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Queue Length Stability in Trees Under Slowly
Convergent Traffic Using Sequential

Maximal Scheduling
Saswati Sarkar, Member, IEEE, and Koushik Kar

Abstract—In this paper, we consider queue-length stability in
wireless networks under a general class of arrival processes that
only requires that the empirical average converges to the actual
average polynomially fast. We present a scheduling policy, sequen-
tial maximal scheduling, and use novel proof techniques to show
that it attains 2/3 of the maximum stability region in tree-graphs
under primary interference constraints, for all such arrival pro-
cesses. For degree bounded networks, the computation time of the
policy varies as the the logarithm of the network size. Our results
are a significant improvement over previous results that attain only
1/2 of the maximum throughput region even for graphs that have a
simple path topology, in similar computation time under stronger
(i.e., Markovian) assumptions on the arrival process.

Index Terms—Sequential maximal scheduling.

I. INTRODUCTION

S CHEDULING for maximum throughput is a key opera-
tional goal in any wireless network. Scheduling of links

must be done such that no two “interfering” links are sched-
uled at the same time. Under random packet arrivals, the sched-
uling problem can be posed in a stochastic decision framework
where the goal is to attain stability of queues over the largest
possible set of arrival vectors. Queues are said to be stable, or
rather queue-length-stable, if their expected lengths are finite
in each slot. The set of arrival rate vectors for which the net-
work is stabilized under some scheduling policy is referred to as
the maximum throughput region. In a seminal work, Tassiulas
et al. have characterized the maximum throughput region and
also provided a scheduling strategy that attains this throughput
region in any given wireless network [19]. Subsequently, sev-
eral policies have been shown to attain (for the general and cer-
tain important special cases of the problem) either the maximum
throughput region [1], [5], [6], [16]–[18] or a guaranteed frac-
tion of it [2], [3], [10], [11], [20], while requiring lower compu-
tation time.
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In this paper, we consider primary interference constraints
which requires that a set of links can be simultaneously sched-
uled if and only if they constitute a matching. This interference
model is also referred to as the node exclusive spectrum sharing
model and arises when every node has a single transceiver and a
unique frequency in its two-hop neighborhood. We focus on the
special class of tree graph topologies which are very important
from a practical perspective. For instance, in many applications,
nodes organize themselves into a spanning tree and communi-
cation is confined to the tree edges only. These include various
data gathering or data distribution applications where nodes ei-
ther send data to, or collect data from, a single source node. We
consider an arrival process which only requires that the empir-
ical average converges to the actual average polynomially fast.
This assumption is satisfied by a large number of arrival pro-
cesses including Markovian, periodic, bounded-burstiness1 ar-
rival processes2. We consider a class of simple scheduling poli-
cies, which allows a link to contend if its neighboring links have
equal or lower queue lengths, and links are scheduled among the
contending links using “maximal scheduling”. Maximal sched-
uling only ensures that if a link contends then either the link or
one of its adjacent links is scheduled. We prove that this queue
length based maximal scheduling policy attains 2/3 of the max-
imum throughput region for tree graphs and primary interfer-
ence model. Furthermore, the policy does not use any knowl-
edge of the arrival rates, and requires each link to learn only
the queue lengths and the scheduling decisions of its adjacent
links. Under the reasonable assumption that control message ex-
changes have to satisfy primary interference constraints as well,
the algorithm can be implemented in a fully distributed manner
in time, where is the number of links and

is the maximum node degree in the network.
The main contributions of this paper with respect to existing

research in this area are as follows. First, we obtain throughput
guarantees under the notion of queue length stability for a large
class of “polynomially convergent” arrival processes which in-
cludes, but is not limited to, Markov processes. In most of the
existing literature, the proofs, and hence the throughput guar-
antees, (a) rely on Lyapunov arguments and Foster’s theorem
[7] and (b) equivalence between the positive Harris recurrence
and fluid stability of a queueing system [4], both of which apply

1An arrival process is said to have bounded-burstiness if the number of arrivals
in any time interval of length � differs from �� by at most a constant � that does
not depend on �; here � is the long-term arrival rate.

2Note that for Markov, periodic and bounded-burstiness arrival processes the
empirical mean converges to the actual mean exponentially fast. The processes
we consider may therefore have slower convergence.
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only when the queue length process is Markovian, which in turn
holds only when the arrival process is Markovian. Such assump-
tions on the arrival process do not often hold in reality, as recent
Internet traffic analysis has shown. For non-Markovian arrival
processes, throughput guarantees are known only under the no-
tions of (a) rate stability which only requires that the input rates
equal the output rates [2], [3], or (b) vanishing tail probability
which requires that tail probabilities of queue lengths approach
zero [13]3. Note that several applications require finite expected
delay, and therefore finite expected queue lengths, which rate
stability does not guarantee. Thus, unlike existing results, our
policy is able to guarantee queue length stability (and therefore
finite expected delay) to a large class of realistic traffic models.
In our work, throughput guarantees are obtained using nonstan-
dard proof techniques since the arrival process and therefore the
queue length process is not Markovian in this system. Thus, both
the policy and the proofs for the throughput guarantees are im-
portant contributions of this paper.

Secondly, for tree networks, our policy provides an excellent
tradeoff between performance and complexity, which is better
than those in the existing literature in different ways. While ex-
isting policies that attain maximum throughput in a similar set-
ting require time [1], [5], [6], [17], [18], our scheduling
algorithm can be implemented time. There-
fore, our approach reduces the scheduling complexity signifi-
cantly, at the cost of 1/3 of the throughput region in the worst
case. On the other hand, existing maximal scheduling based
scheduling policies that require or time [2],
[3], [10], [11], [20], have been shown to attain at most 1/2 of
the maximum throughput region. With respect to this class of
work, therefore, we are able to improve the throughput guar-
antee significantly (from 1/2 to 1/3), with a modest increase in
the computational complexity.

