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ABSTRACT

HADWIGER INTEGRATION OF DEFINABLE FUNCTIONS

Matthew L. Wright

Robert Ghrist, Advisor

This thesis defines and classifies valuations on definable functionals. The intrinsic

volumes are valuations on “tame” subsets of Rn, and by easy extension, valuations on

functionals on Rn with finitely many level sets, each a “tame” subset of Rn. We extend

these valuations, which we call Hadwiger integrals, to definable functionals on Rn, and

present some important properties of the valuations. With the appropriate topologies

on the set of definable functionals, we obtain dual classification theorems for general

valuations on such functionals. We also explore integral transforms, convergence

results, and applications of the Hadwiger integrals.
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Chapter 1

Introduction

How can we assign the notion of “size” to a functional—that is, a real-valued function—

on Rn? Surely the Riemann-Lebesgue integral is one way to quantify the size of a

functional. Yet are there other ways? The integral with respect to Euler character-

istic gives a very different idea of the size of a functional, in terms of its values at

critical points. Between Lebesgue measure and Euler characteristic lie many other

pseudo-measures (or more properly, valuations) known as the intrinsic volumes, that

provide notions of the size of sets in Rn. Integrals with respect to these intrinsic

volumes integrals provide corresponding quantifications of the size of a functional.

In this thesis, we explore the integration of continuous functionals with respect

to the intrinsic volumes. The approach is o-minimal and integral. First, in order to

develop results for “tame” objects, while excluding pathologies such as Cantor sets

on which the intrinsic volumes might not be well-defined, we frame the discussion
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in terms of an o-minimal structure. The particular o-minimal structure is not so

important, though for concreteness the reader can think of it as being comprised of

all subanalytic sets, or all semialgebraic sets. Use of an o-minimal structure makes

the discussion context-free and applicable in a wide variety of situations. Second, the

approach is integral in the sense that we are not primarily concerned with valuations

of sets, but instead with integrals of functionals over sets. Valuations of sets have

been well-studied in the past; much less is known about valuations of functionals.

The setting of this work is in applied topology and integral geometry. Indeed, the

motivation for this research is to answer questions that arise in sensor networks, a key

area of applied topology. Integral geometry is an underdeveloped, intriguing subject

that studies symmetry-invariant integrals associated with geometric objects [6, 21].

The study of such integrals involves important techniques from geometric measure

theory, especially the theory of currents. Furthermore, the work has important con-

nections to combinatorics: the intrinsic volumes can be studied from a combinatorial

perspective, as presented by Klain and Rota [24], and involving a triangular array of

numbers known as the flag coefficients.

Chapter 2 contains an o-minimal approach to the intrinsic volumes. Beginning

with Hadwiger’s formula, we establish various equivalent expressions of the intrinsic

volumes, all applicable in the o-minimal setting. Perhaps the most intriguing and

least-known expression has to do with currents, which we explain in Chapter 3.

In Chapter 4 , we “lift” valuations from sets to functions over sets, providing
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important properties of integrals with respect to intrinsic volumes. We call such

an integral a Hadwiger integral. Hadwiger integrals can be expressed in various

ways, corresponding with the different expressions of the intrinsic volumes. We en-

counter a duality of “lower” and “upper” integrals, which are not equivalent, but

arise due to the differences in approximating a continuous function by lower- and

upper-semicontinuous step functions.

Next, we discuss general valuations on functionals, and classify them in Chapter

5. The duality observed earlier is again present, with “lower” and “upper” valuations

that are continuous in different topologies. This leads to our main result:

Main Theorem. Any lower valuation v on Def(Rn) can be written as a linear com-

bination of lower Hadwiger integrals. For h ∈ Def(Rn),

v(h) =
n∑
k=0

∫
Rn

ck(h) bdµkc,

where the ck : R→ R are increasing functions with ck(0) = 0.

Likewise, an upper valuation v on Def(Rn) can be written as a linear combination

of upper Hadwiger integrals.

Chapter 6 explores integral transforms, which are important in applications. In

particular, we examine convolution, where the convolution integral is with respect to

the intrinsic volumes. We also consider integral transforms analogous to the Fourier

and Bessel (or Hankel) transforms.

The ability to estimate integrals based on only an approximation of a functional
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is important in applications. Thus, Chapter 7 provides further results related to

estimation and convergence of Hadwiger integrals.

Chapter 8 discusses known and speculative applications of this valuation theory, as

well as opportunities for future research. Applications include sensor networks, image

processing, and crystal growth and foam dynamics. In order that Hadwiger integrals

may be more easily applied, we need further research into index theory, algorithms,

and numerical analysis of the integrals. We could also study more general valuations,

replacing Euclidean-invariance with invariance under other groups of transformations.
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Chapter 2

Intrinsic Volumes

The intrinsic volumes are the n + 1 Euclidean-invariant valuations on subsets of

Rn. This chapter provides the background information necessary to understand the

intrinsic volumes in an o-minimal setting.

2.1 Valuations

A valuation on a collection of subsets S of Rn is a function v : S → R that satisfies

the additive property:

v(A ∪B) + v(A ∩B) = v(A) + v(B) for A,B ∈ S.

On “tame” subsets of Rn there exist n + 1 Euclidean-invariant valuations. These

often appear in literature by the names intrinsic volumes and quermassintegrale,

which differ only in normalization. Other terminology for the same concept includes
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Hadwiger measures, Lipschitz-Killing curvatures, and Minkowski functionals. Here

we will primarily refer to these valuations as intrinsic volumes to emphasize that

the intrinsic volumes of A ∈ S are intrinsic to A and do not depend on any higher-

dimensional space into which A may be embedded.

The literature defines the intrinsic volumes in various ways. Klain and Rota [24]

take a combinatorial approach, defining the intrinsic volumes first on parallelotopes

via symmetric polynomials, then extending the theory to compact convex sets and

finite unions of such sets. Schneider and Weil [41] define the intrinsic volumes and

quermassintegrale on convex bodies as coefficients of the Steiner formula, which we

will discuss in Section 6.1. Morvan [32] takes a similar approach via the Steiner for-

mula. Santaló [35] approaches the quermassintegrale as an average of cross-sectional

measures. Schanuel [38] and Schröder [42] provide short, accessible introductory pa-

pers on the intrinsic volumes.

We will define the intrinsic volumes in a way lends itself to the integration theory

that is our goal. Thus, instead of working with sets that are compact or convex, we

will begin with an o-minimal structure that specifies “tame” subsets of Rn. Van den

Dries [43] defines an o-minimal structure as follows:

Definition 2.1. An o-minimal structure is a sequence S = (Sn)n∈N such that:

1. for each n, Sn is a boolean algebra of subsets of Rn—that is, a collection of

subsets of Rn, with ∅ ∈ Sn, and the collection is closed under unions and

complements (and thus also intersections);
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2. S is closed under projections: if A ∈ Sn, then π(A) ∈ Sn−1, where π : Rn →

Rn−1 is the usual projection map;

3. S is closed under products: if A ∈ Sn, then A× R ∈ Sn+1;

4. Sn contains diagonal elements: {(x1, . . . , xn) ∈ Rn | xi = xj for 1 ≤ i < j ≤

n} ∈ Sn;

5. S1 consists exactly of finite unions of points and (open, perhaps unbounded)

intervals.

Examples of o-minimal structures include the semilinear sets, the semialgebraic

sets, and many other interesting structures. The definition of an o-minimal structure

S prevents infinitely complicated sets such as Cantor sets from being included in S.

Elements of Sn we call definable sets. A map f : Rn → Rm whose graph is a definable

subset of Rn+m is a definable map. To explain the name o-minimal, the “o” stands for

order, and “minimal” refers to axiom 5 of Definition 2.1, which establishes a minimal

collection of subsets of R.

The o-minimal Euler characteristic, denoted χ, is defined so that for any open k-

simplex σ, χ(σ) = (−1)k, and to satisfy the additive property. Since any definable set

is definably homeomorphic to a disjoint union of open simplices, Euler characteristic is

defined on S. The o-minimal Euler characteristic coincides with the usual topological

Euler characteristic on compact sets, but not in general. In particular, the usual

topological Euler characteristic is not additive. The o-minimal Euler characteristic is

7



K

P4

P1

P2

P3

P5

Figure 2.1: The intrinsic volume µk of subset K ⊂ Rn is defined as the integral over

all affine (n− k)-planes P of the Euler characteristic χ(K ∩ P ), as in Definition 2.2.

that which arises from the Borel-Moore homology, but it is not a homotopy invariant.

2.2 Definition via Hadwiger’s formula

In this paper, Gn,k denotes the Grassmanian of k-dimensional linear subspaces of Rn,

and An,k denotes the affine Grassmanian of k-dimensional affine subspaces of Rn.

Definition 2.2. For a definable set K ∈ Sn, and k = 0, 1, . . . , n, define the kth

intrinsic volume, µk, of K as

µk(K) =

∫
An,n−k

χ(K ∩ P ) dλ(P ) (2.1)

where λ is the measure on An,n−k described below.

Equation (2.1) is known as Hadwiger’s formula. Figure 2.1 illustrates the defini-

tion of the intrinsic volumes in terms of integrals over affine planes.

Each affine subspace P ∈ An,n−k is a translation of some linear subspace L ∈
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Gn,n−k. That is, P is uniquely determined by L and a vector x ∈ Rk, x⊥P , such that

P = L + x. Thus, we can integrate over An,n−k by first integrating over Gn,n−k and

then over Rk. Equation (2.1) is equivalent to

µk(K) =

∫
Gn,n−k

∫
Rk(L)

χ(K ∩ (L+ x)) dx dγ(L) (2.2)

where L ∈ Gn,n−k, x ∈ Rk is orthogonal to L. Let γ be the Haar measure on the

Grassmanian, scaled so that

γ(Gn,m) =

(
n

m

)
ωn

ωmωn−m
(2.3)

with ωn denoting the n-dimensional volume of the unit ball in Rn. We can express

ωn in terms of the Gamma function:

ωn =
πn/2

Γ(n/2 + 1)
.

We scale the measure of the Grassmanian to satisfy equation (2.3) because this

makes the intrinsic volume of a set K independent of the dimension of the space

in which K is embedded. For example, if K is a 2-dimensional set in R3 (so K is

contained in a 2-dimensional plane), then µ2(K) is the area of K. The valuations µk

are intrinsic in the sense that they depend only on the sets on which they are defined,

and not on the dimension of the ambient space.

Observe that µ0 is Euler characteristic and µn is Lebesgue measure on Rn:

µ0(K) =

∫
1

χ(K ∩ Rn) dλ = χ(K) and µn(K) =

∫
Rn

K dx.

9



The kth intrinsic volume, µk, provides a notion of the k-dimensional size of a set. For

example, µ1 gives an idea of the “length” of a set, as Schanuel describes in his classic

paper, “What is the length of a potato?” [38].

It follows from equation (2.2) that the intrinsic volume µk is homogeneous of degree

k. That is, µk(aK) = akµk(K), for all a ≥ 0 and definable K. Also note that any

intrinsic volume of the empty set is zero. By definition, χ(∅) = 0, and equation (2.1)

implies that also µk(∅) = 0.

The numbers
(
n
m

)
ωn

ωmωn−m
in equation (2.3) are called flag coefficients and are

analogous to the binomial coefficients [24]. As the binomial coefficient
(
n
k

)
counts

the number of k-element subsets of an n-element set, the flag coefficient
(
n
m

)
ωn

ωmωn−m

gives the measure of k-dimensional linear subspaces of Rn. That is, we scale the Haar

measure on the grassmanian Gn,m so that equation (2.3) holds. This is precisely the

scaling necessary to make the intrinsic volumes intrinsic. For more about the flag

coefficients, see Appendix A.

The quermassintegrale differs from the intrinsic volumes only in terms of normal-

ization. For definable K ⊂ Rn and integer 0 ≤ k ≤ n, the quermassintegrale Wn,k(K)

is defined

Wn,k(K) = ωk

(
n

k

)−1

µn−k(K). (2.4)

Unlike the intrinsic volumes, the quermassintegrale depends on the dimension of the

ambient space in which K is embedded, so n properly appears as a subscript.

10



2.3 Important Properties

The intrinsic volumes enjoy the important properties of additivity and Euclidean

invariance, as in the following proposition.

Proposition 2.1. For definable sets A,B ⊂ Rn, and k = 0, 1, . . . , n, the following

properties hold:

• Additivity: µk(A ∪B) + µk(A ∩B) = µk(A) + µk(B).

• Euclidean invariance: µk(A) = µk(φ(A)) for φ ∈ On, the group of orthogonal

transformations on Rn.

Proof. Additivity follows from the fact that Euler characteristic is additive:

χ(A ∪B) + χ(A ∩B) = χ(A) + χ(B).

Euclidean invariance follows from the fact that the integral over the affine Grass-

manian is invariant under rigid motions of Rn.

Indeed, additivity is the key property that allows us to call µk a valuation. By

induction, the intrinsic volumes satisfy the inclusion-exclusion principle,

µk(K1 ∪ · · · ∪Km) =
m∑
r=1

(−1)r−1
∑

1≤i1<···<ir≤m
µk(Ki1 ∩ · · · ∩Kir)

for K1, . . . , Km ∈ S.

The intrinsic volumes are continuous in the sense that if J and K are convex

sets that are close in the Hausdorff metric, then µk(J) is close to µk(K). Intuitively,

11



K1 K2 K3 K4 K5 K6

· · ·

K∞

Figure 2.2: The intrinsic volumes of the Kn converge to those of K∞.

the Hausdorff distance between J and K is the smallest ε such that no point in J is

farther than ε from some point in K, and vice-versa. Formally, Hausdorff distance

between J and K can be written

dH(J,K) = max{sup
x∈J

inf
y∈K

d(x, y), sup
y∈K

inf
x∈J

d(x, y)}.

As an example of continuity, let {Kj} be a sequence of n-dimensional sets that

converge in the Hausdorff metric to an (n− 1)-dimensional set K∞, as illustrated in

Figure 2.2. Then,

lim
j→∞

µk(Kj) = µk(K∞).

This is one justification why µn−1(K) is equal to half the surface area of K.

The intrinsic volumes are not continuous for definable sets in general with respect

to the Hausdorff metric. For example, a bounded convex set can be approximated

arbitrarily closely in the Hausdorff metric by a large discrete set. However, a compact

convex set has Euler characteristic one, while the Euler characteristic of a discrete

set equals its cardinality.

The intrinsic volumes are continuous on definable sets with respect to a topology

defined in terms of conormal cycles, which we will discuss in Section 3.5.
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It is a well-known theorem of Hugo Hadwiger [23] that any continuous valuation

on convex subsets of Rn is a linear combination of the intrinsic volumes:

Hadwiger’s Theorem. If v is a Euclidean-invariant, additive functional on subsets

of Rn, continuous on convex subsets with respect to the Hausdorff metric, then

v =
n∑
k=0

ckµk

for some real constants c0, . . . , cn. Furthermore, if v is homogeneous of degree k, then

v = ckµk.

