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Figure 5.2: Architectural stages of the Q System.

presented in [Agarwal et al., 2006]. In contrast, the learning method used in this chapter

learns to rank trees derived from the query graph, and not just node pairs. However, all

these methods share the common objective of learning the costs on edges of the graph on

which they operate.

5.3 Architecture and Operation

We divide system operation into four major phases: initial setup, query template creation,

query execution, and learning through feedback. We discuss each of these phases in order,

focusing on the modules and dataflow.

5.3.1 Initial Setup

Refer to Figure 5.2 to see the components of the Q System. During initial setup, Q’s

Schema Loader (the box highlighted with the numeral 1 in the figure) is initially given

a set of data sources, each with its own schema. Data items in each schema might op-

tionally contain links (via URLs, foreign keys, or coded accession numbers) to other data

sources. Additionally, we may be given certain known correspondences or transformations

as the result of human input or data integration tools: for instance, we may have schema
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mappings between certain elements, created for data import, export, or peer-to-peer inte-

gration [Halevy et al., 2003]; some data items may be known to reference an externally

defined taxonomy or ontology such as GeneOntology (GO); and tools may be able to dis-

cover (possibly approximate) associations between schema elements. All such information

will be encoded in the schema graph, which is output by the Schema Loader and saved in

a metadata repository.

Figure 5.1 features two classes of relations as nodes: blue rounded rectangles represent

entities, and orange elongated rectangles represent cross-references, links, or correspon-

dence tables. Edges represent associations between nodes (generally indicating potential

joins based on equality of attributes). The schema graph in the example illustrates a com-

mon feature of many bioinformatics databases, which is that they frequently contain cross-

referencing tables: Entry2Meth, InterPro2GO, etc., represent the database maintainers’

current (incomplete, possibly incorrect) information about inter-database references. Ad-

ditionally, our example includes a correspondence table, RecordLink, that was created by a

schema mapping/record linking tool, which matches UniProt and InterPro tuples. As pre-

viously described, any of the associations encoded as edges may have a cost that captures

its likely utility to the user: this may be based on reliability, trustworthiness, etc., and the

system will attempt to learn that cost based on user feedback. These costs are normally

initialized to the same default value.

5.3.2 Query Template Creation

The user defining a query template poses a keyword query

protein "plasma membrane" gene disease

which is matched against the schema graph by the Steiner Tree Generator (box #2 in

Figure 2). A pre-processing step consists of matching keywords against graph elements:

We can see from the figure that the first term matches against UniProt and TblProtein

(based on substring matching against both relation and attribute names). The term “plasma
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membrane” does not match against any table names or attributes — but rather against a

term in the GO ontology, which includes (as encoded data) standardized terms. Terms in

the ontology have both subclasses (Term2Term) and synonyms (Term Syn), and hence the

system must consider these in the query answers as well. The keyword “gene” matches as a

substring against GeneInfo, and finally, “disease” matches against an entry in an index from

topics to databases. Implicitly, as part of the keyword matching process, the Q System adds

a node to the schema graph for each keyword, and an edge to each matching node. (For

visual differentiation in the figure, we indicate these edges by drawing a dashed rectangle

around each keyword and its matching nodes.)

Now, given keyword matches against nodes, the Steiner Tree Generator can determine

the best (top-k) queries matching the keywords. Its goal is to find the k trees of minimal

cost contained in the schema graph, each of which includes all of the desired (keyword)

nodes, plus any additional nodes and edges necessary to connect them. This is technically

a Steiner tree; the cost of each Steiner tree is the sum of edge costs. (We discuss below how

edge costs are obtained.) Note the subtlety that this module does not generate queries to

compute the top-k answers; rather, it produces the top-k-scoring queries according to our

schema graph. These may return more or fewer than k answers; but commonly each query

will return more than one answer.

The Query Formulator (box 3) takes each of the top-k Steiner trees and converts it

into a conjunctive query (nodes become relations, edges become joins, and the cost of the

query is the sum of the costs of the edges in the Steiner tree).

At the View Refinement stage (box 4), the top-scoring queries are combined into a

disjoint union (i.e., aligning like columns and padding elsewhere with nulls, as described

in Section 5.5), forming what we term a union view. Next, the query author may refine

the query, adding projections, renaming or aligning columns, and so on. At this stage, the

view is optionally given a name and made persistent for reuse. An associated Web form

is automatically generated, as in Figure 5.1b. (Recall that our “view” actually represents a

template for a family of queries with similar information needs, which are to be parameter-
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ized by the user to actually pose a query.)

5.3.3 Query Execution

Any user with permissions (not only the author) may access the Web Form Interface

(box 5), parameterize the fields of the query through the Web form, and execute it. This in-

vokes the Query Processor (box 6), which is a distributed relational query engine extended

to annotate all tuples with their provenance or lineage [Buneman et al., 2001, Cui, 2001,

Green et al., 2007b], which is essential for later allowing the system to take feedback on

tuples and convert it into feedback on queries. Of course, the query processor must also

return these annotated results in increasing order of cost, where they receive the cost of the

query that produces them. (If a tuple is returned by more than one query, it is annotated

with the provenance of all of its producer queries, and given the cost of the lowest-cost

query.)

5.3.4 Learning through Feedback

Once the user has posed a query, he or she may look over the results in the Re-

sults/Feedback Page (box 7) and provide feedback to the system, with respect to the rel-

ative ordering and set of answers. The system will generalize this feedback to the queries

producing the answers. Then the Learner (box 8) will adjust costs on the schema graph,

thus potentially changing the set of queries associated with the Web form, and altering

the set of answers to the query. The new results are computed and returned at interactive

speeds, and the user may provide feedback many times. Our goal is to learn the costs

corresponding to the user’s mental model of the values of the respective sources.

In the subsequent two sections, we discuss the implementation of the main modules in

detail. We omit further discussion of Module 1, the Schema Loader, as it is straightforward

to implement. Our discussion begins with the query creation and answering stages (boxes

2-6), and then we move on to discuss the feedback and learning stages (boxes 7 and 8).
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5.4 Queries and Query Answers

In this section, we begin by discussing the details of the schema graph (Section 5.4.1) and

cost model (Section 5.4.2), which form the basis of all query generation. Section 5.4.3

then considers how keywords are matched against the graph, and Section 5.4.4 addresses

the key problem of finding the best queries through Steiner tree generation. Finally, we

discuss how Steiner trees are converted into query templates (Section 5.4.5), and how these

templates are parameterized and executed (Section 5.4.6).

5.4.1 Foundation: the Schema Graph

As its name connotes, the schema graph is primarily at the schema and relationship level:

nodes represent source relations and their attributes and edges represent associations be-

tween the elements. Our query system additionally supports matches at the tuple level —

which is especially useful when searching topic indices and ontologies (as in Figure 5.1)

— but our emphasis is primarily on the metadata level, as explained in the previous section.

Nodes. Nodes represent source relations containing data that may be of interest. The query

answers should consist of attributes from a set of source nodes.

Edges. Within a given database, the most common associations are references: a foreign

key pointing to another relation, a hyperlink pointing to content in another database, etc.

