Relativized Mutation Domains in the Celtic Languages

Elizabeth Pyatt
Relativized Mutation Domains in the Celtic Languages
Relativized Mutation Domains in the Celtic Languages

Elizabeth J. Pyatt

1 Introduction

Most linguists assume that two conditions must be met in order for a mutation to be triggered. One is that the mutation target and trigger must be string adjacent (Zwicky 1984) and that some locality condition must be satisfied (Zwicky 1984, Harlow 1989, Hannahs 1996). In this paper, I propose a Mutation Blocking Condition which states that mutation only occurs if both the target and the trigger are both in the prosodic domain one size larger than the trigger. As the prosodic size of the trigger increases, the mutation domain will similarly increase. Section 2 of this paper will look at some general facts of mutation followed by the blocking data and analysis in Section 3 and ending with a short discussion of theoretical implications in Section 4. Data is taken from Welsh, Irish, Breton and Old Irish.

2 Target Adjacency

Mutations are a class of phonological rules on targets triggered by morphosyntactic features of neighboring morphemes. In the Celtic languages, mutation triggers change voicing, continuancy or nasality of word-initial consonants in targets. An important property of mutations is that, in most cases, the target and trigger must be string adjacent (1-2)²,³

(1) Welsh Mutation Target Adjacency

 a. *ci /ki/ 'dog'
 b. *ei gi /i gi/ 'his dog' {L}
 c. *tri chi /tri xi/ 'three dogs' {S}
 d. *ei dri chi /i dri xi/ 'his three dogs' {L,S}

¹ Portions of the material were presented in my 1997 dissertation. I would like to thank Andrea Calabrese, Morris Halle, Sam Epstein, and the Penn State Phonology Circle and the audience of the Penn Linguistics Colloquium for their thoughtful comments and assistance. All errors are my own.

² This condition is not strict. There do appear to be cases in Modern Irish where a single mutation appears to "propagate" after a Lenition trigger (Ó Siadhail 1989).

³ The symbols {L}, {S}, {N}, {H} are used to represent the mutations Lenition, Spirant Mutation, Nasal Mutation and /h/ Insertion. In the Irish transcriptions, /C/ represents a palatalized consonant.

(2) Irish Mutation Target Adjacency (Christian Bros. 1990)

a. *inion* /ɪnˈiːn/ 'daughter'

b. *a n-inion* /ˈnɪnˈiːn/ 'their daughter' {N}

c. *cúigiú hínion* /ˈkʊɡˈiːn ˈiːn/ 'fifth daughter' {H}

d. *a gcúigiú hínion* /ˈɡkʊɡˈiːn ˈiːn/ 'their fifth daughter' {N,H}

As can be seen in (1), the Welsh genitive clitic *ei* 'his' triggers Lenition on the following noun *ci* 'dog' (1a) which becomes *gi*. In (1b) *tri* 'three.masc' triggers Spirant Mutations causing *ci* 'dog' to become *chi* /ʃi/. When all three words come together in (1c), *ei* 'his' Lenites the following word *tri* 'three.masc' to *dri* while *tri* itself triggers the Spirant mutation on *ci* 'dog'. Similarly, in (2c), when *a* 'their' + *cúigiú* 'fifth' + *inion* 'daughter' are together, *a* Nasalizes *cúigiú* which surfaces as *gcúigiú* /ɡkʊɡˈiːn/ and *cúigiú* in turn triggers /h/ Insertion on *inion* 'daughter'.

While Target Adjacency must be satisfied in order for mutation to occur, it is not the only condition necessary. As the next section shows, if a mutation trigger and target are in two different "mutation domains", mutation will be blocked even if they are string adjacent.

3 Mutation Blocked

3.1 Welsh Post Subject Lenition

In Welsh, the first word after subject NP is usually Lenited. Targets of this rule include indefinite nouns (3a), numbers (3b), non-finite verbs (3c) and other word classes.

(3) Welsh Post Subject NP Lenition

 saw G. {L}-cat
 'Gwen saw a cat.'

b. *Gwelodd Gwen* /ɡᵻlˈoːd/ *dair* (=tair) *cath.*
 saw G. {L}-3.fem cat (fem)
 'Gwen saw three cats.'

c. *Gall Gwen* /ɡɔlˈɡaːl/ *weld* (=gweld) *cath.*
 Can G. {L}-see cat
 'Gwen can see a cat.'