We will not reproduce the proof of Hadwiger’s Theorem here, but it may be found

in a variety of sources [12, 24, 41].

Definition 2.2 allows us to express the intrinsic volumes µk(K) in terms of “slices”

of K along affine (n− k)-dimensional planes. Recall equation (2.1),

µk(K) =

∫
An,n−k

χ(K ∩ P ) dλ(P ).

We can also express µk(K) in terms of projections of K onto k-dimensional planes.

Instead of integrating χ(K ∩ P ) for all affine (n − k)-planes P , we can change our

perspective and project K onto linear k-subspaces L. In particular, let πL : K → L

be the projection map onto L ∈ Gn,k. For any x ∈ L, π−1
L (x) is the fiber over x, that

is, the set of all points in K that are projected to x. We then have:

µk(K) =

∫
An,n−k

χ(K ∩ (P )) dλ(P ) =

∫
Gn,k

∫
L

χ(π−1
L (x)) dx dγ(L).

In summary, we have the projection formula:

13



y

x

K
L χ

r1

1

Figure 2.3: At left, the annulus K ⊂ R2 is projected orthogonally onto an arbitrary

linear subspace L ∈ G2,1. At right, the graph of χ(π−1
L (r)), the Euler characteristic

of the fibers of the projection of K onto L.

Theorem 2.1 (Projection Formula). For any definable set K in Rn and 0 ≤ k ≤ n,

µk(K) =

∫
Gn,k

∫
L

χ(π−1
L (x)) dx dγ(L)

where π−1
L (x) is the fiber over x ∈ L of the orthogonal projection map πL : K → L.

Example. Consider the annulus K ⊂ R2 in Figure 2.3, with inner radius 1 and outer

radius 2. We compute µ1(K) via the projection formula.

Let L ∈ G2,1 be an arbitrary line through the origin. Several fibers of the pro-

jection map πL onto L are indicated at left in Figure 2.3. The Euler characteristic

χ(π−1
L (r)) is graphed at right in Figure 2.3 as a function of r, the position along L,

measured from the origin. By rotational symmetry about the origin, χ(π−1
L (r)) is the

same for all L ∈ G2,1.
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Integrating, we find that
∫
L
χ(π−1

L (r)) dr = 6. Then,

µ1(K) =

∫
G2,1

∫
L

χ(π−1
L (r)) dr dγ(L) =

∫
G2,1

6 dr = 6 · π
2

= 3π. (2.5)

This computation agrees with the previous assertion that µn−1 equals half the surface

area of an n-dimensional set. Here, µ1(K) = 3π, which is half the (combined inner

and outer) perimeter of the annulus.

The situation is simpler if K is compact and convex: In this case, χ(π−1
L (x)) = 1

for all L ∈ Gn,l and x ∈ L. Thus, the projection formula, Theorem 2.1, reduces to

the standard mean projection formula [24]:

Theorem 2.2 (Mean Projection Formula). For 0 ≤ k ≤ n and compact convex subset

K of Rn,

µk(K) =

∫
Gn,k

µk(K|L) dγ(L)

where the integrand is the k-dimensional volume of the projection of K onto a k-

dimensional subspace L of Rn.

Proof. For any P ∈ Gn,n−k, the intersection K ∩P is also compact convex, so χ(K ∩

P ) = 1. Accordingly, for L ∈ Gn,k, every nonempty fiber π−1
L (x) is also compact

convex, so χ(π−1
L (x)) = 1. Thus,

∫
L
χ(π−1

L (x)) dx is the k-dimensional (Lebesgue)

volume of the projection of K onto L. Let K|L denote the projection of K onto L.

Then,

µk(K) =

∫
Gn,k

∫
L

χ(π−1
L (x)) dx dγ(L) =

∫
Gn,k

µk(K|L) dγ(L).
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The mean projection formula gives another justification of why µn−1(K) is half

the surface area of K ⊂ Rn. First, let K be a convex polyhedron in Rn. For each

face fi of K, µn−1(fi|L) is the area of the projection of fi onto L ∈ Gn,k. Since the

projection map of K onto L covers each point in its image twice, we have

∑
i

µn−1(fi|L) = 2µn−1(K|L).

Integrating over the Grassmanian Gn,n−1 and applying the Mean Projection Formula,

we obtain

∑
i

µn−1(fi) =

∫
Gn,n−1

∑
i

µn−1(fi|L) dγ(L)

=

∫
Gn,n−1

2µn−1(K|L) dγ(L) = 2µn−1(K). (2.6)

Now
∑

i µn−1(fi) is the surface area of K, so equation (2.6) implies that the surface

area of K is 2µn−1(K). Since any convex subset is a limit of convex polyhedra, the

result holds for all convex subsets of Rn. By additivity, it holds for definable subsets

of Rn.

We can express an intrinsic volume of a direct product in terms of the intrinsic

volumes of its factors:

Theorem 2.3 (Product Theorem). For J,K ∈ S,

µk(K × J) =
k∑
i=0

µi(K)µk−i(J). (2.7)

Klain and Rota prove the Product Theorem using Hadwiger’s Theorem [24].

Schneider and Weil prove it for polytopes, and by extension for general convex bodies
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[41]. Representing the intrinsic volumes in terms of conormal cycles, we exhibit a

more elegant proof of the Product Theorem, as we will discuss in Section 3.4.

One implication of the Product Theorem is that µk(K × J) can be computed by

integrating over only those affine (n−k)-planes that are themselves direct products of

affine planes in the factor subspaces containing K and J . Furthermore, the Product

Theorem extends to direct products of many definable sets:

Corollary 2.1. For K1, . . . , Kr ∈ S,

µk(K1 × · · · ×Kr) =
∑

i1+···+ir=k

µi1(K1) · · ·µir(Kr). (2.8)

Proof. Identity (2.8) follows by induction from Theorem 2.3.

2.4 Intrinsic Volumes of Common Subsets

We can now compute the intrinsic volumes of closed balls and rectangular prisms.

Example. Let Bn be the closed n-dimensional unit ball, and ωn its volume. We will

compute µk(Bn):

µk(Bn) =

∫
Gn,n−k

∫
Rk(L)

χ(Bn ∩ (L+ x)) dx dγ(L)

=

∫
Gn,n−k

∫
Bk

1 dx dγ(L)

=

∫
Gn,n−k

ωk dγ(L) =

(
n

k

)
ωn
ωn−k

.

Example. Let K be a closed n-dimensional rectangular prism in Rn with side lengths

x1, . . . , xn. The product theorem allows us to compute the intrinsic volumes of K, as
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follows:

µk(K) = µk([0, x1]× · · · × [0, xn])

=
∑

i1+···+in=k

µi1([0, x1]) · · ·µir([0, xn])

=
∑

i1+···+in=k

xi11 · · ·xinn where i1, . . . , in ∈ {0, 1}

=
∑

1≤j1<···<jk≤n
xj1 · · ·xjk

and this is the elementary symmetric polynomial of degree k on the n variables

x1, . . . , xn.

2.5 Open Sets

Our o-minimal approach to the intrinsic volumes prompts us to consider the intrinsic

volumes of non-compact sets, and in particular, open sets. Indeed, in applications we

will need to be able to compute the intrinsic volumes for open sets. To begin, recall

that if σ is an open k-dimensional simplex, then χ(σ) = (−1)k.

A regular open set is equal to the interior of its closure, and a regular closed set

is equal to the closure of its interior. That is, K is regular open if K = Int(K), and

J is regular closed if J = IntJ .

We have the following lemma:

Lemma 2.1. Let K be a definable, regular closed set in Rd. Then χ(IntK) =

(−1)dχ(K).
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We defer the proof of Lemma 2.1 until Section 4.2.

The lemma leads to a similar result for the intrinsic volumes:

Theorem 2.4. Let K be definable in Rn, such that K = IntK and K is not contained

in any (n− 1)-dimensional affine subspace of Rn. Then,

µk(IntK) = (−1)n+kµk(K).

Proof. For any P ∈ An,n−k, K ∩ P is a subset, equal to the closure of its interior, of

dimension n− k. Note that Int(K ∩ P ) = (IntK) ∩ P , so by the lemma we have:

χ(Int(K ∩ P )) = (−1)n−kχ(K ∩ P ).

Integrating over An,n−k, we obtain:

µk(IntK) =

∫
An,n−k

χ((IntK) ∩ P ) dλ(P )

= (−1)n−kχ(K ∩ P ) dλ(P ) = (−1)n−kµk(K).

While the Lebesgue measure of a definable set and its closure are the same, the

intrinsic volumes are, in general, very sensitive to boundary points. When computing

the intrinsic volumes of a set, it is essential to note whether the set contains some or all

of its boundary. An understanding of this detail will be important to the integration

theory that follows.

19



Chapter 3

Currents and Cycles

The intrinsic volumes also arise from integration of differential forms over normal and

conormal cycles of sets. Normal and conormal cycles are examples of currents, which

are continuous linear functionals on the spaces of differential forms. This chapter

gives a brief introduction to currents, providing only information relevant to our

applications. For more details, see chapter 7 of Krantz and Parks [25], chapter 12 of

Morvan [32], or the exhaustive and technical chapter 4 of Federer [16].

3.1 Currents

First we must establish some notation. Let Ωk
c (U) denote the space of compactly-

supported differential k-forms on some U ⊆ RN . Its dual space, the space of con-

tinuous linear functionals on Ωk
c (U), we denote as Ωk(U), or simply as Ωk if U is

understood. We call an element of Ωk(U) a k-dimensional current on U . The bound-
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ary of a current T ∈ Ωk is the current ∂T ∈ Ωk−1 defined by (∂T )(ω) = T (dω) for all

ω ∈ Ωk−1
c . A cycle is a current with zero boundary. Similarly to differential forms,

∂(∂T ) = 0.

Currents are naturally associated with submanifolds and geometric subsets [25,

32]. Let Mn be a C1 oriented n-dimensional submanifold of RN . Let dvMn be the

volume form on Mn. For any ω ∈ Ωk
c (RN), the restriction of ω to Mn equals fωdvMn

for some function fω on Mn. Define a current [[Mn]] associated to Mn by

[[Mn]](ω) =

∫
Mn

fωdvMn .

For our work with currents, we need a norm on the space of currents. First, the

mass M(T ) of a current T ∈ Ωk(U) is the real number defined by:

M(T ) = sup{ T (ω) | ω ∈ Ωk
c (U) and sup |ω(x)| ≤ 1 ∀ x ∈ U}.

The mass of a current generalizes the volume of a submanifold: the mass of a current

supported on a tame set is equal to the volume of the set. Second, let |T |[ denote the

flat norm of the current T ∈ Ωk(U), which is the real number defined by:

|T |[ = inf{M(R) + M(S) | T = R + ∂S,R ∈ Ωk(U), S ∈ Ωk+1(U)}. (3.1)

We can think of the flat norm as quantifying the minimal-mass decomposition of a

k-current T into a k-current R and the boundary of a (k+1)-current S, as illustrated

in Figure 3.1. The flat norm is an excellent tool for measuring the distance between

shapes, or between their associated currents, as Morgan and Vixie explain in [31].
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T = R + ∂S ∈ Ω1 R ∈ Ω1 S ∈ Ω2

Figure 3.1: The 1-current T is decomposed as the sum of a 1-current R and the

boundary of a 2-current S. Intuitively, the flat norm of T is the decomposition that

minimizes the length of R plus the area of S.

In this context, the word “flat” is not referring to a lack of curvature, but simply to

Hassler Whitney’s musical notation [ used to denote this norm [25, 30].

3.2 Normal and Conormal Cycles

We are interested in particular currents, known as the normal cycle and conormal

cycle, that are associated to compact definable sets. The normal cycle is a general-

ization of the unit normal bundle of a manifold. The definition of the normal cycle is

long and technical; for that we refer the reader to Bernig [7], Fu [20], or Nicolaescu

[34]. Let A be a compact definable set in RN . We denote the normal cycle of A as

NA. Formally, NA is an (N − 1)-current on the unit cotangent bundle RN × SN−1.

The normal cycle is Legendrian, which means that its restriction to the canonical
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1-form α on the tangent bundle T ∗RN is zero:

NA
∣∣
α

= 0.

The key property for our purposes is that the normal cycle is additive, that is:

NA∪B + NA∩B = NA + NB. (3.2)

Intuitively, we regard NA as the collection of unit tangent vectors to A, though

this intuition is inadequate if A is not convex. More precisely, if A is a convex set, then

the support of NA is the hypersurface of unit tangent vectors to A, with orientation

given by the outward normal.

Example (Normal cycle of a simplicial complex). If σ is a (closed) k-simplex in RN ,

then Nσ is the current whose support is the surface of unit tangent vectors to σ, with

outward orientation. We can then construct the normal cycle of a simplicial complex

via equation (3.2).

Figure 3.2 illustrates the normal cycle of a simplicial complex. The simplicial

complex K in R2 consists of the union of the two closed intervals ab and bc. The

normal cycle of a closed interval in R2 is supported on an oriented path at unit

distance around the interval. The intervals intersect at point b, whose normal cycle

is supported on an oriented unit circle at b. By equation (3.2),

NK = Nab + Nbc −Nb,

which is the normal cycle supported on the oriented path shown in Figure 3.2.
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a

b c

Figure 3.2: Normal cycle of a simplicial complex.

Dual to normal cycles are conormal cycles. For details on the construction of the

conormal cycle, see Nicolaescu [33]. The conormal cycle of A, denoted CA, is also an

(N − 1)-current on RN × SN−1, and it is the cone over NA. The conormal cycle is

Lagrangian, which means that its restriction to the standard symplectic 2-form ω on

T ∗RN is zero:

CA
∣∣
ω

= 0.

For example, the conormal cycle of an interval [a, b] in R is illustrated by the dark

path in Figure 3.3.

Pioneers in the study of normal and conormal cycles were Wintgen [46] and Zähle

[47]. Fu gives a detailed treatment of these cycles of subanalytic sets in [19]. Nico-

laescu shows in [33] the existence and uniqueness of normal and conormal cycles for

definable sets.
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3.3 Lipschitz-Killing Curvature Forms

The intrinsic volumes arise from integrating certain differential forms over normal and

conormal cycles. These differential forms are called the Lipschitz-Killing curvature

forms, named after Rudolf Lipschitz and Wilhelm Killing. These forms are invariant

under rigid motions, as they must be since the intrinsic volumes are invariant under

such motions.