However, a variety of additional associations may relate nodes, particularly across differ-

ent sources: subclass (“is-a”) is very common in ontologies or class hierarchies; maps-to

occurs when there exists a view, schema mapping, synonym, or correspondence table spec-

ifying a relationship between two different tables; similar-to describes an association that

requires a similarity join. All edges have cost expressions associated with them.
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5.4.2 Cost Model

The costs associated with edges in the schema graph are simple weighted linear combi-

nations of edge features. Features are domain-specific functions on edges that encode the

aspects of those edges that are relevant to user-ranking of queries: in essence, they capture

distinctions that may be relevant to a user’s preference for an edge as part of the query. The

identities of edge end-nodes are the simplest and most obvious features to use: the cost will

be a function of the nodes being associated by the edge. However, more general features,

for instance the type of association (subclass, maps-to, similar-to) used to create an edge,

are also potentially useful. Each feature has a corresponding weight, representing the rela-

tive contribution of that feature to the overall cost of the query: this is set to a default value

and then learned. Crucially, the use of common features in computing costs allows the Q

System to share information about relevance across different queries and edges, and thus

learn effectively from a small number of user interactions.

We discuss features and how they are learned in Section 5.5. For purposes of ex-

plaining query answering in this section, we note that the cost of a tree is a weighted

linear combination of the features of the edges in the tree. This model was carefully

chosen: it allows simple and effective learning of costs for the features from user feed-

back [Crammer et al., 2006a].

Intuitions behind the cost model. An edge cost in our model can be thought of as the

logarithm of the odds (in the sense of betting) that using that edge in a query leads to

worse answers (from the user’s point of view) than including the average alternative edge.

Conversely, lower costs correspond to better odds that using the edge will lead to better

answers. Since the costs are parameterized by a shared weight vector w, feedback from a

few queries will typically affect edges involved in many different queries. Selecting query

trees according to the updated weights will increase the odds that user-favored answers are

shown first.

We observe that our cost model somewhat resembles that of other keyword query sys-
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tems (e.g. [Kacholia et al., 2005]), which do not use features or learning, but often use an

additive model based on edge costs. Our notion of cost and its use in query construction is

different from the probabilities in probabilistic databases [Dalvi and Suciu, 2004], which

represent uncertainty about whether specific relationships hold. A low-cost answer tuple in

our model is not necessarily very probable, but simply one that was derived by a query that

involves associations favored by the user. Our costs are also different from edge capacities

in authority flow models [Balmin et al., 2004, Varadarajan et al., 2008], which encode the

relative strength of edges as carriers of authority between nodes. A low-cost edge in our

model is not necessarily one that passes more authority from its source to its target, but

simply one that supports a join that has proven useful.

5.4.3 Matching Keyword Queries

Given a user’s keyword query, the Q System begins by matching it against nodes in the

schema graph. A keyword query consists of a set of terms Q = {q1, . . . , qn}. Let Nq be

the set of nodes in the schema graph that match q ∈ Q, and let N =
⋃
q∈QNq. A node

matches a term if its label (consisting of the relation and attribute names) contains the term

as a substring, or, in special cases (e.g., for taxonomies and synonym tables), the instance

of the relation represented by the node contains the term.

For each q ∈ Q, we add a special keyword node q to the graph, and also edges (q, n)

for all n ∈ Nq. These new edges can be assigned costs according to an appropriate scoring

function, for instance TF/IDF. The system now attempts to find the k lowest-cost Steiner

trees that contain all of the keyword nodes.

Each such tree T also includes non-keyword nodes that are needed to complete a (con-

nected) tree. As discussed previously, the cost of T is the sum of costs of its edges, and

those costs are weighted combinations of edge features. Formally, the feature weights form

a weight vector w, and the cost C(T,w) of T is the sum of w-dependent edge costs:

C(T,w) =
∑

e∈E(T )

C(e,w) (5.1)
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Figure 5.3: Steiner trees for queries CQ2 and CQ3 in Table 5.1. Nodes matching query
keywords are shaded, with blue text.

where E(T ) is the set of edges of T .

We next discuss the process of finding Steiner trees. The goal here is to quickly (at

interactive rates) produce an ordered list of subtrees of the schema graph that purport to

satisfy the information need specified by a set of keywords. That ordered list is determined

by the current feature weight vector w. Later, the learning process will adjust this weight

vector so that the order of the returned query trees corresponds better to user preferences

about the order of the corresponding answers.

5.4.4 Steiner Tree Generation

The task of our Steiner Tree Generator is not merely to find a single Steiner tree in the

graph, as is customary in the literature — but to find the top k Steiner trees in order to

find the k best queries. Here, we are faced with the question of whether to find the actual
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STEINER (G,S,C) :

min
x,y

r∈V (G)

∑
(i,j)∈E(G)

C(i, j)× yij

s.t. S ′ = S − {r}∑
h∈V (G)

xkrh −
∑

j∈V (G)

xkjr = 1 ∀k ∈ S ′ (C1)

∑
h∈V (G)

xkkh −
∑

j∈V (G)

xkjk = −1 ∀k ∈ S ′ (C2)

∑
h∈V (G)

xkih −
∑

j∈V (G)

xkji = 0 ∀i ∈ V (G) \ S (C3)

xkij ≤ yij ∀(i, j) ∈ E(G), k ∈ S ′ (C4)

xkij ≥ 0 ∀(i, j) ∈ E(G), k ∈ S ′ (C5)

yij ∈ {0, 1} (C6)

Figure 5.4: Mixed integer program for min-cost Steiner trees.

k lowest-cost Steiner trees, or to settle for an approximation. For small graphs we use an

exact algorithm for finding the k lowest-cost Steiner trees, and for larger graphs we develop

a heuristic. This allows us to find the optimal solution for small schema graphs, and yet to

scale gracefully to larger schemas.

5.4.4.1 Steiner Trees via Integer Programming

We first formalize the Steiner tree problem. LetG be a directed graph with nodes and edges

given by V (G) and E(G), respectively. Each edge e = (i, j) ∈ E(G) has a cost C(e). We

also have a set of nodes S ⊆ V (G). A directed subtree T in G connecting the nodes in S

is known as a Steiner tree for S. The nodes in V (T ) \ S are called Steiner nodes. The cost

of T is C(T ) =
∑

e∈E(T )C(e). Finding the minimum cost Steiner tree on a directed graph

(STDG) is a well-known NP-hard problem [Wong, 1981, Garey and Johnson, 1979].

Finding a minimum-cost Steiner tree on a directed graph [Wong, 1981] can be ex-

pressed as a mixed integer program (MIP) [Wolsey, 1998] in a standard way (Fig-

ure 5.4) [Wong, 1981]. This encoding requires one of the nodes r in V (G) to be chosen as
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root of the Steiner tree. Hence, the minimum cost Steiner tree can be obtained by running

the appropriate MIP with each node in V (G) taken as root separately and then selecting

the lowest-cost tree from at most |V (G)| candidates. This can be time consuming espe-

cially for large schema graphs. For the experiments reported in this chapter, we convert

every schema graph edge (which, despite describing a foreign key, is really a bidirectional

association) to a pair of directed edges. With such bi-directional edges, one can find the

minimum cost Steiner tree by solving STEINER (G,S,C) with any of the nodes in S fixed

as root, avoiding the need to iterate over all the vertices in the graph. Unless otherwise

stated, we assume the graph to be bi-directional in what follows. In STEINER (G,S,C),

an edge (i, j) ∈ E(G) is included in the solution iff yij = 1. The MIP STEINER (G,S,C)

that finds the lowest-cost (according to cost function C) Steiner tree in G and containing

nodes S can be viewed as a network flow problem where xkij specifies the amount of flow

of commodity k flowing on edge (i, j). Flow on an edge (i, j) is allowed only if that edge is

included in the solution by setting yij = 1. This is enforced by constraint C4. All flows are

nonnegative (constraint C5). Flow of commodity k originates at the root r (constraint C1)

and terminates at node k (constraint C2). Conservation of flow at Steiner nodes is enforced

by constraint C3.