This is also known as the "Direct Object" mutation, but Harlow (1989), Ball and Müller (1992), Borsley and Tallerman (1996) and Borsley (1997) argue that the generalization is the post-subject position. When direct objects are fronted or do not immediately follow the subject, they do not Lenite.
But when the first word after the subject DP is in a different clause, the Lenition is blocked (4). Here the expectation is that pwy ‘who’ should Lenite to bwy because it is after the subject DP Gwen, yet mutation is blocked.

(4) Post Subject NP Lenition Blocked in Clauses

Gofynnodd Gwen [cp pwy (*bwy) a welodd gath.]
asked G who Aff {L}-saw {L}-cat
‘Gwen asked who saw a cat.’

To account for the facts in (3-4), Harlow (1989) proposed that mutations were restricted to clause boundaries. But as Ball and Müller (1992) noted, if the mutation trigger is a ‘and’, then mutation, the Spirant mutation, in this case, can cross a clause boundary (5a) and in Irish, a preposition can mutate the first word of a clausal complement (5b).

(5) Mutation Crossing Clause Boundaries

a. Gofynydd Gwen hynny a [cp phwy (=pwy) a welodd gath ddu.]
asked G that & {S}-who [+Wh] saw cat black
‘Gwen asked that and who saw a black cat.’

b. ag argóint faoi [cp chéard (=céard) a ba ...
Pr argue under {L}what be
‘arguing about what is...’

To account for the distinction between the clause blocking a mutation in (4), but not in (5), Hannahs (1996) proposed that the mutation domain was not the clause but its prosodic equivalent—the intonational phrase (Nespor and Vogel 1986).

For the Welsh sentences in (4), Hannahs proposes that the post-subject constituents in (4a-c) are in the same intonational phrase (1) as the trigger subject NP (6a-c), but that in (5), the CP constituent is in a different intonational phrase which causes the mutation to be blocked (6c). Following the algorithm of Selkirk (1986) and Chen (1985), I assume that prosodic domains are initially mapped onto syntax by aligning prosodic boundaries with left or right brackets of key syntactic boundaries. In this case, the bracket of the intonational phrase would be aligned with left CP bracket (6c).

(6) Welsh Intonational Phrase Boundaries

a. [, Gwelodd Gwen gath (=cath).]
saw G. {L}-cat
‘Gwen saw a cat.’
b. \[\text{Gwelodd Gwen dair (=tair) cath.} \]
 saw G. \{L\}-3.fem cat (fem)
 ‘Gwen saw three cats.’

c. \[\text{Gall Gwen weld (=gweld) cath.} \]
 Can G. \{L\}-see cat
 ‘Gwen can see a cat.’

d. \[\text{Gofynnodd Gwen } [\text{w} \text{-CP } pwy (*bwy) \text{ a welodd gath.}] \]
 asked G who Aff \{L\}-saw \{L\}-cat
 ‘Gwen asked who saw a cat.’

In (5a) however, the conjunction a ‘and’ and the following clause are in the same intonational boundary, so mutation is not blocked (7). More specifically, a ‘and’ is a light word or prosodic clitic (K) and must be incorporated into a clitic group (K) along with the larger maximal word (ω), pwy ‘who’. 5

(7) Prosodic Boundaries of a phwy
\[\text{Gofynnodd Gwen hynny } [\text{K a phwy } \text{ a welodd gath.}] \]
 asked G that & \{S\}-who Aff \{L\}-saw \{L\}-cat
 ‘Gwen asked that and who saw a cat.’

Following McHugh (1990), I assume that prosodic domains are built “bottom-up” so that smaller units such as clitic groups are constructed first and incorporated into larger prosodic units. Therefore, even though a left CP bracket between the conjunction a ‘and’ and the following Who-word pwy, because they already form a clitic group, the entire constituent will fall within the same intonational phrase and a will mutate pwy into phwy.

Despite the appeal of this analysis, it unfortunately cannot account for all blocking data in the Celtic data. As will be seen in the following sections, blocking can occur even when both constituents are within the same clause or intonational phrases. To account for these facts I will propose a modification to Hannahs’ analysis such that the prosodic boundary which can block mutation is determined by the prosodic size of the trigger.

\[\text{In this paper, I will use K for clitic group (or “maximal word”) instead of the more usual “C” in order to distinguish it from CP. The symbol K will be used for prosodic clitics, also known as “light words.”} \]
3.2 Breton Heavy NPs

Another case of mutations being blocked by prosodic boundaries can be found in Breton. As can be seen in (8a-b), the Breton preposition war 'on' triggers Lenition on the following noun. However in (8c), when the noun moriöüt 'seas' is part of the heavy NP moriöüt at c'hreisteiz 'seas of the south', mutation is blocked. Most interestingly, in (8d) Lenition on the heavy NP toenn an ti 'roof of the house' is optionally blocked. In some cases Lenition occurs, and in others it does not.

