





(a) Applelogos  (b) Bottles (c) Giraffes (d) Mugs (e) Swans
Figure 6.11: Typical misses for all five categories. Trueifpes with the lowest scores.
The figures are sorted by score in ascending order from topttori.
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Chapter 7

Conclusion

Exploiting global contexts to detect and recognize complatterns while keeping the
search computationally tractable has been a fundamesta isot only in computer vi-

sion, but also in the broad area of artificial intelligence.this thesis, we consider this
problem in the setting of detecting shapes from natural esagth various complexities.

Unlike other patterns such as textures which may be loceltpgnizable, shape is typi-
cally perceived as a whole — it is fundamentally about thégllgeometric arrangement of
a set of entities. With few distinctive local shape featureasoning on individual entities

without examining their surroundings is bound to be unbdéa

Traditional contextual models such as Markov Random Fig#iRF) face two diffi-
culties on this problem. First, only short range contextakdtions are usually considered
in these models. Pixels are connected within a small neididoal, and model parts have
constraints only if they are nearbg.§.pictorial structures). This limited scope is caused
by either the fact that background can corrupt the long raalgions, or lacking cues to
generate such constraints. Second, the contextual medadi@ often restricted to pairwise
constraints to ensure computational tractability. Howewest shape configurations can-
not be decomposed into the summation of pairwise checkssifiy@est case is a straight
line whose valid verification involves at least three paidtsy pair of two points can form
a line and therefore does not give any information on the thgsis. In general, robustly

matching a shape requires simultaneous reasoning over emditigs. In this thesis, we
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have developed a principled approach that addresses thext@sue from the following

aspects:

1. We identifies the underlying generic structures thatwahe inherent correlations
of a long sequence of points, independent of the model. Sgaty, Chapter 2
introduces a novel topological formulation for groupingitmurs. The mechanism
is able to extract topologically 1D image contours robustitter and broken edges,
and generally applicable to grouping and segmenting dataihg a parameterized
structure (.e.a manifold). Part of the work in Chapter 2 was published inu&tal.

, 2007).

2. The set-to-set matching method we developed in Chapt@eBsa path towards
utilizing the context arising from a set, going beyond treglitional pairwise con-
straints on tokens. This was made feasible by a holisticesifegiture that can be
adjusted on-the-fly according to the context from figuredgiebselection. The re-
sulting combinatorial problem of matching can be optimiaed bounded by LP-
based primal-dual algorithms presented in Chapter 4. Péneovork in Chapter 3
was published in (Zhet al., 2008; Srinivasaet al., 2010). The review on primal

dual algorithms in Chapter 4 is based on (Zhu, 2009).

3. Additionally, we are able to incorporate more sophisédastructures into the con-
textual shape reasoning. Chapter 5 extends the holistimapip to match image
contours with an articulation model represented liyea In Chapter 6, the basic
shape tokeng,e. regions, do not generate shape features by themselvesth# is
differenceof a region and its neighbors in terms of figure/ground selegiroduce

boundaries forming object shapes. This property bringsgartite graph packing.

We have noticed several future directions worthy of furiésguloration:

1. Interaction between grouping and shape matching. Aghdhe holistic shape rea-

soning requires extraction of discrete, big structuresifbmttom-up grouping, this
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does not mean that grouping and shape matching have to lmerped in a sequen-
tial, feed-forward way. The feedback from top-down shap&hiag can potentially
resolve ambiguities in bottom-up grouping. For example,edl matched incom-
plete shape can guide the search for missing segments damtddundaries and

leakages. The integration of the decisions on the two psesais preferred.

. Integration of regions and contours into the packing taark. We have devel-
oped and demonstrated contour packing and region packipagagely in Chapter 3
and Chapter 6. Contours express elongated boundary s&aatiile regions cap-
ture boundary closure and figure/ground segregation. Theplamentary role of
contours and regions suggests that combining the two intoghescomputational

framework would further reduce false shape detections.

. Designing better deformable model representation. fdeliased model we used
in Chapter 5 is a special case of AND/OR graph (Zhu & Mumfo@D®&), which is
more suitable for representing models with multiple prgpets and occlusions. Itis
also important to consider how to exploit features gendratam the intermediate

level of AND/OR graph.

. Finding common shapes in multiple images. In all the caatjpnnal paradigms, we
dealt with holistic matching between only two shapes. Discimg common shapes
from multiple images would be interesting from both praait&nd theoretical point
of views. In addition to spatial context contained withirclkeandividual image,

context across all the images needs to be investigatedifopribblem.

. Extension of primal-dual algorithms to model selectiow @#egion packing. We
have merely scratched the surface of employing these idesssatch and bound the
resulting general packing problem. Additional structwsesh as bipartite graph on
the image side and tree or AND/OR graph on the model side drexpioited. We
believe that more efficient combinatorial algorithms analedures can be designed

by incorporating these new structures into the oracle.
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Appendix

A.1 Proof of Theorem 2.1

Theorem 2.1 The necessary condition for the critical points (local nmaa) of the fol-

lowing optimization problem

Re(z! Pz - e7129)

BT o A
is thatx is an eigenvector of
1 . ‘
M(A9) = 5(P- e 80 L pT . giA0) (A.2)

Moreover, the corresponding local maximal value is the eigdue\ (M (A0)).

Proof. Let x = x, + i - x. wherexz, andz, are the real and imaginary parts.af The

original problem can be rewritten as

max (v} Pz, + ) Px.)cos AO + (2} Pr, — o} Px,)sin Af (A.3)
st. xx, +atr, =1 (A.4)
Tp, e € R" (A.5)
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Hence, the Lagrangian has the following form witlas the multiplier on the constraint:
L= (x}Px, + 2} Px,) cos A + (2} Px, — 2} Px,)sin AQ + XNz 2, + 2zl 2, — 1)

By taking derivatives of the Lagrangian, we have

L

g = (PT + P)cosAO -z, + (P — PT)sin AQ - z. + 2\x, = 0 (A.6)
x?“

oL

5= (PT + P)cos Af - .+ (P — P)sin A0 -z, + 2\z. = 0 (A7)

Setting the above derivatives togives all the local maxima of the original problem
(2.1). Notice thatP is a real matrix, we obtain the following equation by combai

eg. (A.6) and eq. (A.7):

P+ PT PT —
+ -cos AO + 1 -

[ L sinAf] - (x, +i-2.) = =Nz, +i-2.) (A.8)

Thereforer = x, + i - x. IS a real eigenvector of matrix:

P+ PT P —p

M(A0) = - cos AG + i - -sin Ad (A.9)

1 ‘ _
— 5(P ceA0 p pT L gindy (A.10)

with eigenvalue-\. Notice that) (Af) is a Hermitian matrix and hence all its eigenval-

ues are real. By substituting eq. (A.6) and eq. (A.7) backeoariginal cost function we

have

(zf Px, + 2} Px.) cos AO + (2} Pz, — 2} Px,)sin A0 = —\(a)z, + 2 1.) = =\
(A.11)

The local optimal values are exactly the correspondingreigiees ofAM (A).