However, we need more than just the minimum-cost tree: we need the k lowest-cost

trees. To achieve this, we modify the MIP of Figure 5.4 so that it can be called multiple

times with constraints on the sets of edges that the solution can include. The modified

program is shown on Figure 5.5.

The MIP STEINERIE(G,S, I,X,C) finds the lowest cost (according to cost function

C) Steiner subtree of G rooted at r that contains the nodes in S, which must contain the

edges in I and cannot contain any edge in X . C9 guarantees that there is flow of at least

one commodity on all edges in I . T1 with C7-C9 enforce the inclusion constraints, while

the exclusion constraints are enforced by C10. We must also ensure the result will be a

tree by requiring flow to pass through the source nodes of the edges in I . Step T1 expands

S by including source nodes of the edges in I . This ensures there is a directed path from
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STEINERIE(G,S, I,X,C) :

min
x,y
r∈S

∑
(i,j)∈E(G)

c(i, j)× yij

S+ = S ∪ {i : (i, j) ∈ I} (T1)
s.t.

Constraints C1-C6 from STEINER(G,S+, C)∑
h∈V (G)

yhr = 0 (C7)

∑
h∈V (G)

yhi ≤ 1 ∀i ∈ V (G) \ {r} (C8)

∑
k∈S′

xkij ≥ 1 ∀(i, j) ∈ I (C9)

yij = 0 ∀(i, j) ∈ X (C10)

Figure 5.5: MIP for Steiner tree with inclusions and exclusions.

root r to the source nodes of the edges that must be included. C7 ensures that there is no

incoming active edge into the root. C8 ensures that all nodes have at most one incoming

active edge.

5.4.4.2 K-Best Steiner Trees

To obtain the k lowest-cost Steiner trees, where k is a predetermined constant,

we use KBESTSTEINER (Algorithm 3), which uses the MIP STEINERIE as a sub-

routine. KBESTSTEINER is a simple variant of a previous top k answers algo-

rithm [Kimelfeld and Sagiv, 2006, algorithm DQFSearch], which in turn generalizes a pre-

vious k-best answers algorithm for discrete optimization problems [Lawler, 1972].

We are not the first to use lowest-cost Steiner trees to rank keyword query results, but

we are the first to use the resulting rankings for learning. In addition, in the previous

work [Kimelfeld and Sagiv, 2006], the graph represents actual data items and their associ-

ations, and the Steiner trees are possible answers containing given keywords. Since data

graphs can be very large, the method is primarily of theoretical rather than practical inter-
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Algorithm 3: KBESTSTEINER(G,S,C, k). Input: Schema graph G, keyword nodes
S, edge cost function C, number of returned trees k. Output: List of at most k trees
sorted by increasing cost.

1: Q← empty priority queue
{Q contains triples (I,X, T ) sorted by T ’s cost.}

2: T = STEINERIE(G,S, ∅, ∅, C)
3: if T 6= null then
4: Q.INSERT((∅, ∅, T ))
5: end if
6: A← empty list
7: while Q 6= ∅ ∧ k > 0 do
8: k = k − 1
9: (I,X, T )← Q.DEQUEUE()

10: A.APPEND(T )
11: Let {e1, . . . , em} = E(T ) \ I
12: for i = 1 to m do
13: Ii ← I ∪ {e1, . . . , ei−1}
14: Xi ← X ∪ {ei}
15: Ti ← STEINERIE(G,S, Ii, Xi, C)
16: if Ti is a valid tree then
17: Q.INSERT((Ii, Xi, Ti))
18: end if
19: end for
20: end while
21: return A

est. In our application, however, we work on much smaller schema graphs, and each tree

corresponds to a whole query that may yield many answers, not a single answer.

5.4.4.3 K-Best Steiner Tree Approximation

As we show in Section 5.6, our Steiner formulation works for medium-scale schema graphs

(around 100 nodes). To scale k-best inference to much larger schema graphs, we developed

the following novel pruning heuristic.

Shortest Paths Complete Subgraph Heuristic (SPCSH) We explore using reduc-

tions [Duin and Volgenant, 1989, Winter and Smith, 1992] to prune the schema graph to
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scale up KBESTSTEINER to larger schema graphs. SPCSH keeps only the subgraph in-

duced by the m shortest paths between each pair of nodes in S. The intuition for this

is that there should be significant edge overlap between the k-best Steiner trees and the

subgraph induced by the m-shortest paths, thereby providing good approximation to the

original problem while reducing problem size significantly. SPCSH then computes the

k-best Steiner trees by invoking KBESTSTEINER on the reduced subgraph.

Algorithm 4: SPCSH(G,S,C, k,m). Input: Schema graph G, keyword nodes S,
edge cost function C, number of returned trees k, number of shortest paths to be used
m. Output: List of at most k trees sorted by increasing cost.

1: L← empty list
2: for all (u, v) ∈ S × S do
3: P ← G.SHORTESTPATHS(u, v, C,m)
4: L.APPEND(P )
5: end for
6: G(S,C,m) ← G.SUBGRAPH(L)
7: return KBESTSTEINER(G(S,C,m), S, C, k)

In SPCSH, G.SHORTESTPATHS(u, v, C,m) returns at most m shortest (least costly)

paths between nodes u and v of G using C as the cost function. Efficient algorithms

to solve this problem are known [Yen, 1971]. SPCSH is similar to the distance net-

work heuristic (DNH) for Steiner tree problems on undirected graphs [Winter, 1987,

Winter and Smith, 1992], but there are crucial differences. First, DNH works on the set

S-induced complete distance network in G while SPCSH uses a subgraph of G directly.

Second, DNH uses a minimum spanning tree (MST) approximation while we use exact

inference, implemented by KBESTSTEINER, on the reduced subgraph. Third, DNH con-

siders only the shortest path for each vertex pair in S × S, while SPCSH considers m

shortest paths for each such vertex pair.
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5.4.5 From Trees to Query Templates

The next task is to go from top k Steiner trees to a set of conjunctive queries, all outputting

results in a common schema and returning only attributes in which the query author is in-

terested. This is accomplished by first converting the top Steiner trees into conjunctive

queries; then combining the set of conjunctive queries into a union view that produces a

unified output relation; next, supporting user refinement of the view, e.g., to add projec-

tions; finally, naming and saving the view persistently with a Web form.

