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Fig. 6. Simulation of the hybrid controller operating in thisible set of a single beacon landmark described in Sedtle@. The initial configuration is
qo, the controller switches at timg in position¢s and the final configuration ig;. a) Configuration space plotted dix, y, 1) for readability purposeb)
Top view. The visual beacon is represented by the large blatkThe gray areas violate the visual constrainjsandd) State variables and energy plots.

We applied the algorithm developed in this paper to « The goal location inSE(2), denoted by(z*, y*,0*), is
this problem, using again, the unicycle motion model mapped bye to (n*, u*,d*). We assume this way that

A= cos(d) sin(f) 0 ]. The navigation function is de- the final orientation of the robot is important.
veloped in double polar coordinates and it is brought back toe The cosine functions are used here, €lg-cos(p—pim)),
SE(2) by the change of coordinates SE(2) — S! xS x R™: since the state variablesand . live in St. The desired

. arctan(y/z) Igiloal is actually(n* + 2kym, u* + 2kom, d*) with ki, ko €

w | =c(w,y,0):= | 0—arctan(y/x) (54) . )

d \/m o k is a shaping term.
The navigation function reflects the following physical atThe resulting navigation function follows the same “squash
tributes of the sensor: ing” and change of coordinates as in equations (8) and (9).

1) The robot must be in an interval of distances away froMote that by imposing a minimum distance to the bead¢qn
the beacon, so to not get too close or too far away frothe configuration space is not simply connected. It is in fact
it, specificallyd,, < d < da;. homeomorphic to a solid torus as illustrated in figure 6. This
2) The robot's camera must face the beacon at all timaesults ing, < 1. Here, some level sets are topological torus
encoded ag,,, < v < par, Wherep,,, 1as are the field and others topological spheres. However, it is observediea
of view boundaries of the camera in polar coordinategenter manifold/V¢ is a circle, every level set homeomorphic

Consider the potential function: to the sphere intersecl&“ and every level set homeomorphic
5 ) . ‘ . d— a2\ to the torus does not intersel“. Since for all points in the
5= (2 = cos(n — n*) — cos(u — p*) + (d — d*)?) domain @ by following the flow of functionf; have its limit

(1 —cos(p — pm))(1 — cos(p — par))(dar — d)(d — dm) set inWWe then one can argue that the domain of attraction for
For the previous potential function we have: the hybrid stabilization algorithm presented here is théren
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Fig. 7. Simulation of the hybrid controller operating in thisible set of a three beacon landmark. The initial configonais qo, the controller switches at
time ¢ in positiongs and the final configuration ig;. a) Configuration space plotted o, y, 50 — 5 arctan(y/x)) for readability purposeb) Top view.
The visual beacons are represented by the large black do¢sgrby areas violate the visual constraimfsandd) State variables and energy plots.

Q up to a zero measure set. In fact, experience shows thia 383 simulations run of a single beacon visual servoing
better trajectories (in the sense of minimum number of “bagkoblem we obtained a mean error position of 4.3 cm and a
and forward” parallel parking motion for the vector fiefd) mean arc-length ratio of 4.1. Note that in figure 6 the robot
are obtained if the energy levelis kept very high, i.e., in the executes a parallel parking maneuver in the plane. Although
torus level sets. There, the trajectories define quasegiri it is well known that for the unicycle the parallel parking
orbits that intersect the stable manifold® indefinitely. motion is required to move sideways, the trajectory obthine
For the simulations and experiments we consider the int@n the plane is a natural consequence of moving on a level set
esting parameters to be tineean error positiordefined by:  of the navigation function. Moreover, the navigation fuoot
enforces that the robot does not hit the obstacles, singggdoi
that would require puncturing the level sets away from the

where ¢} is the final position reached on théh run; and goal.
the mean arc-length ratiathat gives an idea of how much
worse the robot performs against a fully actuated robot thidt Simulations for the visual servoing problem
can always follow a straight line to the goal. For continuous A representative numerical simulation for the visual segvi
time it is defined by: problem described in Section Il is illustrated in figure M

i _ the navigation functiorp, presented in equation (9), is defined
Jo? g (gh, 1)l dt in a convex set and has a unique critical poingatall of its

g — q*|| level sets are topological spheres. The inputs (40), (4d) an

(39) are computed using the nonholonomic constraint (1&) an
wheret’, is the final time andy/(q, ) the derivative of the the navigation function (9). Table Il compiles the simuati
trajectory starting at the initial positiog}, for the ith run. For results.