(8) Breton Heavy NPs (Press 1986)
 a. war vor (=mor) b. war doenn (=toenn)
 on {L}-sea 'at sea' on {L}-roof 'on a roof'
 c. war moriöüt ar c'hreisteiz (expect war moriöüt)
 on seas the South 'on Southern seas.'
 d. war toenn an ti OR e. war doenn an ti
 on roof the house on {L}-roof the house
 'on the roof of the house' 'on the roof of the house'

The fact that blocking can be triggered by Heavy NPs again suggests a prosodic solution. However, the blocking boundary appears not to be the intonational phrase, but the phonological phrase (ϕ). When the preposition war 'on' is in the same phonological phrase as the following word (8a-b), Lenition occurs as expected. However in Breton, as in many other languages, it appears that Heavy NPs can form their own phonological phrases even within a PP, and in those cases, this forms a barrier to mutation (9).

(9) Differences in Phrasal Constituencies
 a. [ϕ war dönn]
 b. [ϕ [ϕ [κ war dönn] [κ an ti]]]
 c. [ϕ [ϕ [κ war]] [ϕ [κ tönn] [κ an ti]]]

This Breton preposition war 'on' is a full CVC syllable, so may in fact form its own maximal word or clitic group K⁶. Normally the preposition war is typically grouped with the following noun in the same phonological phrase, so Lenition surfaces as expected (9a,b). However, when a Heavy NP

⁶ For other mono-moraic prepositions and particles in Breton and other Celtic languages, the evidence shows that they likely only of the prosodic clitics (κ).
follows, such as the noun modified with a genitive construction (8c,d), the prosody of Breton can bracket the NP in its own phonological phrase, leaving war 'on' in its own phonological phrase (9c). Since war is in a different phonological phrase in those instances, mutation is blocked. Interestingly, it appears that even with a Heavy NP, Breton can bracket war in the same phonological phrase, thus permitting Lenition to surface (8e).

The question is why does the ϕ boundary block mutation for Breton prepositional mutation, but not in Welsh post Subject Lenition? Further, if the ϕ boundary does not block post Subject NP Lenition, why does the τ boundary do so? The answer, I propose, is due to the prosodic size of the mutation trigger.

3.3 Mutation Blocking Condition

Both the Welsh and Breton mutation blocking appear to be connected to prosodic boundaries, yet the boundary is different in both languages. The blocking domain is the intonational phrase for Welsh Post Subject NP Lenition, but the phonological phrase for Breton war 'on' Lenition. The difference between these two mutations is the prosodic size of the trigger.

In the Welsh case, the trigger is the subject NP which would be the size of a phonological phrase (ϕ). In Breton the trigger is the preposition war 'on' which is the size of a maximal word or prosodic clitic group (K). In both cases, the domain that both the target and the trigger needed to be in corresponds to the prosodic domain one size larger than the trigger (10). The Prosodic Domain Hierarchy I am assuming is listed in (11).

(10) Mutation Blocking Condition

For a trigger of a prosodic constituent size n, mutation will be blocked unless both the target and the trigger are within the same $n+1$ prosodic constituent.

(11) Prosodic Hierarchy (Nespor & Vogels 1986)

- τ = Intonational Phrase (correlates with clause)
- ϕ = Phonological Phrase (correlates with lexical XP)
- K = Clitic Group/Maximal Word (lexical word + function words)
- ω = Phonological Word (lexical word)
- κ = Phonological Clitic (light prosodic function words, clitics)

For Welsh Post Subject NP Lenition, because the trigger is the size of a phonological phrase (ϕ), the domain will be one size larger, or the intona-
tional phrase. For Breton war ‘on’, prosodic size of a K, the domain is one size larger or the phonological phrase. Another case of a K, or maximal word mutation, trigger being confined to the phonological phrase can also be found in Modern Irish Feminine Singular mutation (12).