Converting Steiner trees to conjunctive queries. The task of generating conjunctive

queries from Steiner trees is fairly straightforward. Each node in the Steiner tree typically

represents a relation; traversing an edge requires a join. (In a few cases, a keyword may

match on a tuple in, e.g., a topic index or ontology, and now the match represents a selection

predicate.) In our implementation, the edges in our schema graph are annotated with the

appropriate dereferencing information, typically foreign keys and keys. Here the query is

formed by adding relations plus predicates relating keys with foreign keys. We require a

query engine that supports queries over remote sources (such as the ORCHESTRA engine

we use, described in Section 5.4.6), and we assume the existence of “wrappers” to abstract

non-relational data into relational views.

Union view. The union of the queries derived from the top k Steiner trees form a single

union view. Since each tree query may consist of source data from relations with different

schemas, an important question is how to represent the schema for the union view. To

create an initial version of the union view, we adopt a variation of the outer union (disjoint

union) operator commonly used in relational-XML query processing [Carey et al., 2000].

Essentially, we “align” keys and attributes that have the same name, and pad each result

with nulls where it does not have attributes.

View refinement. Next, allow the user to refine the view definition by adding projections,

or aligning additional attributes from different source relations. This is done through an

AJAX-based Web interface, which provides rapid feedback on how user selections affect
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the output. Projection and attribute alignment are achieved as follows. In a scrollable pane,

we create a column for each keyword ki. Then, for each conjunctive query in the view,

we output a row in this pane, in which we populate each column i with the schema of the

relation ri that matches ki. Each attribute in the schema is associated with a check box —

unchecking the check box will project the attribute out from the view. Additionally, there

is a text field through which the attribute can be renamed as it is output in the view. If two

source attributes are renamed to the same name, then their output will be automatically

aligned in the same output column.

Web form. The result of refinement is an intuitive Web-based form created from (and

backed by) the view, as previously shown in Figure 5.1b. To reiterate, this form represents

not one query but a family of queries, as it may be parameterized the the user. The query

author will name and save the view and Web form, making it available for parameterization

and execution.

5.4.6 Executing a Query

The user of a Web form (who may or may not be its creator) may retrieve the form via a

bookmark, or by looking it up by its name and/or description. Each field in the Web form

has a check box, which can be deselected to further project out information. The biologist

may add selection predicates by filling in values in text boxes, or, for attributes with only

a few values, by selecting from a drop-down list. Finally, alongside each item, there is a

description of one or more sources from which the attribute is obtained — depending on

space constraints — to help the biologist understand what the attribute actually means.

Query execution with provenance. Once the query is parameterized, the user will request

its execution. Based on the query or queries that produced it, each tuple output by the

query processor receives a score, which is the cost of the query that generated it. If a tuple

is derived from multiple queries, it receives the lowest (minimum-cost) score. Rather than

build our own query engine specifically for the Q System, we adopt the query processor
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used in the ORCHESTRA system [Green et al., 2007a].

When computing query results, ORCHESTRA also records their provenance in the form

of a derivation graph, which can be traversed and retrieved. The same tuple may be

derived from more than one query: hence in queries produced by the Q System, the prove-

nance of a tuple is a tree-structured representation specifying which queries were applied

to which source tuples, in order to derive the result tuple.

The existing ORCHESTRA system encodes provenance as a graph represented in rela-

tions, since it must support recursive queries whose provenance may be cyclic. Since all

queries from the Q System are tree-structured and thus acyclic, we modified the query

answering system to compute the provenance in-line with the query results: each tuple is

annotated with a string-typed attribute containing the provenance tree expression, including

the keys and names of the specific source tuples, and any special predicates applied (e.g.,

tests for similarity). This annotation adds only the overhead of casting attributes to strings

and concatenating them to query processing — rather than materializing extra relations.

We note that, for situations in which all of the top k queries’ cost expressions are

independent of tuple data, we can simplify even further, and simply tag each tuple with the

ID of the query. However, for regularity across all answers, we use the previous scheme

that encodes full details about the source tuples.

In our experience and that of our collaborators, the majority of bioinformatics queries

have selective conditions, so we work under the assumption that any given query typically

returns few answers. This has an important benefit in our context: it means that we can

compute the entire set of answers satisfying the top queries — and as a result, compute

the complete provenance for each tuple in terms of the queries. We need this complete

information in order to provide proper feedback to the learning stages of the system, which

we describe next.
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5.5 Learning from Feedback

Interaction with the Q System does not stop once query answers have been returned. In-

stead, the user is expected to provide feedback that helps the system learn which answers

— thus, which queries and ultimately which features in the schema graph — are of greater

relevance to the user.

The user provides feedback through the Results/Feedback Page, which shows query

results in a table. When the user “mouses over” a tuple, Q provides a pop-up balloon

showing the provenance of the tuple, in terms of the Steiner tree(s) that produced it; in

many situations this is useful in helping the user understand how the tuple was created.

The user may click on a button to tell our Q System that a given tuple should be removed

from the answer set, another button instructing Q to move the tuple to the top of the results,

or may input a number to indicate a new position this tuple should have in the output. In

the cases we consider here, the cost (and thus rank) of a tuple is dependent solely on the

query, and therefore the feedback applies to all tuples from the same query.

5.5.1 Basis of Edge Costs: Features

As we discussed previously, edge costs are based on features that allow the Q System

to share throughout the graph what it learned from user feedback on a small number

of queries. Such features may include the identity of nodes or edge end-nodes, or the

overall quality of the match for an edge representing an approximate join. We now de-

fine features and their role in costs more precisely. Let the set of predefined features be

F = {f1, . . . , fM}. A feature maps edges to scalar values. In this chapter, all feature val-

ues are binary, but in general they could be real numbers measuring some property of the

edge. For each edge (i, j), we denote by f(i, j) the feature vector that specifies the values

of all the features of the edge. Each feature fm has a corresponding weight wm. Informally,

lower feature weights indicate stronger preference for the edges that have those features.

102



TblProtein

Entry2Meth

 0.81 

Term(T1)

Term2Term

 0.03 

Term(T2)

Gene2GO

 0.91 

GeneInfo

MIM2Gene

 0.09 

Index

InterPro2GO

 0.90 

 0.06 

 0.05 

 0.63 

MAIN

 0.27 

 0.81 

(a) Cost=4.56

TblProtein

Entry2Meth

 0.81 

Term(T1)

Term_Syn

 0.05 

Term(T2)

Gene2GO

 0.91 

GeneInfo

MIM2Gene

 0.09 

Index

InterPro2GO

 0.90 

 0.06 

 0.05 

 0.63 

MAIN

 0.27 

 0.81 
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Figure 5.6: Re-ranked Steiner trees with costs updated as discussed in the text. The
updated edge is thicker and red.

Edge costs are then defined as follows:

C((i, j),w) =
∑
m

wm × fm(i, j) = w · f(i, j) (5.2)

where m ranges over the feature indices.

To understand features, weights, and the learning process, consider an example with the

two Steiner trees in Figure 5.3, which correspond to queries CQ2 and CQ3 in Table 5.1.

Their costs are derived from features such as the following, which test the identity of edge

end-nodes:

f8(i, j) =

 1 if i = Term(T1) & j = Term2Term

0 otherwise

f25(i, j) =

 1 if i = Term(T1)

0 otherwise
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Suppose that w8 = 0.06, w25 = 0.02. Then the score of the edge (i = Term(T1), j =

Term2Term) in Figure 5.3(b)1 would be C(i, j) = w8 × f8(i, j) + w25 × f25(i, j) = 0.08.