119



A.2 Proof of Theorem 2.2

First we prove the following lemma:

Lemma 1 Pr(i, m) can be expressed in terms of eigenvalues and eigenvectoassition
matrix P *:

Pri,m)= > AN'U;Vij+ > Re(\'UyVy) (A.12)

Aj real Aj complex
where)\; is the j eigenvalues of” and U;; is thei™ entry of thej*" right eigenvector

andV;; is thei'" entry of thej*" left eigenvector.

Proof. By simple induction one can prove that

Here(P™),; represents the entry at ravand columry.

Consider the eigenvalue decompositionfof
P=UxU"! (A.14)

HereX = diag(\, ..., \,) andU is a nonsingular complex matrix whose columns are
corresponding eigenvectors, ..., u,,. Since eigenvectors are not necessarily orthogonal,
U~'is not equal to/¥ in general. However, rows df ~! are left eigenvectors aoP,

i.e.(U™1)T = V. The power ofP can be easily computed by

P"=Ux"U! (A.15)

1To simplify the analysis, we assume thiats diagonalizable it *" and achieve this by perturbirng
For anye € R, there exists diagonalizablg such that| P — Q|| < e.
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We can write{ P™™);; as

(P™)y = (US™U Yy (A.16)
=Y Uy AP Vy (A.17)
j
= > MU Vi + Y Re(\'U;Viy) (A.18)
Aj real Aj complex

Eq (A.18) comes from the fact that; andV;; are all real if)\; is real and all complex

eigenvalues appear in pairs. ]

With Lemma 1we can easily prov&heorem 2

Theorem 2.2(Peakness of Random Walk CycléX), 7") can be computed by the eigen-

values of transition matrix’;

AT
RG.T) 25 Re(=5r - UiyViy) (A16)
i,T) = :
> Re(=y; - UiVig)

Proof. FromLemma 1it is straight forward to get

iPr(i, ET) =Y Re(A] /(1= A]) - UyVij) (A.20)
k=1 j
N Pr(i k) =Y Re(1/(1 - X;) - UyVy) (A.21)
k=1 j

Finally we have

AT
>, Reli=r - Uy Vig)

R(,T) =
Ej Re(%)\j Ui Vi)

(A.22)
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(a) Packing one bin (b) The corresponding graph cut

Figure A.1: Reduction from packing to MaxCut. (a) is a simga@se where there is only
one bin. The red blocks represent image contours nddekhe green blocks are nodes
for model partsM and the yellow nodes is the fictitious nodl&,}. Image or model
background nodes are shaded. (b) shows the corresponeiply gut of the packing.

A.3 Precision/Recall in Chapter 2

We present the full precision vs. recall data of our untargpdiycle algorithm in Chapter 2,
recent works of CRF (Reat al., 2005b) and Min Cover (Felzenszwalb & McAllester,
2006), as well as Pb (Martiet al., 2001) in Table A.1.

A.4 Proof of Theorem 3.1

In this section we show that the contour packing problem camddouced to MaxCut
when the dissimilarity functiorD;;(-) in eq. (3.7) isL,. This reformulation leads to a
computational solution via SDP, with a proved bound on thégd cost.
A simple example with one bin

First we start with the simplified case containing one binyorh this case the bin

contains one single value of feature counts. For converieme denote:

t =>"..q1 v; to be the total contribution of selected image contdifrso the bin;

t =325 v; t0 be the contribution fromnselectedtontoursZ \ ST

m =Y ..qu u; t0 be the total contribution of selected model paits;

o M =} ,.qr u; to be the contribution fromnselectednodel parts\t \ S
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Untangling Cycle CRF Min Cover Pb

