




(a) Applelogos (b) Bottles (c) Giraffes (d) Mugs (e) Swans

Figure 6.11: Typical misses for all five categories. True positives with the lowest scores.

The figures are sorted by score in ascending order from top to bottom.
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Chapter 7

Conclusion

Exploiting global contexts to detect and recognize complexpatterns while keeping the

search computationally tractable has been a fundamental issue not only in computer vi-

sion, but also in the broad area of artificial intelligence. In this thesis, we consider this

problem in the setting of detecting shapes from natural images with various complexities.

Unlike other patterns such as textures which may be locally recognizable, shape is typi-

cally perceived as a whole – it is fundamentally about the global geometric arrangement of

a set of entities. With few distinctive local shape features, reasoning on individual entities

without examining their surroundings is bound to be unreliable.

Traditional contextual models such as Markov Random Fields(MRF) face two diffi-

culties on this problem. First, only short range contextualrelations are usually considered

in these models. Pixels are connected within a small neighborhood, and model parts have

constraints only if they are nearby (e.g.pictorial structures). This limited scope is caused

by either the fact that background can corrupt the long rangerelations, or lacking cues to

generate such constraints. Second, the contextual relations are often restricted to pairwise

constraints to ensure computational tractability. However, most shape configurations can-

not be decomposed into the summation of pairwise checks. Thesimplest case is a straight

line whose valid verification involves at least three points. Any pair of two points can form

a line and therefore does not give any information on the hypothesis. In general, robustly

matching a shape requires simultaneous reasoning over manyentities. In this thesis, we
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have developed a principled approach that addresses the context issue from the following

aspects:

1. We identifies the underlying generic structures that capture the inherent correlations

of a long sequence of points, independent of the model. Specifically, Chapter 2

introduces a novel topological formulation for grouping contours. The mechanism

is able to extract topologically 1D image contours robust toclutter and broken edges,

and generally applicable to grouping and segmenting data forming a parameterized

structure (i.e.a manifold). Part of the work in Chapter 2 was published in (Zhu et al.

, 2007).

2. The set-to-set matching method we developed in Chapter 3 opens a path towards

utilizing the context arising from a set, going beyond the traditional pairwise con-

straints on tokens. This was made feasible by a holistic shape feature that can be

adjusted on-the-fly according to the context from figure/ground selection. The re-

sulting combinatorial problem of matching can be optimizedand bounded by LP-

based primal-dual algorithms presented in Chapter 4. Part of the work in Chapter 3

was published in (Zhuet al. , 2008; Srinivasanet al. , 2010). The review on primal

dual algorithms in Chapter 4 is based on (Zhu, 2009).

3. Additionally, we are able to incorporate more sophisticated structures into the con-

textual shape reasoning. Chapter 5 extends the holistic approach to match image

contours with an articulation model represented by atree. In Chapter 6, the basic

shape tokens,i.e. regions, do not generate shape features by themselves. It isthe

differenceof a region and its neighbors in terms of figure/ground selection produce

boundaries forming object shapes. This property brings in bipartite graph packing.

We have noticed several future directions worthy of furtherexploration:

1. Interaction between grouping and shape matching. Although the holistic shape rea-

soning requires extraction of discrete, big structures from bottom-up grouping, this
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does not mean that grouping and shape matching have to be performed in a sequen-

tial, feed-forward way. The feedback from top-down shape matching can potentially

resolve ambiguities in bottom-up grouping. For example, a well matched incom-

plete shape can guide the search for missing segments due to faint boundaries and

leakages. The integration of the decisions on the two processes is preferred.

2. Integration of regions and contours into the packing framework. We have devel-

oped and demonstrated contour packing and region packing separately in Chapter 3

and Chapter 6. Contours express elongated boundary structures while regions cap-

ture boundary closure and figure/ground segregation. The complementary role of

contours and regions suggests that combining the two into a single computational

framework would further reduce false shape detections.

3. Designing better deformable model representation. The tree-based model we used

in Chapter 5 is a special case of AND/OR graph (Zhu & Mumford, 2006), which is

more suitable for representing models with multiple prototypes and occlusions. It is

also important to consider how to exploit features generated from the intermediate

level of AND/OR graph.

4. Finding common shapes in multiple images. In all the computational paradigms, we

dealt with holistic matching between only two shapes. Discovering common shapes

from multiple images would be interesting from both practical and theoretical point

of views. In addition to spatial context contained within each individual image,

context across all the images needs to be investigated for this problem.

5. Extension of primal-dual algorithms to model selection and region packing. We

have merely scratched the surface of employing these ideas to search and bound the

resulting general packing problem. Additional structuressuch as bipartite graph on

the image side and tree or AND/OR graph on the model side are not exploited. We

believe that more efficient combinatorial algorithms and procedures can be designed

by incorporating these new structures into the oracle.
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Appendix

A.1 Proof of Theorem 2.1

Theorem 2.1 The necessary condition for the critical points (local maxima) of the fol-

lowing optimization problem

max
x∈Cn

Re(xHPx · e−i∆θ)

xHx
(A.1)

is thatx is an eigenvector of

M(∆θ) =
1

2
(P · e−i∆θ + P T · ei∆θ) (A.2)

Moreover, the corresponding local maximal value is the eigenvalueλ(M(∆θ)).

Proof. Let x = xr + i · xc wherexr andxc are the real and imaginary parts ofx. The

original problem can be rewritten as

max
xr,xc

(xT
r Pxr + xT

c Pxc) cos ∆θ + (xT
r Pxc − xT

c Pxr) sin ∆θ (A.3)

s.t. xT
r xr + xT

c xc = 1 (A.4)

xr, xc ∈ R
n (A.5)
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Hence, the Lagrangian has the following form withλ as the multiplier on the constraint:

L = (xT
r Pxr + xT

c Pxc) cos ∆θ + (xT
r Pxc − xT

c Pxr) sin ∆θ + λ(xT
r xr + xT

c xc − 1)

By taking derivatives of the Lagrangian, we have

∂L

∂xr
= (P T + P ) cos∆θ · xr + (P − P T ) sin ∆θ · xc + 2λxr = 0 (A.6)

∂L

∂xc
= (P T + P ) cos∆θ · xc + (P T − P ) sin∆θ · xr + 2λxc = 0 (A.7)

Setting the above derivatives to0 gives all the local maxima of the original problem

(2.1). Notice thatP is a real matrix, we obtain the following equation by combining

eq. (A.6) and eq. (A.7):

[
P + P T

2
· cos ∆θ + i · P

T − P

2
· sin ∆θ ] · (xr + i · xc) = −λ(xr + i · xc) (A.8)