(12) Irish Feminine Singular Mutation

a. Tá [NP=φ an bhróg (=bróg) mhór (=mór)] anseo.
 Is the.f {L}-shoe.f {L}-big here
 ‘The big shoe is here.’

b. maidin fhomhair (=fomair) (Christian Brothers 1990)
 morning.f {L}-autumn.gen ‘an autumn morning’

c. Tá [NP=φ an bhróg (=bróg)] mór (*mhór)
 Is the.f {L}-shoe.f big
 ‘The shoe is big.’

In the Irish Feminine Singular Lenition, words which follow a feminine singular noun, both adjectives (12) and genitive singular nouns (12b), are Lenited. But if the following adjective is not in the same NP as in (12c), mutation is blocked. Since the trigger is again the maximal word (K), the prediction is that the domain would be one size larger, or the phonological phrase, the prosodic correlate of an XP. Thus the fact that mutation is blocked when the following adjective is not in the same NP as the feminine singular noun is consistent with this analysis.

Just like Breton, Irish appears to show Heavy XP effects. When a following adjective is preceded by an adverb such as measartha ‘moderately’ mutation is again blocked on the following adverb (13).

(13) Blocking with Heavy AP

bróg [AP=φ measartha (*mheasartha) mór]
shoe.f moderately big
‘a moderately big shoe.’

The Mutation Blocking Condition above also predicts that if a mutation trigger is the size of a prosodic clitic (κ), the mutation will be confined to the clitic group. Example of blocking outside the clitic group can be found in Old Irish (14).

7 One unusual feature of Irish Lenition is that it can “propagate” to following words, even across conjunctions, from the original trigger (O’ Siadhail 1989). However, the condition that the target and trigger are in the same XP still stands.
(14) Old Irish Object Enclitics

a. *Ithid an muc in dercain anúnas*
 eats the pig the acorn from above
 'The pig eats the acorn from above.'

b. *Ní ith in dercain anúnas*
 Neg eats the acorn from above
 'It eats the acorn from above.'

c. *ni-s-níth anúnas*
 Neg-3sf-{N} eats from above
 'It doesn't eat it (f.) from above.'

d. *Iti-us anúnas (*n-anúnas)*
 Eat-3sf from above (*{N} from above).
 'It eats it from above.' (Milan gloss 102a15)

Old Irish is a VSO language much like Modern Irish and Modern Welsh (14a) but also pro drop (14b). Further, pronominal direct objects are realized as “Wackernagel” second-position enclitics, that is hosted onto C^o^ (Carnie, Harley and Pyatt 2000). These enclitics normally trigger mutations on the following conjugated verb (14c). However, if there is no overt complementizer, the verb raises to C^o^ and hosts the direct object pronoun. However, mutation between an object enclitic on an inflected verb and a following word is always blocked (Thurneysen 1981) (14d).

To account for the blocking facts, I assume that the object enclitics are of size \(\kappa \), meaning that the mutation domain is the prosodic clitic group \(K \), that is the inflected verb plus the associated clitics. As diagrammed in (13a), the object clitic \(-s\) ‘her’ triggers Nasal mutation on the following inflected verb *ith ‘eats’ because both the target and trigger are within the same clitic group. Based on the structure in (13b) though, Nasal mutation from \(-s\ ‘her’\) is blocked because the target *anúnas ‘from above’ is in a different clitic group than \(-(u)s\).\(^8\)

\(^8\) In the same vein, you would expect that mutation triggers smaller than a clitic group, that is morphemes, would be confined to a prosodic \(\omega \). Indeed, there are affixes which trigger mutation, but because morpheme order is generally more rigid than word order, I have yet to discover cases of blocking in affix triggers where the target is in a different \(\omega \).
(13) Old Irish Clitic Group Constituencies

a. \[[\text{K} \text{ ni} -s \text{ n-ith}] \quad \text{Neg-3sf-eats} \quad [\text{K} \text{ anúnas}] \quad \text{from above} \]

b. \[[\text{K} \text{ iti-us}] \quad \text{eat-3sf} \quad [\text{K} \text{ anúnas / *n-anúnas}] \quad \text{from above} \]

Taking data from four Celtic language it appears possible to generalize mutation blocking to a Mutation Blocking Condition (14) which specifies that both the target and the trigger must be in the same prosodic domain corresponding to one size larger than the prosodic size of the trigger. Such a generalization would explain why the domain appears to expand to the clause in Welsh but shrink to XPs in Irish and Breton. Other facts this analysis explains is why some mutations are blocked by boundaries which other mutations can cross such as Welsh Post-Subject Lenition versus Spirant mutation after a ‘and’. When Mutation Blocking is made dependant on the size of the trigger and hence different prosodic domains, variations in blocking patterns will occur. However this prosodic analysis of mutation blocking does raise interesting theoretical issues on the nature on the syntax-phonology interface, some of which will be addressed in the next section.