mean error position= Mean; [||¢; — ¢*||] , (55)

mean arc-length ratic= Mean, , (56)
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V. EXPERIMENTAL IMPLEMENTATION correction. Since it assumed that the beacons project into a
We now present the results of our implementation of tHE'€: following figure 2(a), roll correction is accomplishey
tting a line to the 2D centroid of the 3 blobs (chosen by size

visual servoing algorithm using the robot RHex [2] in thred , i ,
steps. In Section IV-A, we outline the hardware and softwaf8'd ¢1ass) and attaching a frame to it. The beacon coordinate

components that comprise the image processing pipelii. I£€ defir_1ed_in reIatipn to that frgme. Th_e following s_impﬂfie
important to keep in mind that this perceptual apparatust m§&Pression is used in the experimental implementationyevhe
be quite simple since it is located entirely onboard the tob¥i: Yi) are th_e c_eﬂriltr0|ds of the 'Fhree be.acons in the image
and runs in real time as we detail below. In Section Iv-B wBlane after Heikkila's lens correction map:

describe the controller implementation, emphasizing e t X+ 0Y; (57)
extensions to the simple version of the algorithm presented o= 14062
above in Section Il that compensate for the significant sens ¢i = arctan(e;) +7/2 (58)
noise and limitations in control authority inherent in this .

; . . - with,
physical setting. We explain why the resulting closed loop
(hybrid) behavior is still governed by the correctness ltesu 5o X Yi-3X XiVi (59)
of Section Ill, notwithstanding these real world adjustisen ' (> X)2-3> X2

Finally, we present tables and figures of data summarizifg the simulations developed in Section Ill-H the robot is

implementations of the complete system. pitch are encoded in the navigation function. However, i th
experimental implementation there can be large distursmnc
A. The Perceptual Hardware and Software that pitch the robot enough for the beacons to leave the field

L o of view either from the bottom or from the top of the image.
The entire visual sensor suite is implemented on a secow

dedicated, onboard 300MHz PC104 stack, running Linux € coded a state mach|_ne that in case of "emergency” will
stop and rotate the robot in place until it relocates the tesc
connected by local ethernet to the (QNX based) motor contigl.” " .
. . . is simple procedure corrected for all the temporary fagu
stack documented in [2]. We implement the following com; ) o
. L . that occurred due to excessive pitching.
putational pipeline on this second stack at a 10 Hz update : T .
rate: 4) Supervisory state machine: The transitions between the
1) Video acquisition: is accomplished by a Sony DFWC%OBOntr(.)"ersf1 and :f2 are |mplem_enfte.d. using a standard state
) LS : machine formulation. The robot is initiated with controllg.
camera via a firewire connection. o . .
eﬁ transition occurs if the robot crosses the stable maniépld

2) Image processing library: Early vision is accomplish L o . .
using our in-house SVision library inspired by Hagers XVi_proxmatlon switching to controllef;. If f; fails to bring the

; . ) : : iy robot to a pre-defined neighborhood of the goal location, i.e
sion [43] albeit conS|Qer§ny stripped dO.W” in compart _" reaches the center manifold outside the goal’'s neighbarhoo
implement the following image processing methodology:

) ) ] ) and a fixed amount of time as passed, then another transition
« color calibration (this step is executed only at startup): fccyrs, switching back to controllgs. The robot stops when
lookup table is used for color classification in the YUVt yeaches the goal’s neighborhood. As mentioned before,

color space (the standard TV NTSC color space) Wite state machine will also deal with particular emergency
size 256 x 256 x 256. Different color classes are acquiredsjyations.

by selecting different objects in the GUI's camera view.
After a C(_)Ior class is a_cqwred |ts_ size is |_ncre_é§etny B. Controller Implementation.
a pre-defined amount in the luminance direction of the _
HLS color space (Hue, Luminance and Saturation) so as! "€ control algorithms use the camera map exactly as
to maximize robustness to daylight changes, specificaﬁ&‘ﬁfmed above in Section Il. However the substantial peuedpt
switching from shade to direct sun exposure. noise and limitations in control authority associated vatlr