Recall Prec. Recall | Prec. | Recall | Prec. | Recall | Prec.
0.0200| 1.0000 || 0.0200| 0.9825( 0.0200| 0.9964 || 0.0200| 0.9373
0.0400| 0.9744 || 0.0400| 0.9614| 0.0400| 0.9816| 0.0400| 0.9258
0.0600| 0.9708 || 0.0600| 0.9447| 0.0600| 0.9689| 0.0600| 0.9132
0.0800| 0.9679 || 0.0800| 0.9200( 0.0800| 0.9499| 0.0800| 0.9022
0.1000| 0.9628 || 0.1000| 0.9076( 0.1000| 0.9325| 0.1000| 0.8913
0.1200| 0.9533 || 0.1200(| 0.9027 | 0.1200| 0.9155| 0.1200| 0.8806
0.1400| 0.9434 || 0.1400| 0.8995( 0.1400| 0.9074 | 0.1400| 0.8707
0.1600| 0.9360 || 0.1600| 0.8932( 0.1600| 0.8977| 0.1600| 0.8618
0.1800| 0.9309 || 0.1800| 0.8846| 0.1800| 0.8901 | 0.1800| 0.8533
0.2000| 0.9278 || 0.2000| 0.8802| 0.2000| 0.8777|| 0.2000| 0.8454
0.2200| 0.9272 || 0.2200| 0.8712| 0.2200| 0.8663 | 0.2200| 0.8362
0.2400| 0.9227 || 0.2400| 0.8608| 0.2400| 0.8583| 0.2400| 0.8272
0.2600| 0.9152 || 0.2600| 0.8544 | 0.2600| 0.8523| 0.2600| 0.8188
0.2800| 0.9076 || 0.2800| 0.8491 | 0.2800| 0.8482| 0.2800| 0.8106
0.3000| 0.9035 || 0.3000| 0.8415| 0.3000| 0.8424 | 0.3000| 0.8026
0.3200| 0.8982 || 0.3200| 0.8313| 0.3200| 0.8302| 0.3200| 0.7945
0.3400| 0.8929 || 0.3400| 0.8200( 0.3400| 0.8222| 0.3400| 0.7864
0.3600| 0.8874 || 0.3600| 0.8113| 0.3600| 0.8153| 0.3600| 0.7783
0.3800| 0.8774 || 0.3800| 0.8021| 0.3800| 0.8033| 0.3800| 0.7704
0.4000| 0.8674 || 0.4000| 0.7943| 0.4000| 0.7913| 0.4000| 0.7622
0.4200| 0.8596 || 0.4200| 0.7856| 0.4200| 0.7805| 0.4200| 0.7531
0.4400| 0.8428 || 0.4400| 0.7758| 0.4400| 0.7698| 0.4400| 0.7428
0.4600| 0.8320 || 0.4600(| 0.7631| 0.4600| 0.7597 | 0.4600| 0.7321
0.4800| 0.8223 || 0.4800| 0.7526| 0.4800| 0.7496| 0.4800| 0.7212
0.5000| 0.8057 || 0.5000( 0.7419| 0.5000| 0.7390| 0.5000| 0.7103
0.5200| 0.7884 || 0.5200(| 0.7298| 0.5200| 0.7281| 0.5200| 0.6988
0.5400| 0.7705 || 0.5400| 0.7191| 0.5400| 0.7173| 0.5400| 0.6871
0.5600| 0.7485 || 0.5600| 0.7136| 0.5600| 0.7047 | 0.5600| 0.6747
0.5800| 0.7229 || 0.5800| 0.7024 | 0.5800| 0.6921 | 0.5800| 0.6619
0.6000| 0.6844 || 0.6000| 0.6867| 0.6000| 0.6795| 0.6000| 0.6481
0.6200| 0.6536 || 0.6200| 0.6640( 0.6200| 0.6651 || 0.6200| 0.6344
0.6400| 0.6317 || 0.6400| 0.6362| 0.6400| 0.6499| 0.6400| 0.6190
0.6600| 0.6098 || 0.6600| 0.6108| 0.6600| 0.6347 | 0.6600| 0.6027
0.6800| 0.5878 || 0.6800| 0.5871| 0.6800| 0.6195| 0.6800| 0.5864
0.7000| 0.5659 || 0.7000| 0.5646| 0.7000| 0.6044 | 0.7000| 0.5681
0.7200| 0.5440 || 0.7200| 0.5434| 0.7200| 0.5882| 0.7200| 0.5497
0.7400| 0.5221 || 0.7400| 0.5222| 0.7400| 0.5715| 0.7400| 0.5313
0.7600| 0.5002 || 0.7600| 0.5009( 0.7600| 0.5549| 0.7600| 0.5089
0.7800| 0.4782 0.7800| 0.5383| 0.7800| 0.4841

Table A.1: Precision vs. Recall comparison of contour deiaanethods in Chapter 2.
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With the above notations, optimizing the-norm of shape dissimilarity can be re-

duced to minimizing:

(t=m)?* = _vi— > w) (A.23)
€St ieSM
We balance the total contributions of the image and model widhe bin by adding a
dummy nodél;,. Without loss of generality, we assurde, u; > > . v; and the contribu-
tion of V; to the binis) . u; — >, v;. V; can be regarded as a virtual contour which can
neverbe packed. By including this special node, we are ready @bésh the connection

between the packing and MaxCut:

Lemma A.1. Set graphG,cking = (V, E, W) withV =Z U M U {V,} andw;; = a,a;,

where

p

Uj if Vel

\Zkuk‘_Zkvk‘ if Vi=Vy

The optimal subsef! and S with the best matching coét — m)? in eq. (A.23) is given
by the maximum cut of the packing gra@h,cxiny- If (C1, Cs) is the cut withVg € Cs, the
optimal subsets are given I/ = 7 N C; andSM = M N C, (see Fig. A.4).

Proof. Since the total contributions af U {1} and .M are the same to the bin, we can
simply includel; into Z. Any cut (C, C5) of the graphG,acring With Vo € Cs uniquely
defines the selection dhand M asS! =7 N C; andSM = M N C,. Also notice that
C,=STuM\ SM)yandC, = SMuU (T )\ ST). Recall that, ¢, m andm represent the
total contributions front?, 7\ S, S™ and M \ SM respectively. Becausé contributes

tot,wecanset =t+t=m -+ m.
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The cut valueC'ut(C, Cy) can be computed by

Cut(Cy,Cy) = Z w;j = Z a;a;

i€Ch,jeCs i€Ch,jeCs
=D a) (D ay) = (t+m) (T +m) (A.24)
1€Ch jels
> icc, @ = t+ m comes from equalities;, = S*U (M \ SM), ¢t = 3", o a; and

m =) .ssu ;. Similarly we can prove ., a; =t +m.

Finally, a simple calculation shows that the cut value ardntfatching cost sum up to

a constant?:
(t+m)t+m)=c*—(t—m)?

Therefore, minimizing¢ — m)? is equivalent to finding the maximum cut @#,,cxing,

whose cut value is given by + m)(t + m). O

Note that without any constraint, the system can choosaltrsolution of packing
nothing from image and model. This corresponds to the cwdetZ and M. This
can be alleviated by fixing the model nodes since we know whaiatk on the model
side. We also have the freedom of multiple choices on modaésiowhich is essential
for articulation model in Section 4.2. These modificatioas @ll be encoded as hard

constraints on the MaxCut.
Reduction of the full problem

Lemma A.1 can be naturally generalized to multiple knapsaElach bin infZ; intro-
duces an extra node. Sdtto be the set of all these nodes. Now we would like to consider

the cut on the graph with nodés M and.A. This is captured by Theorem 3.1:
Construct a graphG pucking = (V, E,W) withV = ZU M U A andw;; = alaj,
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where

) if nodei € 7

a4 = VM if nodei € M (A.25)

(0,...,0,| >0, ViE =5, ViM1,0,...,0)7 if nodei € A

\

HereV;(k, i) is the feature contribution of image segmetat the histogram bit. VM (k. i)
is defined similarlyV!,, and V"], are thei" columns ofv’" and V.

The optimal subset! and S} with the best matching coSt, (¢, —my.)? in eq. (A.23)
is given by the maximum cut of the gra@,cin,. If (C1, Cs) is the cut withV € Cs, the

optimal subsets are given I8/ = 7N C, andSM = M N C,.

Proof. Let Gpucring = G1 U ... U G; whereG),'s are graphs induced by bindefined in

Lemma A.1. Applying Lemma A.1 to all these subgraphs. O

A.5 Precision/Recall in Chapter 3

We show the full precision vs. recall performance of confaacking in Chapter 3 on all

5 categories of ETHZ Shape Classes in Table A.2.

