripod
are periodic functions of time, parameterized by four vari-
ables: tc, ts , φs , and φo. In a single cycle, both tripods
go through slow and fast swing phases, covering φs and
2π−φs of the complete rotation, respectively. The period
of both profiles is tc. In conjunction with ts , it determines
the duty factor of each tripod with respect to the duration of
its slow and fast phases. The time of “double support” td
(where all six legs are in their slow phases but possibly not all
of them are touching the ground) is hence determined by the
duty factors of both tripods. Finally, the φo parameter offsets
the motion profile with respect to the vertical (see Fig. 4).
Note that both profiles are illustrated to be monotonically in-
creasing in time, but they can be negated to obtain backward
locomotion.

Control of locomotion is achieved by modifying these pa-
rameters for a particular desired behavior during locomotion.
In Section 4, our simulation studies reveal correlations of these
parameters with certain behavioral attributes.

3.2. Turning

We developed two different controllers for two qualitatively
different turning modes: turning in place and turning dur-
ing translation. These controllers are inspired by differential
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turning in wheeled and tracked vehicles, where opposite per-
turbations to contralateral actuators result in a net rotation of
the body on the plane. Analytical understanding of this behav-
ior in the context of our design awaits careful mathematical
treatment of RHex’s dynamics as well as accurate models of
ground contact.

The controller for turning in place employs the same leg
profiles as for forward locomotion except that contralateral
sets of legs rotate in opposite directions. This results in the
hexapod turning in place in the direction determined by the
rotational polarity of the left and right sets of legs. Note that
the tripods are still synchronized internally, maintaining three
supporting legs on the ground. Similar to the control of the
forward locomotion speed, the rate of turning depends on the
choice of the particular motion parameters, mainly tc and φs .

In contrast, we achieve turning during forward locomo-
tion by introducing differential perturbations to the forward-
running controller parameters for contralateral legs. In this
scheme, tc is still constrained to be identical for all legs,
which admits differentials in the remaining profile parame-
ters, φo and ts , while φs remains unchanged. Two new gain
parameters, �ts and �φo, are introduced. Turning right (to-
ward +x in the coordinate system of Fig. 3, defining +y as
forward) is achieved using ul = [tc, ts + �ts, φs, φo + �φo]
and ur = [tc, ts − �ts, φs, φo − �φo] for the legs on the left
and right sides, respectively.

4. Simulation Studies

Our simulation studies in this section use the dynamical model
described in Section 2.2 together with an actuator model to
demonstrate the feasibility of basic locomotion behaviors of
our design under practical actuation limitations. The pre-
sented results provide a proof of concept for the design, jus-
tifying the building of our prototype and the extensive ex-
periments of later sections. To limit the scope of the paper
to an appropriate length, however, we have excluded impact
of these models and the resulting simulation tools in refining
the kinematic and dynamical parameters of our experimental
prototype.

4.1. Actuator Model

The model of Section 2.2 does not impose any constraints on
the choice of the hip torques τφi

. In practice, however, torque
limitations are one of the major challenges in the design of
autonomous legged vehicles, even for statically stable modes
of operation. To capture this aspect of our design space in
the subsequent simulation studies, we incorporate a simple
model of the hip actuation.

Figure 5 portrays the torque-speed characteristics for the
DC motors used in our experimental platform. The shaded
band captures the range of torque deliverable by the motor

–1 –0.5 0 0.5 1

–200

–100

0

100

200

Sh
af

t t
or
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e 
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m
)

Shaft speed (rev/min) x 104

Fig. 5. Torque characteristics for the Maxon RE118751
20-W DC motor, reproduced from the manufacturer’s
datasheet. The shaded band illustrates the range of torque
deliverable by the motor.

at any particular speed.6 Our simulations incorporate this
model by saturating hip torque command outputs of the local
PD controllers as a function of the leg angular velocity.

4.2. Simulation Environment

All the simulation results of the next section were produced
by SimSect, a simulation environment that we created primar-
ily for the study of the compliant hexapod platform (Saranli
2000). SimSect can efficiently and accurately deal with the
hybrid nature of our model resulting from its discrete ground
contact states, still preserving the relatively simple dynamics
of the continuous model.