Thereforex = xr + i · xc is a real eigenvector of matrix:

M(∆θ) =
P + P T

2
· cos ∆θ + i · P

T − P

2
· sin ∆θ (A.9)

=
1

2
(P · e−i∆θ + P T · ei∆θ) (A.10)

with eigenvalue−λ. Notice thatM(∆θ) is a Hermitian matrix and hence all its eigenval-

ues are real. By substituting eq. (A.6) and eq. (A.7) back to the original cost function we

have

(xT
r Pxr + xT

c Pxc) cos∆θ + (xT
r Pxc − xT

c Pxr) sin ∆θ = −λ(xT
r xr + xT

c xc) = −λ

(A.11)

The local optimal values are exactly the corresponding eigenvalues ofM(∆θ).
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A.2 Proof of Theorem 2.2

First we prove the following lemma:

Lemma 1Pr(i, m) can be expressed in terms of eigenvalues and eigenvectors oftransition

matrixP 1:

Pr(i, m) =
∑

λj real

λm
j UijVij +

∑

λj complex

Re(λm
j UijVij) (A.12)

whereλj is thejth eigenvalues ofP andUij is theith entry of thejth right eigenvector

andVij is theith entry of thejth left eigenvector.

Proof. By simple induction one can prove that

Pr(i, m) = (P m)ii (A.13)

Here(P m)ij represents the entry at rowi and columnj.

Consider the eigenvalue decomposition ofP

P = UΣU−1 (A.14)

HereΣ = diag(λ1, ..., λn) andU is a nonsingular complex matrix whose columns are

corresponding eigenvectorsu1, ..., un. Since eigenvectors are not necessarily orthogonal,

U−1 is not equal toUH in general. However, rows ofU−1 are left eigenvectors ofP ,

i.e. (U−1)T = V . The power ofP can be easily computed by

P m = UΣmU−1 (A.15)

1To simplify the analysis, we assume thatP is diagonalizable inCn×n and achieve this by perturbingP .
For anyǫ ∈ R, there exists diagonalizableQ such that‖P −Q‖ < ǫ.
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We can write(P m)ii as

(P m)ii = (UΣmU−1)ii (A.16)

=
∑

j

Uij · λm
j · Vij (A.17)

=
∑

λj real

λm
j UijVij +

∑

λj complex

Re(λm
j UijVij) (A.18)

Eq (A.18) comes from the fact thatUij andVij are all real ifλj is real and all complex

eigenvalues appear in pairs.

With Lemma 1, we can easily proveTheorem 2.

Theorem 2.2(Peakness of Random Walk Cycles)R(i, T ) can be computed by the eigen-

values of transition matrixP :

R(i, T ) =

∑
j Re(

λT
j

1−λT
j

· UijVij)
∑

j Re( 1
1−λj
· UijVij)

(A.19)

Proof. FromLemma 1, it is straight forward to get

∞∑

k=1

Pr(i, kT ) =
∑

j

Re(λT
j /(1− λT

j ) · UijVij) (A.20)

∞∑

k=1

Pr(i, k) =
∑

j

Re(1/(1− λj) · UijVij) (A.21)

Finally we have

R(i, T ) =

∑
j Re(

λT
j

1−λT
j

· UijVij)
∑

j Re( 1
1−λj
· UijVij)

(A.22)
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Image

Model

tt

m m

∑
k vk − ∑

k uk

t + m

t + m

C2

C1

wij = aiaj

Cut(C1, C2)

(a) Packing one bin (b) The corresponding graph cut

Figure A.1: Reduction from packing to MaxCut. (a) is a simplecase where there is only

one bin. The red blocks represent image contours nodesI. The green blocks are nodes

for model partsM and the yellow nodes is the fictitious node{V0}. Image or model

background nodes are shaded. (b) shows the corresponding graph cut of the packing.

A.3 Precision/Recall in Chapter 2

We present the full precision vs. recall data of our untangling cycle algorithm in Chapter 2,

recent works of CRF (Renet al. , 2005b) and Min Cover (Felzenszwalb & McAllester,

2006), as well as Pb (Martinet al. , 2001) in Table A.1.

A.4 Proof of Theorem 3.1

In this section we show that the contour packing problem can be reduced to MaxCut

when the dissimilarity functionDij(·) in eq. (3.7) isL2. This reformulation leads to a

computational solution via SDP, with a proved bound on the optimal cost.

A simple example with one bin

First we start with the simplified case containing one bin only. In this case the bin

contains one single value of feature counts. For convenience, we denote:

• t =
∑

i∈SI vi to be the total contribution of selected image contoursSI to the bin;

• t =
∑

i/∈SI vi to be the contribution fromunselectedcontoursI \ SI ;

• m =
∑

i∈SM ui to be the total contribution of selected model partsSM ;