A.6 Proof of Theorem 4.1

Theorem A.2. (Littlestone & Warmuth, 1989) (Perturbed Value of the Sigg) LetR =
2 TR and L = Y7, > giL: be the cumulative reward and loss of the strategy
using eg. (4.7). The perturbed value of the strategy giveady4.7) is worse than the

performance of best pure strategy onlylﬁéjﬂ, as stated in the following inequality:

logm

max V; < exp(e)R — exp(—e)L + (A.26)
j

Proof. Consider the potential functiob’ = > y;.
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Applelogos Bottles Giraffess Mugs Swans
Recall| Prec.|| Recall| Prec.|| Recall| Prec.|| Recall| Prec.| Recall| Prec.
0.0227 | 1.0000 || 0.0182 | 1.0000 || 0.0110 | 1.0000 || 0.0152 | 1.0000 | 0.0303 | 1.0000
0.3182 | 1.0000 || 0.3455 | 1.0000| 0.1099 | 1.0000|| 0.2727 | 1.0000| 0.2121 | 1.0000
0.3182 | 0.9333 || 0.3455 | 0.9500| 0.1429 | 0.8667 || 0.2727 | 0.9000| 0.2121 | 0.7778
0.3409 | 0.9375|| 0.3636 | 0.9524 || 0.1648 | 0.8824 || 0.3030 | 0.9091| 0.2424 | 0.8000
0.3409 | 0.8824 || 0.3818 | 0.9545| 0.1758 | 0.8889 || 0.3030 | 0.8696 | 0.2727 | 0.8182
0.3636 | 0.8889 || 0.4000 | 0.9565| 0.1868 | 0.8500|| 0.3182 | 0.8750| 0.3030 | 0.8333
0.3864 | 0.8947 || 0.4182 | 0.9583| 0.1978 | 0.8182|| 0.3182 | 0.8400| 0.3333 | 0.8462
0.4091 | 0.9000 || 0.4364 | 0.9600| 0.2088 | 0.8261|| 0.3333 | 0.8462 | 0.3636 | 0.8571
0.4318 | 0.9048 || 0.4545 | 0.9615| 0.2088 | 0.7917 || 0.3485 | 0.8519| 0.4242 | 0.8750
0.4545 | 0.9091 || 0.4727 | 0.9630 | 0.2308 | 0.7778|| 0.3636 | 0.8276| 0.4545 | 0.8824
0.4773 | 0.9130 || 0.4909 | 0.9643| 0.2747 | 0.7812|| 0.3788 | 0.8333| 0.4545 | 0.7895
0.5000 | 0.9167 || 0.5273 | 0.9667 || 0.3297 | 0.8108 || 0.3788 | 0.7812| 0.4848 | 0.8000
0.5227 | 0.9200 || 0.5455 | 0.9677 | 0.3407 | 0.8158|| 0.3939 | 0.7879| 0.4848 | 0.7273
0.5227 | 0.8846 || 0.5455 | 0.9375| 0.3626 | 0.8049 || 0.3939 | 0.7647 | 0.5152 | 0.7391
0.5455 | 0.8889 || 0.5636 | 0.9394 || 0.4066 | 0.7708 || 0.4091 | 0.7714| 0.5455 | 0.7500
0.5682 | 0.8929 || 0.5818 | 0.9412 | 0.4286 | 0.7647 || 0.4242 | 0.7778| 0.5758 | 0.7308
0.5682 | 0.8621 || 0.5818 | 0.9143| 0.4396 | 0.7692|| 0.4242 | 0.7179| 0.6061 | 0.7407
0.5682 | 0.8333 || 0.6000 | 0.9167 | 0.4505 | 0.7736|| 0.4394 | 0.7250| 0.6061 | 0.6250
0.5909 | 0.8387 || 0.6182 | 0.9189| 0.4725 | 0.7818|| 0.4545 | 0.7317| 0.6364 | 0.6364
0.5909 | 0.8125 || 0.6364 | 0.9211| 0.5055 | 0.7797 || 0.4545 | 0.7143| 0.6364 | 0.5526
0.6136 | 0.8182 || 0.6364 | 0.8974| 0.5055 | 0.7419|| 0.4697 | 0.7209| 0.6667 | 0.5641
0.6364 | 0.8235 || 0.6545 | 0.9000 | 0.5604 | 0.7391|| 0.4848 | 0.7273| 0.6667 | 0.5000
0.6364 | 0.8000 || 0.6727 | 0.9024 | 0.5714 | 0.7429|| 0.4848 | 0.6667 || 0.6970 | 0.5111
0.6364 | 0.7778 || 0.6909 | 0.9048 | 0.6044 | 0.7143|| 0.5000 | 0.6735| 0.6970 | 0.5000
0.6364 | 0.7568 || 0.7091 | 0.9070| 0.6154 | 0.7179|| 0.5000 | 0.6471| 0.7273 | 0.5106
0.6591 | 0.7632 || 0.7091 | 0.8125| 0.6484 | 0.7195|| 0.5152 | 0.6538| 0.7576 | 0.5208
0.6591 | 0.6744 || 0.7273 | 0.8000| 0.6484 | 0.7024|| 0.5152 | 0.5965| 0.7576 | 0.4545
0.6818 | 0.6818 || 0.7455 | 0.8039 | 0.6703 | 0.6932|| 0.5303 | 0.6034 | 0.7879 | 0.4643
0.7045 | 0.6889 || 0.7636 | 0.8077| 0.6703 | 0.6854 || 0.5303 | 0.5932| 0.8182 | 0.4737
0.7045 | 0.6458 || 0.7636 | 0.7925| 0.6813 | 0.6813|| 0.5606 | 0.6066 || 0.8182 | 0.4655
0.7273 | 0.6531 || 0.7818 | 0.7963| 0.7143 | 0.6915|| 0.5758 | 0.6129 | 0.8485 | 0.4746
0.7273 | 0.6400 || 0.7818 | 0.7818| 0.7363 | 0.6768 || 0.5758 | 0.5507 || 0.8485 | 0.4179
0.7500 | 0.6471 || 0.8000 | 0.7857 | 0.7363 | 0.6505|| 0.5909 | 0.5571| 0.8788 | 0.4265
0.7727 | 0.6538 || 0.8000 | 0.7458| 0.7473 | 0.6476|| 0.5909 | 0.4286| 0.8788 | 0.4028
0.7727 | 05862 || 0.8182 | 0.7500 | 0.7473 | 0.6071|| 0.6364 | 0.4468| 0.9394 | 0.3131
0.7955 | 0.5932 || 0.8364 | 0.7541| 0.7582 | 0.6106 || 0.6364 | 0.4421
0.7955 | 0.5738 || 0.8545 | 0.7581| 0.7582 | 0.6053 || 0.6515 | 0.4479
0.9091 | 0.0980 || 0.8727 | 0.7619| 0.7692 | 0.5983 || 0.6515 | 0.3805
0.8727 | 0.7164 || 0.7692 | 0.5833| 0.6667 | 0.3860
0.8909 | 0.7206 || 0.7912 | 0.5806| 0.6667 | 0.3492
0.9091 | 0.7246 || 0.8022 | 0.5659| 0.6970 | 0.3594
0.9091 | 0.6579 || 0.8022 | 0.5615| 0.6970 | 0.3459
0.9273 | 0.6538 || 0.8132 | 0.5649| 0.7121 | 0.3507
0.9455 | 0.6582 || 0.8132 | 0.5481| 0.7121 | 0.3287
0.9636 | 0.6625 || 0.8242 | 0.5396| 0.7273 | 0.3310
0.9636 | 0.6235|| 0.8352 | 0.5429| 0.7273 | 0.3000
0.9818 | 0.6279 || 0.8352 | 0.5278| 0.7273 | 0.2981
0.9818 | 0.3017 || 0.8462 | 0.5133| 0.7424 | 0.3025
0.8571 | 0.5132 || 0.7424 | 0.2816
0.8571 | 0.4875| 0.7576 | 0.2857
0.8681 | 0.4817 || 0.7576 | 0.2841
0.8681 | 0.3607 || 0.7727 | 0.2849
0.8901 | 0.3649 || 0.7727 | 0.2642
0.8901 | 0.3240 || 0.7879 | 0.2680
0.9121 | 0.3294 || 0.7879 | 0.2537
0.9121 | 0.2686 || 0.8030 | 0.2573
0.9231 | 0.2701 || 0.8030 | 0.2548
0.9231 | 0.2386 || 0.8788 | 0.1895