The hexapod simulation with SimSect uses the same di-
mensions and body mass as our experimental platform (see
Section 5). However, some of the dynamical parameters used
in the simulations, including the leg spring and damping con-
stants, and the ground friction coefficient are not experimen-
tally verified and are likely to be different from their actual
values. Nevertheless, the relatively accurate match between
the simulations and the experimental platform with regard to
their morphology and mass parameters still admit qualitative
comparisons of behavior.

4.3. Simulation Results

In this section, we verify in simulation that the controllers
of Section 3 are able to produce fast, autonomous forward
locomotion of the hexapod platform.

Figure 6 shows the forward velocity (a) and the turning
yaw rate (b) as functions of controller parameters tc and φs .

6. Note that the we have conservatively approximated the DC motor char-
acteristics by assuming constant maximum torque for second and fourth
quadrants.
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Fig. 6. (a) Average forward velocity ẏ as a function of tc and φs over 5 seconds of operation, during which the robot always
settled down to an approximately periodic trajectory. Remaining controller parameters are chosen as ts= tc/2, φo= 0. (b)
Average in-place turning yaw rate α̇ as a function of tc and φs over 5 seconds of operation.

Although the remaining parameters ts and φo have a consider-
able effect on the body oscillations during locomotion and the
forward velocity, through manual tuning we identified certain
values for them to yield good performance in most cases. As
a consequence, throughout these simulations, φo is kept con-
stant and ts is chosen to be half the stance time. Nevertheless,
it is clear that proper tuning of all four controller parameters
is necessary to achieve the smoothest and fastest locomotion
performance. The effects of a hand-tuned, intuitively “best”
choice for a given tc and φs is demonstrated in Figure 7 and
the associated Extension 5, a typical forward translation with
an average velocity of 0.55 m/s.

These results suggest the opportunities for considerably
improved performance resulting from the introduction of
feedback to regulate the forward locomotion and turning yaw
rate of the compliant hexapod platform. We sketch our ap-
proach to these future opportunities in the conclusion.

5. Experimental Platform

5.1. Hardware Description

We built an experimental platform (Fig. 1) as an instantiation
of the design concepts of Section 2.1. RHex is an autonomous
hexapod robot with compliant legs, very close to the model
described in Section 2.2. All the computational and motor
control hardware is on board, together with two Panasonic
12-V, 2.2-Ah sealed lead-acid batteries for power autonomous
operation. A PC104 stack with a 100-MHz Intel 486 micro-
processor, together with several I/O boards, performs all the
necessary computation and implements the controllers of Sec-
tion 3. A remote control unit provides the user input for giving
higher level commands such as the forward speed and turning
direction, presently via a joystick.

Each leg is directly actuated by a Maxon RE118751 20-W
brushed DC motor combined with a Maxon 114473 two-stage

33:1 planetary gear (Interelectric AG, Sachseln, Switzerland),
delivering an intermittent stall torque of 6 Nm. The motor an-
gle and, thus, the leg angles are controlled via 1-kHz software
PD control loops. The control software also features several
safety measures, including fault detection for the encoders,
estimation of the rotor temperatures to avoid motor damage,
and a watchdog timer that disables the motors and resets the
computer in case of software failure.

The main body measures 53 × 20 × 15 cm and roughly
matches the symmetries of the ideal model except for the
slightly lower center of mass and the larger length of the bot-
tom side. The legs are made from 1 cm diameter Delrin rods
and are C-shaped to increase compliance in the radial direction
and permit easy clamping to the gear shaft (see Extension 6).
The leg length is 17.5 cm, measured as the vertical distance
from ground to the gear shaft when standing up. We experi-
mentally measured the radial compliance of these legs to be
approximately 4500 N/m in their expected operating region.
The encoder/motor/gear stacks protrude from the main body,
and the maximum widths of the front and back legs amount
to 39.4 cm, measured at half the leg length. To provide clear-
ance for the rotating front and back legs, the motors for the
middle legs are further offset and result in a maximum width
of 52 cm. The total mass of the robot is 7 kg, with each leg
contributing only approximately 10 g.

