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Ŵs
1

qf

y

x

x

y

θ

ts
t

ϕ

ts t

µ
d

η

Fig. 6. Simulation of the hybrid controller operating in thevisible set of a single beacon landmark described in SectionIII-G. The initial configuration is
q0, the controller switches at timets in position qs and the final configuration isqf . a) Configuration space plotted on(x, y, µ) for readability purpose.b)
Top view. The visual beacon is represented by the large blackdot. The gray areas violate the visual constraints.c) andd) State variables and energy plots.

We applied the algorithm developed in this paper to
this problem, using again, the unicycle motion model
A =

[
cos(θ) sin(θ) 0

]
. The navigation function is de-

veloped in double polar coordinates and it is brought back to
SE(2) by the change of coordinatesc : SE(2) → S1×S1×R+:




η
µ
d



 = c(x, y, θ) :=




arctan(y/x)

θ − arctan(y/x)√
x2 + y2



 (54)

The navigation function reflects the following physical at-
tributes of the sensor:

1) The robot must be in an interval of distances away from
the beacon, so to not get too close or too far away from
it, specificallydm < d < dM .

2) The robot’s camera must face the beacon at all times,
encoded asµm < µ < µM , whereµm, µM are the field
of view boundaries of the camera in polar coordinates.

Consider the potential function:

¯̄ϕ :=

(
2 − cos(η − η∗) − cos(µ− µ∗) + (d− d∗)2

)k

(1 − cos(µ− µm))(1 − cos(µ− µM ))(dM − d)(d − dm)

For the previous potential function we have:

• The goal location inSE(2), denoted by(x∗, y∗, θ∗), is
mapped byc to (η∗, µ∗, d∗). We assume this way that
the final orientation of the robot is important.

• The cosine functions are used here, e.g.(1−cos(µ−µm)),
since the state variablesη andµ live in S1. The desired
goal is actually(η∗ +2k1π, µ

∗ +2k2π, d
∗) with k1, k2 ∈

N.
• k is a shaping term.

The resulting navigation function follows the same “squash-
ing” and change of coordinates as in equations (8) and (9).
Note that by imposing a minimum distance to the beacondm,
the configuration space is not simply connected. It is in fact
homeomorphic to a solid torus as illustrated in figure 6. This
results inϕs < 1. Here, some level sets are topological torus
and others topological spheres. However, it is observed that the
center manifoldWc is a circle, every level set homeomorphic
to the sphere intersectsWc and every level set homeomorphic
to the torus does not intersectWc. Since for all points in the
domainQ by following the flow of functionf1 have its limit
set inWc then one can argue that the domain of attraction for
the hybrid stabilization algorithm presented here is the entire
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Q up to a zero measure set. In fact, experience shows that
better trajectories (in the sense of minimum number of “back
and forward” parallel parking motion for the vector fieldf2)
are obtained if the energy levelϕ is kept very high, i.e., in the
torus level sets. There, the trajectories define quasi-periodic
orbits that intersect the stable manifoldWs indefinitely.

For the simulations and experiments we consider the inter-
esting parameters to be themean error positiondefined by:

mean error position:= Meani
[
‖qif − q∗‖

]
, (55)

where qif is the final position reached on theith run; and
the mean arc-length ratiothat gives an idea of how much
worse the robot performs against a fully actuated robot that
can always follow a straight line to the goal. For continuous
time it is defined by:

mean arc-length ratio:= Meani




∫ tif
0 ‖q′(qi0, t)‖dt

‖qi0 − q∗‖



 , (56)

where tif is the final time andq′(qi0, t) the derivative of the
trajectory starting at the initial positionqi0 for the ith run. For

the 383 simulations run of a single beacon visual servoing
problem we obtained a mean error position of 4.3 cm and a
mean arc-length ratio of 4.1. Note that in figure 6 the robot
executes a parallel parking maneuver in the plane. Although
it is well known that for the unicycle the parallel parking
motion is required to move sideways, the trajectory obtained
on the plane is a natural consequence of moving on a level set
of the navigation function. Moreover, the navigation function
enforces that the robot does not hit the obstacles, since doing
that would require puncturing the level sets away from the
goal.