• m =
∑

i/∈SI ui to be the contribution fromunselectedmodel partsM\ SM .
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Untangling Cycle CRF Min Cover Pb
Recall Prec. Recall Prec. Recall Prec. Recall Prec.
0.0200 1.0000 0.0200 0.9825 0.0200 0.9964 0.0200 0.9373
0.0400 0.9744 0.0400 0.9614 0.0400 0.9816 0.0400 0.9258
0.0600 0.9708 0.0600 0.9447 0.0600 0.9689 0.0600 0.9132
0.0800 0.9679 0.0800 0.9200 0.0800 0.9499 0.0800 0.9022
0.1000 0.9628 0.1000 0.9076 0.1000 0.9325 0.1000 0.8913
0.1200 0.9533 0.1200 0.9027 0.1200 0.9155 0.1200 0.8806
0.1400 0.9434 0.1400 0.8995 0.1400 0.9074 0.1400 0.8707
0.1600 0.9360 0.1600 0.8932 0.1600 0.8977 0.1600 0.8618
0.1800 0.9309 0.1800 0.8846 0.1800 0.8901 0.1800 0.8533
0.2000 0.9278 0.2000 0.8802 0.2000 0.8777 0.2000 0.8454
0.2200 0.9272 0.2200 0.8712 0.2200 0.8663 0.2200 0.8362
0.2400 0.9227 0.2400 0.8608 0.2400 0.8583 0.2400 0.8272
0.2600 0.9152 0.2600 0.8544 0.2600 0.8523 0.2600 0.8188
0.2800 0.9076 0.2800 0.8491 0.2800 0.8482 0.2800 0.8106
0.3000 0.9035 0.3000 0.8415 0.3000 0.8424 0.3000 0.8026
0.3200 0.8982 0.3200 0.8313 0.3200 0.8302 0.3200 0.7945
0.3400 0.8929 0.3400 0.8200 0.3400 0.8222 0.3400 0.7864
0.3600 0.8874 0.3600 0.8113 0.3600 0.8153 0.3600 0.7783
0.3800 0.8774 0.3800 0.8021 0.3800 0.8033 0.3800 0.7704
0.4000 0.8674 0.4000 0.7943 0.4000 0.7913 0.4000 0.7622
0.4200 0.8596 0.4200 0.7856 0.4200 0.7805 0.4200 0.7531
0.4400 0.8428 0.4400 0.7758 0.4400 0.7698 0.4400 0.7428
0.4600 0.8320 0.4600 0.7631 0.4600 0.7597 0.4600 0.7321
0.4800 0.8223 0.4800 0.7526 0.4800 0.7496 0.4800 0.7212
0.5000 0.8057 0.5000 0.7419 0.5000 0.7390 0.5000 0.7103
0.5200 0.7884 0.5200 0.7298 0.5200 0.7281 0.5200 0.6988
0.5400 0.7705 0.5400 0.7191 0.5400 0.7173 0.5400 0.6871
0.5600 0.7485 0.5600 0.7136 0.5600 0.7047 0.5600 0.6747
0.5800 0.7229 0.5800 0.7024 0.5800 0.6921 0.5800 0.6619
0.6000 0.6844 0.6000 0.6867 0.6000 0.6795 0.6000 0.6481
0.6200 0.6536 0.6200 0.6640 0.6200 0.6651 0.6200 0.6344
0.6400 0.6317 0.6400 0.6362 0.6400 0.6499 0.6400 0.6190
0.6600 0.6098 0.6600 0.6108 0.6600 0.6347 0.6600 0.6027
0.6800 0.5878 0.6800 0.5871 0.6800 0.6195 0.6800 0.5864
0.7000 0.5659 0.7000 0.5646 0.7000 0.6044 0.7000 0.5681
0.7200 0.5440 0.7200 0.5434 0.7200 0.5882 0.7200 0.5497
0.7400 0.5221 0.7400 0.5222 0.7400 0.5715 0.7400 0.5313
0.7600 0.5002 0.7600 0.5009 0.7600 0.5549 0.7600 0.5089
0.7800 0.4782 0.7800 0.5383 0.7800 0.4841

Table A.1: Precision vs. Recall comparison of contour detection methods in Chapter 2.
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With the above notations, optimizing theL2-norm of shape dissimilarity can be re-

duced to minimizing:

(t−m)2 = (
∑

i∈SI

vi −
∑

i∈SM

ui)
2 (A.23)

We balance the total contributions of the image and model side to the bin by adding a

dummy nodeV0. Without loss of generality, we assume
∑

i ui ≥
∑

i vi and the contribu-

tion of V0 to the bin is
∑

i ui −
∑

i vi. V0 can be regarded as a virtual contour which can

neverbe packed. By including this special node, we are ready to establish the connection

between the packing and MaxCut:

Lemma A.1. Set graphGpacking = (V, E, W ) with V = I ∪M∪ {V0} andwij = aiaj ,

where

ai =






vi if Vi ∈ I

ui if Vi ∈M
∑

k uk −
∑

k vk if Vi = V0

The optimal subsetSI
∗ andSM

∗ with the best matching cost(t−m)2 in eq. (A.23) is given

by the maximum cut of the packing graphGpacking. If (C1, C2) is the cut withV0 ∈ C2, the

optimal subsets are given bySI
∗ = I ∩ C1 andSM

∗ =M∩ C2 (see Fig. A.4).

Proof. Since the total contributions ofI ∪ {V0} andM are the same to the bin, we can

simply includeV0 into I. Any cut (C1, C2) of the graphGpacking with V0 ∈ C2 uniquely

defines the selection onI andM asSI = I ∩ C1 andSM = M∩ C2. Also notice that

C1 = SI ∪ (M\ SM) andC2 = SM ∪ (I \ SI). Recall thatt, t, m andm represent the

total contributions fromSI , I \SI , SM andM\SM respectively. BecauseV0 contributes

to t, we can setc = t + t = m + m.
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The cut valueCut(C1, C2) can be computed by

Cut(C1, C2) =
∑

i∈C1,j∈C2

wij =
∑

i∈C1,j∈C2

aiaj

=(
∑

i∈C1

ai)(
∑

j∈C2

aj) = (t + m)(t + m) (A.24)

∑
i∈C1

ai = t + m comes from equalitiesC1 = SI ∪ (M \ SM), t =
∑

i∈SI ai and

m =
∑

i/∈SM ai. Similarly we can prove
∑

j∈C2
aj = t + m.

Finally, a simple calculation shows that the cut value and the matching cost sum up to

a constantc2:

(t + m)(t + m) = c2 − (t−m)2

Therefore, minimizing(t − m)2 is equivalent to finding the maximum cut onGpacking,

whose cut value is given by(t + m)(t + m).

Note that without any constraint, the system can choose trivial solution of packing

nothing from image and model. This corresponds to the cut betweenI andM. This

can be alleviated by fixing the model nodes since we know what to pack on the model

side. We also have the freedom of multiple choices on model nodes, which is essential

for articulation model in Section 4.2. These modifications can all be encoded as hard

constraints on the MaxCut.

Reduction of the full problem

Lemma A.1 can be naturally generalized to multiple knapsacks. Each bin inHj intro-

duces an extra node. SetA to be the set of all these nodes. Now we would like to consider

the cut on the graph with nodesI,M andA. This is captured by Theorem 3.1:

Construct a graphGpacking = (V, E, W ) with V = I ∪ M ∪ A and wij = aT
i aj ,
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where

ai =





V I
(:,i) if nodei ∈ I

V M
(:,i) if nodei ∈M

(0, ..., 0, |∑k V I
ik −

∑
k V M

ik |, 0, ..., 0)T if nodei ∈ A

(A.25)

HereVI(k, i) is the feature contribution of image segmenti to the histogram bink. V M(k, i)

is defined similarly.V I
(:,i) andV M

(:,i) are theith columns ofV I andV M .

The optimal subsetSI
∗ andSM

∗ with the best matching cost
∑

k(tk−mk)
2 in eq. (A.23)

is given by the maximum cut of the graphGpacking. If (C1, C2) is the cut withV0 ∈ C2, the

optimal subsets are given bySI
∗ = I ∩ C1 andSM

∗ =M∩ C2.