Since normal and conormal cycles are (N − 1)-currents on RN × SN−1, we need

differential (N−1)-forms on RN×SN−1 invariant under rigid motions. Let x1, . . . , xN

be the standard orthonormal basis for RN , and ρ1, . . . , ρN−1 an orthonormal frame

for SN−1. Define the following differential (N − 1)-form on RN × SN−1:

V(t) = (x1 + tρ1) ∧ · · · ∧ (xN−1 + tρN−1).

Intuitively, if t = 0, this is the volume form on RN−1, which is invariant under rigid

motions. Morvan explains in [32, ch. 19] that the form V(t) is invariant under rigid

motions of RN , extended to RN × SN−1, for all t. Fu arrives at the same result via a

pushforward of an exponential map [21].

We can view the differential form V(t) as a polynomial in t, whose coefficients are

the invariant forms that we seek:

Definition 3.1. For 0 ≤ k ≤ N − 1, let WN−1,k be the coefficient of tN−k−1 in V(t).

The form WN−1,k is called the kth Lipschitz-Killing curvature form of degree N − 1.

The WN−1,k are exactly the forms we need to integrate (with appropriate scalar
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multiples) over normal or conormal cycles of sets to obtain the intrinsic volumes. By

invariance, they do not depend on the orthonormal frame x1, . . . , xN , ρ1, . . . , ρN−1.

Indeed, Morvan states that the vector space of invariant differential (N −1)-forms on

RN × SN−1 is spanned by the WN−1,k and, if N is odd, by a power of the standard

symplectic form. However, the conormal cycle vanishes on the standard symplectic

form, so the only invariant forms relevant to our discussion are the WN−1,k.

3.4 Back to the Intrinsic Volumes

We can express the intrinsic volumes in terms of normal or conormal cycles, and the

Lipschitz-Killing curvature forms.

Theorem 3.1. Let K ∈ Def(Rn). The integrals

∫
NK

Wn,k and

∫
CK

Wn,k (3.3)

are, up to a constant multiple, the intrinsic volume µk(K).

Proof. Since the normal and conormal cycles are additive, and the Lipschitz-Killing

curvature forms are Euclidean-invariant, the integrals in (3.3) are valuations on

Def(Rn). By definition of the Lipschitz-Killing curvature forms, these expressions

are homogeneous of degree k. The integrals are also continuous on convex sets with

respect to the Hausdorff metric. Therefore, by Hadwiger’s Theorem, these integrals

are µk(K), up to a constant multiple.
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ρ

x
a

b

η

Figure 3.3: Conormal cycle of the interval [a, b].

Some low-dimensional examples will help illustrate this “current” approach to the

intrinsic volumes.

Example. Consider the interval [a, b] ⊂ R. Its conormal cycle C[a,b] can be represented

by the dark path in Figure 3.3. The space of invariant 1-forms on R2× S1 is spanned

by the two forms W1,0 = dρ and W1,1 = dx. We obtain the intrinsic volumes of [a, b]

by the integrals:

µ0([a, b]) =

∫
C[a,b]

1

2π
dρ = 1

µ1([a, b]) =

∫
C[a,b]

dx = b− a.

Example. Let K be a definable subset of R2. The space of invariant 2-forms of R3×S2
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contains the following forms:

W2,0 = dρ1 ∧ dρ2

W2,1 = dρ1 ∧ dx2 + dx1 ∧ dρ2

W2,2 = dx1 ∧ dx2

We obtain the intrinsic volumes of K by integrating these forms over CK :

µ0(K) =

∫∫
CK

1

4π
dρ1 ∧ dρ2

µ1(K) =

∫∫
CK

1

2π
dρ1 ∧ dx2 +

1

2π
dx1 ∧ dρ2

µ2(K) =

∫∫
CK

dx1 ∧ dx2.

In the above examples, we use normalizations such as 1
2π

to scale the integrals

properly, as is necessary for computations.

Representing the intrinsic volumes in terms of integrals of the Lipschitz-Killing

curvature forms, we can now prove the Product Theorem (Theorem 2.3). The key

observation is that by Definition 3.1, for integers 0 < m < n,

Wn,k =
k∑
i=0

Wm,i ∧Wn−m,k−i.

Therefore,

k∑
i=0

µk(K)µk−i(J) =
k∑
i=0

∫
CK

Wm,i

∫
CJ

Wn−m,k−i =

∫
CK×J

Wn,k = µk(K × J)

which proves the Product Theorem.
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3.5 Continuity

The flat norm on conormal cycles is the key ingredient of a topology on definable

sets, with respect to which the intrinsic volumes are continuous.

Let A and B be definable subsets of Rn. Define the flat metric in terms of the

flat norm as follows:

d(A,B) =
∣∣CA −CB

∣∣
[
. (3.4)

Call the topology on definable subsets of Rn induced by the flat metric the flat

topology. The flat topology is a useful generalization of the Hausdorff topology on

convex sets. Indeed, if a sequence of convex sets converges in the Hausdorff topology,

then the corresponding sequence of their normal cycles converges in the flat topology

[17], but the same is not true for non-convex sets. On the other hand, convergence of

normal cycles of definable sets implies convergence in the Hausdorff topology. Fur-

thermore, we have the following theorem:

Theorem 3.2. The intrinsic volumes are continuous with respect to the flat topology.

Proof. Let K ∈ Def(Rn) be bounded and ε > 0. Let B be a large ball in Rn containing

a neighborhood of K.

From the definition of flat norm, we have for any T ∈ Ωn and ω ∈ Ωn
c , both

supported on B:

|T (ω)| ≤ |T |[ ·max

{
sup
x∈B
|ω(x)|, sup

x∈B
|dω(x)|

}
. (3.5)
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Suppose J ∈ Def(Rn) is contained in B. Let T = CK −CJ be the difference between

conormal cycles of K and J , and let ω =Wn,k. Equation (3.5) becomes:

|µk(K)− µk(J)| =
∣∣∣∣∫

CK

Wn,k −
∫
CJ

Wn,k

∣∣∣∣
≤
∣∣CK −CJ

∣∣
[
·max

{
sup
x∈B
|Wn,k(x)|, sup

x∈B
|dWn,k(x)|

}
. (3.6)

The forms Wn,k and dWn,k are bounded on B, so we can let

δ = ε ·
(

max

{
sup
x∈B
|Wn,k(x)|, sup

x∈B
|dWn,k(x)|

})−1

,

and we have |µk(K)−µk(J)| < ε for all J ∈ Def(Rn) such that d(K, J) =
∣∣CK −CJ

∣∣
[
<

δ, which proves continuity.
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Chapter 4

Valuations on Functionals

We now “lift” valuations from sets to functionals over sets. This results in the Had-

wiger integrals—integrals with respect to the intrinsic volumes. For functionals with

finite range, integration is straightforward. Integration of continuous functionals is

more complicated, resulting in a duality of lower and upper integrals. We discuss

properties and equivalent expressions of these Hadwiger integrals of continuous func-

tionals.

4.1 Constructible Functions

Having established the basic properties of intrinsic volumes, we now explore their

use as a measure for integration. We begin with constructible functions, which are

integer-valued functions with definable level sets. Moreover, if f is a constructible

function, then its domain has a locally finite triangulation such that f is constant
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on each simplex. Thus, if f has compact support, then f is bounded. Integration of

constructible functions with respect to intrinsic volumes is straightforward.

Definition 4.1. Let X ∈ Rn be compact and h : X → Z be a constructible function.

So h =
∑

i ci1Ai
, where ci ∈ Z and 1Ai

is the characteristic function on a definable

set Ai. We may assume the Ai are disjoint. Then the Hadwiger integral of h with

respect to µk is ∫
X

h dµk =

∫
X

∑
i

ci1Ai
dµk =

∑
i

ciµk(Ai).

When k = 0, the integral is also called an Euler integral and denoted
∫
X
h dχ

[3, 44]. When k = n, the integral is the usual Lebesgue integral.

4.2 Duality

Schapira [37] defines a useful duality on constructible functions. Let the dual of a

function h ∈ CF(Rn), be the function Dh whose value at x ∈ Rn is given by

Dh(x) = lim
ε→0+

∫
Rn

h · 1B(x,ε) dχ,

where B(x, ε) is the ball of radius ε centered at x.

The properties of Schapira’s duality that are important for our purposes are sum-

marized in the following theorem.

Theorem 4.1. Let h ∈ CF(Rn). Then:

1. The dual Dh is a constructible function,
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2. Duality is an involution: D2h = h, and

3. Duality preserves integrals:
∫
X
h dχ =

∫
X
Dh dχ.

For proofs, see Schapira [37].

With Euler integrals and duality of constructible functions, we can now prove

Lemma 2.1, restated from Section 2.5:

Lemma 4.1. Let K be a definable, regular closed subset of Rn. Then χ(IntK) =

(−1)nχ(K).

Proof. For a characteristic function of a regular closed subset K of Rn, D(1IntK) =

(−1)n1K .

Schapira’s duality implies:

χ(IntK) =

∫
1IntK dχ =

∫
D(1IntK) dχ =

∫
(−1)n1Kdχ = (−1)nχ(K).

4.3 Extending to Continuous Functions

A definable function is a bounded real-valued function on a compact set X ∈ Rn

whose graph is a definable subset of Rn+1. Similar to the real-valued Euler integrals

of Baryshnikov and Ghrist in [4], we can integrate a definable function with respect

to intrinsic volumes.

Definition 4.2 (Hadwiger Integral). For definable function h : X → R, X ⊂ Rn, the
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Figure 4.1: The lower Hadwiger integral is defined as a limit of lower step functions

(left), as in Definition 4.2. It can also be expressed in terms of excursion sets (right),

as in Theorem 4.2, equation (4.3).

lower and upper Hadwiger integrals of h are:

∫
X

h bdµkc = lim
m→∞

1

m

∫
bmhc dµk and (4.1)∫

X

h ddµke = lim
m→∞

1

m

∫
dmhe dµk. (4.2)

When k = 0, we obtain the real-valued Euler integrals of Baryshnikov and Ghrist,

and when k = n, both of the integrals in Definition 4.2 are in fact Lebesgue integrals.

Existence of the limits in Definition 4.2 is a consequence of Theorem 4.2.

The integrals in Definition 4.2 are written in terms of step functions, but they

can be expressed in several different ways. We can write the integrals in terms of

excursion sets, which are sets on which the functional takes on values in a particular

interval. For example, {h ≥ s} = {x | h(x) ≥ s}. Figure 4.1 illustrates step functions

and excursion sets of a definable function. We can also write the Hadwiger integrals

in terms of Euler integrals along affine slices, or projections onto linear subspaces.
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Figure 4.2: The Hadwiger integral of a function h : R2 → R can be expressed in

terms of level sets of h (left) or slices of h by planes perpendicular to the domain

(right), as in Theorem 4.2.

Illustrated in figure 4.2 for a bump function, these equivalent expressions are stated

in the following theorem.

Theorem 4.2 (Equivalent Expressions). For a definable function h : Rn → R, the

lower Hadwiger integral can be written∫
X

h bdµkc =

∫ ∞
s=0

(µk{h ≥ s} − µk{h < −s}) ds excursion sets (4.3)

=

∫
An,n−k

∫
X∩P

h bdχc dλ(P ) slices (4.4)

=

∫
Gn,k

∫
L

∫
π−1
L (x)

h bdχc dx dγ(L) projections (4.5)

and similarly for the upper Hadwiger integral.

Proof. To express the integral in terms of excursion sets, first let

T = max(sup(h),− inf(h))
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and let N = mT . Then,

∫
h bdµkc = lim

m→∞
1

m

∫
bmhc dµk = lim

m→∞
1

m

∞∑
i=1

µk{mh ≥ i} − µk{mh < −i}

= lim
N→∞

T

N

N∑
i=1

µk

{
h ≥ iT

N

}
− µk

{
h < −iT

N

}

=

∫ T

0

µk{h ≥ s} − µk{h < −s} ds,

which proves equation (4.3).

For the expression involving affine slices, note that

∫ ∞
0

µk{h ≥ s} − µk{h < −s} ds

=

∫ ∞
0

∫
An,n−k

χ({h ≥ s} ∩ P )− χ({h < −s} ∩ P ) dλ(P ) ds.

Since the excursion sets {h ≥ s} and {h < −s} are definable, they have finite

Euler characteristic, and the integrand is finite. Since h has compact support, the

Grassmanian integral is actually over a bounded subset of An,n−k. Moreover, h is

bounded, so the real integral is over a bounded subset of R. Thus, the double integral

is in fact finite. Since the integral is finite and R and An,n−k are σ-finite measure

spaces, Fubini’s theorem allows us to change the order of integration. The integral

then becomes

∫
An,n−k

∫ ∞
0

χ({h ≥ s} ∩ P )− χ({h < −s} ∩ P ) ds dλ(P )

=

∫
An,n−k

∫
X∩P

h bdχc dλ(P ),

and this proves equation (4.4).
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To express the integral in terms of projections, fix an L ∈ Gn,k. Let πL : X → L

be the orthogonal projection map on to L. Then the affine subspaces perpendicular

to L are the fibers of πL; that is,

{P ∈ An,n−k : P⊥L} = {π−1
L (x) : x ∈ π(X)}.

Instead of integrating over An,n−k, we can integrate over the fibers of orthogonal

projections onto all linear subspaces of Gn,k. That is,

∫
h bdµkc =

∫
An,n−k

∫
X∩P

h bdχc dλ(P ) =

∫
Gn,k

∫
L

∫
π−1
L (x)

h bdχc dx dγ(L)

which is equation (4.5).

The lower and upper Hadwiger integrals are not linear in general.

Example. A simple example that illustrates the nonlinearity of the Euler integral was

given by Baryshnikov and Ghrist in [4]:

∫
[0,1]

x bdχc+

∫
[0,1]

(1− x) bdχc = 1 + 1 = 2 6= 1 =

∫
[0,1]

1 bdχc.

The reader can find similar examples of the nonlinearity of the other Hadwiger inte-

grals, except for the Lebesgue integral.

The lower and upper Hadwiger integrals are dual in the following sense.

Corollary 4.1 (Duality). The lower and upper Hadwiger integrals exhibit a duality:

for h ∈ Def(Rn), ∫
h bdµkc = −

∫
−h ddµke.
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Proof. The upper Hadwiger integral can be written in a form similar to equation

(4.3): ∫
h ddµke =

∫ ∞
s=0

µk{h > s} − µk{h ≤ −s} ds

Duality then follows.

4.4 Hadwiger Integrals as Currents

Just as we can express the intrinsic volumes of subsets in terms of the normal and

conormal cycles of the subsets, we can express the Hadwiger Integrals as currents.