5.2. Visual Measurement Apparatus

Absent any inertial sensing on RHex, we devised a simple
visual tracking system to record the robot’s position and ori-
entation in the sagittal (obstacle-crossing experiments) and
the horizontal (turning and rough- surface experiment) planes.
Four light-emitting diodes (LEDs) were attached to the robot’s
body, and a set of stationary calibration LEDs were placed
close to the extremes of the camera’s field of view. The ex-
periments were then conducted in complete darkness, which

http://www.ijrr.org/v20/7/saranli/index.htm
http://www.ijrr.org/v20/7/saranli/index.htm


Saranli, Buehler, and Koditschek / Hexapod Robot 623

0.5 1 1.5 2 2.5 3 3.5 4 4.5
0.4

0.45

0.5

0.55

0.6

0.65

0.7

Fig. 7. Forward body velocity for a simulation run with tc = 0.5 s, φs = 0.7 rad, ts = 0.3 s, and φo = 0.03 rad.

allowed for very high contrast recordings of the LED mark-
ers. Because of this greatly simplified visual data, standard
computer vision algorithms were then employed to extract the
planar robot position and orientation with up to 1% accuracy
in the average velocity computations.

5.3. Experimental Results

In the sequel, we will document the robot’s speed over various
terrains, maneuverability, obstacle-crossing capability, and
payload. Furthermore, energy efficiency and runtime are crit-
ical performance criteria for any untethered robot. Thus, the
energetic performance of the robot is carefully documented,
but it must be noted that at the time of this writing, no efforts
have been made to optimize it. All experiments—except the
random obstacles experiment—were run untethered, and we
document the average power consumption based on record-
ings of the battery voltage and current.

To measure energy efficiency, we use the “specific resis-
tance” (Gabrielli and von Karman 1950), ε = P/(mgv),
based on the robot’s weight, mg, and its average power con-
sumption, P , at a particular speed, v. Specific resistance was
originally used to compare the energy efficiency of animals
of vastly different sizes, where the average power measured
the rate of metabolic energy expenditure based on oxygen
consumption. The same measure has been used to compare
the energy efficiency of a range of different robots (Ahmadi
and Buehler 1999; Gregorio, Ahmadi, and Buehler 1997; Hi-
rose 1984; Waldron and Vohnout 1984). Unfortunately, at-
tention to energy efficiency and its reporting is fairly rare in
robotics and is not consistent. For example, the power, if doc-
umented at all, is given as the mechanical power delivered by
the actuators, the peak mechanical power of the main power

source, or the total electrical power consumption. Therefore,
quantitative energetic comparisons of past robots are not al-
ways precise. For electrically actuated mobile robots such as
RHex, it makes most sense to report the total electrical power
consumption (which includes the power for sensing and com-
puting) because it will determine, together with the battery
capacity, the all-important runtime. In any case, the battery
power consumed will always provide an upper bound on joint
power or mechanical power because the battery is the only
source of energy in the system.

Throughout the experiments, the control parameters were
set to fixed values, and these values were only modified by
the operator via the joystick commands in an attempt to steer
the robot along a straight line. The speed command input was
used solely for starting and stopping the robot.

Experimental findings are summarized in Table 3 and Fig-
ures 8 and 9. A detailed account of the setup, measurement
protocols, and failure modes is presented in Appendix B.

5.3.1. Forward Locomotion

This first set of experiments documents RHex’s maximum
velocity, power, and specific resistance with the two-stroke
open-loop controller of Section 3 while traversing carpet (see
Extension 7 for an example run), linoleum, grass, and coarse
gravel. The robot moved well over these indoor and out-
door surfaces, with only minor velocity variations between
0.45 m/s and 0.55 m/s, as shown in Figure 8. The ve-
locity on linoleum was lowest due to intermittent slipping,
which also causes a larger standard deviation of the runs
compared to carpet. In the current prototype, the relatively
high natural frequency of the system and the open-loop na-
ture of the leg trajectories limit the maximum speed due to
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Table 3. Experimental Statistics

Single Comp. Obstacle
Carpet Linoleum Grass Gravel Rough Obstacle Const. Course

Total number of runs 10 11 16 25 32 14 14 26
Successful runs 10 10 10 10 16 10 10 10
Electronics and — — 1 5 6 — — 2

hardware problems
Deviation — 1 — 5 7 — — 5

from course
Operator mistakea — — 5 5 — 3 2 2
Stuck on obstacle — — — — 3 1 2 7
aThese failure modes include steering in unwanted directions, failure to trigger the timing switch, and the power cord
wrapping around the legs.
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Fig. 8. Comparison of average forward velocity and energetics for different experiments (see also Extension 8).
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Fig. 9. Turning yaw rate as a function of forward velocity.
See Extension 9 for all the data and analysis scripts associated
with the turning experiments.