Proof. Let Gpacking = G1 ∪ ... ∪ Gl whereGk’s are graphs induced by bink defined in

Lemma A.1. Applying Lemma A.1 to all these subgraphs.

A.5 Precision/Recall in Chapter 3

We show the full precision vs. recall performance of contourpacking in Chapter 3 on all

5 categories of ETHZ Shape Classes in Table A.2.

A.6 Proof of Theorem 4.1

Theorem A.2. (Littlestone & Warmuth, 1989) (Perturbed Value of the Strategy) LetR =
∑

t

∑
j yt

jRt
j andL =

∑
t

∑
j yt

jLt
j be the cumulative reward and loss of the strategy

using eq. (4.7). The perturbed value of the strategy given byeq. (4.7) is worse than the

performance of best pure strategy only bylog m
ǫ

, as stated in the following inequality:

max
j
Vj ≤ exp(ǫ)R− exp(−ǫ)L+

log m

ǫ
(A.26)

Proof. Consider the potential functionΦt =
∑

j yt
j.

126



Applelogos Bottles Giraffess Mugs Swans
Recall Prec. Recall Prec. Recall Prec. Recall Prec. Recall Prec.
0.0227 1.0000 0.0182 1.0000 0.0110 1.0000 0.0152 1.0000 0.0303 1.0000
0.3182 1.0000 0.3455 1.0000 0.1099 1.0000 0.2727 1.0000 0.2121 1.0000
0.3182 0.9333 0.3455 0.9500 0.1429 0.8667 0.2727 0.9000 0.2121 0.7778
0.3409 0.9375 0.3636 0.9524 0.1648 0.8824 0.3030 0.9091 0.2424 0.8000
0.3409 0.8824 0.3818 0.9545 0.1758 0.8889 0.3030 0.8696 0.2727 0.8182
0.3636 0.8889 0.4000 0.9565 0.1868 0.8500 0.3182 0.8750 0.3030 0.8333
0.3864 0.8947 0.4182 0.9583 0.1978 0.8182 0.3182 0.8400 0.3333 0.8462
0.4091 0.9000 0.4364 0.9600 0.2088 0.8261 0.3333 0.8462 0.3636 0.8571
0.4318 0.9048 0.4545 0.9615 0.2088 0.7917 0.3485 0.8519 0.4242 0.8750
0.4545 0.9091 0.4727 0.9630 0.2308 0.7778 0.3636 0.8276 0.4545 0.8824
0.4773 0.9130 0.4909 0.9643 0.2747 0.7812 0.3788 0.8333 0.4545 0.7895
0.5000 0.9167 0.5273 0.9667 0.3297 0.8108 0.3788 0.7812 0.4848 0.8000
0.5227 0.9200 0.5455 0.9677 0.3407 0.8158 0.3939 0.7879 0.4848 0.7273
0.5227 0.8846 0.5455 0.9375 0.3626 0.8049 0.3939 0.7647 0.5152 0.7391
0.5455 0.8889 0.5636 0.9394 0.4066 0.7708 0.4091 0.7714 0.5455 0.7500
0.5682 0.8929 0.5818 0.9412 0.4286 0.7647 0.4242 0.7778 0.5758 0.7308
0.5682 0.8621 0.5818 0.9143 0.4396 0.7692 0.4242 0.7179 0.6061 0.7407
0.5682 0.8333 0.6000 0.9167 0.4505 0.7736 0.4394 0.7250 0.6061 0.6250
0.5909 0.8387 0.6182 0.9189 0.4725 0.7818 0.4545 0.7317 0.6364 0.6364
0.5909 0.8125 0.6364 0.9211 0.5055 0.7797 0.4545 0.7143 0.6364 0.5526
0.6136 0.8182 0.6364 0.8974 0.5055 0.7419 0.4697 0.7209 0.6667 0.5641
0.6364 0.8235 0.6545 0.9000 0.5604 0.7391 0.4848 0.7273 0.6667 0.5000
0.6364 0.8000 0.6727 0.9024 0.5714 0.7429 0.4848 0.6667 0.6970 0.5111
0.6364 0.7778 0.6909 0.9048 0.6044 0.7143 0.5000 0.6735 0.6970 0.5000
0.6364 0.7568 0.7091 0.9070 0.6154 0.7179 0.5000 0.6471 0.7273 0.5106
0.6591 0.7632 0.7091 0.8125 0.6484 0.7195 0.5152 0.6538 0.7576 0.5208
0.6591 0.6744 0.7273 0.8000 0.6484 0.7024 0.5152 0.5965 0.7576 0.4545
0.6818 0.6818 0.7455 0.8039 0.6703 0.6932 0.5303 0.6034 0.7879 0.4643
0.7045 0.6889 0.7636 0.8077 0.6703 0.6854 0.5303 0.5932 0.8182 0.4737
0.7045 0.6458 0.7636 0.7925 0.6813 0.6813 0.5606 0.6066 0.8182 0.4655
0.7273 0.6531 0.7818 0.7963 0.7143 0.6915 0.5758 0.6129 0.8485 0.4746
0.7273 0.6400 0.7818 0.7818 0.7363 0.6768 0.5758 0.5507 0.8485 0.4179
0.7500 0.6471 0.8000 0.7857 0.7363 0.6505 0.5909 0.5571 0.8788 0.4265
0.7727 0.6538 0.8000 0.7458 0.7473 0.6476 0.5909 0.4286 0.8788 0.4028
0.7727 0.5862 0.8182 0.7500 0.7473 0.6071 0.6364 0.4468 0.9394 0.3131
0.7955 0.5932 0.8364 0.7541 0.7582 0.6106 0.6364 0.4421
0.7955 0.5738 0.8545 0.7581 0.7582 0.6053 0.6515 0.4479
0.9091 0.0980 0.8727 0.7619 0.7692 0.5983 0.6515 0.3805

0.8727 0.7164 0.7692 0.5833 0.6667 0.3860
0.8909 0.7206 0.7912 0.5806 0.6667 0.3492
0.9091 0.7246 0.8022 0.5659 0.6970 0.3594
0.9091 0.6579 0.8022 0.5615 0.6970 0.3459
0.9273 0.6538 0.8132 0.5649 0.7121 0.3507
0.9455 0.6582 0.8132 0.5481 0.7121 0.3287
0.9636 0.6625 0.8242 0.5396 0.7273 0.3310
0.9636 0.6235 0.8352 0.5429 0.7273 0.3000
0.9818 0.6279 0.8352 0.5278 0.7273 0.2981
0.9818 0.3017 0.8462 0.5133 0.7424 0.3025