Let h ∈ Def(Rn). Writing the Hadwiger integral
∫
hbdµkc in terms of intrinsic

volumes of excursion sets via equation (4.3) and expressing these intrinsic volumes

via conormal cycles (3.3), we have:

∫
Rn

h bdµkc =

∫ ∞
s=0

(µk{h ≥ s} − µk{h < −s}) ds

=

∫ ∞
s=0

(∫
C{h≥s}

Wn,k −
∫
C{h<−s}

Wn,k

)
ds. (4.6)

In this way, we can represent the integrals not only as currents, but in fact as cycles.

For a differential n-form ω, define:

T (ω) =

∫ ∞
s=0

(
C{h≥s}(ω)−C{h<−s}(ω)

)
ds.

Then T is a continuous linear functional on the space of differential forms, so it is

a current. Furthermore, T is a cycle, as it has no boundary because the conormal
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cycles have no boundary:

∂T (ω) = T (∂ω) =

∫ ∞
s=0

(
C{h≥s}(∂ω)−C{h<−s}(∂ω)

)
=

∫ ∞
s=0

0 ds = 0. (4.7)

In summary, we have the following proposition.

Proposition 4.1. The lower Hadwiger integrals of h ∈ Def(Rn) can be expressed in

terms of the cycle

T (ω) =

∫ ∞
s=0

(
C{h≥s}(ω)−C{h<−s}(ω)

)
ds, (4.8)

evaluated on the Lipschitz-Killing curvature forms, and similarly for the upper Had-

wiger integrals.

4.5 Summary of Representations

In summary, we have the following equivalent expressions of the lower Hadwiger

integral for a function h ∈ Def(Rn) and integer 0 ≤ k ≤ n:

∫
h bdµkc = lim

m→∞
1

m

∫
bmhc dµk step functions (4.1)∫

h bdµkc =

∫ ∞
s=0

µk{h ≥ s} − µk{h < −s} ds excursion sets (4.3),∫
h bdµkc =

∫
An,n−k

∫
X∩P

h bdχc dλ(P ) slices (4.4),∫
h bdµkc =

∫
Gn,k

∫
L

∫
π−1
L (x)

h bdχc dx dγ(L) projections (4.5), and∫
h bdµkc =

∫ ∞
s=0

(
C{h≥s}(Wn,k)−C{h<−s}(Wn,k)

)
ds currents (4.8).
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x

y

z

Figure 4.3: Function h : [0, 1]2 → R, defined h(x, y) = min(x, y), illustrates the

non-equivalence of lower and upper Hadwiger integrals.

To obtain expressions of the upper Hadwiger integral, replace the “floor” function

b·c by the “ceiling” function d·e, replace the excursion set {h ≥ s} by {h > s}, and

replace the excursion set {h < −s} by {h ≤ −s}.

4.6 Properties of Hadwiger Integration

The lower and upper Hadwiger integrals with respect to µk are not equal in general.

The following example illustrates this lack of equality.

Example. Define h : [0, 1]n → R by h(x1, . . . , xn) = min(x1, . . . , xn), illustrated in

Figure 4.3 for n = 2.

For s ∈ [0, 1], the excursion set {h ≥ s} is a closed n-dimensional cube with side
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lengths 1− s. By Section 2.4,

µn−1{h ≥ s} = µn−1([s, 1]n) = n(1− s)n−1.

The strict excursion set {h > s} is also an n-dimensional cube with side lengths 1−s,

closed along half of its (n− 1)-dimensional faces, and open on the other half of such

faces. Thus,

µn−1{h > s} = µn−1([s, 1]n)− nµn−1((s, 1)n−1) = n(1− s)n−1 − n(1− s)n−1 = 0.

Thus, the Hadwiger integrals of h with respect to µn−1 are different:∫
[0,1]n

h bdµn−1c =

∫ ∞
0

µn−1{h ≥ s} ds =

∫ ∞
0

n(1− s)n−1 ds = 1, but∫
[0,1]n

h ddµn−1e =

∫ ∞
0

µn−1{h > s} ds =

∫ ∞
0

0 ds = 0.

Having established that the lower and upper Hadwiger integrals are different, we

would like to know conditions on a functional h that guarantee the equality of its

lower and upper integrals. Note that if we modify the functional h in the above

example so that h is uniformly zero outside [0, 1]n, then h is not continuous on Rn.

However, if f is a continuous functional on Rn, then its lower and upper integrals

differ only by a minus sign.

Theorem 4.3. Let f ∈ Def(Rn) be a continuous function on Rn. Then,∫
X

f bdµkc = (−1)n+k

∫
X

f ddµke. (4.9)

Proof. The key idea is that a definable function is only constant on finitely many sets

with positive (n-dimensional) Lebesgue measure. Let on X ⊂ Rn be the support of f .
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By the o-minimal cell decomposition theorem [43], X can be partitioned into finitely

many cells, such that f is either constant or affine on each cell. Only if f is constant

(say, f = s) on a cell C ⊂ X with positive Lebesgue measure can it be the case that

Int{f ≥ s} 6= {f > s} or Int{f ≤ −s} 6= {f < −s}.

That is, for all but finitely many s ∈ [0,∞), Int{f ≥ s} = {f > s} and Int{f ≤

−s} = {f < −s}. Theorem 2.4 then says that

µk{f ≥ s} = (−1)n+kµk{f > s} and µk{f < −s} = (−1)n+kµk{f ≤ −s}

for all but finitely s ∈ [0,∞). Thus,

∫
X

f bdµkc =

∫ ∞
0

µk{f ≥ s} − µk{f < −s} ds

= (−1)n+k

∫ ∞
0

µk{f > s} − µk{f ≤ −s} ds = (−1)n+k

∫
X

f ddµke,

which is equation (4.9).

We have an analog of the inclusion-exclusion property for real-valued Hadwiger

integrals:

Theorem 4.4. Let f ∨ g and f ∧ g denote the (pointwise) maximum and minimum,

respectively, of functions f and g in Def(Rn). Then:∫
Rn

f ∨ g bdµkc+

∫
Rn

f ∧ g bdµkc =

∫
Rn

f bdµkc+

∫
Rn

g bdµkc (4.10)

and similarly for the upper integral.

Proof. Since f and g are definable, so are the sets {f ≥ g} and {f < g}. We can

partition the domain Rn into these two sets. The proof then amounts to rewriting
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and recombining the integrals:

∫
Rn

f ∨ g bdµkc+

∫
Rn

f ∧ g bdµkc

=

∫
{f≥g}

f bdµkc+

∫
{f<g}

g bdµkc+

∫
{f≥g}

g bdµkc+

∫
{f<g}

f bdµkc

=

∫
Rn

f bdµkc+

∫
Rn

g bdµkc,

which is equation (4.10).

An alternate proof of Theorem 4.4 involves writing the integrals in the form of

equation (4.3) and applying the inclusion-exclusion property to excursion sets {f ≥

s}, {f < −s}, {g ≥ s}, and {g < −s}.

Theorem 4.5. For h ∈ Def(Rn), we can write the Hadwiger integrals as limits of

Lebesgue integrals as follows:

∫
Rn

h bdµkc = lim
ε→0+

1

ε

∫ ∞
−∞

s µk{s ≤ h < s+ ε} ds, and (4.11)∫
Rn

h ddµke = lim
ε→0+

1

ε

∫ ∞
−∞

s µk{s < h ≤ s+ ε} ds. (4.12)

Proof. We will prove the lower integral. The proof for the upper integral is analogous.

First,

∫
Rn

h bdµkc = lim
m→∞

1

m

∫
Rn

bmhc dµk = lim
m→∞

1

m

∑
i

i µk

{
i

m
≤ h <

i

m
+

1

m

}
.

The sum above is a finite sum since h is bounded. Now let ε = 1/m. By the
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o-minimal “conic theorem” [43, Thm. 9.2.3] we can rearrange the limit to obtain:

lim
m→∞

1

m

∑
i

i µk

{
i

m
≤ h <

i

m
+

1

m

}

= lim
ε→0+

lim
m→∞

1

εm

∑
i

i

m
µk

{
i

m
≤ h <

i

m
+

1

m

}
.

Letting m→∞ and recognizing the Riemann sum,

∫
Rn

h bdµkc = lim
ε→0+

lim
m→∞

1

εm

∑
i

i

m
µk

{
i

m
≤ h <

i

m
+

1

m

}

= lim
ε→0+

1

ε

∫ ∞
−∞

s µk{s ≤ h < s+ ε} ds,

which proves equation (4.11).

4.7 Product Theorem

The Product Theorem (Theorem 2.3) extends to a theorem for integrals of con-

structible functions, but equality does not hold for definable functions in general.

Theorem 4.6. For f ∈ CF(Rm), g ∈ CF(Rn), and integer 0 ≤ k ≤ m+ n,

∫
Rm+n

fg dµk =
k∑
`=0

∫
Rm

f dµ`

∫
Rn

g dµk−` (4.13)

Proof. Since f and g are constructible, we can write

f =

p∑
i=1

ai1Ai
and g =

q∑
j=1

bj1Bj

for some p, q ∈ Z, and ai, bj ∈ R and definable sets Ai, Bj, for all i and j in the

appropriate index sets.
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By linearity of the Hadwiger integral of constructible functions,

∫
Rm+n

fg dµk =

p∑
i=1

q∑
j=1

aibj

∫
Rm+n

1Ai
1Bj

dµk.

By the Product Theorem for sets, we have

p∑
i=1

q∑
j=1

aibj

∫
Rm+n

1Ai
1Bj

dµk =

p∑
i=1

q∑
j=1

aibj

k∑
`=0

∫
Rm

1Ai
dµ`

∫
Rm

1Bj
dµk−`.

We use linearity again to bring the sums back inside the integrals, and we have

p∑
i=1

q∑
j=1

aibj

k∑
`=0

∫
Rm

1Ai
dµ`

∫
Rm

1Bj
dµk−` =

k∑
`=0

∫
Rm

f dµ`

∫
Rn

g dµk−`,

which proves the theorem.

We would like to say that equation (4.13) holds for definable functionals in general,

but this is not so. In general, the product of two definable functions has excursion

sets that are not rectangles. The Product Theorem fails on such sets, which breaks

the equality of equation (4.13).

For a simple example, let f(x) = x and g(y) = y, each defined on the interval

[0, 1]. Then the excursion sets of fg = xy are convex but not squares, and a simple

numerical estimation shows that

∫
[0,1]×[0,1]

fg bdµ1c < 0.8.

On the other hand,
1∑
`=0

∫
[0,1]

f bdµ`c
∫

[0,1]

g bdµ1−`c = 1.
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Of course, equality does hold for the Euler and Lebesgue cases. For f ∈ Def(Rm)

and g ∈ Def(Rn),

∫
Rm+n

fg bdχc =

∫
Rm

f bdχc
∫
Rn

g bdχc and∫
Rm+n

fg dx dy =

∫
Rm

f dx

∫
Rn

g dy.

The Euler result is due to index theory, and the Lebesgue result is the Fubini Theorem

of calculus.
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Chapter 5

Hadwiger’s Theorem for

Functionals

This chapter is the core of the thesis. With the theory of Hadwiger integration, we

are now able to generalize Hadwiger’s Theorem, “lifting” the theorem from sets to

functionals over sets. Recall Hadwiger’s Theorem from Section 2.3:

Hadwiger’s Theorem. Any Euclidean-invariant, continuous, additive valuation v

on convex subsets of Rn is a linear combination of the intrinsic volumes:

v(A) =
n∑
k=0

ckµk(A)

for some constants ck ∈ R. If v is homogeneous of degree k, then v = ckµk.

Note that the valuations classified in Hadwiger’s Theorem are only continuous on

the class of convex subsets. As previously mentioned, the intrinsic volumes are not
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continuous for definable sets in general with respect to the Hausdorff metric. Thus,

we first define appropriate topologies on Def(Rn), and then we offer a classification

theorem for valuations on functionals.

5.1 General Valuations on Functionals

Definition 5.1. A valuation on Def(Rn) is an additive map v : Def(Rn) → R. The

additive condition means that v(f ∨g)+v(f ∧g) = v(f)+v(g) for any f, g ∈ Def(Rn),

with ∨ and ∧ denoting the (pointwise) maximum and minimum, respectively, of f

and g. So that the valuation is independent of the support of a function, we require

that v(0) = 0, where 0 is the zero function.

Valuation v is Euclidean invariant if v(f) = v(f ◦ φ) for any f ∈ Def(Rn) and

any Euclidean motion φ on Rn. We will define topologies on Def(Rn) so that the

valuation can be continuous as a map between topological spaces, with the standard

topology on R.

The additivity condition can be alternately stated as follows:

Proposition 5.1. Let v be an additive valuation on Def(Rn), so

v(f ∨ g) + v(f ∧ g) = v(f) + v(g), (5.1)

and v(0) = 0. This is the case if and only if

v(f) = v(f · 1A) + v(f · 1Ac) (5.2)

for all definable subsets A of Rn, where Ac denotes the complement of A.
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Proof. If v satisfies equation (5.1), then for any definable function f : Rn → R+ and

any definable set A,

v(f · 1A) + v(f · 1Ac) = v(f · 1A ∨ f · 1Ac) + v(f · 1A ∧ f · 1Ac) = v(f) + v(0) = v(f).

Thus, v satisfies equation (5.2).

To prove the other direction, assume v satisfies equation (5.2). Let f, g ∈ Def(Rn).

Let A = {x ∈ Rn | f(x) ≥ g(x)}. Since f and g are definable functions, A is a

definable set. Then,

v(f) + v(g) = v(f · 1A) + v(f · 1Ac) + v(g · 1A) + v(g · 1Ac)

= v((f ∨ g) · 1A) + v((f ∧ g) · 1Ac) + v((f ∧ g) · 1A) + v((f ∨ g) · 1Ac)

= v(f ∨ g) + v(f ∧ g),

so v also satisfies equation (5.1).

By induction on Proposition 5.1, an additive valuation v has the property that

v(f) =
∑
i

v(f · 1Ai
),

where {Ai}i∈Z is any finite collection of disjoint definable subsets of Rn whose union

is Rn.

In order to discuss continuous valuations, we need an appropriate topology on

Def(Rn). This topology ought to have the property that any open set containing

r · 1A contains (r + ε) · 1A for small enough ε. Also, if definable sets A and B are

close in the flat topology, then v(r ·1A) should be close to v(r ·1B) for any continuous
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valuation v. With such a topology, the notion of a continuous valuation on Def(Rn)

properly extends the notion of a continuous valuation on definable subsets of Rn.

We present two useful topologies with these properties. Recall that | · |[ denotes

flat norm on currents, defined in equation (3.1).

Definition 5.2. Let f, g,∈ Def(Rn). The lower and upper flat metrics on definable

functions, denoted d[ and d[, respectively, are defined as follows:

d[(f, g) =

∫ ∞
−∞

∣∣C{f≥s} −C{g≥s}
∣∣
[
ds and (5.3)

d[(f, g) =

∫ ∞
−∞

∣∣C{f>s} −C{g>s}
∣∣
[
ds. (5.4)

The topologies induced by the lower and upper flat metrics are the lower and upper

flat topologies on definable functions.