« blob extraction: the standard 4-neighbor connected coRf?ysical RHex environment require two additional complica
ponents algorithm is used as presented in [44]. A vectlpns in the controller implementation. _
of mass, centroid and labeling class is returned per blobFirst, although the horizontal plane behavior of the robot
found. RHex is reasonably well approximated by the unicycle me-

« lens correction: the standard Heikkila [45] lens model fghanics presented in Section II-C, the limited number ofsgai
used. The lens correction map includes all the intrinsfivailable for any given terrain [46] typically dictate thae
camera parameters, including focal length, and returﬁgallgble fore-_aft speed control be limited to a few diseret
“normalized” points, with units in meters, projected intd/elocny maghnitudes. ThusZ a more accurate model of_ control
a plane 1 meter away from the robot’s camera. Calibratiét/thority would replace:, in equation (11) with a variable
is performed at startup using a flat checkerboard surfa%_%'i'j”g its \éalues I'”d"’} dlscre';)e_ set. Fc;tr)tu_napelyag;gwmtm

3) Image stabilization: The centroid information providede s can be scaled in an arbitrary (albeit sign definite) mean

. o i . with no change in steady state behavior. Namely, for any
by the image processing library follows a post-processaig rgradient field, f(z) — —V and any positive scalar valued

13The color's acquired simply-connected volume is projedted the Hue function, o (), Observe thatp remains a Lyapunov functmn
and Saturation plane and then spread over an interval in hgifance axis. for the scaled fields(x)f(z). Our implementation using a
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discrete magnitude field can now be modeled &y) := C. Experimental results

ao/[1f(2)]].

Second, in systems where noise is introduced

via im- The first data set, a trace of the visually perceived pose

perfect perception or actuation the vector figlgl loses its and energy level resulting from application of controljgr
¢-invariance. Although a thorough-going treatment of th@ustrated in figure 8, gives a feeling for the robustness of
stochastic version of our problem lies well beyond the scofjeese gradient style controllers as the robot roughly Hiatvy

of this paper, the reliance on gradient vector fields oncénag&aces out the desired trajectory in the face of notablecsens
affords an intuitively simple “regulator” against thesedesir- Noise, the inevitable perturbations from uneven ground, as
able (and, ultimately, dangerous) fluctuations in proxmé Well as the very severe parametric uncertainty arising from
the obstacles. Namely, suppose that the noise is additite dhe crudeness of the unicycle model as a description of the

zero mean. Rewrite equation (34) as:
G = fa(q) +v(t)
Define the new inpufg as:

fo = fala) + B(¢" — #(q)) fila)
= oJ(A)Vo + B (¢" —¢) HV ¢,

horizontal plane behavior of RHex. Far away from the beacons
the pose estimation performs poorly, as seen in the high

(60) variance of the data. This experiment is conducted outdoors
using RHex’s onboard camera only, according to the proeedur
(61) documented above in Section IV-A, for two different target

levels, as defined before equation (62).
The second data set — a graphical and tabular summary

where 3 is a positive scalar ang* is the desiredarget level of convergence from several different initial configurato
set normally chosen to be slightly less then 1. The dynamies portrays the nature of “practical stability” [25] assugin

of o for ¢ = fa(q) + v(t) are:
¢ =V fa+B(¢* — ) Vo  HV o+ Vo' v
~—— ————  ——
=0 vy w
= 0v(p" — ) +w

As ¢(t) evolves over timeyp(q(t)) converges to a neighbor-
hood of p* if v > 0 andw is small in proportion. In practice

convergence to a small neighborhood of the goal pose with
the guarantee of maintaining visibility (never losing gigfh
the triple-beacon landmark) along the way. This experiment
was conducted indoors with the ground truth data acquired
(62) Dby an overhead camera running at 30Hz. Quantitatively, the
interesting parameter to measure is thean arc-length ratio
of the path, defined in discrete time by:

this means that the robot will stay in the proximity of thegietr

level setp* while it is in motion, escaping the center manifold.
, rereal
that adding the second term to the vector field (61) is indeed
necessary. The robot was not able at all to follow a partrcul
level set whenf, was solely used. In contrast, note thfatis

energy dissipative, hence standard arguments from Lyapu
theory establish its robustness against these sorts afrpart
tions without the requirement of any further modificatidn.