0.8571 0.5132 0.7424 0.2816
0.8571 0.4875 0.7576 0.2857
0.8681 0.4817 0.7576 0.2841
0.8681 0.3607 0.7727 0.2849
0.8901 0.3649 0.7727 0.2642
0.8901 0.3240 0.7879 0.2680
0.9121 0.3294 0.7879 0.2537
0.9121 0.2686 0.8030 0.2573
0.9231 0.2701 0.8030 0.2548
0.9231 0.2386 0.8788 0.1895

Table A.2: Precision vs. Recall on ETHZ Shape Classes of contour packing in Chapter 3.
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On the one hand, we can compute it using the update rule:

Φt =
∑

j

yt
j

=
∑

j

y(0)
t∏

k=1

exp[ǫVk
j ] (Update rule (4.7))

=
∑

j

exp[ǫ
t∑

k=1

Vk
j ] (y(0)

j = 1)

≥ exp[ǫ ·
t∑

k=1

Vk
j ] (A.27)

Note the above inequality holds for anyj. Therefore,Φt is bounded below by

Φt ≥ exp[ǫ ·max
j
Vj ] (A.28)

On the other hand, we have

yt+1
j − yt

j = yt[exp(ǫV t
j)− 1]

≤ yt · (ǫV t
j) · exp(ǫV t

j)

= yt[ǫ exp(ǫV t
j)Rt

j − ǫ exp(ǫV t
j)Lt

j]

≤ yt[ǫ exp(ǫ)Rt
j − ǫ exp(−ǫ)Lt

j ]

= ytǫṼ t
j

Here Ṽ t
j = exp(ǫ)Rt

j − exp(−ǫ)Lt
j is the “perturbed” version of valueV t

j . The first

inequality holds becauseexp(x)− 1 ≤ x · exp(x) for anyx. The second inequality is due

to the fact thatV t
j ∈ [−1, 1].
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By summing up the above inequality overj, we have

Φt+1 =
∑

j

(yt+1
j − yt

j) + Φt

≤
∑

j

yt
jǫṼ t

j + Φt

= ǫΦt ·
∑

j

yt
jṼ t

j/
∑

j

yt
j + Φt

= Φt(1 + ǫṼ t)

≤ Φt · exp(ǫṼ t) (1 + x ≤ exp(x))

Using induction overt andΦ0 = m, we boundΦt above by

Φt ≤ m · exp(
∑

k

ǫṼk) (A.29)

Finally combining eq. (A.28), (A.29) yields

ǫ ·max
j
Vj ≤ log m +

∑

k

ǫṼk (A.30)

which is equivalent to eq. (4.8).

A.7 Proof of Corollary 4.2

Corollary A.3. (Regret Over Time) IfV t
j ∈ [−ρ, ρ] for all j, then we have a bound on the

average valueV/T :

max
j

Vj

T
≤ V

T
+

ρ log m

ǫT
+ ρǫ exp(ǫ) (A.31)
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Proof. SinceV t
j ∈ [−ρ, ρ], we can substituteV t

j by V t
j/ρ and prove the following inequal-

ity for V t
j ∈ [−1, 1]:

max
j
Vj ≤ V +

log m

ǫ
+ Tǫ exp(ǫ)

We setRt
j = max(0,V t

j) andLt
j = max(0,−V t

j), which satisfiesV t
j = Rt

j − Lt
j.

Under these simplifications, we can apply Theorem 4.1 onV:

max
j
Vj ≤ Ṽ +

log m

ǫ

= V +
log m

ǫ
+ (exp(ǫ)− 1)R− (exp(−ǫ)− 1)L

≤ V +
log m

ǫ
+ ǫ exp(ǫ)|V|

≤ V +
log m

ǫ
+ ǫ exp(ǫ)T

The first inequality uses the fact that|V| = R+L, exp(ǫ)−1 ≤ ǫ exp(ǫ) and1−exp(−ǫ) ≤

ǫ < ǫ exp(ǫ).

A.8 Proof of Theorem 4.4

Theorem A.4. (Complexity of the Primal Dual Algorithm) Algorithm 2 either declares

that the fractional packing eq. (4.2) is infeasible, or outputs an approximate feasible solu-

tion x̄ satisfying

aT
j x̄− cj ≤ δ (A.32)

for all j = 1, ..., m. The total number of calls to the oracle isO(ρ2δ−2 log m) with ρ =

maxj maxx∈P |fj(x)|.

Proof. We build our proof based on Corollary 4.2. First notice that if µt > 0 at some

time t, then the eq. (4.2) is indeed infeasible. Otherwise supposethere existsxt such

thatfj(x
t) = aT

j xt − cj ≤ 0 for all j. Becauseyt ≥ 0 throughout the algorithm,µt ≤
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∑
j yt

jfj(x
t) ≤ 0, a contradiction.

Suppose the algorithm runs to the end and outputsx̄. LetV t
j = wtfj(x

t) be the value

incurred by the update. Notice thatV t
j ∈ [−1, 1]. By applying Corollary 4.2, we have

max
j

[aT
j x̄− cj ] = max

j

∑
t w

t(aT
j xt − cj)∑
t w

t

= max
j

∑
t V t

j∑
t w

t

≤ 1∑
t wt

[V +
log m

ǫ
+ ǫT exp(ǫ)]

≤ 1∑
t wt

[
log m

ǫ
+ ǫT exp(ǫ)]

=
1

S
[
log m

ǫ
+ ǫT exp(ǫ)]

≤ δ (A.33)

The first inequality uses the fact thatV t = (wt/
∑

j yt
j)

∑
j yt

jfj(x
t) = wtµt/

∑
j yt

j ≤

0 for every t since the oracle never fails. The last inequality is due to the termination

conditionS ≥ 9ρ log m/δ−2, T/S = T/
∑

t w
t ≤ ρ andǫ = 3δ/ρ.

Therefore,x returned by the algorithm satisfies the approximate feasibility eq. (4.13).

Finally, each time the algorithm collectswt ≥ 1/ρ and it terminates whenS =
∑

t wt ≥

S ≥ 9ρ log m/δ−2, so the total number of iterations is at mostO(ρ2δ−2 log m).

A.9 Proof of Theorem 6.1

Theorem A.5. The bipartite region graph packing problem consists in finding an optimal

bipartite subgraphGsub(F, F ) of the region graphG, which minimizes costCp(F, F ) de-

fined in eq. (6.2). It can be reduced to a cardinality constrained and multicriteria cut prob-

lem on a graphG′ associated withR positive edge weight functionsw(1),...,w(R) according

toR criteria. The cardinality constrained and multicriteria cut problem seeks a cutC with

cardinality at leastd:
∑

Eij∈C 1 ≥ d, and allR criteria are satisfied:
∑

Eij∈C w
(k)
ij ≤ b(k)

for k = 1, 2, ..., R.