Table A.2: Precision vs. Recall on ETHZ Shape Classes obemmacking in Chapter 3.
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On the one hand, we can compute it using the update rule:

- Z y© H exp[eV}] (Update rule (4.7))
j k=1
= D exple V)] " =1)
j k=1
> exple - Z Vf] (A.27)
k=1

Note the above inequality holds for afyTherefore ®! is bounded below by

®' > exple - max V] (A.28)
j

On the other hand, we have

yitt — b = yllexp(eVy) — 1]
<y'- (V) - exp(eV))
— ! [eexp(V))R! — cexp(eV])L)
< y'leexp(€)R; — eexp(—€)L]]

— e

Here )7;? = exp(e)R: — exp(—e€)L} is the “perturbed” version of valu¥;. The first
inequality holds becausep(z) — 1 < x - exp(x) for anyz. The second inequality is due

to the fact that’} € [—1, 1].
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By summing up the above inequality ovgmwe have

¥ = Y )

J

S

J
=@ D YV d yp @
J J
= O'(1+ V)

< ' exp(eV) (1+ z <exp(x))

Using induction ovet and®° = m, we boundd’ above by

Pt <m- exp(z V) (A.29)
k

Finally combining eq. (A.28), (A.29) yields

e-maxV; <logm + Z eV (A.30)
! k

which is equivalent to eq. (4.8).

A.7 Proof of Corollary 4.2

Corollary A.3. (Regret Over Time) I} € [—p, p| for all j, then we have a bound on the

average value’ /T

plogm
el

V
max —
J

IN
NI<

+ peexp(e) (A.31)
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Proof. SinceV; € [—p, p|, we can substitut®’; by V;/p and prove the following inequal-

ity for Vi € [-1,1]:

logm

max V; <V + + Teexp(e)
j

We setR! = max(0,V}) andL! = max(0, —V;), which satisfies)} = R} — L.
Under these simplifications, we can apply Theorem 4.Yon

~ 1
max V; <V + g
J

€
logm

=Y+ + (exp(€) — )R — (exp(—e€) — 1)L

logm

<V+ + eexp(e)|V|

€

1
<V-+ 08 cexp(e)T
€

The firstinequality uses the fact thad) = R+L, exp(e)—1 < eexp(e) andl—exp(—e) <

€ < eexp(e). O

A.8 Proof of Theorem 4.4

Theorem A.4. (Complexity of the Primal Dual Algorithm) Algorithm 2 eithéeclares
that the fractional packing eq. (4.2) is infeasible, or autgpan approximate feasible solu-

tion z satisfying
;<0 (A.32)

forall j = 1,...,m. The total number of calls to the oracle p*§—2log m) with p =

max; max,ep | f;()].

Proof. We build our proof based on Corollary 4.2. First notice ttiagt'i > 0 at some
time ¢, then the eq. (4.2) is indeed infeasible. Otherwise supflose existst’ such

that f;(z') = ajz' — ¢; < 0 for all j. Because,’ > 0 throughout the algorithmy,’ <
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>y fi(a') <0, a contradiction.
Suppose the algorithm runs to the end and outputset V; = w'f;(z") be the value

incurred by the update. Notice thef < [—1, 1]. By applying Corollary 4.2, we have

max|a; T — ¢;] = max

i j > wt

(A.33)

The first inequality uses the fact that = (w'/> . y5) > yifi(2") = w'u'/ >, y; <
0 for everyt since the oracle never fails. The last inequality is due ®tdrmination
conditionS > 9plogm/6-2,T/S =T/ >, w' < pande = 35 /p.

