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Figure 10. SEM of the fabricated AlN switch with a zoomed in view of the nano-gap and Au/Pt 

contact region.  The nano-gap is realized by using evaporated amorphous silicon as sacrificial 

layer. The sacrificial layer is removed by using XeF2 vapor phase release. The nano-gap 

definition is key in enabling switches with large forces and good RF isolation. 

Au 

Pt 
∼200nm 

200 µm 

V(t) 
RF IN 

RF OUT 

G 

G 



 28

 

 

 

 

Figure 11. Comparison between measured, simulated and analytically calculated resonant 

frequencies of several mm µµ 200200 ×  and mm µµ 100300 ×  actuators with Au thickness 

mtAu µ3.2= . Simulation results for different Au thicknesses are also provided to show how Au 

thickness can be employed to fine tune the device resonant frequency. 
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Figure 12. SEM of a fabricated piezoelectric actuator. The bright color around the trench 

demonstrates the isotropic etch of silicon around the structures by XeF2. To reduce the effect of 

the unwanted released area (underneath the anchor) on the structure stiffness, the trench width 

can be reduced in the area close to the anchor. In this case a thick and wide Au layer was used to 

stiffen the clamping location.  

100 µm 
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Figure 13. Measured resonant frequency of several mm µµ 100200 ×  for different Au anchor size. 

The inset represents the beam and anchor geometry. The beam size is fixed ( mm µµ 100200 × ) 

whereas width and length of the anchor are changed. In these test structures the resonant 

frequency is also affected strongly by the increasing in the effective beams length after the 

isotropic release of the structure in XeF2. 

1 2 3 4
20

25

30

35

40

Cantilever Beam Number

f r [
K

H
z
]

No Au Anchor

50µm x 200µm

100µm x 360µm

150µm x 450µm

L 

200 µm 

100 µm 

w 



 31

 

 

 

 

 

Figure 14. Response of the mm µµ 200200 ×  switch to a square waveform signal (±22 V) at 

40 Hz. The square waveform was used to turn the switch on and off, while the change in a 

DC signal applied across the RF line was monitored to measure the occurrence of contact. 
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Figure 15. DC on resistance ( onR ) measurements of a switch ( mm µµ 200200 × ) for which 

single and both beams were actuated. The dual beam actuation shows lower resistance for a given 

voltage. 
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Figure 16. Measurement of isolation and insertion loss (IL) for a mm µµ 200200 ×  dual-beam 

AlN switch from MHz10  to GHz10 .  Switch IL is compared to the loss in a through line of 

comparable length. 
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Figure 17. Normalized capacitance (at GHz2 ) and normalized on-resistance (at DC) of 

mm µµ 100300 ×  switch versus temperature. 
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Figure 18. SEM showing dual-beam actuated AlN switches co-fabricated with AlN resonators on 

the same silicon substrate. 



 36

 

 

180 190 200 210 220 230 240 250 260
-80

-70

-60

-50

-40

-30

-20

-10

0

Frequency[MHz]

S
2
1

[d
B

]

 

 

Without switch

With Switch-On

With Switch-Off

 

 

Figure 19. S21 plot (cascaded S-parameters) of a resonator monolithically integrated with the 

AlN switch presented in this work. The response of a resonator with the switch in both on and 

off states is compared to the response of the resonator without the switch. No significant 

changes in the resonator response were recorded. The resonator is effectively turned off by 

the switch. 
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