Proof. We first transform bipartite region graph packing problem into a simpler linear
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form, and notice that the main hurdle is the bipartite graph packing costCp(F, F ) is an

L1-norm. Using a similar technique which converts contour packing into primal-dual

packing in eq. (4.15), we have:

min
x,s+,s−

‖V I · x− scM‖1 = 1T[Diag(scM)s+ + Diag(scM)s−] (A.34)

s.t. V Ix− scM = Diag(scM)s+ − Diag(scM)s− (A.35)

x ∈ {0, 1}|E(G)|, s+, s− ∈ [0, 1]m (A.36)

Heres+ ands− are normalized slack variables on the feature bins. Furthermore, this can

be rewritten as:

max
x,s+

V I + 2 · 1TDiag(scM)(1− s+) (A.37)

s.t. V Ix + Diag(scM)(1− s+) ≤ scM (A.38)

x ∈ {0, 1}|E(G)|, s+ ∈ [0, 1]m (A.39)

by substituting the constraint in eq. (A.35) and using the fact thats− is nonnegative. We

can further make the continuous slack variable(1−s+) ∈ [0, 1]m a binary one by splitting

it into units of 1,2,4,...,2ℓ pixels for each bin. Since ultimately the cost is measured as

multiples of a pixel, the binary representation is sufficient to reproduce any integer slack.

We group these slack variables into a single vectors.

If one would like to bound the objective function eq. (A.37),a feasibility problem

arises by changing the objective function into a constraintV I +2·1TDiag(scM)(1−s+) ≥
c for a constantc:

Feasibility(x, s) : V I + 2 · pTs ≥ c (A.40)

V Ix + pTs ≤ scM (A.41)

x ∈ {0, 1}|E(G)|, s ∈ [0, 1]m (A.42)
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wherepi is the number of pixels included in slacks+
i . Now the feasibility problem appears

to be the same as a cardinality constrained and multicriteria cut problem except that the

binary indicatorsx ands have to be defined on graph edges and(x, s) must represent a

cut to the graph.

Construct a graphG′ with additional nodesV (G′) = {Vf , Vb}∪V (G)∪S with follow-

ing specifications: 1) TwoVf ,Vb are the source and sink terminals of the graph representing

foreground and background respectively; 2)V (G) are the nodes from the region graphG

and a node belongs to foreground if on the same side asVf in the cut; 3)S denotes the bin

slack variabless and the slack is applied if on the same side asVf in the cut. Define edge

weight functionsw(i) to beV I
ik for edgeEk in G2, andpi for edge betweensi andVb. The

left side of each constraint inFeasibility(x, s) is the sum of weights in a cut onG′.

The above problem is exactly a cardinality constrained and multicriteria cut problem

with cardinality defined by the cost function and criteria defined by the feature bins.

A.10 Training and Testing Examples in Chapter 6

We provide the full list of training and testing set of our experiments on ETHZ Shape

Classes in Chapter 6. For the evaluation in the first row in Table 6.1, 50% positive images

in each category are taken as training examples, and the samenumber of images from other

categories are used as negatives. Therefore, if the number of images in each category is

the same, it will also be equal to the training set size (in this case,1/5 of the entire data

set). The training and testing set in this experiment are listed as follows:

To keep the same train/test ratio for comparision with (Toshev et al. , 2010), we also

split the whole data set into two halves with one for trainingand the other for testing. The

evaluation of this train/test split is shown in the second row of Table 6.1.

2Unary terms used in Section 6.3 can be represented as edges betweenV (G) and{Vf , Vb}
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Training (40 images) Testing (215 images)

Applelogos:

another, big-

window, biker,

blue, box, bright,

candle, car, cccp,

corridor, crystal,

dark, dealer, dog,

double, float,

four, grey, grid,

hat

Bottles: acaw,

baron, beach,

bird, blue2

Giraffes:

african, am-

sterdam2,

amsterdam,

banal2, banal3

Mugs: apple,

blue, campfire,

caroline, cat

Swans: aal, big,

black2, black3,

black

Applelogos: installing, key, london2, london, monitor, notebook, piggy, ram-

say, redbook, redhole, red, simspon, ssd, store2, store3, store, stripessmall,

tatoo, think, white

Bottles: brunelo, capitoul, ceazanne, Chardonnay, coal, congratulations, cu-

vee, dark, don, drool, dry2, dry, fine, four, green, grote, heineken, hill, ich-

nusa, kitchen, light, mino, pale, party, ray, red, sangiovese, silvia, sippin,

skratch, spiral, stilllife, stout, stromber, terrena, terrible, tobasco, tobias, tor-

breck, tremens, vino, wbbeer

Giraffes: banal4, banal, blonde, bright, brookfield, brown2, brown4,brown,

camuflage, clutter, cluttersissimoavgsize, cosmo, cuddle, dark2, darked, de-

troit, devon, dragon, drawing2, drawing3, drawing4, drawing, drawwhite,

easiest, easily, easy, etosha, far, five, four, green, grey,grill, haute, helio, hun-

gry, ioneforever, kenya, lego, looking, love, male, masai, nakuru, nibbling,

ninentyfive, one, origami, paint, phoenix, plastic, road2,road, sandiego, sere-

genti, shop, small, snack, spots, statue, steltoper, stretch, strolling, sun2,

sun, texture2, texturissimo, three, tisa, toy, two2, two, up, walk, washeout,

weather, website, white, wmsp, wooden, you, zoo

Mugs: clutter, cock, cool, grid, hockey, jazzburger, kids, mat, muki, multi,

napkin, nero, owns, patrick, pieces, pinball, puppy, relty, reusable, ridgid,

sam, sarah, shooting, slis, small, spring, starbucks, starside, store, superman,

system, table, tall, tdnkitchen, tea, twoblack, virginia2, virginia, wake, white,

witch, wood, work

Swans:blackneck, blue, cruise, dirty, equality, fireplace, grass2, grass, high,
infrared, mute, oil, pencil2, pencil4, pencil, perry, purple, stratford, sunset,
swimming, tree2, two2, two, watercolor, whooper, williams, wyndley

Table A.3: Training and testing images for Applelogos.
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Training (48 images) Testing (207 images)