Note that the integrals in equations (5.3) and (5.4) may also be written with finite

bounds, as it suffices to integrate between the minimum and maximum values of f

and g. These metrics extend the flat metric on definable sets, for they reduce to

equation (3.4) when f and g are characteristic functions.

Theorem 5.1. The lower and upper Hadwiger integrals are continuous in the lower

and upper flat topology on definable functions, respectively.

Proof. The proof follows from Theorem 3.2. Let f, g ∈ Def(Rn), supported on X ⊂

Rn.
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For lower Hadwiger integrals:

∣∣∣∣∫ fbdµkc −
∫
gbdµkc

∣∣∣∣ =

∣∣∣∣∫ ∞
0

(µk{f ≥ s} − µk{g ≥ s}) ds
∣∣∣∣

≤
∫ ∞

0

∣∣C{f≥s} −C{g≥s}
∣∣
[
·max

{
sup
x∈X
|Wn,k(x)|, sup

x∈X
|dWn,k(x)|

}
ds

= d[(f, g) ·max

{
sup
x∈X
|Wn,k(x)|, sup

x∈X
|dWn,k(x)|

}

The inequality above is due to equation (3.6). By finiteness (o-minimality), Wn,k(x)

and dWn,k(x) are bounded for x ∈ X. Thus, if f and g are close in the lower flat

topology, then their lower Hadwiger integrals are also close.

The proof for the upper integrals is analogous.

It would be convenient for classifying valuations if the lower and upper flat topolo-

gies were in fact the same. Unfortunately, this is not the case.

Theorem 5.2. The lower and upper flat topologies on definable functions are different

topologies.

Proof. It suffices to find a sequence of functions that converge to a different limit in

the lower and upper flat topologies.

Consider the linear function f : R→ R, linear on a closed interval, as depicted in

Figure 5.1(a). For m > 0, let gm = 1
m
bmfc, the lower step function of f with step size

1
m

. As m→∞, gm → f in the lower flat topology. This is because, for general s > 0,

the difference in upper excursion sets {f ≥ s} and {gm ≥ s} is a half-open interval,

as illustrated in Figure 5.1(b). As m → ∞, the length of this interval decreases to
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(a) A function f : R→ R and a sample lower step function gm:

y

x

f
y

x

gm = 1
m
⌊mf⌋

(b) Sample upper excursion sets of f and gm, and the conormal cycle of their

difference:

{f ≥ s}

{gm ≥ s}

{f ≥ s} − {gm ≥ s}

S1

R
C{f≥s}−{gm≥s}

(c) Sample strict upper excursion sets of f and gm, and the conormal cycle of their

difference:

{f > s}

{gm > s}

{f > s} − {gm > s}

S1

R
C{f>s}−{gm>s}

Figure 5.1: Illustrations of functions, excursion sets, and conormal cycles for the

proof of Theorem 5.2.
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zero. The current C{f≥s}−{gm≥s}, represented by the dark path in Figure 5.1(b), is

bounded in flat norm by a constant multiple of the area of the blue region. That is,∣∣C{f≥s}−{gm≥s}∣∣
[
≤ cm for some constant c. Therefore,

lim
m→∞

d[(f, gm) = lim
n→∞

∫ ∞
−∞

∣∣C{f≥s}−{gm≥s}∣∣
[
ds ≤ lim

m→∞
cm = 0,

so gm converges to f in the lower flat topology.

However, the sequence gm does not converge to f in the upper flat topology For

general s > 0, the difference in strict excursion sets {f > s} and {gm > s} is a closed

interval, illustrated in Figure 5.1(c). The flat norm of the current C{f>s}−{gm>s}

is bounded from below by the length of S1, which implies that d[(f, gm) does not

approach zero.

Dually, the sequence of upper step functions hm = 1
m
dmfe converges to f in the

upper flat topology, but not in the lower flat topology. The reasoning is analogous to

that for the lower step functions, with similar pictures to those in Figure 5.1.

For functions f , gm, and hm as in the proof of Theorem 5.2, the lower Euler

integrals of gm and f agree, but the upper Euler integrals do not. In general, upper

Hadwiger integrals are not continuous in the lower flat topology. Likewise, the upper

Euler integrals of hm and f agree, but the lower Euler integrals do not, for lower

Hadwiger integrals are generally not continuous in the upper flat topology.

The two topologies provide a means of classifying general valuations on function-

als, by the following definition.
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Definition 5.3. Let v : Def(Rn)→ R be a valuation. We say v is a lower valuation

if v is continuous in the lower flat topology. Likewise, we say v is an upper valuation

if v is continuous in the upper flat topology.

Not surprisingly, lower and upper Hadwiger integrals are lower and upper val-

uations, respectively (Theorem 5.1). Lebesgue integrals are both lower and upper

valuations. Indeed, we will see in Section 5.2 that Lebesgue integrals are the only

valuations that are both lower and upper.

5.2 Classification of Valuations

We now turn to the problem of classifying an arbitrary valuation v : Def(Rn) → R

in terms of Hadwiger integrals. For constructible functions, the classification is a

straightforward application of Hadwiger’s Theorem.

Lemma 5.1. If v : CF(Rn) → R is a valuation on constructible functions, then v is

a linear combination of constructible Hadwiger integrals. That is, for h ∈ CF(Rn),

v(h) =
n∑
k=0

∫
Rn

ck(h) dµk.

for some coefficient functions ck : R→ R with ck(0) = 0.

Proof. For a characteristic function, the situation is simple. Let h = r · 1A for r ∈ Z

and a definable subset A of Rn. Hadwiger’s Theorem for sets implies that

v(r · 1A) =
n∑
k=0

ck(r)µk(A), (5.5)
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where ck(r) are constants that depend only on v, not on A.

Now suppose h is a finite sum of characteristic functions of disjoint definable

subsets A1, . . . , Am of Rn:

h =
m∑
i=1

ri1Ai

for some integer constants r1 < r2 < · · · < rm. By equation (5.5) and additivity,

v(h) =
n∑
k=0

m∑
i=1

ck(ri)µk(Ai). (5.6)

We can rewrite equation (5.6) in terms of excursion sets of h. Let Bi =
⋃
j≥iAj.

That is, Bi = {h ≥ ri} and Bi = {h > ri−1}. Then the valuation v(h) can be

expressed as:

v(h) =
n∑
k=0

m∑
i=1

(ck(ri)− ck(ri−1))µk(Bi), (5.7)

where ck(r0) = 0. Thus, a valuation of a constructible function can be expressed as

a sum of finite differences of valuations of its excursion sets. Equivalently, equation

(5.7) can be written in terms of constructible Hadwiger integrals:

v(h) =
n∑
k=0

∫
Rn

ck(h) dµk. (5.8)

Since we require that a valuation of the zero function is zero, it must be that ck(0) = 0

for all k.

In fact, Lemma 5.1 holds for functions of the form h =
∑m

i=1 ri1Ai
where the

ri ∈ R are not necessarily integers and the Ai are definable sets.
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h

1
m
⌈mh⌉

c(h)

1
m
⌊mc(h)⌋

Figure 5.2: An upper step function of h, depicted at left, composed with a decreasing

function c, becomes a lower step function of c(h), depicted at right. As the step size

approaches zero, we obtain Proposition 5.2.

In writing an arbitrary valuation on definable functionals as a sum of Hadwiger in-

tegrals, the situation becomes complicated if the coefficient functions ck are decreasing

on any interval. The following proposition illustrates the difficulty:

Proposition 5.2. Let c : R→ R be a continuous, strictly decreasing function. Then,

lim
m→∞

∫
Rn

c

(
1

m
dmhe

)
dµk = lim

m→∞

∫
Rn

1

m
bmc(h)c dµk. (5.9)

Proof. The intuition is that both sides of the equality are the same limits of step

functions, as illustrated in Figure 5.2.

On the left side of equation (5.9), we integrate c composed with upper step func-

tions of h: ∫
Rn

c

(
1

m
dmhe

)
dµk =

∑
i∈Z

c
(
i
m

)
· µk

{
i−1
m
< h ≤ i

m

}
On the right side of equation (5.9), we integrate lower step functions of the com-
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position c(h):

∫
Rn

1

m
bmc(h)c dµk =

∑
t∈Z

t
m
· µk

{
t
m
≤ c(h) < t+1

m

}
Since c is strictly decreasing, c−1 exists. There exists a discrete set

S =
{
c−1
(
t
m

) ∣∣ t ∈ Z
}
∩ {neighborhood around range of h}.

We can then rewrite the above sum as:

∫
Rn

1

m
bmc(h)c dµk =

∑
s∈S

c(s) · µk{c(s) ≤ c(h) < c(s− ε)}

=
∑
s∈S

c(s) · µk{s− ε < h ≤ s},

where ε→ 0 as m→∞ by continuity of c.

In the limit, both sides are equal:

lim
ε→0

∑
s∈S

c(s) · µk{s− ε < h ≤ s}} = lim
m→∞

∑
i∈Z

c
(
i
m

)
· µk

{
i−1
m
< h ≤ i

m

}
which proves Proposition 5.2.

Proposition 5.2 implies that if c : R → R is increasing on some interval and

decreasing on another, then the maps v, u : Def(Rn)→ R defined

v(h) =

∫
Rn

c(h)bdµkc and u(h) =

∫
Rn

c(h)ddµke

are not continuous in either the lower or the upper flat topology.

Lemma 5.1 and Proposition 5.2 allow us further to generalize Hadwiger’s Theorem

to express lower and upper valuations in terms of Hadwiger integrals.
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Theorem 5.3. Any lower valuation v on Def(Rn) can be written as a linear combi-

nation of lower Hadwiger integrals. For h ∈ Def(Rn),

v(h) =
n∑
k=0

∫
Rn

ck(h) bdµkc, (5.10)

where the ck : R→ R are increasing functions with ck(0) = 0.

Likewise, an upper valuation v on Def(Rn) can be written as a linear combination

of upper Hadwiger integrals.

Proof. Let v : Def(Rn)→ R be a lower valuation, and h ∈ Def(Rn).

First approximate h by lower step functions. That is, for m > 0, let hm = 1
m
bmhc.

In the lower flat topology, limm→∞ hm = h.

On each of these step functions, Lemma 5.1 implies that v is a linear combination

of Hadwiger integrals:

v(hm) =
n∑
k=0

∫
Rn

ck(hm) dµk. (5.11)

for some ck : R → R with ck(0) = 0, depending only on v and not on m. By

Proposition 5.2, the ck must be increasing functions since we are approximating h

with lower step functions in the lower flat topology.

We can alternately express equation (5.11) as

v(hm) =
n∑
k=0

∫
Rn

ck(hm) bdµkc, (5.12)

where we choose lower rather than upper integrals since v is continuous in the lower

flat topology. Continuity of v, and convergence of hm to h, in the lower flat topology
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imply that v(hm) converges to v(h) as h→∞. More specifically,

v(h) = lim
m→∞

v (hm) =
n∑
k=0

lim
m→∞

∫
Rn

ck (hm) bdµkc. (5.13)

By continuity of the lower Hadwiger integrals and the ck, equation (5.13) becomes

v(h) =
n∑
k=0

∫
Rn

ck

(
lim
m→∞

hm

)
bdµkc =

n∑
k=0

∫
Rn

ck(h) bdµkc. (5.14)

Thus, v(h) is a linear combination of lower Hadwiger integrals.

The proof for the upper valuation is analogous.

We can now prove a statement from Section 5.1, that only Lebesgue integrals are

both lower and upper valuations.

Corollary 5.1. If v : Def(Rn)→ R is both a lower valuation and an upper valuation,

then v is Lebesgue integration.

Proof. Since v is both a lower and upper valuation, we have

v(h) =
n∑
k=0

∫
Rn

ck(h) bdµkc =
n∑
k=0

∫
Rn

ck(h) ddµke

for some functions ck and ck.

Let A0 be a point. By evaluating v on test functions of the form h = r · 1A0 , we

find that c0(r) = c0(r) for any r, and thus c0 = c0. Now let A1 be a line segment.

Evaluating v on test functions h = r · 1A1 , we find that

c0(r)µ0(A1) + c1(r)µ1(A1) = c0(r)µ0(A1) + c1(r)µ1(A1).
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Since c0 = c0, it follows that c1 = c1. By induction on k, we have ck = ck for all

k = 0, 1, . . . , n.

From Section 4.6, we know that lower and upper Hadwiger integrals with respect

to µk are not the same on Def(Rn) for k = 0, 1, . . . , n−1. This implies that ck = ck = 0

for k = 0, 1, . . . , n− 1. Since all excursion sets of functions h ∈ Def(Rn) are no larger

than n-dimensional, the lower and upper Hadwiger integrals with respect to µn are

in fact Lebesgue integrals, and so they are equal.

Therefore,

v(h) =

∫
Rn

c(h) dL

for some continuous function c : R → R, and with dL = bdµnc = ddµne denoting

Lebesgue measure.

Thus, we have a dual generalization of Hadwiger’s Theorem, classifying lower and

upper valuations in terms of lower and upper Hadwiger integrals. It remains to be

seen if, perhaps, there is a topology on Def(Rn) that would allow us to combine the

dual statements of Theorem 5.3. In particular, we would like a topology that allows

any Euclidean-invariant valuation v on Def(Rn) to be written in the form

v(h) =
n∑
k=0

(∫
Rn

ck(h) bdµkc+

∫
Rn

ck(h) ddµke
)

for some continuous functions ck, ck : R → R. The union of lower and upper flat

topologies does not seem to be a reasonable choice, because it enlarges the set of

continuous valuations on Def(Rn) by too much.
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Figure 5.3: Functions f and g have congruent upper excursion sets {f ≥ s} and

{g ≥ s}, but not congruent strict excursion sets {f > s} and {g > s}. Functions f

and h have congruent strict excursion sets, but not congruent excursion sets.

5.3 Cavalieri’s Principle

Euclidean invariance implies a sort of Cavalieri’s principle for valuations: a valuation

v cannot distinguish between two functions that have congruent excursion sets at

each height s in their range. Functions f and g have congruent upper excursion sets

if for any s ∈ R, {f ≥ s} ∼= {g ≥ s} as subsets of the domain. Also, f and g have

congruent strict upper excursion sets if {f > s} ∼= {g > s}. Note that f and g may

have congruent excursion sets without having congruent strict excursion sets, and

vice-versa, as illustrated in Figure 5.3.