Now suppose that, as mentioned in the previous section, the user is presented with tu-

ples generated by the tree queries of Figures 5.3(a) and (b), annotated with provenance

information. Since CQ2’s tree has a lower cost than CQ3’s tree, tuples generated by ex-

ecuting CQ2 are ranked higher. The difference between CQ2 and CQ3 is that while CQ2

uses the synonym relation (Term Syn), CQ3 uses the ontology relation (Term2Term). Sup-

pose that the user prefers tuples produced by CQ3 to those produced by CQ2. To make that

happen, the learning algorithm would update weights to make the cost of the second tree

lower than the cost of the first tree so that in a subsequent execution, tuples from the second

tree are ranked higher. Setting w8 = 0.01, w25 = 0.02 would achieve this, causing the two

tree costs be as shown in Figure 5.6. Of course, the key questions are which weights to

update, and by how much. We now discuss the actual learning algorithm.

5.5.2 Learning Algorithm

We use an online learning algorithm, that is, an algorithm that updates its weights after

receiving each training example. Algorithm 9 is based on the Margin Infused Relaxed

Algorithm (MIRA) [Crammer et al., 2006a]. MIRA has been successfully applied to a

number of learning problems on sequences, trees, and graphs, including dependency pars-

ing in natural-language processing [McDonald and Pereira, 2006] and gene prediction in

bioinformatics [Bernal et al., 2007].

The weights are all zero as Algorithm 9 starts. After receiving feedback from the

user on the rth query Sr about a top answer, the algorithm computes the list B of the

k lowest-cost Steiner trees using the current weights. The user feedback for interaction

r is represented by the keyword nodes Sr and the target tree Tr that yielded the query

1For the sake of simplicity, we consider only simple paths here. However, the Q System is capable of
handling arbitrary tree structures. This is an improvement over previous systems [Boulakia et al., 2007] that
can handle path queries only.
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Algorithm 5: ONLINELEARNER(G,U, k). Input: Schema graph G, user feedback
stream U , required number of query trees k. Output: Updated costs of edges in G.

1: w(0) ← 0
2: r = 0
3: while U is not exhausted do
4: r = r + 1
5: (Sr, Tr) = U.NEXT()
6: Cr−1(i, j) = w(r−1) · fij ∀(i, j) ∈ E(G)
7: B = KBESTSTEINER(G,Sr, Cr−1, K)
8: w(r) = arg minw

∥∥w− w(r−1)
∥∥

9: s.t. C(T,w)− C(Tr,w) ≥ L(Tr, T ) ∀T ∈ B
10: w · fij > 0 ∀(i, j) ∈ E(G)
11: end while
12: Let C(i, j) = w(r) · fij ∀(i, j) ∈ E(G)
13: Return C

answers most favored by the user. The algorithm then updates the weights so that the cost

of each tree T ∈ B is worse than the target tree Tr by a margin equal to the mismatch

or loss L(Tr, T ) between the trees. If Tr ∈ B, because L(Tr, Tr) = 0, the corresponding

constraint in the weight update is trivially satisfied. The update also requires that the cost

of each edge be positive, since non-positive edge costs are not allowed in the Steiner MIP.

An example loss function, which is used in the experiments reported in this chapter, is the

symmetric loss:

L(T, T ′) = |E(T ) \ E(T ′)|+ |E(T ′) \ E(T )| (5.3)

The learning process proceeds in response to continued user feedback, and finally re-

turns the resulting edge cost function.

The edge features used in the experiments of the next section are simply the identities

of the source and target nodes, plus a single default feature that is on for all edges. The

default feature weight serves as a cost offset that is automatically adjusted by Algorithm 9

to ensure that all edge costs are positive.
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5.6 Experimental Results

Our Q prototype consists of four primary components. The k-best Steiner tree algorithm

uses the MOSEK 5.0 integer linear program solver, run on a dual-core Linux machine

(2.6.18.8 kernel) with 12GB RAM. Query refinement is provided by a Java servlet running

on Apache Tomcat 6.0.14. Query answering with data provenance is performed by the

ORCHESTRA system [Green et al., 2007a], implemented in Java 6 and supported by IBM

DB2 9.1 on a Windows 2003, Xeon 5150 server. Finally, the machine learning component

is also implemented in Java 6.

5.6.1 Experimental Roadmap

In this chapter, we answer the following questions experimentally:

• Can the system start with default costs on all edges, and based on limited feedback over

query answers, generalize the feedback to learn new rankings that enable it to produce

“gold standard” (i.e., correct and complete according to expert opinion) queries? How

many feedback iterations are necessary?

• How long is the response time (1) in processing feedback and generating new top-k

queries, and (2) simply in generating top-k queries from the schema graph?

• How does our performance scale to large, real cross-database schema graphs?

We note that our evaluation focuses purely on the tasks of learning and generating queries.

Our interest is not in measuring the response times of the query engine, which is orthog-

onal to this work. The Q System returns the top k queries in pipelined fashion, and most

modern data integration query processors begin pipelining query answers as soon as they

receive a query [Chandrasekaran et al., 2003, Ives et al., 1999]. We also do not duplicate

the work of [Boulakia et al., 2007, Mork et al., 2002] by performing user studies compar-

ing with existing keyword search systems: that previous work already demonstrated that
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Figure 5.7: Learning curves of top k trees, k = 1, 2, 3 against gold standard as feedback is
provided, with error bars showing best/worst performance, based on different feedback or-
ders. There are 25 expert queries and the results are averaged over 3 random permutations
of the queries.

query answers need to be ranked by source authority/quality and not according to keyword

search metrics like path length or term similarity.

Data Sets and Methodology

We conducted our experiments (except for the final experiment focusing on very large

schema graphs) using data from a previous biomedical information integration system,

BioGuide (www.bioguide-project.net) [Boulakia et al., 2007]. BioGuide is, to

a significant extent, a baseline for comparison, as it provides ranked answers over
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a schema graph, given weights set by biological domain experts. The data that the

BioGuide developers kindly supplied includes schema graphs with record linking ta-

bles between bioinformatics data sources, edge costs determined by a panel of experts

based on reliability and completeness judgments, and expert queries (http://bioguide-

project.net/project/BioGuideQueryExamples.htm). An example of an expert query is,

“What are the related proteins and genes associated with the disease narcolepsy?” From

such queries, a set of keywords on concepts can be easily extracted. These form our query

workload.

Since BioGuide does not support the kind of learning from feedback we describe here,

we used the BioGuide schema graph and set the expert-determined edge costs to create

a “gold standard” against which to compare automatic learning. For a given query, the

lowest-cost Steiner tree according to expert costs is taken to be what the simulated user

prefers, and is used both as feedback in the learning process and as the gold standard for

evaluation. Our goal in the near future is to work with our bioinformatics collaborators

to deploy the Q System in real applications, and to conduct user studies in this context to

confirm our preliminary results.

5.6.2 Learning against Expert Costs

We first investigate how quickly (in terms of feedback steps) the Q System can learn edge

costs that yield the same query rankings as the gold standard obtained from expert-provided

costs. Note that this is stronger than simply learning, based on feedback, which query the

user prefers: our goal is to take feedback over a subset of the queries, and generalize that

in a way that lets the system correctly predict which future queries are preferred.