Applelogos: an-

other, bigwindow,

biker, blue, box,

bright

Bottles: acaw,

baron, beach, bird,

blue2, brunelo,

capitoul, ceazanne,

Chardonnay, coal,

congratulations,

cuvee, dark, don,

drool, dry2, dry,

fine, four, green,

grote, heineken, hill,

ichnusa

Giraffes: african,

amsterdam2, am-

sterdam, banal2,

banal3, banal4

Mugs: apple, blue,

campfire, caroline,

cat, clutter

Swans: aal, big,

black2, black3,

black, blackneck

Applelogos: candle, car, cccp, corridor, crystal, dark, dealer, dog, double,

float, four, grey, grid, hat, installing, key, london2, london, monitor, note-

book, piggy, ramsay, redbook, redhole, red, simspon, ssd, store2, store3,

store, stripessmall, tatoo, think, white

Bottles: kitchen, light, mino, pale, party, ray, red, sangiovese, silvia, sip-

pin, skratch, spiral, stilllife, stout, stromber, terrena, terrible, tobasco, to-

bias, torbreck, tremens, vino, wbbeer

Giraffes: banal, blonde, bright, brookfield, brown2, brown4, brown, ca-

muflage, clutter, cluttersissimoavgsize, cosmo, cuddle, dark2, darked, de-

troit, devon, dragon, drawing2, drawing3, drawing4, drawing, drawwhite,

easiest, easily, easy, etosha, far, five, four, green, grey,grill, haute, he-

lio, hungry, ioneforever, kenya, lego, looking, love, male, masai, nakuru,

nibbling, ninentyfive, one, origami, paint, phoenix, plastic, road2, road,

sandiego, seregenti, shop, small, snack, spots, statue, steltoper, stretch,

strolling, sun2, sun, texture2, texturissimo, three, tisa, toy, two2, two, up,

walk, washeout, weather, website, white, wmsp, wooden, you, zoo

Mugs: cock, cool, grid, hockey, jazzburger, kids, mat, muki, multi, nap-

kin, nero, owns, patrick, pieces, pinball, puppy, relty, reusable, ridgid,

sam, sarah, shooting, slis, small, spring, starbucks, starside, store, su-

perman, system, table, tall, tdnkitchen, tea, twoblack, virginia2, virginia,

wake, white, witch, wood, work

Swans:blue, cruise, dirty, equality, fireplace, grass2, grass, high, infrared,
mute, oil, pencil2, pencil4, pencil, perry, purple, stratford, sunset, swim-
ming, tree2, two2, two, watercolor, whooper, williams, wyndley

Table A.4: Training and testing images for Bottles.
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Training (88 images) Testing (167 images)

Applelogos: another, bigwindow,

biker, blue, box, bright, candle, car,

cccp, corridor, crystal

Bottles: acaw, baron, beach, bird,

blue2, brunelo, capitoul, ceazanne,

Chardonnay, coal, congratulations

Giraffes: african, amsterdam2,

amsterdam, banal2, banal3, banal4,

banal, blonde, bright, brook-

field, brown2, brown4, brown,

camuflage, clutter, cluttersis-

simo avgsize, cosmo, cuddle,

dark2, darked, detroit, devon,

dragon, drawing2, drawing3,

drawing4, drawing, drawwhite,

easiest, easily, easy, etosha, far

Mugs: apple, blue, campfire, car-

oline, cat, clutter, cock, cool, grid,

hockey, jazzburger

Swans: aal, big, black2, black3,

black, blackneck, blue, cruise,

dirty, equality, fireplace

Applelogos: dark, dealer, dog, double, float, four, grey,

grid, hat, installing, key, london2, london, monitor, note-

book, piggy, ramsay, redbook, redhole, red, simspon, ssd,

store2, store3, store, stripessmall, tatoo, think, white

Bottles: cuvee, dark, don, drool, dry2, dry, fine, four,

green, grote, heineken, hill, ichnusa, kitchen, light, mino,

pale, party, ray, red, sangiovese, silvia, sippin, skratch, spi-

ral, stilllife, stout, stromber, terrena, terrible, tobasco, to-

bias, torbreck, tremens, vino, wbbeer

Giraffes: five, four, green, grey, grill, haute, helio, hun-

gry, ione forever, kenya, lego, looking, love, male, ma-

sai, nakuru, nibbling, ninentyfive, one, origami, paint,

phoenix, plastic, road2, road, sandiego, seregenti, shop,

small, snack, spots, statue, steltoper, stretch, strolling,

sun2, sun, texture2, texturissimo, three, tisa, toy, two2,

two, up, walk, washeout, weather, website, white, wmsp,

wooden, you, zoo

Mugs: kids, mat, muki, multi, napkin, nero, owns, patrick,

pieces, pinball, puppy, relty, reusable, ridgid, sam, sarah,

shooting, slis, small, spring, starbucks, starside, store, su-

perman, system, table, tall, tdnkitchen, tea, twoblack, vir-

ginia2, virginia, wake, white, witch, wood, work

Swans: grass2, grass, high, infrared, mute, oil, pencil2,
pencil4, pencil, perry, purple, stratford, sunset, swimming,
tree2, two2, two, watercolor, whooper, williams, wyndley

Table A.5: Training and testing images for Giraffes.

136



Training (48 images) Testing (207 images)