out-of-phase vertical body oscillations, which reduce traction.
The surface irregularities of the outdoor grass and gravel sur-
faces provided improved traction and, therefore, average ve-
locities slightly above 0.5 m/s, but they also resulted in larger
variations between the runs. The specific resistance (power
consumption) was lowest on carpet with 2.21 (80 W) and high-
est on gravel with 3.74 (140 W). We experimented with control
parameter settings to reach the maximum robot velocity on
office carpet and linoleum and selected u = [0.45, 0.2, 51, 0].
The grass and gravel surfaces were not tested with these set-
tings prior to the reported experiments. Figure 8 shows the
average velocity, power consumption, and specific resistance
over 10 runs, with standard deviations for all the experiments.
All the experimental data as well as the associated analysis
scripts can be found in Extension 8. Table 3 summarizes the
failure modes and statistics for all the experiments described
in this section.

5.3.2. Turning

As our simulation study predicted, steering is possible, even
though the leg actuation is limited to motion in the sagittal
plane only via differential motion between left and right legs.
We selected control parameters that resulted in turns in place
and robot speeds up to about 0.4 m/s (see Table 4) on most
flat surfaces including carpet, linoleum, grass, and gravel.
The maximum forward velocity is reduced during turning be-
cause the differential leg motion precipitates the onset of the
speed-limiting vertical body oscillations. The maximum yaw
angular velocities increase almost linearly with forward ve-
locity up to 0.19 rad/s at 0.39 m/s, as illustrated in Figure 9.

Interestingly, the resulting turn radius remains roughly con-
stant at 2 m for different settings of the forward velocity.
Turning in place provides the highest yaw angular velocity of
0.7 rad/s, although it is not possible to directly compare its
performance to differential turning, which is a qualitatively
different controller. At present, we do not understand com-
pletely the relationship between the controller parameters and
effective yaw rates, a subject of ongoing research.

5.3.3. Obstacle Crossing

The obstacle-crossing capabilities of the simple open-
loop walking controller were evaluated with two different
obstacles—a 15 cm high Styrofoam block and a composite
obstacle with a maximum height of 22 cm, as shown in Fig-
ures 10 and 11, respectively (see also Extensions 10 and 11).
The robot was able to surmount both obstacles, neither sens-
ing them nor with any modification to the control parameters
of the walking experiments. The data in the top portions of
the two graphs show the forward velocity averages (over 10
runs) before, during, and after the obstacle. Surprisingly, the
average velocity decreases only slightly as the robot climbs
over the obstacle and increases again afterward. Because the
robot’s trajectory over the obstacle depends greatly on how
the legs engage it, the standard deviation of the average ve-
locities increases over the obstacle. The average speed varied
most (with the largest standard deviation) following the end
of the composite obstacle because the robot’s recovery speed
depended on how the robot landed on the ground. As a further
illustration of the robot’s motion, the forward velocity from
a particular run and the robot’s body in the sagittal plane at
0.5-second intervals during the same run are shown.

5.3.4. Obstacle Course

To demonstrate RHex’s rough-terrain capabilities, we con-
structed the obstacle course depicted in Figure 12. It con-
sisted of 10 randomly spaced obstacles of 12.2 cm height
(i.e., 60% of the leg length and exceeding ground clearance
by 1.8 cm). This was by far the most challenging of the
experiments, requiring the largest number of runs before 10
successful completions. Most failures can be attributed to
the open-loop nature of the walking controller, which had to
climb blindly over 10 randomly spaced obstacles, sometimes
as little as half a body width apart, but all higher than the
ground clearance. This had to be done successfully over a
distance of 8.13 m, avoiding all the failure modes detailed in
Appendix B. Yet, for the 10 successful runs, RHex was able
to maintain an average velocity of 0.36 m/s over the length
of the obstacle course (Fig. 8). The best run finished in only
17.78 seconds, or an average velocity of 0.46 m/s, with a spe-
cific resistance of 8.17. The punishing nature of this course is
reflected in the power consumption of more than three times
that of walking on carpet, more than five times the specific

http://www.ijrr.org/v20/7/saranli/index.htm
http://www.ijrr.org/v20/7/saranli/index.htm
http://www.ijrr.org/v20/7/saranli/index.htm