Proposition 5.3 (Cavalieri’s Principle). Let v be a lower valuation on Def(Rn), let u

be an upper valuation on Def(Rn), and let f, g ∈ Def(Rn). If f and g have congruent

upper excursion sets {f ≥ s} ∼= {g ≥ s} for all s ∈ R, then v(f) = v(g). Likewise, if

f and g have congruent strict upper excursion sets {f > s} ∼= {g > s} for all s ∈ R,

then u(f) = u(g).
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Proof. The proposition follows directly from Theorem 5.3 and the fact that the lower

and upper Hadwiger integrals can be expressed in terms of excursion sets, as in

equation (4.3).
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Chapter 6

Integral Transforms

Applications of integration often make use of integral transforms such as convolution

and the Bessel (or Hankel) and Fourier transforms. Convolution with respect to Euler

integration has intriguing connections to the Steiner formula. Ghrist and Robinson

have examined topological versions of the Bessel and Fourier transforms in [22]. These

transforms can be extended to Hadwiger integrals, and should prove useful in signal

processing and other applications.

6.1 The Steiner Formula and Convolution

For subsets K and J of Rn, the Minkowski sum (or vector sum) is the set

K + J = {x+ y | x ∈ K, y ∈ J}.
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ǫ

K

K + ǫBn

Figure 6.1: The ε-tube K + εBn around a compact convex subset K.

If K is closed and J = Bn, the closed n-dimensional unit ball, then the Minkowski

sum K +Bn consists of all the points whose distance from K is not greater than ε:

K + εBn = {x | d(x,K) ≤ ε},

which is also known as the ε-tube around K. An ε-tube around a compact convex

subset K is illustrated in Figure 6.1

The Steiner Formula is commonly used to express the volume of an ε-tube around

a compact convex subset as a polynomial in ε, whose coefficients involve the intrinsic

volumes [32, 35, 36, 40, 41].

Theorem 6.1 (Steiner Formula). For compact convex K ⊂ Rn and ε > 0,

µn(K + εBn) =
n∑
j=0

εn−jωn−jµj(K).

When written in terms of characteristic functions, the Steiner Formula is really

a statement about convolution. Though denoted with the customary ∗ symbol, here
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1K ∗ 1B2

K K +B2

Figure 6.2: Let K be the half-open segment at left. The convolution function

1K ∗1B2 has value one on the (non-compact) blue region and zero elsewhere. It is not

the characteristic function of the Minkowski sum K +B2, which is depicted in green

at right.

we take the convolution integral to be an Euler integral:

Definition 6.1. The Euler convolution of f, g ∈ CF(Rn) is denoted f ∗ g and is

defined

(f ∗ g)(x) =

∫
f(y)g(x− y) dχ(y). (6.1)

If we convolve the characteristic function of a compact convex set K ⊂ Rn with

the characteristic function of the closed n-ball of radius ε, we obtain the characteristic

function of the ε-tube about K:

(1K ∗ 1εBn)(x) =

∫
Rn

1K(y)1εBn(x− y) dχ(y) = 1K+εBn(x). (6.2)

If K is not compact, then equation (6.2) might not hold. Consider the half-open

segment depicted in Figure 6.2. If K is this segment, then the convolution 1K ∗ 1B2

is not 1K+B2 .

Alternately, if K is not convex, then equation (6.2) might not hold. For example,

if K is a set of two points and d is the distance between the points, then for any
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1

1
2

ǫd

Figure 6.3: If K consists of two points, distance d apart, and ε > d
2
, then the

convolution 1K ∗ 1εB2 , depicted in blue, is not the characteristic function of any set,

for it attains the value two.

ε > d
2

the convolution 1K ∗ 1εBn is not a characteristic function at all, for it attains

the value 2, as shown in Figure 6.3.

The concept of reach is helpful for understanding this phenomenon. Put simply,

the reach of a subset K is the supremum of all distances r such that every point in

the tube around A of radius r has a unique orthogonal projection onto A [15, 32].

The reach of a convex set is infinity since every point has a unique projection onto a

convex set. The reach of the two-point set K of Figure 6.3 is d
2
. See Figure 6.4 for

an example of a set with positive reach and a set with no reach.

Now we can formally connect convolution of characteristic functions and the

Minkowski sum for a compact set K of positive reach and the closed ε-ball.

Proposition 6.1. Let K ⊂ Rn be a subset with reach r. For any 0 ≤ ε < r, we have

(1K ∗ 1εBn)(x) =

∫
Rn

1K(y)1εBn(x− y) dχ(y) = 1K+εBn(x). (6.3)
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r
J

K

Figure 6.4: The set J has reach r (the radius of the curve) since every point within r

of J has a unique orthogonal projection onto J . The set K has reach 0 because points

arbitrarily close to K (on the blue dotted line) have no unique orthogonal projection

onto K.

Proof. Each of the three functions of equation (6.3) evaluates to 1 if x is within ε of

K, and 0 otherwise.

The Steiner Formula holds for closed subsets of positive reach, as long as the reach

r of the subset is greater than the radius ε of the tube [15, 32]. We can generalize

the Steiner Formula to express µk(K + εBn) in terms of µ0(K), . . . , µk(K), as follows

[35].

Proposition 6.2. For K ⊂ Rn of reach r, 0 ≤ ε < r, and integer 0 ≤ k ≤ n,

µk(K + εBn) =
k∑
j=0

(
n− j
n− k

)
ωn−j
ωn−k

εk−jµj(K). (6.4)

Proof. Let 0 < ρ < r − ε. The key observation is that

K + (ε+ ρ)Bn = (K + εBn) + ρBn.

We use the Steiner Formula to write the volume of the (ε+ ρ)-tube around K in two
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equivalent ways:

µn((K + εBn) + ρBn) =
n∑
i=0

ρn−iωn−iµi(K + εBn) (6.5)

µn(K + (ε+ ρ)Bn) =
n∑
j=0

(ε+ ρ)n−jωn−jµj(K) (6.6)

Matching the coefficients of ρ in equations (6.5) and (6.6), we obtain

ωn−iµi(K + εBn) =
i∑

j=0

(
n− j
n− i

)
ωn−jε

i−jµj(K),

which is equation (6.4).

Written in terms of convolution, for K ⊂ Rn of reach r, and 0 ≤ ε < r, the Steiner

Formula becomes: ∫
Rn

1K ∗ 1εBn dµn =
n∑
j=0

εn−jωn−j

∫
Rn

1K dµj, (6.7)

or more generally,∫
Rn

1K ∗ 1εBn dµk =
k∑
j=0

εk−j
(
n− j
n− k

)
ωn−j
ωn−k

∫
Rn

1K dµj. (6.8)

Proposition 6.1 and the Steiner Formula extend naturally to some constructible

functions, by linearity of the integrals.

Proposition 6.3. Suppose f ∈ CF(Rn) is such that f =
∑

i ci1Ai
for some compact

sets Ai, uniformly with reach at least some r > 0. Then for 0 ≤ ε < r and integer

0 ≤ k ≤ n,

f ∗ 1εBn =
∑
i

ci1Ai+εBn , and (6.9)

∫
Rn

f ∗ 1εBn dµk =
k∑
j=0

εk−j
(
n− j
n− k

)
ωn−j
ωn−k

∑
i

ci

∫
Rn

1Ai
dµj. (6.10)
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Proof. Since f =
∑

i ci1Ai
is constructible, the sum over i is a finite sum. Equation

(6.9) then follows from equation (6.3) applied to each level set Ai:

f ∗ 1εBn =
∑
i

ci1Ai
∗ 1εBn =

∑
i

ci

∫
Rn

1Ai
1εBn dχ =

∑
i

ci1Ai+εBn .

Likewise, from equation (6.1) and linearity of the integral:

∫
Rn

f ∗ 1εBn dµk =
∑
i

ci

∫
Rn

1Ai
∗ 1εBn dµk

=
k∑
j=0

εk−j
(
n− j
n− k

)
ωn−j
ωn−k

∑
i

ci

∫
Rn

1Ai
dµj,

which is equation (6.10).

Since Euler characteristic is integer-valued, the Euler convolution of two con-

structible functions is another constructible function. Bröcker shows that with con-

volution as a product and addition as usual, the constructible functions form a com-

mutative ring with unit [9]. The unit is the characteristic function of the origin,

10.

We desire to extend convolution results to definable functions. Indeed, we may

convolve two definable functions, with the convolution integral as any of the definable

Hadwiger integrals.

Definition 6.2. The lower and upper Hadwiger convolution of f, g ∈ Def(Rn) are

(f ∗
k
g)(x) =

∫
f(y)g(x− y) bdµk(y)c and

(f
k∗ g)(x) =

∫
f(y)g(x− y) ddµk(y)e.
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Note that when k = 0 and f, g ∈ CF(Rn), the convolutions in Definition 6.2 reduce

to the Euler convolution previously discussed. The following theorem provides some

insight into Euler convolution of definable functions. See Figure 6.5 for an illustration.

Theorem 6.2. Let r > 0 and f ∈ Def(Rn) be a nonnegative function such that each

upper excursion set is compact and has reach at least r. Then for 0 < ε < r, each

upper excursion set of f ∗
0

1εBn is the ε-tube of the corresponding excursion set of f .

Proof. Fix s > 0, and let K = {f ≥ s}.

By assumption, K has reach at least r. Let 0 < ε < r.

For x ∈ Rn, εBn(x) intersects K if and only if x is within ε of K. Since ε < r and

K ∩ εBn(x) is closed, we have χ(K ∩ εBn(x)) = 1 if x ∈ K + εBn and zero otherwise.

So
(
f ∗

0
1εBn

)
(x) ≥ s if and only if x ∈ K + εBn. That is,

{
f ∗

0
1εBn ≥ s

}
= {f ≥ s}+ εBn.

The dual statement to Theorem 6.2 is: If f ∈ Def(Rn) is such that the complement

of each upper excursion set has reach at least r, then for 0 < ε < r the upper excursion

sets of f
0∗1εBn are the erosions by ε of the corresponding excursion sets of f . Here the

erosion by ε of a set K means the set of points whose distance from the complement

of K is at least ε.

By the Fubini theorem, Hadwiger convolution of constructible functionals f and

g satisfies ∫
f ∗
k
g dµk =

∫
f dµk

∫
g dµk =

∫
f
k∗ g dµk.
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Figure 6.5: Lower Euler convolution of a definable function f with the characteristic

function of the 1-ball of radius ε, as described in Theorem 6.2.

Since the Fubini theorem does not hold for Hadwiger integrals of definable functionals,

it is not known whether a similar identity holds in the definable setting. The topic

of Hadwiger convolution provides ample opportunities for further investigation of

theorems and applications.

6.2 Fourier Transform

The basic idea of Hadwiger analogs of the Fourier and Bessel transforms is to first

integrate with respect to an intrinsic volume on each member of a family of isospectral

sets, then integrate with respect to Lebesgue measure the values obtained over all the

isospectral sets. The use of Hadwiger integrals means that these transforms are not

purely topological, as in the Euler case, but provide some notion of the geometry of

functions over sets.
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The Hadwiger generalization of the Fourier transform involves isospectral sets that

are parallel hyperplanes orthogonal to some covector ξ in (Rn)∗, the dual space of Rn.

Definition 6.3. Let h ∈ Def(Rn) and ξ ∈ (Rn)∗. Then ξ−1(s) is the (n − 1)-

dimensional hyperplane orthogonal to ξ at distance s from some fixed point. Let

k ∈ {0, 1, . . . , n − 1}. Define the lower and upper Hadwiger-Fourier transforms,

respectively, of h with respect to µk, in the direction of ξ:

Fkh(ξ) =

∫ ∞
−∞

∫
ξ−1(s)

h bdµkc ds, (6.11)

Fkh(ξ) =

∫ ∞
−∞

∫
ξ−1(s)

h ddµke ds. (6.12)

For k < n, the Hadwiger-Fourier transform with respect to µk of the characteristic

function of a set A gives a directed notion of the (k + 1)-dimensional size of A. The

Hadwiger integral is gives a k-dimensional notion of size, and the Lebesgue integral

incorporates one more dimension. The following examples illustrate this concept.

Example. If A is a compact convex subset of Rn, then the Euler characteristic of any

nonempty slice is 1. Thus, for any ‖ξ‖ = 1, the transform (F01A)(ξ) equals the length

of the projection of A onto the ξ axis.

Example. Let A be a definable subset of Rn. For any ‖ξ‖ = 1, the transform

(Fn−11A)(ξ) integrates the (n − 1)-dimensional volumes of cross-sections of A or-

thogonal to the ξ-axis. Thus, (Fn−11A)(ξ) equals the n-dimensional volume of A.

More generally, the Hadwiger-Fourier transform of a functional h ∈ Def(Rn) can

be thought of as a directed valuation of h. The transform (Fkf)(ξ) provides a notion
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of the (k + 1)-dimensional size of h in the direction of ξ.

6.3 Bessel Transform

Also known as the Hankel transform, the Bessel transform employs isospectral sets

consisting of points equidistant from a fixed point. For the usual Euclidean norm on

Rn, these sets are concentric spheres. Use of a different norm results in isospectral

sets with different geometry, which may be useful in signal processing.

Definition 6.4. Let h ∈ Def(Rn). Let Sr(x) = {y | ‖y − x‖ = r}, which for the

Euclidean norm denotes the sphere of radius r centered at x. Let k ∈ {0, 1, . . . , n−1}.

Define the lower and upper Hadwiger-Bessel transforms, respetively, of h with respect

to µk:

Bkh(x) =

∫ ∞
0

∫
Sr(x)

h bdµkc dr, (6.13)

Bkh(x) =

∫ ∞
0

∫
Sr(x)

h ddµke dr. (6.14)

As the sample point of the Hadwiger-Bessel transform moves far from the origin

along a fixed ray, the transform converges to the Hadwiger-Fourier transform along

the ray’s direction. Since any h ∈ Def(Rn) has compact support, the intersection

of concentric spheres with the support of h converge to parallel hyperplanes as the

radius increases towards infinity. That is, for nonzero x ∈ Rn with dual covector x∗,

lim
λ→∞

(Bkh)(λx) = (Fkh)

(
x∗

‖x∗‖

)
,
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and similarly for the upper transforms.

In the context of sensor networks, the Hadwiger-Bessel transform with respect to

µ0 (also known as the Euler-Bessel transform) is useful for target localization [22]. If

a functional h(x) counts the number of targets at each point x in the domain, the

Euler-Bessel transform highlights the centers of the targets. Likewise, in this situation

the Hadwiger-Bessel transforms could offer information about the size and shape of

the targets.

Ghrist and Robinson provide index-theoretic interpretations of the Euler-Fourier

and Euler-Bessel transformations [22]. Since computation of Hadwiger integrals can-

not be reduced to the critical points of a functional, such index-theoretic results seem

elusive for the transforms described above.
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Chapter 7

Convergence

Understanding the convergence of Hadwiger integrals of a sequence of functionals is

tricky business, since pointwise convergence of functionals is not enough to guarantee

convergence of their integrals. For example, a functional f may have values close

to zero, but lots of tiny oscillations in f will make
∫
f bdχc arbitrarily large. If f

is smooth, then lots of tiny oscillations will cause its derivatives to be very large.