We now briefly review existing policies with provable
throughput guarantees under the primary interference model.
Tassiulas et al. [19], [18] have obtained policies that attain
the maximum throughput region, which can be implemented
in fully distributed manner using gossip based algorithms [6].
Distributed implementation of these policies however require

communication rounds, where each communication
round involve message exchanges by nodes with their neigh-
bors; the time complexity of these policies is therefore .
Lin et al. [11] and Wu et al. [20] have shown that maximal
scheduling is guaranteed to attain at least half of the maximum
throughput region under the primary interference model. It
has also been shown that the above performance guarantee is
tight, i.e., in the worst case some maximal scheduling poli-
cies attain at most half the maximum throughput region even
in simple networks like paths with only three links [2]. An
arbitrary maximal scheduling policy cannot therefore attain a
worst-case performance ratio better than 1/2 even in the special
case of trees. Maximal scheduling can be implemented in a

3The notion of stability Neely et. al.[13] con-
sider requires that ��� ��� � � � where
��� � � ��� �	
 ����� � �� ��� � � � where
� ��� is the queue length at time � for link �. But, this does not guarantee that

� �� ��� � � � can be upper bounded by a quantity that does not
depend on � and thus it does not follow that the expected queue length in a link
� can be upper bounded by a quantity that is independent of � in any slot � .

distributed manner in communication rounds, which
translates to a time complexity of in trees under
primary interference constraints4. Lin et al. [10] proved that a
random access scheme, where links access the medium with a
probability that depends on their and their interferers’ queue
lengths, attains 1/3 of the throughput region while requiring

communication rounds, or computation time in
trees under primary interference constraints. Dimakis et al. [5]
have shown that a greedy maximal weight scheduling attains
the maximum throughput region in certain classes of networks;
Brzezinski et al. [1] have shown the above result for trees. The
number of the communication rounds required by the above
algorithm however depends on the diameter of the network,
and the computation time is therefore in the worst
case. Therefore, our algorithm has a lower computation time
than that in [1], [5], unless the diameter of the network is
sufficiently small. Salonidis et al. [16] designed another policy
that attains the maximum throughput region in trees; the policy
however requires knowledge of the arrival rates in all links and
therefore must be recomputed every time these rates change.
The throughput guarantees obtained in all the above papers,
except those in [2], [3], critically depend on the assumption
that arrival processes are Markovian which we do not assume.
As mentioned before, the throughput guarantees obtained in
[2], [3] do not guarantee that expected queue lengths are finite
which we ensure. Also, our policy attains a better throughput
guarantee as compared to those in [2], [3], [10], and [11], [20],
and lower computation time as compared to those in [5], [6],
[18], and [19].

The paper is organized as follows. We describe the system
model and the terminology in Section II. We present our policy
and performance guarantee for (a) the special case that the net-
work topology is a path in Section III, and (b) the case that
the network topology is a tree in Section IV. We conclude in
Section V.

II. SYSTEM MODEL

We consider the scheduling problem at the medium access
control (MAC) layer of the network. We assume that time is
slotted, and each packet takes exactly one slot for transmission.
Therefore, a link transmission schedule must be computed at the
beginning of every slot, and is used to transmit packets in that
slot.

A wireless network topology can be modeled as a graph
, where and respectively denote the sets of nodes

and links. Each (undirected) link therefore denotes
whether nodes and can hear each other’s signals. The link
set depends on the transmission power levels of nodes and the
local propagation conditions of the wireless channel. We assume

4Several well-known distributed randomized algorithms for computing max-
imal schedules (e.g., [12]) need to exchange in each round at most one control
message in each link. For attaining the above in trees under primary interference
constraints, the nodes need to know their distances from the root which can be
accomplished in a preprocessing step. The nodes with even-valued (odd-valued)
distances are referred to as even (odd) nodes. Next, each round is divided in
� sub-rounds, and the even (odd) nodes communicate the control messages
to their children in the first (last)  sub-rounds. Clearly, the communications in
the same sub-round do not interfere and can therefore be executed simultane-
ously; thus, each sub-round consumes constant time.
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that is a degree-bounded tree with maximum degree-bound .
Without loss of generality, we will assume that is connected;
otherwise, our algorithm can be executed independently in each
of the maximally connected subgraphs of . Let

.
Each link is associated with a unique identifier (id). Let be

the set of links incident on node . Two links are adjacent if and
only if they have a node in common. By this definition, a link is
always adjacent to itself. Let be the set of links adjacent to .
For any path , let denote the set of links that are adjacent
to the first and last link of and are not part of .

Since we consider the primary interference model, two adja-
cent links “interfere” with each other and cannot be scheduled
simultaneously, i.e., any two links and cannot be
scheduled together if or . Thus a valid
schedule in any slot must correspond to a matching or a set of
links none of which are adjacent to each other. Note that the pri-
mary interference model arises when the only transmission con-
straint is due to the single transceiver constraint at every node.

Each session represents a triplet where is the iden-
tifier associated with the session and and are source and
destinations of the session. At the MAC layer, each session tra-
verses only one link, but multiple sessions may traverse a link.
Let denote the set of sessions in the network.

Next we state our assumptions on the packet arrival process.
Let denote the number of packets arriving at session
in interval . We assume that , session
, where is an integer for each , and . Further,

there exists a constant and a vector
such that the empirical average of the arrivals in the system in
slots converges to at a rate faster than . Mathematically,
there exists such that for every , and

(1)

Clearly, is a nonincreasing function of . Note that (1) im-
plies that the empirical average of the packet arrivals converges
in probability to polynomially fast. Also, most commonly used
arrival processes, e.g., bounded-burstiness, periodic, i.i.d., and
Markovian arrival processes with finite state space, satisfy the
above assumption.

Next we introduce a few definitions.
Definition 1: The network is said to be stable if there exists

a finite real number such that for any , ,
.

We consider a virtual-queue associated with link that
contains all packets waiting for transmission for all sessions that
traverse . All packets arriving in a session traversing are routed
to and whenever is scheduled the head of line packet in
is transmitted. Note that the virtual queue in a link
may contain packets of sessions traversing in both directions

and . Let be the queue length at link at the
beginning of slot (after the arrivals but before the transmissions
in ). For simplicity, we assume that for all ;
our results can be generalized for any positive, but finite values
of .

Fig. 1. Sequential maximal path scheduling algorithm.

Let denote the number of packets arriving in virtual
queue , or more simply at link , in interval . Clearly,
there exists integers such that ,
and . Also, there exists an arrival rate vector

such that the empirical average of the arrivals
in each link in slots converges to at a rate faster than .
Mathematically, there exists such that for every ,

and

(2)

Again, is a nonincreasing function of . We refer to as the
arrival rate for link .

Clearly, the network is stable if and only if the expected queue
length at each link remains finite at all time.

Definition 2: The throughput region of a scheduling policy
is the set of arrival rate vectors satisfying (2) for which the
network is stable under the policy.

Definition 3: An arrival rate vector is said to be feasible if
it is in the throughput region of some scheduling policy.

Definition 4: The maximum throughput region is the set
of all feasible arrival rate vectors.

If an arrival rate vector , then (a) and
(b) [9].

Definition 5: A scheduling policy is said to guarantee a
fraction of the maximum throughput region if its throughput
region, , satisfies the following condition: for any ,

.
Loosely speaking, if scheduling policy guarantees a frac-

tion of the maximum throughput region, then its throughput
region is at least fraction of the maximum throughput region.

We seek to prove that the scheduling policies we propose
guarantee 2/3 of the maximum throughput region. We therefore
need to show that for any arrival rate vector such that

(3)
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Fig. 2. Path scheduling example.

is in the throughput region of our policies. We assume (3)
henceforth

Finally, we describe the maximal scheduling policy, which
will be a key constituent in our scheduling policy presented later
in the paper. A maximal scheduling policy schedules a subset
of links such that i) every link in has a packet to transmit, ii)
no link in interferes with any other link in , and iii) if a link

has a packet to transmit, then either or a link adjacent to , is
included in .