H. Simulations for the visual servoing problem

A representative numerical simulation for the visual serving
problem described in Section II is illustrated in figure 7. Since
the navigation functionϕ, presented in equation (9), is defined
in a convex set and has a unique critical point atq∗, all of its
level sets are topological spheres. The inputs (40), (41) and
(39) are computed using the nonholonomic constraint (12) and
the navigation function (9). Table II compiles the simulation
results.
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IV. EXPERIMENTAL IMPLEMENTATION

We now present the results of our implementation of the
visual servoing algorithm using the robot RHex [2] in three
steps. In Section IV-A, we outline the hardware and software
components that comprise the image processing pipeline. Itis
important to keep in mind that this perceptual apparatus must
be quite simple since it is located entirely onboard the robot
and runs in real time as we detail below. In Section IV-B we
describe the controller implementation, emphasizing the two
extensions to the simple version of the algorithm presented
above in Section III that compensate for the significant sensor
noise and limitations in control authority inherent in this
physical setting. We explain why the resulting closed loop
(hybrid) behavior is still governed by the correctness results
of Section III, notwithstanding these real world adjustments.
Finally, we present tables and figures of data summarizing
our extensive experimental results for both indoor and outdoor
implementations of the complete system.

A. The Perceptual Hardware and Software

The entire visual sensor suite is implemented on a second,
dedicated, onboard 300MHz PC104 stack, running Linux,
connected by local ethernet to the (QNX based) motor control
stack documented in [2]. We implement the following com-
putational pipeline on this second stack at a 10 Hz update
rate:

1) Video acquisition: is accomplished by a Sony DFW300
camera via a firewire connection.

2) Image processing library: Early vision is accomplished
using our in-house SVision library inspired by Hager’s XVi-
sion [43] albeit considerably stripped down in comparison.We
implement the following image processing methodology:

• color calibration (this step is executed only at startup): A
lookup table is used for color classification in the YUV
color space (the standard TV NTSC color space) with
size256×256×256. Different color classes are acquired
by selecting different objects in the GUI’s camera view.
After a color class is acquired its size is increased13 by
a pre-defined amount in the luminance direction of the
HLS color space (Hue, Luminance and Saturation) so as
to maximize robustness to daylight changes, specifically
switching from shade to direct sun exposure.

• blob extraction: the standard 4-neighbor connected com-
ponents algorithm is used as presented in [44]. A vector
of mass, centroid and labeling class is returned per blob
found.

• lens correction: the standard Heikkilä [45] lens model is
used. The lens correction map includes all the intrinsic
camera parameters, including focal length, and returns
“normalized” points, with units in meters, projected into
a plane 1 meter away from the robot’s camera. Calibration
is performed at startup using a flat checkerboard surface.

3) Image stabilization: The centroid information provided
by the image processing library follows a post-processing roll

13The color’s acquired simply-connected volume is projectedinto the Hue
and Saturation plane and then spread over an interval in the Luminance axis.

correction. Since it assumed that the beacons project into a
line, following figure 2(a), roll correction is accomplished by
fitting a line to the 2D centroid of the 3 blobs (chosen by size
and class) and attaching a frame to it. The beacon coordinates
are defined in relation to that frame. The following simplified
expression is used in the experimental implementation, where
(Xi, Yi) are the centroids of the three beacons in the image
plane after Heikkilä’s lens correction map:

ιi =
Xi + δYi
1 + δ2

(57)

ζi = arctan(ιi) + π/2 (58)

with,

δ :=

∑
Xi

∑
Yi − 3

∑
XiYi

(
∑
Xi)2 − 3

∑
X2
i

, (59)

In the simulations developed in Section III-H the robot is
assumed to live in the plane. Therefore, no obstacles relating to
pitch are encoded in the navigation function. However, in the
experimental implementation there can be large disturbances
that pitch the robot enough for the beacons to leave the field
of view either from the bottom or from the top of the image.
We coded a state machine that in case of “emergency” will
stop and rotate the robot in place until it relocates the beacons.
This simple procedure corrected for all the temporary failures
that occurred due to excessive pitching.