Therefore,r returned by the algorithm satisfies the approximate felggibig. (4.13).
Finally, each time the algorithm collects > 1/p and it terminates whefi = Yo wy >

S > 9plogm/d—2, so the total number of iterations is at mexi?*5—2 log m). O

A.9 Proof of Theorem 6.1

Theorem A.5. The bipartite region graph packing problem consists in figdan optimal
bipartite subgraphG,,,(F, F) of the region graplG, which minimizes cost,(F, F') de-
finedin eq. (6.2). It can be reduced to a cardinality constesi and multicriteria cut prob-
lem on a graplG’ associated witlR positive edge weight functions® ... ") according
to R criteria. The cardinality constrained and multicriteriatproblem seeks a cuat with
cardinality at leastd: > p,ec 1 > d,and all R criteria are satisfied:>" Byeo wg.“) < pk)

fork=1,2,..., R.
Proof. We first transform bipartite region graph packing problerto ia simpler linear
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form, and notice that the main hurdle is the bipartite grapbking costC,(F, F) is an
Ly-norm. Using a similar technique which converts contourkpag into primal-dual

packing in eq. (4.15), we have:

min_ VT2 — s, = 17 [Diag(sc™)s™ + Diag(sc™)s™] (A.34)
st. Vg — sc™ = Diag(sc™)s™ — Diag(sc™)s™ (A.35)
z e {0,1}FEI st 57 e[0,1]™ (A.36)

Heres™ ands~ are normalized slack variables on the feature bins. Furtbes, this can

be rewritten as:

max V421" Diag(scM)(1 — s™) (A.37)
s.t. Vx4 Diag(sc™)(1 — s%) < scM (A.38)
z e {0,1}F@I st ¢ o, 1] (A.39)

by substituting the constraint in eq. (A.35) and using the faats— is nonnegative. We
can further make the continuous slack variglile s™) € [0, 1]™ a binary one by splitting

it into units of 1,2,4,...2° pixels for each bin. Since ultimately the cost is measured as
multiples of a pixel, the binary representation is suffiti@nreproduce any integer slack.

We group these slack variables into a single vegtor

If one would like to bound the objective function eq. (A.38)feasibility problem
arises by changing the objective function into a constradint 2- 17 Diag(sc™)(1—s*) >

c for a constant:

Feasibility(x,s) : VI +2-pTs>c (A.40)
Vie 4+ pls < scM (A.41)
z e {0, 1}EO 5 e 0,1 (A.42)
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wherep; is the number of pixels included in slagk. Now the feasibility problem appears
to be the same as a cardinality constrained and multiaitrt problem except that the
binary indicatorsr and s have to be defined on graph edges &ngs) must represent a
cut to the graph.

Construct a grapty’ with additional node$’ (G’) = {V}, V, } UV (G)U.S with follow-
ing specifications: 1) Twd’,V;, are the source and sink terminals of the graph representing
foreground and background respectively}2)=) are the nodes from the region gragh
and a node belongs to foreground if on the same sidé asthe cut; 3)S denotes the bin
slack variables and the slack is applied if on the same sidé/as the cut. Define edge
weight functionsw® to beV.! for edgeE; in G2, andp; for edge betweer; andV;. The
left side of each constraint Feasibility (z, s) is the sum of weights in a cut a&'.

The above problem is exactly a cardinality constrained aoHicniteria cut problem

with cardinality defined by the cost function and criteridiked by the feature bins. [J

A.10 Training and Testing Examples in Chapter 6

We provide the full list of training and testing set of our eRments on ETHZ Shape
Classes in Chapter 6. For the evaluation in the first row ineféi, 50% positive images
in each category are taken as training examples, and thersamiger of images from other
categories are used as negatives. Therefore, if the nunilreages in each category is
the same, it will also be equal to the training set size (is taise,l /5 of the entire data
set). The training and testing set in this experiment atedias follows:

To keep the same train/test ratio for comparision with (8vsdt al., 2010), we also
split the whole data set into two halves with one for trainamgl the other for testing. The

evaluation of this train/test split is shown in the second of Table 6.1.

2Unary terms used in Section 6.3 can be represented as edgesb® (G) and{V;, V,}
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Training (40 image

~—

°4

Testing (215 images)

Applelogos:
another, big-
window, biker,

blue, box, bright,
candle, car, cccp
corridor, crystal,
dark, dealer, dog
double, float,
four, grey, grid,
hat

Bottles: acaw,
baron,

bird, blue2

Giraffes:
african, am-
sterdam2,
amsterdam,

banal2, banal3

Mugs: apple,
blue, campfire,
caroline, cat

Swans: aal, big,
black2, black3,
black

beach,

Applelogos:installing, key, london2, london, monitor, notebook, pigam-
say, redbook, redhole, red, simspon, ssd, store2, stam®, stripessmall,
tatoo, think, white

Bottles: brunelo, capitoul, ceazanne, Chardonnay, coal, congtaink, cu-
vee, dark, don, drool, dry2, dry, fine, four, green, grotendleen, hill, ich-
nusa, kitchen, light, mino, pale, party, ray, red, sangeyssilvia, sippin,
skratch, spiral, stilllife, stout, stromber, terrenaritéde, tobasco, tobias, tort
breck, tremens, vino, wbbeer

Giraffes: banal4, banal, blonde, bright, brookfield, brown2, browréwn,
camuflage, clutter, cluttersissimavgsize, cosmo, cuddle, dark2, darked, ¢
troit, devon, dragon, drawing2, drawing3, drawing4, drayyidrawwhite,
easiest, easily, easy, etosha, far, five, four, green, grilyhaute, helio, hun-
gry, ioneforever, kenya, lego, looking, love, male, masai, nakuiobling,
ninentyfive, one, origami, paint, phoenix, plastic, roat2d, sandiego, sere
genti, shop, small, snack, spots, statue, steltoper,cbirstrolling, sun2,
sun, texture2, texturissimo, three, tisa, toy, two2, twm, walk, washeout,
weather, website, white, wmsp, wooden, you, zoo

Mugs: clutter, cock, cool, grid, hockey, jazzburger, kids, matikin multi,
napkin, nero, owns, patrick, pieces, pinball, puppy, ralusable, ridgid,
sam, sarah, shooting, slis, small, spring, starbuckssidegrstore, supermar
system, table, tall, tdnkitchen, tea, twoblack, virginigi2ginia, wake, white,
witch, wood, work

Swans:blackneck, blue, cruise, dirty, equality, fireplace, géaggass, high,

infrared, mute, oil, pencil2, pencil4, pencil, perry, plerpstratford, sunset
swimming, tree2, two2, two, watercolor, whooper, willigms/ndley

Table A.3: Training and testing images for Applelogos.
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Training (48 images)

Testing (207 images)