We converted each expert query into a query template in which each keyword picks out

a single table. For instance, for the narcolepsy query mentioned above, the template would

be “What are the related proteins (in [DB1]) and genes (in [DB2]) associated with disease

Narcolepsy in [DB3]?”. Here, [proteins], [genes] and [disease] are entities while [DB1],

[DB2] and [DB3] are table names that need to be filled in. Using substring matching
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on table names, we populated these query templates by filling in the [DB] slots; each

such instantiated template forms a query. For the experiments reported in this section, we

generated 25 such queries and matched them over the BioGuide schema graph.

We created a feedback stream by randomly selecting a sequence in which the queries

will be posed. For each such stream, we paired each query with the corresponding lowest-

cost Steiner tree over our schema graph according to expert edge costs. We then applied

Algorithm 9 to each stream, with the goal of learning the feature weightings that returned

top query. At each point in the stream, our goal is to measure how well the top k algorithm’s

results for all of the 25 queries agree with the gold standard for those queries.

Thus, we simulate the interaction between the algorithm and a user who poses suc-

cessive queries, examines their answers, supplies feedback about which is the best answer

to this query, and moves on to the next query. However, to measure the quality of learn-

ing at each point, we need more than just the current query. We also need all the queries

that could have been posed, both past and future ones, since the algorithm may change its

weights in response to a later interaction in a way that hurts performance with previously

submitted queries. The system behavior we aim for is that as this process continues, the

queries preferred by the system will agree better with the user’s preferences.

The results appear in Figure 5.7. For k = 1, 2 & 3, we plot the mean and min/max

error bars (across the different random query-feedback stream sequences; note these are

not confidence intervals) of how many of the 25 queries fail to have the gold standard tree

within the top k trees computed with current weights. We conclude that the learning algo-

rithm converges rapidly: that is, it quickly learns to predict the best Steiner tree consistent

with the experts’ opinion. After 10-15 query/feedback steps, the system is returning the

best Steiner tree in one of the top three positions, and often the top position: Q begins to

return the correct queries for all queries, given feedback on 40-60% of them.
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5.6.3 Feedback and Query Response Time

Given that our goal is to provide an interactive query interface to the user, it is vital that our

feedback process, as well as the creation of new top queries based on the feedback, be at a

rate that is sufficient for interactivity.

To evaluate the feedback and query generation times, we fix the schema graph and

measure (1) the time to process a “typical” user feedback given over a set of top answers,

and (2) the time to create a set of queries based on that feedback. Assuming a search

engine-like behavior pattern, the user will not look at answers that are beyond the first

page of results; moreover, the user will only provide feedback on a few items. Hence, we

measured the time taken to retrain and regenerate the set of top queries based on feedback.

This took an average of 2.52 sec., which is easily an interactive rate.

A separate but related question is how quickly we can generate queries, given an exist-

ing set of weight assignments. Such a case occurs when a user retrieves an existing Web

form and simply poses a query over the existing schema graph. We term this the decoding

time, and Table 5.2 shows the total time it takes to generate the top 1, 5, 10, and 20 queries

over the BioGuide schema graph (whose parameters are shown). In general, 5-10 queries

should be sufficient to return enough answers for a single screenful of data — and these

are returned in 2-4 seconds. Particularly since query generation and query processing can

be pipelined, we conclude that response rates are sufficient for user interaction.

Test K Graph (G) Size Decoding
(Nodes, Edges) Time (s)

1 (28, 96) 0.11
5 (28, 96) 2.00

10 (28, 96) 4.02
20 (28, 96) 8.32

Table 5.2: Average per-query decoding times (sec.) for requesting top-1 through -20
results over BioGuide schema.
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5.6.4 Schema Graph Size Scalability

We have shown that the Q system scales well to increased user demand for answers. A

second question is how well the system scales to larger schema graphs — a significant issue

in the life sciences. Given that the Steiner tree problem is NP-hard, we will need to use

our SPCSH algorithm (Sec. 5.4.4.3), but now the question is how well it performs (both in

running time and precision.) To evaluate this, we used a different real-world schema graph

based on mappings between the Genomics Unified Schema (www.gusdb.org), BioSQL

(www.biosql.org), and relevant portions of Gene Ontology (www.geneontology.org). We

call this the GUS-BioSQL-GO schema. The schema graph had 408 relations (nodes) and a

total of 1366 edges. The edge weights were set randomly.

K KBEST- SPCSH Speedup Approx. Symm.
STEINER (s) (s) Ratio (α) Loss

1 1.2 0.1 12.0 1.0 0
2 43.8 3.0 14.6 1.0 0
3 111.8 5.5 20.3 1.0 0
5 1006.9 13.9 72.4 1.0 0

Table 5.3: Decoding times (sec.) of KBESTSTEINER and SPCSH with K ranging from 1
to 5, and m from 1 to 3. Also shown are the speedup factors, the approximation ratio, α,
between the cost of SPCSH’s and KBESTSTEINER’s top predictions (α = 1.0 is optimal)
and the symmetric loss (Equation 6.2) between the top predictions of the two methods.
Results were averaged over 10 queries, each consisting of 3 keywords.

We use SPCSH to compute top-K Steiner trees on the GUS-BioSQL-GO schema

graph. SPCSH is an approximate inference scheme, while KBESTSTEINER performs ex-

act inference. Hence, the top prediction of KBESTSTEINER is always optimal. In Table 5.3,

SPCSH’s decoding time and inference quality is compared against KBESTSTEINER on

the GUS-BioSQL-GO schema. Table 5.3 demonstrates that SPCSH computes the k-best

Steiner trees (for various values of k) at a much faster rate than the previous method, while

maintaining quality of prediction (α is 1.0). In fact, in our experiments, SPCSH’s predic-

tions were always optimal. We believe this demonstrates that our approach scales to large

schema graphs without sacrificing result quality. We also reiterate that the time to generate
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the first query is of primary importance here: other queries can be pipelined to execution

as they are produced.

5.7 Summary of Chapter

In this chapter, we have addressed the problem of helping scientific users author queries

over interrelated biological and other data sources, without having to understand the full

complexity of the underlying schemas, source relationships, or query languages. In gen-

eral, such scientists would like to rely on expert-provided weightings for data sources and

associations, and use the best of these to guide their queries. However, experts are not

always available to assess the data and associations, and moreover, the utility of a given

association may depend heavily on the user’s context and information need.

Our approach is based on matching keywords to a schema graph with weighted edges,

allowing the user to refine the query, then providing answers with data provenance. As the

user provides feedback about the quality of the answers, we learn new weightings for the

edges in the graph (associations), which can be used to refine the query and any related

future queries.

We have demonstrated that our approach balances the task of finding the top-k queries

with the ability to learn new top queries based on feedback. The Q System learns weights

that return the top answers rapidly — both in terms of number of interactions, as well as

in the computation time required to process the interactions. Using real schemas and map-

pings, we have shown that we can use an exact top-k solution to handle schema graphs with

dozens of nodes and hundreds of edges, and we can easily scale to hundreds of nodes and

thousands of edges with our SPCSH approximation algorithm, which in all cases returned

the same top answers as the exact algorithm.