4) Supervisory state machine: The transitions between the
controllersf1 and f̄2 are implemented using a standard state
machine formulation. The robot is initiated with controller f̄2.
A transition occurs if the robot crosses the stable manifoldap-
proximation switching to controllerf1. If f1 fails to bring the
robot to a pre-defined neighborhood of the goal location, i.e.
reaches the center manifold outside the goal’s neighborhood
and a fixed amount of time as passed, then another transition
occurs, switching back to controller̄f2. The robot stops when
it reaches the goal’s neighborhood. As mentioned before,
the state machine will also deal with particular emergency
situations.

B. Controller Implementation.

The control algorithms use the camera map exactly as
defined above in Section II. However the substantial perceptual
noise and limitations in control authority associated withour
physical RHex environment require two additional complica-
tions in the controller implementation.

First, although the horizontal plane behavior of the robot
RHex is reasonably well approximated by the unicycle me-
chanics presented in Section II-C, the limited number of gaits
available for any given terrain [46] typically dictate thatthe
available fore-aft speed control be limited to a few discrete
velocity magnitudes. Thus, a more accurate model of control
authority would replaceu1 in equation (11) with a variable
taking its values in a discrete set. Fortunately, gradient vector
fields can be scaled in an arbitrary (albeit sign definite) manner
with no change in steady state behavior. Namely, for any
gradient field,f(x) = −∇ϕ and any positive scalar valued
function, σ(x), observe thatϕ remains a Lyapunov function
for the scaled fieldσ(x)f(x). Our implementation using a
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discrete magnitude field can now be modeled byσ(x) :=
σ0/||f(x)||.

Second, in systems where noise is introduced via im-
perfect perception or actuation the vector fieldf2 loses its
ϕ-invariance. Although a thorough-going treatment of the
stochastic version of our problem lies well beyond the scope
of this paper, the reliance on gradient vector fields once again
affords an intuitively simple “regulator” against these undesir-
able (and, ultimately, dangerous) fluctuations in proximity to
the obstacles. Namely, suppose that the noise is additive and
zero mean. Rewrite equation (34) as:

q̇ = f̄2(q) + v(t) (60)

Define the new input̂f2 as:

f̂2 := f̄2(q) + β (ϕ∗ − ϕ(q)) f1(q) (61)

= σJ(A)∇ϕ + β (ϕ∗ − ϕ)H∇ϕ,

whereβ is a positive scalar andϕ∗ is the desiredtarget level
set, normally chosen to be slightly less then 1. The dynamics
of ϕ for q̇ = f̂2(q) + v(t) are:

ϕ̇ = ∇ϕT f̄2︸ ︷︷ ︸
=0

+β(ϕ∗ − ϕ)∇ϕTH∇ϕ︸ ︷︷ ︸
γ

+∇ϕT v︸ ︷︷ ︸
w

= βγ(ϕ∗ − ϕ) + w (62)

As q(t) evolves over time,ϕ(q(t)) converges to a neighbor-
hood ofϕ∗ if γ > 0 andw is small in proportion. In practice
this means that the robot will stay in the proximity of the target
level setϕ∗ while it is in motion, escaping the center manifold.
The experiments performed on RHex, described next, revealed
that adding the second term to the vector field (61) is indeed
necessary. The robot was not able at all to follow a particular
level set whenf̄2 was solely used. In contrast, note thatf1 is
energy dissipative, hence standard arguments from Lyapunov
theory establish its robustness against these sorts of perturba-
tions without the requirement of any further modification.14

Although formal robustness analysis is generally not available
for nonlinear systems, the nondegenerate gradient systems
of the kind introduced in this paper are structurally stable,
hence “small” perturbations away from the nominal model are
guaranteed to result in only “small” perturbations in the limit
set.

The resulting modified input of (41) used in the experiments,
before applying the scaling required for RHex’s discrete actu-
ation presented in the beginning of this section, is:

up := B† [σJ(A) + β (ϕ∗ − ϕ) I]∇ϕ (63)

As a final note we would like to remind the reader that
throughout the paper we consider only the problem of point
stabilization and avoid the tracking problem. In the experimen-
tal implementation the robot eventually “tracks” a level set of
the navigation function but still does not track any particular
fixed trajectory. Tracking changes completely the structure of
the problem since in general time-invariant vector fields can
no longer be used for control.

14Specifically, the Lie derivative ofϕ along f̂1 := f1 + v is “usually”
negative — except possibly in a small neighborhood of the center manifold
whose size is regulated by the relative magnitude off1 and the variance of
v. It follows that this neighborhood remains an attractor “onaverage”.