626 THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH / July 2001

Table 4. Controller Parameters for Turning at Different Speeds

ẋ (m/s) tc (s) ts (s) φs (rad) φo (rad) �φo (rad) �ts (s)

0 1.0 0.6 35 0.0 0.0 0.0
0.16 1.2 0.7 25 0.0 6.0 −0.02
0.28 0.8 0.45 35 0.0 7.5 0.0
0.39 0.53 0.33 40 0.0 6.5 0.0
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Fig. 10. Sagittal plane data during simple obstacle crossing.
The data in the top portion of the graph show forward veloc-
ity averages and standard deviations (over 10 runs) before,
during, and after the obstacle. The solid and dashed line is
one particular run. The bottom half shows a projection of the
robot’s body onto the sagittal plane in 0.5-second intervals
(horizontal and vertical axes at the same scale). See Exten-
sion 12 for all the experimental data and analysis scripts.

resistance, and a high rate of component breakdown: dur-
ing the obstacle course experiments, RHex broke three legs,
burned several circuit traces, and fractured its frame.

5.3.5. Rough Surface

This last rough terrain experiment is an attempt to evaluate
RHex’s performance in an environment similar to that nego-
tiated by the Blaberus cockroach in Full et al. (1998). Our
efforts at recreating such a surface at RHex’s scale can be
evaluated visually in Figure 2 as well as Extensions 3 and 4.
To our surprise, RHex was able to traverse this surface with
random height variations of up to 20.32 cm (116% leg length)
(Fig. 13) with relative ease at an average velocity of 0.42 m/s
(Fig. 8). RHex’s planar trajectories during the two fastest and
the two slowest successful runs are shown in Figure 14. In
addition, body state associated with all the rough surface runs
can also be found in Extension 14.
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Fig. 11. Sagittal plane data during composite obstacle cross-
ing. The data in the top portion of the graph show forward
velocity averages and standard deviations (over 10 runs) be-
fore, during, and after the obstacle. The solid and dashed line
is one particular run. The bottom half shows a projection of
the robot’s body onto the sagittal plane in 0.5-second intervals
(horizontal and vertical axes at the same scale). See Exten-
sion 13 for all the experimental data and analysis scripts.
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Fig. 12. Scale drawing of RHex and the obstacle course.
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Fig. 13. Sample profiles of row 6 (columns 8, 9, and 10) with
RHex statically posed for comparison.

5.3.6. Payload and Runtime

To demonstrate RHex’s payload capacity, we mounted an ad-
ditional mass of 7.94 kg (one 10-lb and one 7.5-lb weight-
lifting barbell) to the bottom of RHex’s body and adjusted the
control parameters for lower speed and a small sweep angle
(c6 = 0.7, 0.2, 14, 0). The robot was able to transport this
additional mass, more than its own total mass, at about half
its maximum speed (0.25 m/s) with a specific resistance of
about 3. These averages were obtained from 10 runs. This
payload is close to the limit of the current design and may
not be practical, since the motors are not powerful enough
to raise the robot when lying on the floor even when all six
legs are used. A careful analysis of trade-offs between pay-
load and speed in legged systems operating in a quasi-static
regime is provided in Huang and Waldron (1990) but is not
directly applicable to RHex.

Finally, the endurance of RHex was tested in standby mode
(with the motors enabled and maintaining a standing position)
and while walking at maximum speed on carpet. The average
runtime was 48 minutes for standby and 18 minutes for unin-
terrupted walking, both values averaged over five experiments
in each setting.

6. Conclusion

Nimble, robust locomotion over general terrain remains the
sole province of animals, notwithstanding our functional pro-
totype, RHex, or the generally increased recent interest in
legged robots. RHex, endowed with only a rudimentary con-
troller, uses what might be termed the engineering equivalent
of preflexes (Brown and Loeb 2000; Full et al. 1998) to negoti-
ate relatively badly broken terrain at relatively high speeds—
performance beyond that heretofore reported for autonomous
legged vehicles in the archival literature. We are convinced

that further systematic application of certain operational prin-
ciples exhibited by animals will achieve significant increases
in RHex performance and inform the evolution of the under-
lying mechanical design of future prototypes. To conclude
the paper, we provide a brief sketch of these principles and
how they may be applied.