Applelogos: an-

other, bigwindow,

biker, blue, box,

bright

Bottles: acaw,

baron, beach, bird,

blue2, brunelo

Giraffes: african,

amsterdam2, am-

sterdam, banal2,

banal3, banal4

Mugs: apple, blue,

campfire, caroline,

cat, clutter, cock,

cool, grid, hockey,

jazzburger, kids,

mat, muki, multi,

napkin, nero, owns,

patrick, pieces,

pinball, puppy, relty,

reusable

Swans: aal, big,

black2, black3,

black, blackneck

Applelogos: candle, car, cccp, corridor, crystal, dark, dealer, dog, double,

float, four, grey, grid, hat, installing, key, london2, london, monitor, note-

book, piggy, ramsay, redbook, redhole, red, simspon, ssd, store2, store3,

store, stripessmall, tatoo, think, white

Bottles: capitoul, ceazanne, Chardonnay, coal, congratulations, cuvee,

dark, don, drool, dry2, dry, fine, four, green, grote, heineken, hill, ich-

nusa, kitchen, light, mino, pale, party, ray, red, sangiovese, silvia, sippin,

skratch, spiral, stilllife, stout, stromber, terrena, terrible, tobasco, tobias,

torbreck, tremens, vino, wbbeer

Giraffes: banal, blonde, bright, brookfield, brown2, brown4, brown, ca-

muflage, clutter, cluttersissimoavgsize, cosmo, cuddle, dark2, darked, de-

troit, devon, dragon, drawing2, drawing3, drawing4, drawing, drawwhite,

easiest, easily, easy, etosha, far, five, four, green, grey,grill, haute, he-

lio, hungry, ioneforever, kenya, lego, looking, love, male, masai, nakuru,

nibbling, ninentyfive, one, origami, paint, phoenix, plastic, road2, road,

sandiego, seregenti, shop, small, snack, spots, statue, steltoper, stretch,

strolling, sun2, sun, texture2, texturissimo, three, tisa, toy, two2, two, up,

walk, washeout, weather, website, white, wmsp, wooden, you, zoo

Mugs: ridgid, sam, sarah, shooting, slis, small, spring, starbucks, starside,

store, superman, system, table, tall, tdnkitchen, tea, twoblack, virginia2,

virginia, wake, white, witch, wood, work

Swans:blue, cruise, dirty, equality, fireplace, grass2, grass, high, infrared,
mute, oil, pencil2, pencil4, pencil, perry, purple, stratford, sunset, swim-
ming, tree2, two2, two, watercolor, whooper, williams, wyndley

Table A.6: Training and testing images for Mugs.
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Training (28 images) Testing (227 images)

Applelogos:

another, big-

window, biker,

blue

Bottles: acaw,

baron, beach,

bird

Giraffes:

african, am-

sterdam2,

amsterdam,

banal2

Mugs: apple,

blue, campfire,

caroline

Swans: aal, big,

black2, black3,

black, blackneck,

blue, cruise,

dirty, equality,

fireplace, grass2,

grass, high,

infrared, mute

Applelogos: box, bright, candle, car, cccp, corridor, crystal, dark, dealer,

dog, double, float, four, grey, grid, hat, installing, key, london2, london, mon-

itor, notebook, piggy, ramsay, redbook, redhole, red, simspon, ssd, store2,

store3, store, stripessmall, tatoo, think, white

Bottles: blue2, brunelo, capitoul, ceazanne, Chardonnay, coal, congratula-

tions, cuvee, dark, don, drool, dry2, dry, fine, four, green,grote, heineken,

hill, ichnusa, kitchen, light, mino, pale, party, ray, red,sangiovese, silvia,

sippin, skratch, spiral, stilllife, stout, stromber, terrena, terrible, tobasco, to-

bias, torbreck, tremens, vino, wbbeer

Giraffes: banal3, banal4, banal, blonde, bright, brookfield, brown2,brown4,

brown, camuflage, clutter, cluttersissimoavgsize, cosmo, cuddle, dark2,

darked, detroit, devon, dragon, drawing2, drawing3, drawing4, drawing,

drawwhite, easiest, easily, easy, etosha, far, five, four, green, grey, grill,

haute, helio, hungry, ioneforever, kenya, lego, looking, love, male, masai,

nakuru, nibbling, ninentyfive, one, origami, paint, phoenix, plastic, road2,

road, sandiego, seregenti, shop, small, snack, spots, statue, steltoper, stretch,

strolling, sun2, sun, texture2, texturissimo, three, tisa, toy, two2, two, up,

walk, washeout, weather, website, white, wmsp, wooden, you, zoo

Mugs: cat, clutter, cock, cool, grid, hockey, jazzburger, kids, mat, muki,

multi, napkin, nero, owns, patrick, pieces, pinball, puppy, relty, reusable,

ridgid, sam, sarah, shooting, slis, small, spring, starbucks, starside, store,

superman, system, table, tall, tdnkitchen, tea, twoblack,virginia2, virginia,

wake, white, witch, wood, work

Swans: oil, pencil2, pencil4, pencil, perry, purple, stratford, sunset, swim-
ming, tree2, two2, two, watercolor, whooper, williams, wyndley

Table A.7: Training and testing images for Swans.
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Training (127 images) Testing (128 images)

Applelogs: another, bigwindow, biker, blue,

box, bright, candle, car, cccp, corridor, crystal,

dark, dealer, dog, double, float, four, grey, grid,

hat

Bottles: acaw, baron, beach, bird, blue2, blue3,

brunelo, capitoul, ceazanne, Chardonnay, coal,

congratulations, cuvee, dark, don, drool, dry2,

dry, fine, four, green, grote, heineken, hill

Giraffes: african, amsterdam2, amsterdam,

banal2, banal3, banal4, banal, blonde, bright,

brookfield, brown2, brown4, brown, camu-

flage, clutter, cluttersissimoavgsize, cosmo,

cuddle, dark2, darked, detroit, devon, dragon,

drawing2, drawing3, drawing4, drawing,

drawwhite, easiest, easily, easy, etosha, far,

five, four, green, grey, grill, haute, helio,

hungry, ioneforever, kenya

Mugs: apple, blue, campfire, caroline, cat,

clutter, cock, cool, grid, hockey, jazzburger,

kids, mat, muki, multi, napkin, nero, owns,

patrick, pieces, pinball, puppy, relty, reusable

Swans: aal, big, black2, black3, black, black-
neck, blue, cruise, dirty, equality, fireplace,
grass2, grass, high, infrared, mute

Applelogs: installing, key, london2, london,

monitor, notebook, piggy, ramsay, redbook,

redhole, red, simspon, ssd, store2, store3, store,

stripessmall, tatoo, think, white

Bottles: ichnusa, kitchen, light, mino, pale,

party, ray, red, sangiovese, silvia, sippin,

skratch, spiral, stilllife, stout, stromber, terrena,

terrible, tobasco, tobias, torbreck, tremens,

vino, wbbeer

Giraffes: lego, looking, love, male, masai,

nakuru, nibbling, ninentyfive, one, origami,

paint, phoenix, plastic, road2, road, sandiego,

seregenti, shop, small, snack, spots, statue,

steltoper, stretch, strolling, sun2, sun, tex-

ture2, texturissimo, three, tisa, toy, two2, two,

up, walk, washeout, weather, website, white,

wmsp, wooden, you, zoo

Mugs: ridgid, sam, sarah, shooting, slis, small,

spring, starbucks, starside, store, superman,

system, table, tall, tdnkitchen, tea, twoblack,

virginia2, virginia, wake, white, witch, wood,

work

Swans:oil, pencil2, pencil4, pencil, perry, pur-
ple, stratford, sunset, swimming, tree2, two2,
two, watercolor, whooper, williams, wyndley

Table A.8: Training and testing images of ETHZ Shape Classeswith equal split. The

training and test data sets are the same across all 5 categories.
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