III. SCHEDULING POLICY FOR A PATH

In this section, we consider a graph that is a simple path, i.e.,
corresponds to a sequence of links such that the consecutive

links in the sequence are adjacent. In Section III-A, we describe
our scheduling policy, which we call Sequential Maximal Path
Scheduling, and in Section III-B we prove that this policy attains
2/3 of the maximum throughput region.

A. Sequential Maximal Scheduling in Paths

We describe the Sequential Maximal Path Scheduling policy
in Fig. 1.

Next we illustrate the Sequential Maximal Path Scheduling
algorithm using the example shown in Fig. 2. The path graph
shown in the figure consists of ten links whose queue-lengths
are shown. Using our scheduling algorithm, only link 9 will be
scheduled in Phase 1, link 7 will be scheduled in phase 2 and link
5 will be scheduled in phase 3. The terminal step will compute a
maximal schedule amongst the links 1, 2, 3, which can be either
links {1, 3} or only link 2.

We now provide the intuition behind the design.
1) The iterative step of Sequential Maximal Path Scheduling

policy provides higher priority to links whose queue
lengths are higher than that of their adjacent links. This
ensures that that a link can not be congested in isolation.
Specifically, if links in a segment of of length 5 or less
have high queue lengths, then with a high probability, at
least one link that is not in the segment but is adjacent to a
link in the segment has high queue length as well (lemma
2, Section III-B1). Thus, if a link is congested, then with
a high probability all links in a segment of length at least
six are congested (Property 1). The number 6, which
is crucial in the rest of the proof, is attained because of
multiple phases in the iterative step.

2) The terminal step of the policy ensures that the scheduling
is maximal, which in turn guarantees that the probability
that in any slot all links in any segment of consisting
of six links has high queue lengths is small (lemma 3,
Section III-B1). If the above happens, then all these links
must have packets to transmit for several slots until . But,
then, since the scheduling is maximal, at least two links are

scheduled in the segment in each of the above slots. Now,
the sum of the arrival rates in the links in any segment con-
sisting of six links is less than two due to (3). Thus, the
sum of the queue lengths of the links in such a segment
must have been decreasing over all these slots, which im-
plies that all links in the segment can not have large queue
lengths in .

The above (italicized) assertions together imply our main re-
sult in this section, Theorem 1, that the queue length in any link
becomes large only with a small probability.

Theorem 1: Let be a simple path and (3) hold.
1) For each , , where

.
2) For each .
Thus, for any , is in the throughput region

of our scheduling policy. In other words, our policy guarantees
a 2/3 fraction of the maximum throughput region. We prove
Theorem 1 in Section III-B—the proof proceeds as per steps
1) and 2) above.

We now analyze the time complexity of the policy. The iter-
ative step in Sequential Maximal Path Scheduling can be com-
puted in constant number of communication rounds. The ex-
pected number of communication rounds for the terminal step is

if maximal scheduling is computed using a distributed
randomized algorithm like the one proposed in [12]. Since the
graph topology is a path, each communication round takes con-
stant time. This is because the iterative step, and the algorithm
proposed in [12], can be executed by exchanging in each round
at most one control message through each link in the path. For
this purpose, each round can be divided in two sub-rounds, and
the even (odd) numbered nodes in the path can transmit con-
trol messages to the odd (even) numbered nodes in the first
(second) sub-round. Note that the nodes in the path can be num-
bered once at , i.e., during a preprocessing phase. Clearly,
the communications in the same sub-round do not interfere and
can therefore be executed simultaneously. Thus, each sub-round
consumes constant time. Thus, the expected computation time
for Sequential Maximal Path Scheduling is .

We now examine in more detail why the iterative step uses
multiple phases. First, note that if this step did not have any
phase (that is if this step were absent), the policy would be
an ordinary maximal scheduling policy, which attains at most
1/2 the throughput region even for paths of size 3 [2]. Thus,
at least one phase is necessary for improving the throughput
guarantee to 2/3. However, our proofs indicate that only one
phase does not guarantee Property 1 above which is key towards
attaining the 2/3 throughput guarantee. Nevertheless, we do
not have a counterexample to establish that the policy does not
attain the 2/3 throughput guarantee in presence of only one
phase. Also, it would be interesting to examine whether the
throughput guarantee can be improved beyond 2/3 by using a
larger number of phases, especially since the policy can use

phases while still requiring computation
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time. These intriguing questions constitute interesting topics
for future research.

Proof of the 2/3 Throughput Guarantee

We state and prove the supporting lemmas 2 and 3 in
Section III-B1 and prove Theorem 1 in Section III-B2.

1) Supporting Lemmas: We first state and prove lemma 1
which is used for proving lemma 2, and subsequently state and
prove lemmas 2 and 3.

Lemma 1: Consider a path and an arbitrary slot . Let
consist of links , and satisfy the following proper-

ties at .
1) (nonemptyness criterion).
2) If then

(isolation criterion).
Consider the iterative step of the Sequential Maximal Tree
Scheduling. If , at least one link in is scheduled
during the first phase at . If , either is scheduled
during the first phase or two links in are scheduled in the first
two phases at . If , at least two links in are scheduled
during the first two phases at .

Proof: We first show that for any at least one link
in is scheduled during the first phase at . From the isolation
and nonemptyness criteria, at least one link in contends in
the first phase at , and the link with the greatest id among the
contending links in is scheduled. Thus, the first part of the
lemma follows.

Now, let . The second and third parts of the lemma
follows if at least two links in are scheduled in the first phase.
So, let exactly one link in be scheduled in the first phase.

Let be scheduled in the first phase. Thus, are
not scheduled in the first phase and, does not prevent the
contention of any link in the second phase. Consider a path
consisting of links . Now, since have not been
scheduled in the first phase (since , ), from
the isolation and nonemptyness criteria, at least one link in
contends in the second phase. Using arguments similar to those
in the first paragraph, we can show that at least one link in is
scheduled in the second phase. Thus, the second and third part
of the lemma follow.

The proof is similar if instead of , is scheduled in the
first phase. Now, let be scheduled in the first phase where

. Let . Then . Thus, the second part of
the lemma follows. Let . Now, either or .
Wlog, let . Thus, are not scheduled in the
first phase, and does not prevent the contention of any link
in the second phase. Consider a path that consists of links

. Again, since have not been scheduled in the
first phase (since ), from the isolation and nonemptyness
criteria, at least one link in contends in the second phase.
Using arguments similar to those in the first paragraph, we can
show that at least one link in is scheduled in the second phase.
Thus, the third part of the lemma follows.