C. Experimental results

The first data set, a trace of the visually perceived pose
and energy level resulting from application of controllerf2,
illustrated in figure 8, gives a feeling for the robustness of
these gradient style controllers as the robot roughly but reliably
traces out the desired trajectory in the face of notable sensor
noise, the inevitable perturbations from uneven ground, as
well as the very severe parametric uncertainty arising from
the crudeness of the unicycle model as a description of the
horizontal plane behavior of RHex. Far away from the beacons
the pose estimation performs poorly, as seen in the high
variance of the data. This experiment is conducted outdoors
using RHex’s onboard camera only, according to the procedure
documented above in Section IV-A, for two different target
levels, as defined before equation (62).

The second data set — a graphical and tabular summary
of convergence from several different initial configurations
— portrays the nature of “practical stability” [25] assuring
convergence to a small neighborhood of the goal pose with
the guarantee of maintaining visibility (never losing sight of
the triple-beacon landmark) along the way. This experiment
was conducted indoors with the ground truth data acquired
by an overhead camera running at 30Hz. Quantitatively, the
interesting parameter to measure is themean arc-length ratio
of the path, defined in discrete time by:

mean arc-length ratio:= Meani

[ ∑
k ‖q

i
k − qik−1‖

‖qi0 − q∗‖

]
, (64)

wherek spans the indexes of the samples for theith experi-
ment. Table II compiles the experimental results and figure
9 illustrates three representative runs. No chattering effect
was observed in both the experiments. This is due to the
state machine formulation (that preventf1 and f̄2 to switch
in an “incoherent” fashion) and RHex’s actuation model,
realizing discrete steps. Note however that in wheeled vehicles
chattering may occur when controller̄f2 is used very close to
the goal, i.e. with a very small energy. Sincef̄2 will live on a
very small level set of the navigation function, this results in
very small oscillations around the goal.

TABLE II

EXPERIMENTS EXECUTED USING THE ROBOTRHEX IN COMPARISON TO

SIMULATIONS OF A UNICYCLE ON THE SIMPLY CONNECTED

CONFIGURATION SPACE DEFINED IN EQUATION(10)

# mean error position mean arc-length ratio

Simulations: 368 5.3 cm 2.9

Experiments: 1 5 17.6 cm 9.3

2 5 17.8 cm 6.2

3 5 17.6 cm 6.5

4 5 26.1 cm 5.2

5 5 11.5 cm 5.5

6 5 27.9 cm 4.9
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q0 are represented by the thin line gray triangles and the final configurationsqf by the solid black triangles.

V. CONCLUSIONS AND FUTURE DIRECTIONS

We present a robust visual servo suitable for registering a
legged robot with limited perception relative to engineered
landmarks over rugged outdoor terrain. At the heart of our
algorithm is a provably correct hybrid controller that reuses
navigation functions developed for fully actuated bodies on
kinematically constrained systems. It is straightforwardto
extend the guarantee of obstacle avoidance. Verifiable as-
sumptions are given for convergence to an arbitrarily small
neighborhood of the goal. We present various simulations for
different perceptual models and summarize the results of an
extensive empirical implementation on the legged robot RHex.
We are presently exploring generalizations to robots with
higher degrees of freedom and alternative motion constraints
as well as a variety of alternative landmark schemes.
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APPENDIX I
CAMERA MAPS

Define cbc : SE(2) → C as the map from local body
coordinates to the intermediate spaceC by:

cbc(xb, yb, θb) :=




arctan(−xb/yb)

θb − arctan(−xb/yb)√
x2
b + y2

b





with inverse:

(cbc)−1(φ, ψ, r) :=




−r sin(φ)
r cos(φ)
φ+ ψ





Define cwb : SE(2) → SE(2) as the map from world
coordinates to body coordinates:

cwb(xw, yw, θw) := −

[
RTθw

0

0 1

]


xw
yw
θw





with equal inverse sincecwb is an involution.
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APPENDIX II
COMPUTATION OF INVERSE CAMERA MAP

Let Yi =
[

cos(ζi) sin(ζi)
]

where ζi are the angles
defined in Section II-A. Knowing thatY TJY = 0 we have:

