7-2010

STiki: An Anti-Vandalism Tool for Wikipedia Using Spatio-Temporal Analysis of Revision Metadata

Andrew G. West
University of Pennsylvania, westand@cis.upenn.edu

Sampath Kannan
University of Pennsylvania, kannan@cis.upenn.edu

Insup Lee
University of Pennsylvania, lee@cis.upenn.edu

Follow this and additional works at: http://repository.upenn.edu/cis_papers

Part of the Computer Sciences Commons

Recommended Citation

6th International Symposium on Wikis and Open Collaboration (WikiSym '10), Gdańsk, Poland, July 7-9, 2010.

This paper is posted at ScholarlyCommons. http://repository.upenn.edu/cis_papers/453

For more information, please contact libraryrepository@pobox.upenn.edu.
STiki: An Anti-Vandalism Tool for Wikipedia Using Spatio-Temporal Analysis of Revision Metadata

Abstract
STiki is an anti-vandalism tool for Wikipedia. Unlike similar tools, STiki does not rely on natural language processing (NLP) over the article or diff text to locate vandalism. Instead, STiki leverages spatio-temporal properties of revision metadata. The feasibility of utilizing such properties was demonstrated in our prior work, which found they perform comparably to NLP-efforts while being more efficient, robust to evasion, and language independent.

STiki is a real-time, on-Wikipedia implementation based on these properties. It consists of, (1) a server-side processing engine that examines revisions, scoring the likelihood each is vandalism, and, (2) a client-side GUI that presents likely vandalism to end-users for definitive classification (and if necessary, reversion on Wikipedia). Our demonstration will provide an introduction to spatio-temporal properties, demonstrate the STiki software, and discuss alternative research uses for the open-source code.

Keywords
Wikipedia, collaborative applications, information security, intelligent routing, spatio-temporal processing

Disciplines
Computer Sciences | Physical Sciences and Mathematics

Comments
6th International Symposium on Wikis and Open Collaboration (WikiSym ’10), Gdańsk, Poland, July 7-9, 2010.

This other is available at ScholarlyCommons: http://repository.upenn.edu/cis_papers/453
STiki: An Anti-Vandalism Tool for Wikipedia using Spatio-Temporal Analysis of Revision Metadata

Andrew G. West
University of Pennsylvania
Philadelphia, PA, USA
westand@cis.upenn.edu

Sampath Kannan
University of Pennsylvania
Philadelphia, PA, USA
kannan@cis.upenn.edu

Insup Lee
University of Pennsylvania
Philadelphia, PA, USA
lee@cis.upenn.edu

ABSTRACT

STiki is an anti-vandalism tool for Wikipedia. Unlike similar tools, STiki does not rely on natural language processing (NLP) over the article or diff text to locate vandalism. Instead, STiki leverages spatio-temporal properties of revision metadata. The feasibility of utilizing such properties was demonstrated in our prior work, which found they perform comparably to NLP-efforts while being more efficient, robust to evasion, and language independent.

STiki is a real-time, on-Wikipedia implementation based on these properties. It consists of: (1) a server-side processing engine that examines revisions, scoring the likelihood each is vandalism, and (2) a client-side GUI that presents likely vandalism to end-users for definitive classification (and if necessary, reversion on Wikipedia). Our demonstration will provide an introduction to spatio-temporal properties, demonstrate the STiki software, and discuss alternative research uses for the open-source code.

Categories and Subject Descriptors
H.5.3 [Group and Organization Interfaces]: collaborative computing, computer-supported cooperative work;
K.6.5 [Management of Computing and Information Systems]: Security and Protection

General Terms
Design, Management, Human Factors, Security

1. VANDALISM DETECTION & STIKI

We informally define Wikipedia vandalism to be any revision that is non-value adding, offensive, or destructive in its removal of content. The detrimental impact of vandalism is large, with one source [1] estimating the number of damaged page-views to be in the hundreds of millions. Detecting vandalism is difficult; it has many varied and subtle forms.

To this end, our prior research [4] investigated the spatio-temporal properties of edit metadata as an alternative means of detection, complementing techniques based on natural language processing. The metadata of an edit includes: the (1) edit time-stamp, (2) article being edited, (3) user-name or IP of the editor, and (4) the revision comment. Meanwhile, temporal properties are a function of the time at which an event occurs and spatial properties are appropriate whenever a distance or membership function can be defined.

Our prior work [4] identifies ten spatio-temporal properties (see Tab. 1) that are effective in locating malicious edits. Simple features include the edit time-of-day, revision comment length, etc. Aggregate features combine time-decayed behavioral observations (feedback) to create reputations [3] for single entities and spatial groupings thereof.

STiki [2] exploits these features, processing edits in real-time and enabling on-Wikipedia reversion. It consists of:

• Server-Side Engine: Listens on an IRC channel for Wikipedia edits. When one is made, the associated metadata is fetched. Combined with auxiliary data (e.g., geolocation), this is sufficient to compute the feature-set. A machine-learning technique called Support Vector Regression (SVR) assigns the edit a real-value vandalism score. SVR is trained over older edits labeled via, (1) automatic parsing of administrative reverts called rollbacks, and, (2) user-provided feedback from STiki clients.

• Client-Side GUI: Presents likely vandalism to users, displaying intuitively-colored edit diffs (see Fig. 1). Edits identified as vandalism are reverted on Wikipedia. In either case, feedback improves future server-side scoring.

A detailed STiki system workflow diagram is provided in Fig. 2. STiki is platform-independent (Java). Both the GUI executable and full source-code are available at [2].

2. PRESENTER & AUDIENCE BENEFIT

The presenter(s) wish to solicit feedback from casual users and vandalism experts regarding STiki’s ease-of-use and methodology. Further, exposure will result in a larger user-base – critical given the nature of the feedback loop.

Meanwhile, the audience will be introduced to an innovative line of Wiki-relevant research. They will be invited not only to become STiki users, but to become contributors by extending the feature-set, improving GUI functionality, or interfacing with our tool. Lastly, we will discuss how STiki code can be modified to support alternative research goals.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee.

WikiSym ’10, July 7–9, 2010, Gdansk, Poland
Copyright 2010 ACM 978-1-4503-0056-8/10/07 ...$10.00.
References

Figure 1: STiki GUI displaying a revision exhibiting vandalism (nonsense).

Figure 2: Simplified STiki workflow diagram.

<table>
<thead>
<tr>
<th>#</th>
<th>FEATURE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Edit time-of-day</td>
</tr>
<tr>
<td>2</td>
<td>Edit day-of-week</td>
</tr>
<tr>
<td>3</td>
<td>Time-since (TS) editor registration (first-edit)</td>
</tr>
<tr>
<td>4</td>
<td>TS article last edited</td>
</tr>
<tr>
<td>5</td>
<td>TS editor last vandalized</td>
</tr>
<tr>
<td>6</td>
<td>Rev. comment length</td>
</tr>
<tr>
<td>7</td>
<td>Article reputation</td>
</tr>
<tr>
<td>8</td>
<td>Categorical reputation (grouping over articles)</td>
</tr>
<tr>
<td>9</td>
<td>Editor reputation</td>
</tr>
<tr>
<td>10</td>
<td>Geographical reputation (grouping over editors)</td>
</tr>
</tbody>
</table>

Table 1: STiki features [4].