Note that the last two parts of lemma 1 do not hold if the iter-
ative step of the Sequential Maximal Path Scheduling has only
one phase. For example consider a slot such that

. Clearly, at most one link in ,
is scheduled at the end of the first phase in , irrespective of

whether the nonemptyness and the isolation criteria hold. If
and the nonemptyness criterion holds, then at least two

links will be scheduled by Sequential Path Maximal Scheduling
(since the scheduling is maximal), but these links need not be se-
lected during the iterative step if the iterative step has one phase,
and hence these links may be those with the minimum queue
lengths in .

Lemma 2: Let and be positive integers such that
. Consider a path . Let consist of links ,

where . Consider an event that occurs if and only
if there exists a time such that

1) (lower bound criterion)
2) and (upper

bound criterion), and
3) (boundary condition).

Then .
Proof: Let occur. Since for all , there

exists a slot such that

(4)

(5)

From the lower bound criteria and (5), .
Let be the event that .

From (2), . We will prove that
if occurs, then occurs. Thus, .
The result follows.

From (5) and the lower and upper bound criteria

(6)

(7)

where is the number of packets of link scheduled in
interval . Thus, from (6) and (7)

(8)
First, let . Now, from the boundary condition, (4)

and lemma 1, at least one link in is scheduled in each slot in
. Thus, from (8)

(9)

Thus, clearly occurs for some such that . The
result follows.

Now, let . Then, from the boundary condition, (4)
and lemma 1, at least two links in are scheduled in each slot in

. Thus, from (8),
. From (3), .
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Thus, . Thus,
occurs for some such that . Thus, the lemma holds
for .

Now, let . Thus, consists of .

(10)

Now, from (5) and lower and upper bound criteria,
, , and for

some .
Thus

(11)

Now, from (10) and (11)

(12)

From the boundary condition, (4) and lemma 1, either or
both and are scheduled in each slot in . Thus

(13)

(14)

Note that (14) above follows from (13). Thus, from (12)

Thus, again, occurs for some such that . The
result follows.

Note that lemma 2 does not hold if the iterative step of the
Sequential Maximal Path Scheduling has only one phase, as its
proof uses lemma 1 which does not hold in this case.

Lemma 3: Consider an integer and a path con-
sisting of links such that . Consider
an event that occurs if and only if there exists a slot such
that

Then .
Proof: Consider the last slot before such that

for some . Since
, . Let be the event

that . From (2),
. We will prove that if

occurs, then occurs. Thus, .
The result follows:

(15)

Also,

(16)

Thus

Next, , .
Thus, since the set of links scheduled at each slot constitutes
a maximal scheduling among those that have positive queue
lengths in the slot, (a) at least two links in are scheduled in
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every slot in , if and (b) one link in is
scheduled in every slot in . (For , the above fol-
lows since , and hence ). Thus, if ,

. Thus, if ,

Thus, for some , occurs. The result
follows for . Next, let . Then,

. Thus

Thus, for some , occurs. The result follows
for .

Now, let . Similar to the proof for (15), we can prove
that

(17)

(18)

Again, using similar arguments as before, either or
both and are scheduled in every slot in . Thus,

. Thus

Thus, for some , occurs. The result follows.
Proof For Theorem 1: We just prove the first part of the the-

orem, as the second part is immediate from the first. The re-
sult trivially holds for . Let . Consider the event

that occurs if and only if . Let
occur. Then there exists a slot such that

for all and and for some
; let be one such . Then, .

For , , consider paths consisting
of links with the th link being , provided such a path exists.
For example, such a path does not exist if is the last link of
path , and . For , event is
said to occur if the event described in lemma 2 occurs with

, . Event
is said to occur if exists and the event described in
lemma 3 occurs with . Clearly, when
occurs, occurs for some , . Thus,

is upper bounded by the sum of the probabilities of
the above events. Thus, the result follows from the upper bounds
of the probabilities of these events provided in lemmas 2 and 3.

IV. SEQUENTIAL MAXIMAL SCHEDULING IN TREES

We now describe how a throughput guarantee of 2/3 can be
attained through distributed scheduling in trees. We will first
show that every tree can be decomposed into a collection of
link disjoint paths that constitute a tree of paths of depth at most

(Section IV-B). We refer to this new tree as a path
tree. In our scheduling algorithm, every path in this path tree
executes a queue length based sequential maximal scheduling
policy after waiting for a time interval in which its parent path
in the path tree finishes its scheduling (with high probability)
(Section IV-C). The sequential maximal scheduling policy that
can be used in paths in the tree (Sequential Maximal Tree Sched-
uling) however needs to be slightly different from that when the
entire graph is a path. This is because irrespective of its queue
length, the first link in a path can not be scheduled in a slot in
which the last link of its parent path is scheduled – such slots are
referred to as constrained slots for . Nevertheless, we prove
that the combination attains a 2/3 throughput guarantee as be-
fore (Section IV-E).

A. Preliminaries

We now assume that is a tree with maximum degree .
Next we introduce some terminology and definitions that will

be used in presenting our algorithm and its analysis. Let
, denote subsets of . If is a path,

then and are its terminal links.
If there exist a link and a link such that

and are adjacent, then and are adjacent and ( ) is
adjacent to ( ); if is a terminal link in , then is
terminal-adjacent of .

The following property, which we refer to as the tree-prop-
erty, holds since is a tree. Let elements in be
pair-wise disjoint and pair-wise adjacent, and

. Then all
links in intersect at one node in . Also, at most two links in
any can be adjacent to where .

Let constitute a partition of such that each set
in the partition is a path in , and corresponds to a node in
a tree (with a designated root node) that satisfies the fol-
lowing properties. Consider two nodes and in and the
corresponding sets and in the partition.

P.1 If is a parent (child) of , (a) ( ) is terminal-
adjacent of ( ) and (b) only one link in ( ) is
adjacent to ( ).
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Fig. 3. Path tree construction: (a) the original tree � and (b) the path tree � .

P.2 If and are siblings, then either both and are
terminal-adjacent of each other, or they are not adjacent.
P.3 If is not a parent, child, sibling of , then and
are not adjacent.

To illustrate the above definitions and properties, consider
the example tree network consisting of 11 links as shown in
Fig. 3(a). The tree has been partitioned into six (link-) disjoint
paths, , where , ,

, , , and . For path
H0, 1 and 3 are the terminal links, while for path H3, both 6 and
7 are terminal links. H0 and H3 are not only adjacent, but also
terminal-adjacent of each other; however, H0 is not adjacent to
H5. To illustrate the tree property, consider the paths {H0, H2,
H3} which are pair-wise disjoint and pair-wise adjacent. In this
case . Clearly, all links in intersect at a single
node, . Also note that two links in H0 are adjacent to H2, H3,
while only a single link in H2 (H3) is adjacent to H1, H3 (H1,
H2).