The experiments performed on RHex, described next

Although formal robustness analysis is generally not atdd
for nonlinear systems, the nondegenerate gradient syst
of the kind introduced in this paper are structurally stablgha
hence “small” perturbations away from the nominal model a
guaranteed to result in only “small” perturbations in thaiti

set.

The resulting modified input of (41) used in the experiments,
before applying the scaling required for RHex’s discretelac

ation presented in the beginning of this section, is:
up 1= B [0J(A) + 8 (¢" — ) ] Ve

As a final note we would like to remind the reader that

S lla, — a4 |

Jnean arc-length ratic= Mean; P — , (64)
lao — a*

Fnere: spans the indexes of the samples for itte experi-
ment. Table Il compiles the experimental results and figure
"Willustrates three representative runs. No chatteringceff
was observed in both the experiments. This is due to the
., state machine formulation (that prevefit and f, to switch

in an “incoherent” fashion) and RHex’s actuation model,
izing discrete steps. Note however that in wheeledolehi
ttering may occur when controllgs is used very close to
tfie goal, i.e. with a very small energy. Singewill live on a
very small level set of the navigation function, this resuit
very small oscillations around the goal.

TABLE Il
EXPERIMENTS EXECUTED USING THE ROBORHEX IN COMPARISON TO
(63) SIMULATIONS OF A UNICYCLE ON THE SIMPLY CONNECTED
CONFIGURATION SPACE DEFINED IN EQUATION(10)

throughout the paper we consider only the problem of point
stabilization and avoid the tracking problem. In the expen- # mean error position mean arc-length ratio
tal implementation the robot eventually “tracks” a level sk Simulations: 368 5.3 cm 2.9
the navigation function but still does not track any patacu  Experiments: 1 5 17.6 cm 9.3
fixed trajectory. Tracking changes completely the striectuir 2 5 17.8 cm 6.2
the problem since in general time-invariant vector fields ca 3 5 17.6 cm 6.5
no longer be used for control. 4 5 26.1 cm 5.2
R 5 5 11.5 cm 5.5
l4gpecifically, the Lie derivative of along f1 := f1 + v is “usually” 6 5 27.9 cm 4.9

negative — except possibly in a small neighborhood of theeremanifold

whose size is regulated by the relative magnitudefiofand the variance of

v. It follows that this neighborhood remains an attractor awerage”.
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Fig. 8. RHex's outdoor experiments on packed dirt for cdigrofz. a) Top view of perceived trajectory with units in meters drjdperceived energy(q)
for target levelp* = 0.9. ¢) Top view of perceived trajectory ard) perceived energy(q) for target levelp* = 0.8. The beacons are represented by the
black dots.

a) b) ©)

Fig. 9. RHex’s ground truth measurement experiments. fiffegoal locationg* are represented by the thick line white triangles. Theahitonfigurations
qo are represented by the thin line gray triangles and the fioafigurationsq; by the solid black triangles.

V. CONCLUSIONS AND FUTURE DIRECTIONS APPENDIX |

We present a robust visual servo suitable for registering a CAMERA MAPS
legged robot with limited perception relative to engineere
landmarks over rugged outdoor terrain. At the heart of our Define ¢* : SE(2) — C as the map from local body
algorithm is a provably correct hybrid controller that resis coordinates to the intermediate spatéy:
navigation functions developed for fully actuated bodies o

kinematically constrained systems. It is straightforwaeod ) arctan(—xy/ys)
extend the guarantee of obstacle avoidance. Verifiable as- ¢ (Zv: Ub, 0b) == O — arctan(—x;/ys)
sumptions are given for convergence to an arbitrarily small Vg +yp

neighborhood of the goal. We present various simulations fo
different perceptual models and summarize the results of With inverse:
extensive empirical implementation on the legged robot:RHe

We are presently exploring generalizations to robots with bes 1 —rsin(¢)
higher degrees of freedom and alternative motion consrain () (gt 1) = | reos(9)
as well as a variety of alternative landmark schemes. ¢+v
VI. ACKNOWLEDGMENTS Define ¢*® : SE(2) — SE(2) as the map from world