4 Theoretical Implications

4.1 Theoretical Assumptions

For this discussion I will assume that mutations are essentially a phonological process, although triggered by mutation diacritics, not floating features or segments (14).⁹

(14) Welsh Nasal Mutation Phonological Readjustment

\[M = \text{morpheme, } [\{N\}] \text{ Lenition diacritic morphological feature} \]
\[[-\text{sonorant, -cont]} \rightarrow [+\text{nasal}] \quad M [\#_1] \quad [\{N\}] \]

Since such a wide variety of morphemes can trigger Nasal mutation in Welsh, a mutation diacritic feature \([\{N\}]\) is used as a way to unify the mutation environments in one phonological rule. However, following the Distributed Morphology (Halle and Marantz 1993) analysis of Pyatt (1997), I assume that a number of morphological readjustment rules assign diacritics to

⁹ For more complicated mutation sound changes, I follow Pyatt (1997) and assume that these are formulated as a set of ordered rules.
morpheme classes bearing specified features. One of these assigns an [{L}] diacritic to Irish nouns and adjectives which are feminine singular and non-genitive (15).

(15) Irish Feminine Singular Morphological Readjustment Rule
\[[\cdot] \rightarrow [{\{L\}}] / [+\text{feminine}, -\text{plural}, -\text{genitive}] \]

These morphological readjustment rules not only simplify lexical representation, but capture the notion that mutation can sometimes be connected to agreement.

4.2 Deriving the Mutation Blocking Condition

One issue to address is whether it is plausible for a mutation rule to refer to prosodic constituents instead of syntactic constituents. Although mutations are triggered by morpho-syntactic features, it is necessary for the phonological readjustment rules to access prosodic information in order to determine the target consonant which undergoes. Any model of Celtic mutation must assume that the stage of grammar where mutation occurs must have visible word boundaries and prosodic in order to determine which word is the target and which segment is word initial. Since some non-Celtic mutations such as in Fula (Lieber 1984) affect segments which are not word-initial, this is not a trivial operation. Therefore, it is not unreasonable to assume that prosodic domains might be visible at this stage.

Assuming that the Mutation Blocking Condition exists, is it possible to derive any of its properties? The short answer is that the Mutation Blocking Condition specifies the smallest possible prosodic domain relative to the trigger in which mutation can be visible. If the Mutation Blocking Condition restricted mutations to the same prosodic unit as the trigger or smaller, no mutation would ever be visible because the boundary of the trigger itself would block all mutations (16).

(16) Smaller Mutation Domain

a. \[[K \ ni \ -s \ n-i\text{th}] \quad [K \ an\text{únas}] \]
Neg-3sf-{N}eats from above

b. \[[K \ iti-us] \quad [K \ an\text{únas} / *n-an\text{ú nas}] \]
eat-3sf from above

c. \[*[K \ ni] \quad [K -s \ i\text{th}] \quad [K \ an\text{únas} (K \ blocks)] \]
Neg -3sf- eats from above
While the minimal end of the Mutation Blocking Condition can be derived, it is not as easy to derive the maximal end. One possibility could be to appeal to Optimality Theory and ranked constraints (17).

(17) Ranked Constraints

MUTATE – The mutated form surfaces when the target is in the appropriate morpho-syntactic environment with respect to the trigger.

MINDOM – “Minimize Mutation Domain”. Block mutation if a prosodic boundary of a level higher than trigger intervenes between the target and trigger.

FAITH – Input matches output

<table>
<thead>
<tr>
<th>MINDOM >> MUTATE >> FAITH</th>
</tr>
</thead>
<tbody>
<tr>
<td>war 'on' + toenn 'roof' + an ti 'house'</td>
</tr>
<tr>
<td>* [₄ war [₄ toenn an ti]]</td>
</tr>
<tr>
<td>...[₄ war doen an ti]]</td>
</tr>
</tbody>
</table>

The above tableau presents three ranked constraints – **MINIMIZE DOMAIN** (MINDOM) which is ranked higher than **MUTATE** which is ranked higher than the **FAITHFULNESS** family of constraints. The **MUTATE** constraint specifies that if there is a target and mutation trigger are string adjacent, then the target surfaces in its mutated form. **MUTATE** must outrank **FAITH** in most cases in order for the mutated allomorph to surface. If **FAITH** outranked **MUTATE**, then the mutated allomorph would not surface.