In this example, it can be verified the path tree shown
in Fig. 3(b) satisfies the properties P.1-P.3 stated above. For in-
stance, since H3 is a child of H0 in , consistent with property
P.1, in graph , H3 is terminal adjacent of H0, and only one link
of H3 is adjacent to H0. To illustrate property P.2, consider sib-
lings H1, H2, H3, H4 in graph , and note that H2, H3 are ter-
minal-adjacent of each other, while H1 and H4 are not adjacent
to any of the other sibling paths. Property P.3 ca be illustrate by
considering H0 and H5.

Our algorithm requires a decomposition of the link set into
a tree of paths that satisfy properties P.1-P.3 and have a
depth of . We show next that this can always be done,
and present an algorithm that achieves this in polynomial time.

B. Path Tree Construction

We first introduce some new terminology. The size of a node
in is the number of nodes in the subtree rooted at the node.
The root-component of is itself.

We now describe the construction of the paths corresponding
to nodes in . The path corresponding to the root of , which
we denote as the root-path of , is the path where

is the root of , is the node with the maximum size among the
children of in , and is a leaf of . Once the root-path
has been identified, all nodes in the root-path and the links orig-
inating from these nodes are removed from . Each component
in the residual graph is referred to as the child-component of the
root-component and the root-component is their parent-compo-
nent. Note that a child-component may consist of a single node
or may have multiple nodes and links. The root-path in each
child-component with a single node is considered to be the node
itself (i.e., this path is empty in the sense that it does not have
any links). Once the root-path is identified in such a child-com-
ponent, the child-component is removed from the graph. The
root-path in each child-component with multiple nodes is de-
termined similar to the root-path in , and this in turn leads to
child-components of each child-component. The process termi-
nates when the residual graph has no nodes.

We now describe how the paths obtained as above can be or-
ganized to constitute the path tree . The root-path for the
root-component (i.e., ) corresponds to the root of . Sub-
sequently, we consider the root-paths of the child-components
of . Let be one such root-path. There exists a link be-
tween an end-node of and . Let . Then
in , corresponds to a child of the node corresponding to

. Similarly, other children of the root of are identified by
considering root-paths of other child-components of . Subse-
quently, the paths corresponding to the nodes in the next level
of are identified similarly. Note that at the end of this proce-
dure each identified path has at least one link; thus henceforth
we no longer consider empty paths as in the above paragraph.

From the construction of , it is easy to verify that it satisfies
P.1-P.3.

To illustrate the path tree construction for the graph shown in
Fig. 3(a), note that starting from the root node , the first path
identified (the root path of ) is H0. (Note that ( )
is preferred over ( ), and ( ) is preferred
over ( ).) When this root path is removed, the graph

decomposes into 4 child components – the subgraphs formed
by the node sets and . The
first two components are single node sets, and result in the two
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single-link paths H1 and H2. The third is a two-link single-path
component which results in path H3. The root path in the last
child component is {10, 11} ( ( ) is preferred over
( )), which when appended with link 8 (which connects
this root path with H0, the root path of the parent component),
results in the path H4. Thus H1, H2, H3 and H4 become children
of H0 in the path tree . Removing the root path from the last
child component leaves the single node component , which
results in path H5, a child of H4 in the path tree , as show in
Fig. 3(b). Thus, running our path tree construction algorithm on

shown in Fig. 3(a) results in Fig. 3(b).
Lemma 4: The depth of is at most .

Proof: Each node in corresponds to a path in , and
each such path is the root-path of some component in , say ;
let the counterpart of in be the root-node of . Let the
weight of a node in be the size of its counterpart in . We
will show that for any two nodes in such that is a child
of in the weight of is less than half that of . Thus, if the
depth of is , then, times the weight of a leaf
node in is upper-bounded by the weight of the root node in

. Note that the weight of the root and leaf nodes in are
and 1 respectively. Thus, .

Consider nodes and in such that is a child of in
. We now show that the weight of is less than half that of

in . Let be the path in that corresponds to . Let
and be counterparts of and respectively in . Then (a)
is in the sub-tree of rooted at , (b) is not in , (c) is
the child in of a node in in , (d) is in the sub-tree
of rooted at and has a child in . Clearly, and

are siblings and the size of can not exceed the size of
(otherwise would have traversed instead of ). Since
and are children of , the size of exceeds the sum of sizes
of and . Hence, the size of is less than half the size of
and hence less than half the size of since is in the sub-tree
in rooted at . Thus, the weight of is less than half that of

in .

C. Scheduling Algorithm

Each path represented by the vertices in the path tree graph
, the output of the path tree construction procedure described

above, executes the Sequential Maximal Path Scheduling algo-
rithm after waiting for a time interval that depends on the posi-
tion of the vertex corresponding to the path in . We provide
details of the algorithm below.

Let paths be the output of the path tree construction
algorithm. If is the parent of in then the link in
that is adjacent to is referred to as the first link in ; note
that this is a terminal link in . For example, in Fig. 3, link 6
is the first link of path H3. Due to the tree properties P.1-P.3,
there exists a partition on the children of each in such
that and the corresponding paths in each set in the partition
intersect at a common node in , and the corresponding paths
in different partitions are not adjacent. For the children of H0 in

, {H1}, {H2, H3}, {H4}, represents such a partition. Given
the degree bound, each partition consists of at most nodes in

, and all these nodes are siblings. The nodes in a partition are
numbered in some chosen order. If two siblings are in the
same partition, and has a higher number than , then ( )

is an older (younger) sibling of ( ). Thus, a node in can
have at most older siblings.

Without loss of generality, assume that the s have been
numbered in the sequence in which the corresponding nodes
will be visited in a breadth first traversal of starting from
the root of ; the breadth first traversal visits an older sibling
before a younger sibling. Let be the level (i.e., the distance
from the root) of node in and be the number of its older
siblings. Let be the maximum level of any node in . From
Lemma 4, is . In , for H1, H2, H3 and H4 is 1,
while for H5 is 2. Moreover, if H2 is considered older than
H3 in the partition {H2, H3}, then for H1, H2, H3 and H4 are
0, 0, 1 and 0, respectively.

Recall that maximal scheduling is implemented using a dis-
tributed randomized algorithm like the one proposed in [12].
The algorithm operates in rounds, where each round requires
communication by nodes with their neighbors in the same path
of the path tree. [12], [14](chap. 8). Let be the probability
that the second link in a path with only three links does not se-
lect itself at the end of its first round of the distributed maximal
scheduling algorithm. Given that a link is undecided at the be-
ginning of a round in its maximal scheduling, it is undecided
with a probability of at most at the end of the round. For the
algorithm in [12], it can be easily shown that .