We thank John Guckenheimer for several useful converggordinates to body coordinates:
tions related to the computation of invariant manifolds and
George Kantor, Al Rizzi and Anthony Bloch for a number of RT o Tw
stimulating and helpful conversations bearing on the mnubl (T, Yooy Ou) 1= — [ gw 1 }
addressed in this paper. We would like to thank the reviewers
for a number of very helpful suggestions and comments
regarding the presentation of this material. with equal inverse since®? is an involution.
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APPENDIXII The previous theorem establish that under appropriate con-

COMPUTATION OF INVERSE CAMERA MAP ditions the “slow” dynamics oh,,, defined in equation (27) ,

Let ¥; = [ cos(¢;) sin(¢;) | where ¢; are the angles approaches the center manifold iaf asa goes to zero. For

defined in Section II-A. Knowing that ”.JY = 0 we have: @ tutorial treatment of Singular Perturbations please 48¢ |

or [49].
V' TRy (piRa, Ry +11)és =0 (65)
in particular, sincex; = —as = «; pa =0 APPENDIX IV
FECKAN’S EXTENSION OF THEBENDIXSON'S CRITERIA

1Yy JRyés =04 Ry =01 [ JY2 —Y2 | (66)

Definition 2 (F&kan [39]): Let M < R! be an m-
dimensional compact smooth orientable submanifold with a
nonempty borde®M. HencedM is anm — 1-dimensional
b=+ T compact smooth orientable sub-manifold. Assume that 2.

2 Let V C R™ be ak-dimensional smooth submanifold &
Let Y’ andY be obtained by expressions (5) and (6). Thenwith empty borderdV = (. Let 3 € Lip(OM,R"™) be such

YT R JRyRoés + 1Y T T Ryés — 0 that 3(M) C V andr = §/0M satisfy:

The constand; = +1is chosensothat 3 < ¢ < 7 resulting
in:

(67)

(68)

. | 7 is injective ondM.
o [yr oy ]| Ml J
TJR¢é2

Il The inverser—! : 7(0M) — R! is Lipschitz on the set

T(OM) C R™.

Let Y[ be the orthogonal complement of the subspagge call the sets = 7(9M) anm — 1-V-L-boundaryof V. It
generated by the lines dff, i.e. Y, lives in the null space s a generalization of smooth submanifoldsiof

of YT, with YT = (YYT)~'Y the pseudo-inverse of 7.

Theorem 5 (Fékan [39]): Let g1, 9o, -

-, 9p € C*(R™,R)

Since[ YT Yy | is full rank then the previous expressiome first integral of (22). If = G~1[0] is a nondegenerate

is equivalent to:

VT w1 | JReRyéa | _
v | v v e | o
YiYT I 7[ JRsRyés |
{YfY’T OH rIRges | 0 (69)
Solving for Ry, we get: [1]
Y'Y,
T = dg—r— 70
el (70) 12
Ry, = Rj[Jz -z | (71) a
Simplifying we obtaim):
¢ = arctan(0, R} JY'Y]) (72) 4

Again d9 +1 is chosen so that-7 < ¢ < 7. Finally
. : i 5]
solving forr in (69) we get:

YYTI[ Jr —x |és+rJRyés =0 )

& r|JReéal| = [YTYTT[ Jx -z ]é 0
1YY TIY'Y,|
o p=t -t T2l 73
7774] (73)
8]
APPENDIX |1

FENICHEL S SINGULAR PERTURBATION THEOREM

Theorem 4 (Fenichel [47]):Consider the system (28) with [9]
0 < a <« 1. Suppose that forx = 0, (28) admits an
equilibrium manifold of dimensionn, 0 < m < n, denoted
by Wy and for allg* € W}, the Jacobian matrix),ha |40y  [10]
admitsn — m eigenvalues with a strictly negative real part.
Then, for every open and bounded subSgtof W}, there [11]
exists an open neighborhodg of Qy in R™, such that, forx
positive and small enough, the perturbed system (28) admits
an attractive invariant sub-manifold’;* contained inV; and
close tow).

level set of the mapping' = (g1, 92, - -

,gp) and in addition

divfy # 0 on V, then there is nam — p — 1-V-L-boundaryS
of V' which is invariant for (22).
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