In the next chapter, we shall explore how information in new sources can be quickly

made available to the user within the Q system.
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Chapter 6

Automatically Incorporating New

Sources in Q

Some parts of this chapter are based on [Talukdar et al., 2010].

6.1 Introduction

In this chapter, we propose a information need-driven integration strategy for auto-

matically incorporating new sources and their information in the Q system which was

presented in Chapter 5. We shall continue to call the new system Q, as it essen-

tially extends capabilities of the original Q system (presented in Chapter 5), while

reusing many of its core components. The improved Q optionally starts with a

set of databases that may be interlinked through the use of common identifiers or

through correspondence tables, but it does not have a full mediated schema. A

user specifies an information need through a keyword query. Using ideas from key-

word search in databases [Bhalotia et al., 2002, Botev and Shanmugasundaram, 2005,

Hristidis and Papakonstantinou, 2002, Kacholia et al., 2005] and keyword-based data in-

tegration [Talukdar et al., 2008b], our system defines a ranked view consisting of a union

of conjunctive queries over different combinations of the sources. This view is made per-
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sistent. As users (or a Web crawler) register new databases, each such source’s relevance to

existing views is considered, using information about data-value overlap as well as schema

alignment costs from existing schema matchers. If the source is found to be highly relevant

to the query, then the query results are refreshed as appropriate. Now the users of the view

may provide feedback on the contents of the view: certain new results may be valuable,

or possibly erroneous. As the system gets feedback about erroneous results, it adjusts the

costs it has assigned to specific mappings or alignments so that associations responsible for

the errors are avoided.

Our approach is related to recent work on interactive, user-driven integration, where the

system makes a best-effort attempt to get the information, and a user or community of users

attempts to refine the results, in particular dataspaces [Franklin et al., 2005] and best-effort

integration [Shen et al., 2008]. The key distinctions are that we attempt to automatically

discover semantic links among data sources, and to use a data-driven approach to providing

feedback to the system. Any form of automatic schema alignment is likely to make errors,

especially at scale; the challenge is to determine when and where there are mistakes. Sim-

ply “eyeballing” the output mapping is unlikely to help identify what is correct. However,

if a domain expert is looking at data from the perspective of a particular information need,

he or she is (1) likely to invest some effort in ensuring the quality of results, (2) likely to

recognize when results do not make sense.

Only very recently has learning been applied to feedback over database query answers,

and that work was limited to learning cost assignments for exact match conditions. Given

a set of keywords and a known set of schema element correspondences, the cross-database

query system in [Talukdar et al., 2008b] sought to learn from user feedback the most useful

“join paths” for combining the relations. In this chapter we go significantly beyond that

work, as the improved Q learns not only how to adjust weights for individual alignments,

but also how to combine the outputs from different schema matchers. These tasks require

careful formulation of the learning problem, in particular with respect to how learner uses

features of the potential links between data sources.
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We make the following contributions:

• We create a novel “pluggable” architecture that uses matching tools to create alter-

native potential alignments.

• We develop an automatic, information need-driven strategy for schema alignments

that, for a given top-k keyword query and a new source, only aligns tables against

the new source if there is potential to affect the top-k query results.

• We develop a unified representation for data values and attribute labels, using edge

costs to measure relatedness; this facilitates both ranked querying and learning.

• We incorporate state-of-the-art alignment components from the

database [Do and Rahm, 2007] and machine learning [Talukdar et al., 2008d]

literature, and show how to combine their outputs.

• We propose the use of the random-walk-inspired algorithm Modified Adsorption

(MAD) [Talukdar and Crammer, 2009], presented in Chapter 4, to detect schema

alignments, and study its effectiveness instead of, and in combination with, the

COMA++ tool [Do and Rahm, 2007].

• We apply a machine learning algorithm called MIRA [Crammer et al., 2006b], to

learn not only correct attribute alignments, but also how to combine information from

multiple matching tools. Unlike the learning techniques applied in schema matching

tools, our techniques are based on feedback over answers.

We experimentally evaluate our techniques over bioinformatics schemas and data,

demonstrating effectiveness of the proposed methods.

The remainder of this chapter is structured as follows. First, in Section 6.2 we re-

view the basics of keyword search-based data integration, introduce our specific model,

and describe our basic problem setup. Section 6.3 then presents our solution to the prob-

lem of determining when a new source is relevant to an existing view, through the use of

focused schema alignment tasks. Section 6.4 describes how we learn to adjust the align-

ments among attributes, and their weights, from user feedback. We experimentally analyze
115



our system’s effectiveness in Section 6.5. We discuss related work in Section 6.6, before

concluding and describing future work in Section 6.7.

116



Query Graph 

Generator

Search 

Graph

View 

Constructor

Query

Graph

Weight adjustments

Keyword query

Search Graph 

Maintenance 

Components

Query 

Executor

Association 

Cost Learner

User feedback

Existing

data source

schemas

Query results

Association Generator

COMA++
Adsorp-

tion

Source registration

New nodes & 

edges with costs

Search Graph 

Construction

Metadata

..
Ranked

queries

Top-k 

view

View Creation & 

Output Components

Source

data

Figure 6.1: Basic architecture of Q. The initial search graph comes from the sources known at startup. At query time this is
expanded into a query graph, from which queries and ultimately results are generated. The search graph maintenance modules,
the focus of this chapter, handle user feedback and accept new source registrations, in order to update the search graph with
new alignments — triggering recomputation of the query graph and query results in response.
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6.2 Search-Based Integration

This chapter adopts a keyword search query model [Bhalotia et al., 2002,

Hristidis and Papakonstantinou, 2002, Kacholia et al., 2005, Talukdar et al., 2008b]

in which keywords are matched against elements in one or more relations in different

data sources. The system attempts to find links between the relations matching the given

keywords. Such links are proposed by different kinds of associations such as foreign key

relationships, value overlaps or global identifiers, similarity predicates, or hyperlinks. In

general, there may be multiple relations matching a search keyword, and multiple attribute

pairs may align between relations, suggesting many possible ways to join relations in

order to answer the query.

Figure 6.1 shows the basic architecture of our Q system. We start with an initial search

graph generated from existing data source relations and the associations among them. Dur-

ing the view creation and output stage, a keyword search is posed against this search graph,

and results in a top-k view containing answers believed to be relevant to the user. The def-

inition and contents of this view are maintained continuously: both the top-scoring queries

and their results may need to be updated in response to changes to the underlying search

graph made (1) directly by the user, who may provide feedback that changes the costs of

certain queries and thus query answers; (2) by the system, as new data sources are discov-

ered, and their attributes are found to align with the existing relations in the search graph,

in a way that results in new top-k answers for the user’s view. We refer to the process of

updating the schema graph’s nodes and associations as search graph maintenance. In fact,

there is interplay between the two graph maintenance mechanisms and the view creation

and output stage, as the system may propose an alignment, the view’s contents may be up-

dated, the user may provide feedback on these results, and the view output may be updated

once again. All of this is focused around alignments that are relevant to the user’s ongoing

information need.
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6.2.1 Initial Search Graph Construction
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Figure 6.3: Query graph, given a series of keyword search terms. In general, each keyword
may match a node with a similarity score sci, for which a weight coefficient wci is to be
assigned by the system.