Applelogos:
other,
biker,
bright

an-
bigwindow,

blue, box,

Bottles: acaw,
baron, beach, bird
blue2, brunelo,
capitoul, ceazanne
Chardonnay, coal,
congratulations,

dark, don,
dry2, dry,
four, green,
grote, heineken, hill,

cuvee,
drool,
fine,

ichnusa

Giraffes:  african,
amsterdam?2, amj
sterdam, banal2

banal3, banal4

Mugs: apple, blue,
campfire,
cat, clutter

caroline,

Swans: aal, big,
black2, black3,
black, blackneck

Applelogos: candle, car, cccp, corridor, crystal, dark, dealer, doghtin
float, four, grey, grid, hat, installing, key, london2, lamj monitor, note-
book, piggy, ramsay, redbook, redhole, red, simspon, $stb2 store3,
store, stripesmall, tatoo, think, white

Bottles: kitchen, light, mino, pale, party, ray, red, sangioveskjasisip-
pin, skratch, spiral, stilllife, stout, stromber, terretexrible, tobasco, to-
bias, torbreck, tremens, vino, wbbeer

Giraffes: banal, blonde, bright, brookfield, brown2, brown4, browa
muflage, clutter, cluttersissimavgsize, cosmo, cuddle, dark2, darked, ¢
troit, devon, dragon, drawing2, drawing3, drawing4, drayyidrawwhite,
easiest, easily, easy, etosha, far, five, four, green, gréy, haute, he-
lio, hungry, ioneforever, kenya, lego, looking, love, male, masai, naky
nibbling, ninentyfive, one, origami, paint, phoenix, piastoad2, road,
sandiego, seregenti, shop, small, snack, spots, statlmpstr, stretch,
strolling, sun2, sun, texture2, texturissimo, three, tisg, two2, two, up,
walk, washeout, weather, website, white, wmsp, wooden, 300

Mugs: cock, cool, grid, hockey, jazzburger, kids, mat, muki, rulap-
kin, nero, owns, patrick, pieces, pinball, puppy, reltyisable, ridgid,
sam, sarah, shooting, slis, small, spring, starbuckssid&r store, su-
perman, system, table, tall, tdnkitchen, tea, twoblaciginia2, virginia,
wake, white, witch, wood, work

Swans:blue, cruise, dirty, equality, fireplace, grass2, graggh hinfrared,

mute, oil, pencil2, pencil4, pencil, perry, purple, stoatf, sunset, swim-
ming, tree2, two2, two, watercolor, whooper, williams, ey

Table A.4: Training and testing images for Bottles.
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Training (88 images)

Testing (167 images)

Applelogos: another, bigwindow,
biker, blue, box, bright, candle, ca
ccep, corridor, crystal

Bottles: acaw, baron, beach, birg
blue2, brunelo, capitoul, ceazann
Chardonnay, coal, congratulations

Giraffes: african, amsterdam?2

amsterdam, banal2, banal3, banal4,

banal, blonde, bright, brook
field, brown2, brown4, brown
camuflage, clutter,
cuddle

devori

simo.avgsize,
dark2, darked,
dragon, drawing2, drawing3
drawing4, drawing, drawwhite
easiest, easily, easy, etosha, far

cosmo,
detroit,

Mugs: apple, blue, campfire, caf
oline, cat, clutter, cock, cool, grid
hockey, jazzburger

Swans: aal, big, black2, black3

cluttersig-

Applelogos: dark, dealer, dog, double, float, four, gre

grid, hat, installing, key, london2, london, monitor, not
r, book, piggy, ramsay, redbook, redhole, red, simspon,

store2, store3, store, stripsmall, tatoo, think, white

Bottles: cuvee, dark, don, drool, dry2, dry, fine, fou
E;green, grote, heineken, hill, ichnusa, kitchen, light, i
! pale, party, ray, red, sangiovese, silvia, sippin, skratph

ral, stilllife, stout, stromber, terrena, terrible, tobasto-
' bias, torbreck, tremens, vino, wbbeer

| Giraffes: five, four, green, grey, grill, haute, helio, hut
gry, ioneforever, kenya, lego, looking, love, male, m
sai, nakuru, nibbling, ninentyfive, one, origami, pai
phoenix, plastic, road2, road, sandiego, seregenti, s
’small, shack, spots, statue, steltoper, stretch, stgoll
’sun2, sun, texture2, texturissimo, three, tisa, toy, tw
, two, up, walk, washeout, weather, website, white, wm
wooden, you, zoo

_ Mugs: kids, mat, muki, multi, napkin, nero, owns, patric

pieces, pinball, puppy, relty, reusable, ridgid, sam, lsar

shooting, slis, small, spring, starbucks, starside, stae
perman, system, table, tall, tdnkitchen, tea, twoblack,
ginia2, virginia, wake, white, witch, wood, work

Ys
e

5sd,

=

—

Vi

12,

black, blackneck, blue, cruise, S _ |
. N Swans: grass2, grass, high, infrared, mute, oil, penci
dirty, equality, fireplace . . .
pencil4, pencil, perry, purple, stratford, sunset, swimgni
tree2, two2, two, watercolor, whooper, williams, wyndle

Table A.5: Training and testing images for Giraffes.

136



Training (48 images)

Testing (207 images)

Applelogos:
other,
biker,
bright

an-
bigwindow,
blue, box,

Bottles: acaw,
baron, beach, bird
blue2, brunelo

Giraffes: african,
amsterdam2, amj
sterdam, banal2

banal3, banal4

Mugs: apple, blue,
campfire,
cat,
cool, grid, hockey,
kids,
multi,

caroline,
clutter, cock,
jazzburger,
mat, muki,
napkin, nero, owns,
patrick,
pinball, puppy, relty,
reusable

pieces,

Swans: aal, big,
black2, black3,

black, blackneck

Applelogos: candle, car, cccp, corridor, crystal, dark, dealer, doghtin
float, four, grey, grid, hat, installing, key, london2, lamj monitor, note-
book, piggy, ramsay, redbook, redhole, red, simspon, $stb2 store3,
store, stripesmall, tatoo, think, white

Bottles: capitoul, ceazanne, Chardonnay, coal, congratulatiomsge;
dark, don, drool, dry2, dry, fine, four, green, grote, hearekhill, ich-
nusa, kitchen, light, mino, pale, party, ray, red, sangeysilvia, sippin,
skratch, spiral, stilllife, stout, stromber, terrenaritde, tobasco, tobias
torbreck, tremens, vino, wbbeer