At the beginning of every slot, all links that do not have any
packets to transmit set their status to unscheduled. All other
links set their status to undecided initially. As the scheduling
algorithm progresses, these undecided links change their status
to scheduled or unscheduled. Links in start executing their
scheduling phase after the paths that correspond to ’s pre-
decessors and their older siblings in , and the older siblings
of itself, have completed their scheduling (with high proba-
bility). Note that since a node in can have at most older
siblings, the number of ’s predecessors and their older sib-
lings, plus the older siblings of itself, is upper bounded by

. In our algorithm, links in start executing the Se-
quential Maximal Tree Scheduling routine (Fig. 4) after

time, where represents
an upper bound on the time required to execute the initial and
iterative steps of the Sequential Maximal Tree Scheduling al-
gorithm for a path, and represents an upper bound on the
time required to complete a single round of the distributed max-
imal scheduling algorithm [12], [14](chap. 8). Note that this
implies that a path starts its scheduling after its predecessors
and their older siblings, and the path’s own older siblings, have
completed at least rounds of the max-
imal scheduling algorithm. Thus when a path starts its sched-
uling, its predecessor paths and their older siblings, and its own
older siblings, may not have completed their scheduling process
(recall that maximal scheduling for a path takes ex-
pected time). However, the constant is
chosen such that the probability of maximal scheduling com-
pleting within those many rounds is high enough for our sta-
bility result to hold.

We now point out the similarities and differences between
Sequential Maximal Tree Scheduling and Sequential Maximal
Path Scheduling. Consider an arbitrary path , where

, and is the first link in . A slot is
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Fig. 4. Sequential maximal tree scheduling algorithm for� .

a constrained slot for if the first link of sets its
status to unscheduled in the sequential constraint step, and is
an unconstrained slot otherwise. In an unconstrained slot, since
the start of its scheduling phase, the two scheduling procedures
are identical. The above holds in a constrained slot as well ex-
cept for which becomes unscheduled in Sequential Max-
imal Tree Scheduling irrespective of its queue length. Note that
in an unconstrained slot, the scheduling for is oblivious of
any link not in , and in a constrained slot, the scheduling for

is oblivious of any link not in . Finally,
unlike that for paths, the overall scheduling for trees need not be
maximal. This is because in a slot that is constrained for , it
may turn out that the links that are (a) in the parent and older sib-
lings of , (b) adjacent to the first link in , and (c) were unde-
cided at the time started its scheduling phase, may eventually
not be scheduled in the slot. Nevertheless, in the next section,
we prove that the 2/3 throughput guarantee still holds for trees.
This is attained by (a) exploiting the fact that the constrained
slots for each path occur only at a rate which is upper-bounded
by one minus the packet arrival rate in the first link of , and
(b) using an additional phase in the the iterative step of Sequen-
tial Maximal Tree Scheduling. Thus, the iterative step now uses
three phases, whereas the iterative step of Sequential Maximal
Path Scheduling only uses two phases.

Finally, we evaluate the time required for the schedule com-
putation. First, note that the first link in shares a node
with links in (where is a parent or an older sib-
ling of in ). Therefore, assuming that each end-node of
a link keeps track of its scheduling status, the initial step in
the Sequential Maximal Tree Scheduling algorithm takes con-
stant time. Since the iterative step requires nodes to exchange a

constant number of messages with their neighbors in the cor-
responding path, this implies that , the maximum time re-
quired to execute the initial and iterative steps of the Sequential
Maximal Tree Scheduling algorithm is a constant independent
of and . Furthermore, since a single round of the maximal
schedule computation (terminal step of the Sequential Maximal
Tree Scheduling algorithm) only requires a constant number of
message exchanges by nodes with their neighbors in the corre-
sponding path, is also a constant independent of and . The
path that starts its scheduling process last, starts after waiting for

time, since and are constants
independent of and . Once started, the scheduling process
for a path takes expected time to complete. Thus, since

, and which is , the scheduling for
the entire tree can be computed in

, or , expected time.

D. Discussion

The Sequential Maximal Tree Scheduling Algorithm is fully
distributed, as long as we implement the maximal scheduling
algorithm on each path in a distributed manner (using the algo-
rithm in [12], for example).

Note that in the path construction algorithm, the root path
in any component can be constructed in communication
rounds, where each communication round requires communi-
cation by nodes with their neighbors in the given tree network.
Therefore, utilizing the fact that root path in all child compo-
nents of a root component can be constructed in parallel, the
entire path construction procedure takes communi-
cation rounds, or time. The path tree construction
algorithm should be viewed as a “preprocessing” step, and needs
to be rerun only when the network topology changes. Therefore,
the complexity of the path tree construction does not contribute
to the per-slot complexity of the scheduling algorithm.

As mentioned earlier, in our scheduling algorithm, when a
path starts its scheduling process, it is possible (although with
low probability) that its predecessor and older sibling paths have
not completed their scheduling processes yet. However, note
that the control message exchanges required during the sched-
uling process of any path does not interfere with that of its
predecessor or older sibling paths, assuming primary interfer-
ence constraints on control message exchanges. For example, in
Fig. 3, consider the message exchanges on path H4 after it be-
gins its scheduling process (but before path H5 begins its sched-
uling). At this time, if link 1 (which belongs to the predecessor
path H0) has already decided its scheduling status, then there
is no message exchange across link 1, and therefore no interfer-
ence in the message exchanges on the links in path H4. However,
if link 1 is still undecided, then link 8 sets its status to unsched-
uled and does not subsequently participate in the scheduling
process; control messages are then exchanged only on links 10
and 11, which do not interfere with message exchanges on the
link 1 or any other link on the predecessor or older sibling paths.
When child path H5 (which consists of only link 9) starts its
scheduling process, link 9 will schedule itself only if links 8 and
10 have already set their status to unscheduled; therefore, there
is no interference between control message exchanges on path
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H4 with those on path H5, even after H5 has started its sched-
uling process. This holds true in general, due to the fact that at
any point in time during the scheduling process on any path, the
set of undecided links in the path is node disjoint from all unde-
cided links in other paths that have already begun their schedule
computation process.

Finally, note that the framework we proposed involves de-
composition of trees into paths and scheduling links in each
path using a policy that attains a provable throughput guarantee
(2/3) for paths. It is interesting to observe that this decomposi-
tion based approach retains the same throughput guarantee for
trees as compared to that for paths. In general, if the throughput
guarantee for path graphs can be improved further while using

time, then we can use this framework to obtain the
same guarantees for trees while still requiring an overall com-
putation time of .

Proof of the 2/3 Throughput Guarantee for a Tree

We now state the main result of this section, Theorem 2,
which proves that Sequential Maximal Tree Scheduling policy
attains a 2/3 throughput guarantee when is a tree.