The **MINDOM** constraint specifies that mutation is blocked when a prosodic domain boundary for any constituent larger than the trigger comes between the target and trigger. Because **MINDOM** is ranked above **MUTATE**, mutation blocking occurs in the environment of the Mutation Blocking Condition.

Although the above Optimality Theoretic account generally makes the correct empirical predictions, it is still somewhat of an arbitrary formulation. Other than the fact that mutation is blocked, there is no additional justification for the **MINDOM** constraint. A grammar could just as easily be constructed in which mutation blocking never occurs. Further, there is no readily apparent explanation as to why **MINDOM** appears to dominate **MUTATE** in all the Celtic languages.

Another explanation for this constraint assumes a more cyclic approach. Recall from the discussion of Welsh *a* ‘and’ Spirant Mutation, that a bottom-
up approach (McHugh 1990) was assumed to account for the fact that a
'and who' was grouped into the same clitic group and hence the same
intonational phrase even though there was an intervening CP boundary (18).

(18) Prosodic Boundaries of anpwhy = Example (7)
[. Gofynnodd Gwen hynny] [, [K a phwy] a welodd gath]
asked G that & \{ S\}-who \{ +Wh \} \{ L\}-saw \{ L\}-cat
‘Gwen asked that and who saw a cat.’

Perhaps mutations are also evaluated in a bottom-up approach with only
the next-larger domain being visible. In this scenario, as the grammar con­
structs or evaluated a prosodic domain n, it may scan the string to see if any
mutation triggers of size n-1 are contained within the domain and if there are
any target segments in the string. Once domain construction begins at level
n+1, only triggers of size n are scanned for mutation diacritics; smaller units
are ignored (19).

(19) Cyclic Mutation Evaluation
a. Gwelodd [cath a chi (=ci)_{NP}] ddraig (=draig)
saw cat & \{ S\}-dog dragon
‘A cat and a dog saw a dragon.’

b. [K a ci]
[\{ S\}] (Evaluating a K)

c. [, Gwelodd] [f cath a chi] [f draig] \{ L\} (Evaluating an t)
[\{ L\}]

This mechanism is similar to the Epstein (1999) proposal that c­
command relations can be derived from a bottom-up construction of syntac­
tic constituents. Whether psycholinguistic evidence can be found to support
this theory still remains to be seen.

4.3 Mutation Blocking and Rebracketing

One interesting issue still to be explored are cases when prosodic boundaries
are such that mutations are not blocked even when larger prosodic bounda­
rices are crossed. For instance, the Welsh definite article y(r) Lenites feminine
singular nouns and is usually grouped into the same clitic group as the nouns
(20a). However, if the word preceding the definite article ends with a vowel,
then the article is elided to the previous word, thus belonging to a different
clitic group than the noun (20b). Unexpectedly though mutation is not blocked.

(20) Welsh Feminine Singular Lenition
 a. [k y ferch (=merch)]
 b. [K Mae ’r] [ferch (*merch)] [yma] ‘the girl’
 Is’the {L}-girl here ‘The girl is here.’

Similarly, Seidl (1998) reports that Mende phonological phrases can differ from the domain of the Mende mutation rule. To account for the Mende facts Seidl (2000) proposes a derivational model in which prosodic domains can be rebracketed after certain processes such as mutation have occurred. This would be consistent with Pyatt (1997) and Awberry’s (1976) analysis that mutation occurs in the very first phonological component.

An alternate proposal could be to abandon a prosodic account in favor of a syntactic approach. The objection to that would be that a syntactic approach would not be able to account for the heavy XP variations in Breton or why heavy APs can block Lenition in Irish. Moreover, since the size of the trigger seems to be a factor in determining the Mutation Blocking Condition, it would seem that appealing to prosodic domains would be a more natural approach to the problem.

5 Conclusion

This paper has attempted to unify a variety of contradictory mutation blocking data from four different Celtic languages by proposing a Mutation Blocking Condition which varies according to the trigger size. Although this account is able to provide a unified account for the blocking data, including heavy XP effects, there are still theoretical issues about the relation between prosodic domains and mutation that need to be answered.

References

228A Computer Building
Education Technology Services
Penn State University
University Park, PA 16802
ejp10@psu.edu