Y Ti JRφ(ρiRαi
Rψ + rI)ê2 = 0 (65)

in particular, sinceα1 = −α3 = α; ρ2 = 0

rY T2 JRφê2 = 0 ⇔ Rφ = δ1
[
JY2 −Y2

]
(66)

The constantδ1 = ±1 is chosen so that−π
2 < φ < π

2 resulting
in:

φ = ζ2 +
π

2
(67)

Let Y ′ andY be obtained by expressions (5) and (6). Then:

ρiY
T
i Rαi

JRψRφê2 + rY Ti JRφê2 = 0

⇔
[
Y ′T Y T

] [ JRφRψ ê2
rJRφê2

]
= 0 (68)

Let Y T⊥ be the orthogonal complement of the subspace
generated by the lines ofY †, i.e. Y⊥ lives in the null space
of Y †, with Y † = (Y Y T )−1Y the pseudo-inverse ofY T .
Since

[
Y †T Y⊥

]
is full rank then the previous expression

is equivalent to:
[
Y †

Y T⊥

] [
Y ′T Y T

] [ JRφRψ ê2
rJRφê2

]
= 0

⇔

[
Y †Y ′T I
Y T⊥ Y

′T 0

] [
JRφRψ ê2
rJRφê2

]
= 0 (69)

Solving forRψ we get:

x = δ2
Y ′Y⊥
‖Y ′Y⊥‖

(70)

Rψ = RTφ
[
Jx −x

]
(71)

Simplifying we obtainψ:

ψ = arctan(δ2R
T
φJY

′Y⊥) (72)

Again δ2 = ±1 is chosen so that−π
2 < ψ < π

2 . Finally
solving for r in (69) we get:

Y †Y ′TJ
[
Jx −x

]
ê2 + rJRφê2 = 0

⇔ r‖JRφê2‖ = ‖Y †Y ′TJ
[
Jx −x

]
ê2‖

⇔ r =
‖Y †Y ′TJY ′Y⊥‖

‖Y ′Y⊥‖
(73)

APPENDIX III
FENICHEL’ S SINGULAR PERTURBATION THEOREM

Theorem 4 (Fenichel [47]):Consider the system (28) with
0 ≤ α ≪ 1. Suppose that forα = 0, (28) admits an
equilibrium manifold of dimensionm, 0 < m < n, denoted
by W0

h and for allq∗ ∈ W0
h, the Jacobian matrix,Dqhα|(q∗,0)

admitsn − m eigenvalues with a strictly negative real part.
Then, for every open and bounded subsetΩ0 of W0

h, there
exists an open neighborhoodV0 of Ω0 in Rn, such that, forα
positive and small enough, the perturbed system (28) admits
an attractive invariant sub-manifoldWα

h contained inV0 and
close toW0

h.

The previous theorem establish that under appropriate con-
ditions the “slow” dynamics ofhα, defined in equation (27) ,
approaches the center manifold ofh0 asα goes to zero. For
a tutorial treatment of Singular Perturbations please see [48]
or [49].

APPENDIX IV
FEČKAN ’ S EXTENSION OF THEBENDIXSON’ S CRITERIA

Definition 2 (Fěckan [39]): Let M ⊂ Rl be an m-
dimensional compact smooth orientable submanifold with a
nonempty border∂M . Hence∂M is anm − 1-dimensional
compact smooth orientable sub-manifold. Assume thatm ≥ 2.
Let V ⊂ Rn be ak-dimensional smooth submanifold ofRn

with empty border∂V = ∅. Let β ∈ Lip(∂M,Rn) be such
thatβ(M) ⊂ V andτ = β/∂M satisfy:

I τ is injective on∂M .
II The inverseτ−1 : τ(∂M) → R

l is Lipschitz on the set
τ(∂M) ⊂ Rn.

We call the setS = τ(∂M) anm− 1-V -L-boundaryof V . It
is a generalization of smooth submanifolds ofV .

Theorem 5 (Fěckan [39]): Let g1, g2, · · · , gp ∈ C2(Rn,R)
be first integral of (22). IfV = G−1[0] is a nondegenerate
level set of the mappingG = (g1, g2, · · · , gp) and in addition
divf2 6= 0 on V , then there is non− p− 1-V -L-boundaryS
of V which is invariant for (22).
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