Theorem 2: Let be a tree and (3) hold.
1) For each , ,

where is obtained through the following recursions:

(19)

(20)

(21)

2) For each .
Note that Theorem 2 is similar to Theorem 1; only the con-

stants in the expressions for the probabilities
and the expected queue lengths differ. We now describe the
structure of the proof for Theorem 2 and point out the similari-
ties and differences with the proof for Theorem 1.

Similar to the proof for the special case in which is a path,
we first prove that a link can not be congested in isolation. This
proof has two major steps. Consider a path in . The first
step is to show that if links in a segment of of length 5 or
less have high queue lengths and the segment does not include
the first link of , then with a high probability, at least one link
in that is not in but is adjacent to a link in has high
queue length as well (lemma 6, Section IV-E1). This result is
similar to lemma 2 proved earlier for a path. We next prove that
if is not constrained very often, and the first link in has a
high queue length, then with a high probability the second link
has a high queue length as well; this holds for the second-third,
third-fourth, fourth-fifth and fifth-sixth pairs as well (lemma 8,
Section IV-E1). This result holds only when the iterative step
of the Sequential Tree Maximal Scheduling has three (or more)
phases. The above results together imply that if a path is not
constrained very often and a link in the path has a high queue

length, then with a high probability all links in a segment of
length at least six are congested.

We next prove that if a path is not constrained very often, the
probability that all links in a segment of a path consisting of six
links has high queue lengths is small (lemma 9, Section IV-E1).
This result is similar to lemma 3, but the proofs differ somewhat
since the scheduling for a tree is not always maximal. The proof
for lemma 9 again relies on the fact that the iterative step of the
Sequential Tree Maximal Scheduling has three phases.

We next prove that a path is not constrained very often if the
probability that the queue lengths in the links in its parent and
older siblings is low (lemma 10, Section IV-E1).

Our main result, that the queue length in a link becomes large
only with a small probability (Theorem 2), is now obtained
using the above results and an induction argument. Note that
the root path in is never constrained. Thus, using lemmas 6,
8, 9, and arguments similar to the proof for Theorem 1, the re-
sult follows for the root path. It therefore follows from lemma
10 that the eldest child of the root path is not constrained very
often. Thus the result follows for this as well, and hence follows
for the children and the younger siblings of this eldest path, and
subsequently for all other paths in .

We state and prove the supporting lemmas, lemmas 5 to
10 in Section IV-E1, and using these prove Theorem 2 in
Section IV-E2.

1) Supporting Lemmas: We present a series of lemmas,
lemmas 5 to 10, for an arbitrary path in , where

, and is the first link in . Lemmas
6, 8, 9, 10 are the main lemmas which will be used in proving
Theorem 2. Lemmas 5 and 7 provide intermediate results that
are only used in proving the main lemmas: lemma 5 is used in
proving lemma 6, and lemma 7 is used in proving lemmas 8
and 9.

We first introduce some terminology required in the proofs.
Let be the number of unconstrained slots in
for . Then, is said to satisfy the constraint-lower-
bound if there exists a constant such that

The constraint-lower-bound states that with a high probability
the unconstrained slots in each path occur more frequently than
the arrivals in the first link of the path. In Theorem 2, using
induction, we prove that every path satisfies the constraint-
lower-bound, and subsequently prove the throughput guarantee
using lemmas 6, 8, 9 – the last two of these lemmas hold only
when the constraint-lower-bound holds.

Lemma 5: Consider a path where is a path in
and an arbitrary slot . Let either or

be an unconstrained slot. Let consist of links , and
satisfy the following properties at .

1) (nonemptyness criterion).
2) If then

(isolation criterion).
Consider the iterative step of the Sequential Maximal Tree
Scheduling. If , at least one link in is scheduled
during the first phase at . If , either is scheduled
during the first phase or two links in are scheduled in the first
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two phases at . If , at least two links in are scheduled
during the first two phases at .

The statement and the proof for this lemma is similar to that
for lemma 1 for the special case that is a path. The only differ-
ence is that this lemma holds under additional conditions, that
is, when (a) the slot is unconstrained or (b) the segment does not
contain the first link of the path.

Lemma 6: Let and be positive integers such that
. Consider a path where is a path

in . Let consist of links , where .
Consider an event that occurs if and only if there exists a time

such that:
1) (lower bound criterion);
2) and (upper

bound criterion);
3) (boundary

condition).
Then .

The above lemma is similar to that for lemma 2 for the special
case that is a path. The only difference is that this lemma
applies only for segments that do not contain the first link of the
path. This lemma can be proved using lemma 5 just as lemma 2
has been proved using lemma 1.

The following lemmas, lemmas 7 and 8 do not have counter-
parts in the special case that is a path.

Lemma 7: Consider an arbitrary path .
Consider two adjacent links in , where

. Consider a slot that satisfies:
1) , and 2) if ,

. Then either or is sched-
uled in .

Proof: First, let . In a constrained slot, clearly,
is scheduled at the end of the first phase. In an unconstrained
slot, consider a path consisting of links . Clearly,
satisfies the conditions of lemma 5. The result follows from the
case with in lemma 5.

Now, let . First, let for some such that
. Let . Consider path

consisting of links . Now, consists of
links where . Since , .

Also, satisfies the conditions of lemma 5. Let .
Then, consists of . The result follows from the
case with in lemma 5. Let . Then,
consists of . The result follows from the case
with in lemma 5. Let . Then, consists
of . From lemma 5 with ,
at least two links in are scheduled at the
end of the first two phases. Since and can not be
scheduled simultaneously, one of the scheduled links must be

or . The result follows.
Now, let for all , . In a constrained

slot, consider a path consisting of links .
Now, consists of links where . Also, .
The result follows using the same arguments as in the previous
paragraph.Consideranunconstrainedslotandapath consisting
of links . Let . Now, consists
of links where . Again, satisfies the

conditions of lemma 5. The result follows using the same
arguments as in the previous paragraph. Finally, let .
Now, consists of five links: . Let neither
nor be scheduled at the end of the second phase. From
lemma 5 for , at least two links in are scheduled
at the end of the second phase. Thus, and must be
scheduled at the end of the second phase. Thus, does
not contend in the third phase, contends in the third
phase, and (if ) does not contend in the third
phase (since ). Thus, is scheduled
in the third phase. The result follows.

Lemma 7 does not hold if the iterative step of the Se-
quential Maximal Tree Scheduling has two or fewer phases.
Consider a path in with six links . Let

. Thus, satisfy the conditions of
the lemma. Let not be constrained in slot . Only and

are scheduled at the end of the first two phases of the
iterative step. If the iterative step has only two phases, then

and subsequently contend using maximal scheduling,
and let lose this contention. Thus, neither nor are
scheduled.

Lemma 8: Consider an arbitrary path , where
Let satisfy the constraint-lower-bound. Let

and be positive integers such that . Consider a link
in , , and an event that occurs if and only if

there exists a slot such that:
1) ;
2) for each ;
3) if , .