Accumulating evidence in the biomechanics literature sug-
gests that agile locomotion is organized in nature by recourse
to a controlled bouncing gait wherein the “payload,” the mass
center, behaves mechanically as though it were riding on a
pogo stick (Blickhan and Full 1993). While Raibert’s (1986)
running machines were literally embodied pogo sticks, more
utilitarian robotic devices such as RHex must actively anchor
such templates within their alien morphology if the animals’
capabilities are ever to be successfully engineered (Full and
Koditschek 1999). We have previously shown how to an-
chor a pogo stick template in the more related morphology of
a four-degree-of-freedom monopod (Saranli, Schwind, and
Koditschek 1998). The extension of this technique to the
far more distant hexapod morphology surely begins with the
adoption of an alternating tripod gait, but its exact details re-
main an open question, and the “minimalist” RHex design
(only six actuators for a six-degree-of-freedom payload) will
likely entail additional compromises in its implementation.
Moreover, the only well-understood pogo stick is the spring-
loaded inverted pendulum (Schwind and Koditschek 2000),
a two-degree-of-freedom sagittal plane template that ignores
body attitude and all lateral degrees of freedom. Recent evi-
dence of a horizontal pogo stick in sprawled-posture animal
running (Kubow and Full 1999) and subsequent analysis of a
proposed lateral leg spring template to represent it (Schmitt
and Holmes 2000) advance the prospects for developing a
spatial pogo stick template in the near future. Much more ef-
fort remains before a functionally biomimetic six-degree-of-
freedom payload controller is available, but we believe that
the present understanding of the sagittal plane can already
be used to significantly increase RHex’s forward speed and
endow our present prototype with an aerial phase.

Appendix A: Details of the Experimental Setup
and Failure Modes

Forward Locomotion

We ran the robot over carpet, linoleum, grass, and gravel. The
carpet and linoleum surfaces were standard office floors found
close to the lab. The grass was wet on the day of the experi-
ment and showed height variations of about 2 cm. The gravel
patch contained fairly large gravel pieces (see Fig. 1) between
3 and 8 cm diameter. For all the experiments, the robot was
driven over a test stretch of 2 m. To obtain precise timing and
to synchronize the data logging with the test stretch, a switch
was mounted in the front of the robot, which was triggered
as the robot ran into a Styrofoam panel held at the beginning
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Fig. 14. The two fastest (top) and the two slowest (bottom) robot trajectories in the horizontal plane as RHex moves over the
rough surface. The plots also show projections of the body onto the horizontal plane in 1-second intervals. See Extension 14
for all the experimental data and associated analysis scripts.

and the end of the test stretch. The runs over each surface
were repeated until 10 successful runs were obtained. The
average velocity and power consumption for each run were
then computed with the available data.

Ten successive experiments were run for the carpet sur-
faces with no failures. One run on the Linoleum floor was dis-
carded because the robot deviated too much from the straight
line. A total of 16 runs on grass were necessary, with 6 runs
discarded. In 5 runs, the operator failed to align the start or
stop trigger panel properly, and the front legs pushed it aside,
preventing the switch to be actuated. One run was abandoned
due to remote control noise in the remote control command
input. Gravel was more challenging; of the 25 runs, 5 were
discarded because the robot deviated too much from a straight
line, 5 were discarded because of the operator missing the trig-
ger switch, 1 was discarded because of remote control noise,
and 4 were discarded because the front switch broke on impact
with the trigger panel.

Turning

The turning experiments were run on carpet. To reduce the
data processing for this set of experiments, only 6 runs were
processed in this fashion for each forward velocity instead
of the usual 10. Only a few runs were discarded because of
noise in the remote control, which interfered with the velocity
and/or the steering command.

Obstacle Crossing

The first obstacle was a 1.22 m long strip of 3 in. (7.62 cm)
thick Styrofoam board, a standard insulating construction
material, cut to 15 cm height. This represents 80% of the
robot’s leg length and exceeds its 10.5-cm ground clearance
by 4.6 cm, or almost 50%. The Styrofoam was chosen for this
experiment, as well as the random obstacle course described
below, for its ready availability, low cost, and ease of cutting.
It is softer than wood yet hard enough that the robot does not
deform it. The second obstacle was built from construction
lumber and consisted of a 10 cm high and 63 cm wide base
(as viewed in the sagittal plane) on top of which an 8.5 cm
high and 3.5 cm wide block was mounted at a distance of 25
cm from the front and a 12.5 cm high and 8.5 cm wide second
block was mounted at a distance of 50 cm from the front. In
both experiments, the control parameters were the same as
in the walking experiments above. All data shown were ob-
tained by the visual tracking procedure described in Section
5.2, with the camera oriented for a perpendicular view of the
sagittal plane. The average forward velocity of each run was
obtained before, over, and after the obstacle.