In this chapter, we explore ideas related to convergence and estimation of Hadwiger

integrals.

7.1 Explanation of the Difficulty

Often, applications present an unknown functional h that we can sample at discrete

points, constructing an approximate functional by affine interpolations between sam-

ple points. We will call such an approximation a triangulated approximation. By
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sampling greater numbers of points and refining the triangulation, we can produce

a sequence of approximations h1, h2, . . . such that successive approximations more

closely match the functional h. However, even if the approximations converge point-

wise to h, it might not be the case that
∫
hi bdµkc converges to

∫
h bdµkc as i increases

to infinity. For an example of this (unexpected) behavior, we refer to the following

example by Baryshnikov:

Example. Let h : [0, 1]2 → R be defined h(x, y) = −2
∣∣x− 1

2

∣∣ + 1. Intuitively, the

graph of h looks like a tent, with minimum value h = 0 along x = 0 and x = 1, and

maximum value h = 1 along x = 1
2
, as illustrated in Figure 7.1. The Euler integral∫

h bdχc evaluates to 1.

By carefully choosing the sample points used to create the triangulated approx-

imations hi, we can cause the Euler integrals of the hi to diverge to infinity as we

refine the approximations. Specifically, refinements of the approximation may possess

increasingly many peaks and valleys along the maximum ridge of h, as illustrated in

Figure 7.1. Even if the hi converge pointwise to h, the Euler integrals
∫
hi bdχc may

increase without bound.

The above example is similar to the Lantern of Schwarz, a sequence of triangulated

surfaces that converge in the Hausdorff topology to a cylinder, whose areas do not

converge to the area of the cylinder [32].

In this chapter, we discuss several ideas that provide conditions on a sequence

of functions h1, h2, . . . converging to h, to guarantee that the Hadwiger integrals
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Figure 7.1: Above, the graph of h : [0, 1]2 → R, defined h(x, y) = −2
∣∣x− 1

2

∣∣ + 1.

Below are two triangulated approximations of h; the approximation at right is a

refinement of that at left. The Hadwiger integrals of the approximations do not

necessarily converge to the corresponding integrals of h. Indeed, the approximations

may converge pointwise to h, but their Euler integrals may increase toward infinity.
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∫
hi bdµkc converge to

∫
h bdµkc as i increases.

7.2 Convergence by Bounding Derivatives

Suppose f is a definable function with compact support. If we have a bound on enough

derivatives of f , then we can also bound the Hadwiger integrals of f , proportional to

the area of the support of f . We begin with a lemma:

Lemma 7.1. Let B ⊂ Rn be a n-dimensional ball of radius r, and let f ∈ Def(Rn)

be supported on B and such that its first n derivatives, Df,D2f, . . . , Dnf exist on

Rn and are bounded in operator norm by some C > 0. Then the maximum value of∫
B
f bdχc is proportional to Crn.

Proof. Since f = 0 on the boundary of B, the maximum value of
∫
f bdχc is attained

if f increases as steeply as possible from the boundary, with its absolute maximum

value at the center of B. Since the derivatives of f are bounded, this maximum

value is proportional to Crn, with constant of proportionality depending only on n.

Therefore, ∫
Rn

f bdχc ≤ knCr
n

where kn is a constant depending only on the dimension n.

The lemma leads to a similar result for Hadwiger integrals:

Theorem 7.1. Let B ⊂ Rn be a n-dimensional ball, and let f ∈ Def(Rn) be supported

on B and such that its first n−k derivatives Df,D2f, . . . , Dn−kf exist on Rn and are
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bounded in operator norm by some C > 0. Then the maximum value of
∫
B
f bdµkc

is proportional to Cµn(B).

Proof. Let P ∈ An,n−k, and let fP be the restriction of f to P So fP ∈ Def(Rn−k),

and its partial derivatives of order up to n− k are bounded by C. By Lemma 7.1,

∫
B∩P

fP bdχc ≤ knCr
n−k.

Therefore,

∫
Rn

f bdµkc =

∫
An,n−k

∫
B∩P

f bdχc dλ(P )

≤
∫
An,n−k

knCr
n−k dλ(P ) = knCr

n−k
∫
An,n−k

dλ(P )

= knCr
n−k · γ(Gn,n−k)r

k = jn,kCr
n,

where jn,k is a constant depending on n and k. Since B is an n-ball of radius r,

jn,kCr
n is proportional to Cµn(B).

Theorem 7.1 provides a convergence result:

Corollary 7.1. Let B be an n-dimensional ball in Rn, and let c1, c2, . . . be a sequence

of real numbers converging to zero. Let f1, f2, . . . be a sequence of definable functionals

supported on B, such that the first n−k derivatives of fi exist on Rn and are bounded

by ci. Then,

lim
i→∞

∫
B

fi bdµkc = 0.
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Figure 7.2: A function on a domain in R2 with bounded first and second derivatives

and maximum Euler integral can be constructed via a process of circle packing.

Proof. The proof follows immediately from Theorem 7.1:

lim
i→∞

∫
B

fi bdµkc ≤ lim
i→∞

cijn,kr
n = 0,

where r is the radius of B and jn,k is a constant as before.

The previous theorem and corollary extend to more general domains via a process

of circle packing. Suppose U is a compact, definable region in Rn. We will construct

a function f , supported on U , with the first n derivatives of f bounded in operator

norm by C. Let C1 be the largest disc inscribed in U , let C2 be the largest disc

inscribed in U\C1, let C3 be the largest disc inscribed in U\(C1 ∩ C2), and so on, as

illustrated in Figure 7.2. The union of all the Ci fills U ; that is,

lim
m→∞

m⋃
i=1

Ci = U.

Define f on each Ci to be a bump function, zero on the boundary and as large at the

center as allowed by the derivative condition. We claim that this f has the greatest
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possible Euler integral of all functions supported on U and satisfying the derivative

condition. Of course, f is not definable in general, for it may have infinitely many

discrete critical points. Many different definable functionals may be constructed with

Euler integral arbitrarily close to that of f . Similarly, we can construct functions

with maximal Hadwiger integrals on U .

Our desire is for a convergence result for the Hadwiger integrals a sequence of

functions with bounded derivatives that converge to an arbitrary (nonzero) function.

If the definable Hadwiger integrals were linear, this would be a straightforward appli-

cation of Corollary 7.1 and the circle packing idea. Unfortunately, the integrals are

not linear, and at present we have only the following conjecture.

Conjecture 7.1. Let c1, c2, . . . be a sequence of real numbers converging to zero. Let

f ∈ Def(Rn) be supported on a compact subset U of Rn. Let f1, f2, . . . be a sequence

of definable functionals supported on U , such that the first n− k derivatives of fi are

bounded by ci. Then,

lim
i→∞

∫
U

fi bdµkc =

∫
U

f bdµkc.

7.3 Integral Currents

We now turn back to the machinery of currents, which are powerful tools for proving

convergence results in integral geometry. Such convergence results generally employ

a specific type of current known as integer-multiplicity currents. For more details on

integer-multiplicity currents see Federer [16], Krantz and Parks [25], or Morvan [32].
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In order to discuss integer-multiplicity currents, we need the concept ofm-rectifiable

sets, which we think of intuitively as being almost everywhere the image of Rm under

a Lipschitz map.

Definition 7.1. Let 1 ≤ m ≤ n be integers. A set S ⊂ Rn is m-rectifiable if

S = S0

⋃( ∞⋃
j=1

Fj(Sj)

)

where Hm(S0) = 0, Sj ⊆ Rm, and Fj : Sj → Rn is a Lipschitz function.

We now define integer-multiplicity currents, which are more general than the

currents associated with submanifolds. Such a current is associated with a rectifiable

set S and possesses integer-valued multiplicity and an orientation in the tangent space

of S.

Definition 7.2. Let 1 ≤ m ≤ n be integers. Let T ∈ Ωm(U) for some open subset U

of Rn. T is an integer-multiplicity m-current if it can be written for all ω ∈ Ωm
c as

T (ω) =

∫
S

〈ω(x), ξ(x)〉θ(x)dHm(x)

where S is a Hm-measurable and m-rectifiable subset of Rn; θ is a locally Hk-

integrable, nonnegative, integer-valued function; and ξ : S → ∧
m(Rn) is an Hm-

measurable function such that, for Hm-almost every point x ∈ S, ξ(x) is a simple

unit m-vector in TxS. In this notation, we call θ the multiplicity and ξ the orienta-

tion of T . We denote the space of integer-multiplicity m-currents supported on U by

Im(U), or simply by Im if U is understood.
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The normal and conormal cycles of a definable set are examples of integer-multiplicity

currents.

We can also define the slice of an integer-multiplicity current [25]. Intuitively, a

slice of an integer-multiplicity current T ∈ Im is an current R ∈ Im−1 obtained by

intersecting T with a Lipschitz function.

The primary convergence result for integer-multiplicity currents is the compact-

ness theorem, one version of which follows:

Theorem 7.2 (Compactness Theorem for Currents). Let T be the set of integer-

multiplicity currents supported on a compact subset K of Rn such that

sup
T∈T

(M(T ) + M(∂T )) <∞

Then T is compact in the flat topology.

For a proof of the Compactness Theorem, see [16] or [25]. The Compactness

Theorem implies any sequence of currents in T has a subsequence converging to some

T ∈ T .

7.4 Convergence of Subgraphs

By expressing the Hadwiger integrals via currents, we obtain convergence results. We

employ the subgraph of a function h ∈ Def(Rn), the set of points in Rn+1 between the

domain and the graph of h. Formally, the subgraph of h is the set H ⊂ Rn+1 defined
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by:

H = {(x1, . . . , xn, xn+1) | 0 ≤ xn+1 ≤ h(x1, . . . , xn)}.

A key idea is that the convergence of conormal cycles of the subgraphs implies

convergence of the integrals:

Theorem 7.3. Let h1, h2, . . . ∈ Def(Rn) be a sequence of nonnegative functions with

subgraphs H1, H2, . . ., respectively. If the conormal cycles of the subgraphs CHi con-

verge to the conormal cycle CH of the subgraph of some function h ∈ Def(Rn), then

the Hadwiger integrals of the hi also converge to the corresponding Hadwiger integrals

of h.

Proof. Consider the slice of CHi on a level set at some height s ≥ 0. Call this slice

Ti,s ∈ In. Now Ti,s is a Lagrangian current supported on the excursion set {hi ≥ s}.

By uniqueness of the conormal cycle of a set [33], Ti,s is the conormal cycle C{hi≥s}.

Since the CHi converge to the conormal cycle CH , the slices also converge. That

is, C{hi≥s} converges to C{h≥s} as i→∞.

Therefore, by the Fubini theorem,

lim
i→∞

∫
Rn

hi bdµkc = lim
i→∞

∫ ∞
0

C{hi≥s}(Wn,k) ds

=

∫ ∞
0

lim
i→∞

C{hi≥s}(Wn,k) ds =

∫ ∞
0

C{h≥s}(Wn,k) ds =

∫
Rn

h bdµkc.
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7.5 Triangulated Approximations

With Theorem 7.3, our task simplifies to finding conditions on the sequence of func-

tions {hi}i∈N that guarantee convergence of the conormal cycles of their subgraphs. In

the case where the hi are triangulated approximations, we would like to require that

the simplicies in the triangulation are “fat,” that is, they do not approach degeneracy

as the triangulation is refined. For instance, we want to require that triangles have a

large area relative to the lengths of their sides. Fu and Morvan quantify this concept

as fatness in [18] and [32], respectively.

Definition 7.3. For a k-simplex σ, let ε(σ) be the length of the longest edge of σ.

Let Sjσ be the set of all j-simplicies in σ. The fatness of σ is the dimensionless real

number

Θ(σ) = min
j∈{0,...,k}

{
µj(τ)

ε(σ)j

∣∣∣ τ ∈ Sjσ} .
For a simplicial complex P , the fatness of P is the minimum fatness over all simplices

of P .

Intuitively, the fatness of a triangle τ is the quotient of the area of τ by the

square of its longest edge. By requiring a positive lower bound on the fatness of the

triangulation, we can obtain a convergence idea.

In applications where h is unknown, it might seem difficult to require that the

fatness of the Hi, the subgraphs of the triangulated approximations, be uniformly

bounded above zero. However, if we make the reasonable assumption that h is Lip-
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schitz, then it suffices to ensure that the fatness of the triangulation produced by

sample points in the domain has bounded fatness.

Lemma 7.2. Let h ∈ Def(Rn) be a Lipschitz functional. Let T be a simplicial complex

in Rn containing the support of h. Let g be a triangulated approximation of h, such

that g = h on each 0-simplex of T , g is affine on each higher-dimensional simplex of

T , and g is continuous. Let Γ denote the graph of g. So Γ is a simplicial complex that

approximates the graph of h. If the fatness of T is bounded from below by a positive

constant, then so is the fatness of the graph of g.

Proof. Let ` be the Lipschitz constant of h. Let ε(T ) denote the length of the longest

edge in T . For any edge e ∈ T , the corresponding edge g(e) ⊂ Γ satisfies

µ1(g(e)) ≤ µ1(e)
√

1 + `2 ≤ ε(T )
√

1 + `2.

Thus, the length of the longest edge of Γ satisfies

ε(g(e))j ≤ ε(T )j(1 + `2)j/2.

For any j-simplex τ ∈ T , the volume of the corresponding simplex g(τ) ⊂ Γ satisfies

µj(g(τ)) ≥ µj(τ). Therefore,

Θ(Γ) ≥ Θ(T )(1 + `2)−n/2.

Since Θ(T ) is larger than a positive constant, so is Θ(Γ).

We had hoped to employ some ideas from Morvan and Fu, along with Lemma 7.2

and Theorem 7.3, to show that bounded fatness of triangulated approximations of a
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functional implies convergence of Hadwiger integrals of the approximations. For now,

however, we have the following conjecture.

Conjecture 7.2. Let h be a Lipschitz functional supported on compact X ⊂ Rn.

Let {Ti}i∈N be a sequence of triangulations of X, such that the fatness of the Ti is

uniformly bounded from below by a positive constant, and the volumes of the simplices

of the Ti decrease to zero. Let hi be the triangulated approximations of h corresponding

to Ti. Then the Hadwiger integrals of the hi converge to those of h as i→∞.
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Chapter 8

Applications and Further Research

We now consider areas in which Hadwiger integrals are useful or might prove useful.

Still, many open questions may impede the adoption of this integration theory in

applied fields. We highlight some of these areas for future research, in which progress

could yield much applied fruit.