Giraffes: banal, blonde, bright, brookfield, brown2, brown4, browa
muflage, clutter, cluttersissimavgsize, cosmo, cuddle, dark2, darked, dle-
troit, devon, dragon, drawing2, drawing3, drawing4, drayyidrawwhite,
easiest, easily, easy, etosha, far, five, four, green, gréy, haute, he-
lio, hungry, ioneforever, kenya, lego, looking, love, male, masai, nakyru,
nibbling, ninentyfive, one, origami, paint, phoenix, piastoad2, road,
sandiego, seregenti, shop, small, snack, spots, statlmpstr, stretch,
strolling, sun2, sun, texture2, texturissimo, three,, tisg, two2, two, up,
walk, washeout, weather, website, white, wmsp, wooden, ool

7

Mugs: ridgid, sam, sarah, shooting, slis, small, spring, stdkbustarside,
store, superman, system, table, tall, tdnkitchen, teabltwes, virginia2,
virginia, wake, white, witch, wood, work

Swans:blue, cruise, dirty, equality, fireplace, grass2, graggh hinfrared,
mute, oil, pencil2, pencil4, pencil, perry, purple, stoatf, sunset, swim-
ming, tree2, two2, two, watercolor, whooper, williams, wigy

Table A.6: Training and testing images for Mugs.

137



Training (28 image

~—

Uy

Testing (227 images)

Applelogos:
another, big-
window, biker,
blue

Bottles: acaw,
baron, beach,
bird

Giraffes:
african, am-
sterdam2,
amsterdam,
banal2

Mugs: apple,
blue, campfire,
caroline

Swans: aal, big,
black2, black3,
black, blackneck,

blue, cruise,
dirty, equality,

fireplace, grass2
grass, high,

infrared, mute

Applelogos: box, bright, candle, car, cccp, corridor, crystal, darkalde
dog, double, float, four, grey, grid, hat, installing, keypdon2, london, mon-
itor, notebook, piggy, ramsay, redbook, redhole, red, gons ssd, store2,
store3, store, stripesmall, tatoo, think, white

Bottles: blue2, brunelo, capitoul, ceazanne, Chardonnay, coafjratula-
tions, cuvee, dark, don, drool, dry2, dry, fine, four, gregmote, heineken,
hill, ichnusa, kitchen, light, mino, pale, party, ray, redngiovese, silvia,
sippin, skratch, spiral, stilllife, stout, stromber, ta, terrible, tobasco, to-
bias, torbreck, tremens, vino, wbhbeer

Giraffes: banal3, banal4, banal, blonde, bright, brookfield, brovimmgwn4,
brown, camuflage, clutter, cluttersissimawgsize, cosmo, cuddle, dark2
darked, detroit, devon, dragon, drawing2, drawing3, dng#j drawing,
drawwhite, easiest, easily, easy, etosha, far, five, forgery grey, grill,
haute, helio, hungry, ionforever, kenya, lego, looking, love, male, masai,
nakuru, nibbling, ninentyfive, one, origami, paint, phogrplastic, road2,
road, sandiego, seregenti, shop, small, snack, spotse s&ieltoper, stretch,
strolling, sun2, sun, texture2, texturissimo, three,, tieg, two2, two, up,

walk, washeout, weather, website, white, wmsp, wooden, ool

Mugs: cat, clutter, cock, cool, grid, hockey, jazzburger, kidstymuki,
multi, napkin, nero, owns, patrick, pieces, pinball, pupmlty, reusable,
ridgid, sam, sarah, shooting, slis, small, spring, stdtbustarside, store,
superman, system, table, tall, tdnkitchen, tea, twoblatginia2, virginia,
wake, white, witch, wood, work

Swans: oil, pencil2, pencil4, pencil, perry, purple, stratfordinset, swim-
ming, tree2, two2, two, watercolor, whooper, williams, wigy

Table A.7: Training and testing images for Swans.
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Training (127 images)

Testing (128 images)

Applelogs: another, bigwindow, biker, blue
box, bright, candle, car, cccp, corridor, cryst
dark, dealer, dog, double, float, four, grey, gr
hat

Bottles: acaw, baron, beach, bird, blue2, blug3

brunelo, capitoul, ceazanne, Chardonnay, ¢

congratulations, cuvee, dark, don, drool, dry2

dry, fine, four, green, grote, heineken, hill

Giraffes: african, amsterdam2, amsterda
banal2, banal3, banal4, banal, blonde, brig
brookfield, brown2, brown4, brown, camd
flage, clutter, cluttersissimavgsize, cosmo
cuddle, dark2, darked, detroit, devon, dragc
drawing2, drawing3, drawing4, drawing
drawwhite, easiest, easily, easy, etosha,
five, four, green, grey, grill, haute, helig

hungry, ioneforever, kenya

Mugs: apple, blue, campfire, caroline, cg
clutter, cock, cool, grid, hockey, jazzburge
kids, mat, muki, multi, napkin, nero, owng
patrick, pieces, pinball, puppy, relty, reusable
Swans: aal, big, black2, black3, black, black

neck, blue, cruise, dirty, equality, fireplac
grass2, grass, high, infrared, mute

Applelogs: installing, key, london2, london
" monitor, notebook, piggy, ramsay, redbod
redhole, red, simspon, ssd, store2, store3, st

stripessmall, tatoo, think, white

o =

Bottles: ichnusa, kitchen, light, mino, palg
)aiclJarty, ray, red, sangiovese, silvia, sippi
skratch, spiral, stilllife, stout, stromber, terren
terrible, tobasco, tobias, torbreck, tremer
vino, wbbeer

m

Giraffes: lego, looking, love, male, masa

nakuru, nibbling, ninentyfive, one, origam

>0
=3

‘_
paint, phoenix, plastic, road2, road, sandie

seregenti, shop, small, snack, spots, staf
DN

Steltoper, stretch, strolling, sun2, sun, te
:' ture2, texturissimo, three, tisa, toy, two2, tw
ar, . :

up, walk, washeout, weather, website, whi

’

wmsp, wooden, you, Zoo

Mugs: ridgid, sam, sarah, shooting, slis, smg
’spring, starbucks, starside, store, superm
’system, table, tall, tdnkitchen, tea, twoblag

>’virginia2, virginia, wake, white, witch, wood

—

|

=

work

D

'ple, stratford, sunset, swimming, tree2, twa
two, watercolor, whooper, williams, wyndley

Swans:oil, pencil2, pencil4, pencil, perry, pur-

pre,

Table A.8: Training and testing images of ETHZ Shape Clagsts equal split. The

training and test data sets are the same across all 5 caggori
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