Fourteen successive experiments were required and logged
for both obstacles. From the runs over the first obstacle, the
robot failed to surmount it only once, but the vision post-
processing algorithm failed to extract reliable position data
for 3 successful runs, when the robot’s direction after obsta-
cles deviated significantly from a straight path. From the 14
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Fig. 15. Height distribution over the rough surface.

successive runs over the composite obstacle, the robot failed
twice to surmount the obstacle, and the vision postprocessing
failed to extract data from the postobstacle portion of 2 runs.

Obstacle Course

The experimental setup for the obstacle course consisted of 10
randomly spaced obstacles of 12.2 cm height. The free spaces
between the ten 3 in. (7.62 cm) wide Styrofoam blocks were
1.07, 0.47, 0.78, 0.68, 1.02, 0.91, 0.66, 0.29, and 0.96 m,
selected between 0.5 and 2 body lengths from a uniform ran-
dom distribution. Thus, the total obstacle course extended
over 8.13 m, which also includes one half body length be-
fore and after the course. The time between start and finish
was measured via a stopwatch. During these experiments,
an operator attempted to keep the robot on course using the
limited directional control described above. Nevertheless, the
directional disturbances due to the obstacles caused the robot
at times to veer toward the lateral limits of the 1.2 m wide
course. In those instances, operators who followed the robot
along the course placed a Styrofoam panel along the lateral
limits to make up for the lack of side walls. When the colli-
sion angle with these walls was sufficiently small, the robot
realigned itself with the course.

Because of the large number of runs required for this exper-
iment and the high power requirements, we made an exception
and ran the robot from higher capacity external batteries via
an umbilicus. This greatly reduced the experimental effort
by eliminating the need to recharge and exchange the on-
board batteries. However, no performance improvement re-
sulted from this arrangement compared to running on freshly
charged onboard batteries. The onboard batteries were kept
in place to maintain the total robot mass.

A total of 26 successive experiments on the obstacle course
were recorded. Of these, 16 were discarded for the following
reasons: the robot turned itself sideways beyond quick re-
covery (2); shut itself off (1); required operator intervention

through the remote control unit, such as turning in place or
short reversal of direction to complete the course (3); turned
itself on its back either by climbing up against the side walls
(1) or the obstacle (3); wrapped the power cord around its legs
(1); ended up “sitting,” aligned with and on top of an obstacle
and unable to reach the ground (3); or had burned electrical
circuits (1). The remaining 11 runs were used to calculate
the velocity, power, and specific resistance data shown in Fig-
ure 8.

Rough Surface

To recreate Full et al.’s (1998) rough surface, we compared
the height distribution of his environment (R. J. Full, per-
sonal communication, June 1998) to checkerboard arrays of
randomly uniformly distributed block heights. When scaled
to RHex’s dimensions, we decided that a height variation of
between 4 in. (10.16 cm) and 12 in. (30.48 cm), or 1.16 leg
lengths, was a good match (Fig. 15). To simplify cutting by
a local lumber yard, the block heights were discretized to
1-in. (2.54-cm) increments. The block width of 7 in.
(17.78 cm) permitted the use of four pieces of standard
3.5×3.5 in. (8.89×8.89 cm) cross section lumber per checker-
board block. The total surface consisted of 72 blocks (6 by
12), thus requiring 288 individually cut lumber sections. The
robot was run in the direction of the 12-block length of the sur-
face, with wall panels on each side. Its Cartesian position and
orientation, projected onto the horizontal plane, were mea-
sured with the visual tracking setup described above in the
steering experiment.

We carried out 32 experiments on this surface, with a suc-
cess rate of 50%. During the unsuccessful runs, the robot ei-
ther ran head-on into a side wall or ran into one of the isolated
posts (typically the isolated high block with coordinates 2,9 in
Fig. 15) (3), broke a leg (2), hit one of the walls (3), or had to
back up and continue forward (4). Also, 4 of the experiments
were not completed due to remote control failure. From the
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16 experiments that were successfully recorded, we used 10
with the cleanest vision data to facilitate the postprocessing.
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