8.1 Algorithms and Numerical Analysis

In order to use Hadwiger integrals in applications, we must be able to efficiently

compute the integrals of functionals. Since real-world data is noisy, we would like

theoretical bounds on the possible error of Hadwiger integrals computed from ap-

proximations of functionals. Thus, we need further numerical analysis results about

convergence and estimation of Hadwiger integrals.

The ideas in Chapter 7 provide a starting place for numerical analysis and conver-
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gence results. Still, we desire a better understanding of the convergence of Hadwiger

integrals. In the case where a functional h is approximated by sampling values at

discrete points, how can the sampling be done to ensure convergence of the Hadwiger

integrals of the approximations to those of h? Can we supply error bounds, even in

a probabilistic way, for a particular approximation?

Various algorithms are known to compute the intrinsic volumes of subsets. For

example, Meschenmoser and Spodarev present two methods for computing the intrin-

sic volumes of subsets of an n-dimensional digital image, with certain assumptions

[29]. Klenk, Schmidt, and Spodarev implement an algorithm that computes, with

high precision, intrinsic volumes of polygonal approximations of subsets of R2 [26].

Schladitz, Ohser, and Nagel describe a method of computing intrinsic volumes of

subsets of three-dimensional images [39].

Algorithms for computing Hadwiger integrals, however, are unexplored. Naive

approaches involve using the equivalent expressions in Section 4.5 to reduce the com-

putation of a Hadwiger to computing the intrinsic volumes of excursion sets, or Euler

integrals of slices or projections. Yet these approaches seem computationally inten-

sive and possibly imprecise. We would like to study such algorithms in terms of

computational complexity and error bounds for approximations of functionals.

89



8.2 Image Processing

Image analysis is a central problem in computer science today. With the proliferation

of devices such as digital cameras, it has never been easier to collect vast amounts of

graphical data. If such data is to be useful, one must extract information from the

data. A major challenge of image processing is to extract interesting features from

large, often noisy data sets.

Research into geometric data processing employs techniques from topology and

differential geometry, including some similar to the content of this thesis. For example,

Cohen-Steiner and Morvan use normal cycles to estimate the curvature of a smooth

surface based on polyhedral approximations [13]. Vixie, Clawson, and Asaki employ

a multiscale flat norm to produce scale-dependent “signatures” of shapes that aid in

their classification and recognition [45]. Carlsson and others use topological methods

to extract qualitative information from graphical data [11]. Donoho and Huo describe

methods of using multiscale “beamlets” to identify lines and curves in images [14].

The intrinsic volumes are alredy of some utility in image processing [29, 39]. At

present, this is mostly limited to computing the intrinsic volumes of subsets of binary

images—that is, arrays of black and white pixels. If an object of interest appears as a

collection of black pixels on a white background, the intrinsic volumes provide some

size data about the object. This amounts to computing the Hadwiger integrals of the

characteristic function of the object.

Our integration theory could extend such image processing from binary images to
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grayscale images. Suppose we view a grayscale image as a functional over a domain—

ordinarily R2 or R3, though higher-dimensional spaces for images that change with

time or other parameters—with the domain partitioned into pixels. The value of

the functional is constant on each pixel, indicating the darkness of lightness of that

pixel of the image, with a convention such as lower or upper semicontinuity to deter-

mine values on pixel boundaries. Such a functional is constructible, though we could

smooth out noise to produce a continuous functional via convolution with a bump

function or some other transform. The Hadwiger integrals of this functional then

provide information about the image, possibly allowing for its classification.

With a construction as described, the various Hadwiger integrals provide statistics

about the image with varying degrees of scale-dependence. Euler integrals are inde-

pendent of scale, and thus provide information without regard to size of the image.

The other Hadwiger integrals do depend on scale, the dependence increasing with

the subscript of µk. Taken together, the Hadwiger integrals could reveal information

about the size and shape of features of the image. Importantly, all the integrals are

independent of orientation, which is useful for detecting features of unknown orien-

tation in images.

We could further extend the integration theory to aid in processing color and

hyperspectral images. A color pixel is often described by a triplet—of red, green,

and blue intensities; or of hue, saturation, and lightness values. Thus, processing

color images could employ the unexplored topic of Hadwiger integration of functions
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with values in R3. Hadwiger integrals may also aid in hyperspectral imaging, which

involves recording a much larger range of wavelengths than simply visual light. A goal

of hyperspectral imaging is to identify the materials of which objects are made, in

addition to the shape of the objects. The functions corresponding to such images are

likely to be very high-dimensional. Still, the Hadwiger integrals of such functionals

may provide useful quantitative information about the image.

8.3 Sensor Networks

Euler integration is useful in counting targets in sensor networks, as demonstrated

by Baryshnikov and Ghrist in [3]. In general, we wish to extract useful information

about objects of interest, given data from a network of sensors [5]. For instance, we

may wish to know about the size, shape, or density of targets. Euler integration is

particularly useful since, as an additive topological invariant, it can easily recover the

total number of targets detected by the network, given some modest assumptions on

network density and target shape.

Beyond Euler integrals, the Hadwiger integrals could provide information about

target size and shape. Since only Euler integrals are completely scale-independent,

computing the other Hadwiger integrals would require a metric on the sensor network,

which is not necessary in the Euler case. Computing the Hadwiger integrals based

on sensor information from a sparse network might also be difficult and imprecise.

Yet integral transforms have helped resolves such problems in the Euler case, and
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might also be useful in the more general Hadwiger case. The application of Hadwiger

integrals to sensor networks is an area worthy of study.

8.4 Crystal Growth and Foam Dynamics

The intrinsic volumes appear in equations describing dynamics of cellular structures.

Examples of cellular structures include crystals found in metals and minerals, gas-

filled bubbles in foams, and biological cells. Such cell structures are often dynamic–

elements the structure move and change in order to decrease the total energy level

of the system. In 1952, von Neumann found a formula for the growth of cells in

a two-dimensional structure. In 2007, MacPherson and Srolovitz generalized von

Neumann’s formula to describe the dynamics cellular structures in three and higher

dimensions [28].

Let C =
⋃n
i=0Ci be a closed n-dimensional cell, with Ci denoting the union of all

i-dimensional features of the cell. That is, C0 is the set of vertices, C1 the set of edges,

and so on. MacPherson and Srolovitz found that when the cell structure changes by

a process of mean curvature flow, the volume of the cell changes according to

dµn
dt

(C) = −2πMγ

(
µn−2(Cn)− 1

6
µn−2(Cn−2)

)
(8.1)

where M and γ are constants determined by the material properties of the cell struc-

ture.

While the intrinsic volumes provide information about the size of a cell, Hadwiger
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Figure 8.1: In this two-dimensional cell structure, three cell walls meet at each

vertex, with each pair of walls at uniform angles. The change in area of each cell is

described by equation (8.1).

integrals provide a method of measuring functionals defined on the cell. Such func-

tionals could indicate cell temperature, density, or other properties of the cell. For a

functional f defined on cell C, equation (8.1) may generalize to:

d

dt

∫
C

f dµn = −2πMγ

(∫
Cn

f dµn−2 −
1

6

∫
Cn−2

f dµn−2

)
. (8.2)

MacPherson and Srolovitz assume that three (co-dimension 1) cell walls meet at

each (co-dimension 2) junction, and that the angles between cell walls at the junction

are uniform. This assumption is natural, but not necessary. Le and Du extended

MacPherson and Srolovitz’s work to generalize the cell junction conditions [27]. The

Hadwiger integrals may also play a role in this more general theory of cell dymanics.
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8.5 Connection to Morse Theory

Euler integrals have a natural connection to Morse Theory, as demonstrated in [4].

These integrals depend only on the topology, not the geometry, of level sets of a func-

tional. The topology of the level sets changes only at critical points of the function.

Thus, the integrals are determined by the function at its critical points.

For instance, suppose h is a Morse function on a closed n-manifold M. Let C be

the set of critical points of h, and let ι(p) be the Morse index of p ∈ C. Then,

∫
M
h bdχc =

∑
p∈C

(−1)n−ι(p)h(p) and (8.3)

∫
M
h ddχe =

∑
p∈C

(−1)ι(p)h(p) = (−1)n
∫
M
h bdχc. (8.4)

Thus, for the Euler integrals, the behavior of the function between critical points

is insignificant. The Morse-theoretic properties of Euler integrals allow for simple

computations and elegant theorems. For more details, see [4].

Aside from Euler characteristic, the other intrinsic volumes are not topological

invariants; thus the other Hadwiger integrals cannot be computed simply with knowl-

edge of the critical points of a function. As k increases from 0 to n, the degree to

which
∫
h bdµkc and

∫
h ddµke depend on the geometry of the level sets of h increases.

Still, there could be an important index-theoretic approach to the general Had-

wiger integrals. Perhaps microlocal index theory could provide insight into this area;

a good starting place might be the paper by Bröcker and Kuppe [10].
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8.6 More General Valuations

We have defined a valuation on Def(Rn) to be invariant under Euclidean motions

of Rn. We could modify the definition to require that the valuation instead to be

invariant under the action of some other group on Rn, and thus obtain a more general

valuation theory.

Alesker has studied general, invariant with respect to the action of some group

[1, 2]. For instance, he provides the following theorem:

Theorem 8.1 (Alesker). Let G be a compact subgroup of the orthogonal group. Then

the space of continuous (in the Hausdorff metric) valuations on convex subsets of Rn,

invariant with respect to the action of G, is finite-dimensional if and only if G acts

transitively on the unit sphere in Rn.

We would like to “lift” such ideas from sets to functionals over sets. Is there a

similar theorem about valuations on Def(Rn) invariant with repect to the action of a

compact subgroup of the orthogonal group?

Alesker has also studied valuations on compact submanifolds. Accordingly, we

could generalize our theory to consider valuations on functionals on other manifolds

besides Rn.

Furthermore, Bernig and Fu have studied convolution of valuations (distinct from

convoltion of sets) on Euclidean space and connections to the Minkowski sum [8]. We

would like to consider a similar convolution of valuations on functionals.
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Appendix A

Flag Coefficients

The flag coefficients are the numbers
(
n
m

)
ωn

ωmωn−m
from Section 2.2, analogous to the

binomial coefficients [24]. In this section we will denote the flag coefficients as

[ n
m

]
=

(
n

m

)
ωn

ωmωn−m
,

where ωn denotes the n-dimensional volume of the unit ball in Rn, alternately ex-

pressed in terms of the gamma function, ωn = πn/2

Γ(n/2+1)
. As the binomial coefficient(

n
k

)
counts the number of k-element subsets of an n-element set, the flag coefficient(

n
m

)
ωn

ωmωn−m
gives the total measure of k-dimensional linear subspaces of Rn.

Like the binomial coefficients, the flag coefficients can be written in a triangular

array, as in Figure A.1. The interested reader can find many interesting patterns in

this array. For instance, consecutive integers appear in two diagonals of the array.

Rational multiples of π occur at
[
n
m

]
exactly when n is even and m is odd. Each row

is unimodal and symmetric. Klain and Rota prove so-called “continuous” analogs
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1
1 1

1 π
2

1
1 2 2 1

1 3π
4

3 3π
4

1
1 8

3
4 4 8

3
1

1 15π
16

5 15π
8

5 15π
16

1
1 16

5
6 8 8 6 16

5
1

1 35π
32

7 105π
32

35
3

105π
32

7 35π
32

1

. .
. ...

. . .

Figure A.1: The flag coefficient triangle.

of combinatorial theorems, replacing binomial coefficients with flag coefficients [24].

They also provide explicit formulae for the flag coefficients, which are easily computed

from the definitions. For positive integers n and m,

[
2n

2m

]
=

(
2n

2m

)(
n

m

)−1

,[
2n

2m+ 1

]
=

π

4n
(2n)!

n!m!(n−m− 1)!
,[

2n+ 1

2m

]
= 4m

(
n

m

)(
2m

m

)−1

, and[
2n+ 1

2m+ 1

]
= 4n−m

(
n

n−m

)(
2(n−m)

n−m

)−1

.

We present here two interesting identities that arose from our study of the flag

coefficients.

Proposition A.1. The flag coefficients satisfy a recurrence within each row:

[
n

m+ 2

]
=
n−m− 1

m+ 1

[ n
m

]
. (A.1)

98



Proof. First observe that (m+ 2)ωm+2ωn−m−2 = (n−m)ωn−mωm:

(m+ 2)ωm+2ωn−m−2 = (m+ 2) · π(m+2)/2

Γ
(
m+2

2
+ 1
) · π(n−m−2)/2

Γ
(
n−m−2

2
+ 1
)

=
(m+ 2)πn/2

m+2
2

Γ
(
m
2

+ 1
)

Γ
(
n−m

2

) =
(n−m)πn/2

Γ
(
m
2

+ 1
)
n−m

2
Γ
(
n−m

2

)
= (n−m) · πm/2

Γ
(
m
2

+ 1
) · π(n−m)/2

Γ
(
n−m

2
+ 1
) = (n−m)ωmωn−m.

Writing out the flag coefficients and using the above substitution in the denominator,

we have:

[
n

m+ 2

]
=

n!

(m+ 2)!(n−m− 2)!
· ωn
ωm+2ωn−m−2

=
(n−m− 1)n!

(m+ 1)m!(n−m)!
· ωn
ωmωn−m

=
n−m− 1

m+ 1

[ n
m

]
.

The recurrence in Proposition A.1 is handy because it allows one to write out a

row of the triangle more easily than computing each entry via factorials. Next, we

give an alternate method of expressing the
[
n
1

]
coefficients.

Proposition A.2. The coefficients
[
n
1

]
can be expressed in terms of integrals of

powers of the sine function:

[n
1

]
=

π

sn−1

, where sj =

∫ π

0

sinj x dx. (A.2)

Proof. We use the reduction formula

sj =

∫ π

0

sinj x dx =
j − 1

j

∫ π

0

sinj−2 x dx.

First suppose n is even. The reduction formula implies that

sn−1 =
(n− 2)(n− 4) · · · 4 · 2
(n− 1)(n− 3) · · · 3 · 1 · 2.
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Thus, [n
1

]
=

πn!

2n
(
n
2

)
!
(
n
2
− 1
)
!

=
π(n− 1)(n− 3) · · · 3 · 1
2(n− 2)(n− 4) · · · 4 · 2 =

π

sn−1

.

Now suppose n is odd. The reduction formula implies that

sn−1 =
(n− 2)(n− 4) · · · 3 · 1
(n− 1)(n− 3) · · · 4 · 2 · π.

Thus, [n
1

]
= 2n−1

(
n− 1
n−1

2

)−1

=
(n− 1)(n− 3) · · · 4 · 2
(n− 2)(n− 4) · · · 3 · 1 =

π

sn−1

.

Together, the two propositions allow us to recursively generate each row of the

flag coefficient triangle. For those who desire all the coefficients in a particular row,

recursive generation is more efficient than computing each coefficient via explicit

formulae.
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