Then .
Lemma 8 does not hold when the iterative step has one or

two phases, as its proof uses lemma 7 which does not hold in
this case.

Proof: Let occur. Then there exists a slot
such that and for all

, and either (case (a)) or
for all (case (b)). Also, .

First, let . In both cases (a) and (b), is scheduled in
eachunconstrainedslot in .Thus, .
Now, . Thus,

. This implies that
either or

. From (2), the probability of the first event
is at most . From the constraint-lower-bound,
the probability of the second event is at most .
Thus, . The lemma follows
for since .

Now, let . Thus, there exists a slot such
that and for all

. Clearly, . Let be the event
that for all .

Let occur. In both cases (a) and (b), is sched-
uled in each slot in . Thus, .
Now, .
Thus, . From (2) and
(3), . Thus,

.

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 11, 2008 at 10:29 from IEEE Xplore.  Restrictions apply.



2304 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 53, NO. 10, NOVEMBER 2008

Now, let occur. Thus, for some
; let be one such . Now, ,

, (since ). Thus

(22)

From the definition of , there also exists a slot
such that for all and

and .
Clearly, . Since , and

, in both cases (a) and (b), from lemma 7,
either or is served in each slot in . Thus,

. Now

(23)

(24)

(25)

Note that (24) above follows from (22) and the fact
.

Thus, either , or
. From (2), the prob-

ability of each event is less than , which is
upper bounded by . Thus,

.
Since , for ,

. The result follows.
Lemma 9: Let be a path in that satisfies the con-

straint-lower-bound. Consider an integer and a path
consisting of links such that

. Consider an event that occurs if and only if there
exists a slot such that

Then .
Lemma 9 is similar to lemma 3 for the special case that

is a path. The only difference is that this lemma holds under
additional conditions, that is, when the path satisfies the con-
straint-lower-bound. The proofs differ when .

Proof: When , in every slot in which every link in
has a packet to transmit, at least two links in are scheduled for
service. This clearly holds when either the slot is unconstrained
or . If consists of and the slot is constrained,
at least two links are scheduled among . Using the
above, the proof in this case follows using the same arguments
as in the proof for lemma 3 in the case that .

Now, let . Then . Thus, .

Let . Thus, for all .
Thus

(26)

Also, there exists a slot such that
for all and ,
and . Clearly,

. From lemma 7, either
or is served in each slot in . Thus,

. Now

(27)

(28)

(29)

Note that (28) above follows from (26) and from the fact
.

Thus, either ,
or . From (2),
the probability of each event is less than ,
which is upper bounded by . Thus,

.
Let . Thus, and consist of only one link .

Thus, . Thus, there exists a slot such
that for all , and . Again,

. Clearly, is scheduled in each un-
constrained slot in . Thus, .
Now, . Thus,

(since
). This implies that either

or . From (2), the proba-
bility of the first event is at most . From the
constraint-lower-bound, the probability of the second event is
at most . Thus, .
The lemma follows for since .

Consider an arbitrary path and the
corresponding node in . Let

.
Lemma 10: Consider an arbitrary path . Let for

each , . Then
satisfies the constraint-lower-bound with

, where is a con-
stant whose value depends on .

Lemma 10 does not have a counterpart for the special case
that is a path.

Proof: Consider . For each , let
be the number of slots in in which link in

is undecided just before the start of the scheduling
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phase of . Let . Each link in
executes maximal scheduling for at least rounds

before starts its scheduling phase, and it is undecided at the
end of rounds with a probability of at most , which is
less than . Thus, is stochastically lesser than
the sum of independent Bernoulli random variables each
of which is 1 w.p. and 0 otherwise. Thus, from Bern-
stein’s inequality [8, p.32]

(30)

where, is a constant whose value depends on .
Clearly

Let . Then

(31)

The last inequality follows from (3) since all links in
intersect at the same node in

Now, . Thus, from (31), and
since

Thus, either or
or for some
. From assumption, the probability that

is at most if
and . The result follows from (2) and (30).

2) Main Result: Theorem 2 is proved using an induction ar-
gument, and the proof for the base case is similar to the proof
for Theorem 1.

Proof: We first prove the first part of the theorem. We will
prove that for any , for all

(32)

where is defined through the recursions in the statement
of the theorem. The result follows since increases with in-
crease in and and for all .

We prove using induction on the level of , and the number
of older siblings of .

First consider . Since for all
, (32) trivially holds for

. Let .
Now, is the root of and hence does not have any sibling.
Thus, . Thus, every slot is an unconstrained slot for

. Hence, from (3), satisfies the constraint-lower-bound
with . Consider the event that occurs
if and only if . Let occur. Then
there exists a slot such that for all

and and for some ;
let be one such . Then, .
For , if , event is said to occur
if the event described in lemma 8 occurs with
and . If , for ,

, consider paths consisting of links
with the th link being . If .
For , event is said to occur if
the event described in lemma 6 occurs with ,

. Event is said to occur if
the event described in lemma 9 occurs with .

Clearly, when occurs, or occurs for some
, . Thus,

is upper bounded by the sum of the probabilities of the events
, for . Thus

(32) follows from the upper bounds of the probabilities of these
events provided in lemmas 6, 8, 9.

We now consider the induction case. Now, let (32) hold for
all such that . We will prove the hypothesis for such
that . The proof is the same as that for the base case
once we can show that satisfies the constraint-lower-bound
with . First consider such that
and . Thus, does not have an older sibling in . Since
’s parent’s level is , ’s parent satisfies (32). Now, lemma 10

shows that satisfies the constraint-lower-bound with
. Now, using the same proof as that for the base case,

we can show that (32) holds for . Now, let (32) hold for all
such that and . Let and

. Now, ’s parent and older siblings satisfy (32). Again,
lemma 10 shows that satisfies the constraint-lower-bound
with . Thus, as before, (32) holds for .

Thus, the first part of the theorem holds. The second part is
immediate from the first.

V. CONCLUSION

In this paper, we provide a policy that attains queue-length
stability under mild assumptions on the arrival process. This
policy approximates the maximum throughput region within a
factor of 2/3 in tree topologies under primary interference con-
straints, can be implemented in a fully distributed manner, and
requires computation time. The computation
time of our policy is comparable (within a factor) to that
of existing maximal scheduling based policies that can only at-
tain up to 1/2 of the maximum throughput region. It would be in-
teresting to investigate whether, without significantly increasing
the computation time, the approximation ratio can be improved
and the results can be extended for cyclic graphs and other inter-
ference models for the same class of polynomially convergent
arrival processes. In a companion paper, we show that when the
arrival process is i.i.d., the stability region can be approximated
arbitrary closely for a large class of networks and interference
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models with a computation time that depends only on the ap-
proximation factor and the maximum node degree in the net-
work [15]. The results in the two papers complement each other.
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