Before any queries are processed, an initial search graph is created (leftmost module in

Figure 6.1) to represent the relations and potential join links that we already know about.

Q first scans the metadata in each data source, determining all attribute and relation names,

foreign keys, external links, common identifiers, and other auxiliary information. The basic

search graph (see Figure 6.2 for an example) consists of two types of nodes: relations, rep-

resented by rounded rectangles, and attributes, represented by ellipses. We add undirected

edges between attributes and the relations that contain them (with zero-cost, indicated as

thin lines with no annotations), and between tables connected by a key-foreign-key rela-

119



tionship (bold lines with costs cf1, . . . , cf3) initialized to a default foreign key cost cd.

The graph is extended with bidirectional association edges drawn from the results of

hand-coded schema alignments (or possibly the results of schema matching tools, such

as the ones we consider in this study, which are a label propagation algorithm and the

COMA++ schema matcher). Such associations may be within the same database (such as

those added between InterPro2GO and entry2pub, or entry.name and pub.title)

or across databases. Each of these associations receives a cost (ca1, . . . , ca3 in Figure 6.2)

based on the alignment confidence level.

Each tuple in each of the tables is a virtual node of the search graph, linked by zero-

cost edges to its attribute nodes. However, for efficiency reasons we will add tuple nodes

as needed for query interpretation. Once the search graph has been fully constructed, Q is

ready for querying, and ready to learn adjustments to the costs cci, caj , and cfk or to have

new association edges added.

6.2.2 Views from Keyword Queries

Given a keyword query Q = {K1, . . . , Km}, we dynamically expand the search graph into

a query graph as follows. For each Ki ∈ Q, we use a keyword similarity metric (by default

tf-idf, although other metrics such as edit distance or n-grams could be used) to match the

keyword against all schema elements and all pre-indexed data values in the data sources.

We add a node representing Ki to the graph (see Figure 6.3, where keyword nodes are

represented as boldfaced italicized words). We then add an edge from Ki to each graph

node (approximately) matching it. Each such edge is assigned a set of costs, including

mismatch cost (e.g., s2 in the figure) that is lower for closer matches, and costs related to

the relevance of the relations connected by the edge. The edge also has an adjustable weight

(for instance w2) that appropriately scales the edge cost to yield an overall edge cost (for

instance c2). Additionally, we “lazily” bring in data values as necessary. For each database

tuple matching the keyword, we add a node for each value in the tuple, with a similarity

edge between the value and the Ki node (e.g., wc3s3 to plasma membrane, where s3 is
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the mismatch cost and wc3 represents the starting weight for that edge). To complete the

graph, we add zero-cost edges between tuple value nodes and their corresponding attribute

nodes.

From this query graph, each tree with leaf nodes K1 . . . Km represents a possible join

query (each relation node in the tree, or connected to a node in the tree by a zero-cost edge,

represents a query atom, and each non-zero-cost edge represents a join or selection condi-

tion). As described in [Talukdar et al., 2008b], Q runs a top-k Steiner tree algorithm (using

an exact algorithm at small scales, and an approximation algorithm [Talukdar et al., 2008b]

at larger scales; STAR [Kasneci et al., 2009] could also be used) to find the k lowest-cost

Steiner trees.

From each such tree Q, we generate a conjunctive SQL query that constructs a list of

items for the SQL select, from, and where clauses, and an associated cost expression

for the particular query. For efficiency reasons, we only incorporate value-based similarity

predicates in matching keywords to data or metadata, not in joining one item with another;

hence the cost of each query is independent of the tuples being processed. (In ongoing

work we are incorporating similarity joins and other operations that vary in cost from one

tuple to the next.)

The individual SQL statements must be unioned together in increasing order of as-

sociated cost. This actually requires a disjoint or “outer” union: each query may output

different attributes, and we want a single unified table for output. However, we would like

to place conceptually “compatible” output attributes from different queries into the same

column.

We start by defining the query output schema QA to match the output schema of the

first query’s select-list LA. Then, for each successive query, we iterate over each attribute

a in its select-list. Let na be the node in the query graph with label a. Suppose there exists

some similarity edge (na, na′) with cost below a threshold t, and label(na′) appears in

QA. If the current query is not already outputting an attribute corresponding to label(na′),

then we rename attribute a to label(na′) in the output. Otherwise, we simply add a as a
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new attribute to QA. Then we create a multiway disjoint union SQL query, in which each

“branch” represents one of the queries produced from a query tree. Each “branch” also

outputs a cost (its e term). Finally, we execute the queries and return answers in ranked

order, annotated with provenance information about their originating queries.

6.2.3 Search Graph Maintenance

The novel aspect of our system is its ability to maintain the search graph and adjust the

results of existing user queries accordingly, as highlighted on the right side of Figure 6.1.

We assume that a user’s query has described an ongoing information need for that user,

and that he or she will make future as well as current use of the query results. Hence

we save the results of the query as a view, and we focus on enabling the user to refine

the view by giving feedback and adjusting the weights given to various associations, and

on incorporating new data sources if good associations can be found with the existing

relations in the search graph, and the contents of these new sources affect the contents of

the top-k tuples in the user’s view.

The core capabilities for user feedback were addressed in our previous

work [Talukdar et al., 2008b], so we concentrate here on discovering new associations

(alignments) with relevant sources (Section 6.3), and on using feedback to refine and repair

such associations (Section 6.4).

6.3 Adding New Data Sources

Once a keyword search-based view has been defined as in the previous section, Q switches

into search graph maintenance mode. One crucial maintenance process, discussed in this

section, decides if and how to incorporate new sources into the current view as the system

is notified of their availability.

Q includes a registration service for new tables and data sources: this mechanism can

be manually activated by the user (who may give a URL to a remote JDBC source), or could
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ultimately be triggered directly by a Web crawler that looks for and extracts tables from the

Web [Cafarella et al., 2008] or the deep Web [Madhavan et al., 2008, Zhang et al., 2004] .

6.3.1 Basic Approach

When a new source is registered, the first step is to incorporate each of its underlying tables

into the search graph. The search graph is in effect the data model queried by Q. It contains

both metadata (relation and attribute nodes) and data (tuple values), related by edges that

specify possible ways of constructing a query. The lower the cost of an edge, the more

likely that the edge will be relevant to answering queries involving one of the nodes it

links.

When a new source is encountered, the first step is to determine potential alignments

between the new source’s attributes and those in existing tables: these alignments will

suggest (1) potential joins to be used in query answering, and (2) potential alignments of

attributes in query output, such that the same column in the query answers contains results

from different sources. We note that in both cases, it is desirable that aligned attributes

come from the same domains (since, in the case of joins, no results would be produced

unless there are shared data values among the attributes).

Of course, this task requires a set of alignment primitives (schema matching algorithms)

used to match attributes, which we describe in Section 6.3.2. But there are additional ar-

chitectural challenges that must be faced at the overall system level. As the search graph

grows in size, the cost of adding new associations becomes increasingly expensive: regard-

less of the specific primitives used, the cost of alignment tends to be at least quadratic in

the number of compatible attributes. We must find ways of reducing the space of possible

alignments considered. Moreover, not all of these proposed alignments may be good ones:

most schema matching or alignment algorithms produce false positives.

We exploit the fact that a bad alignment will become apparent when (and only when) it

affects the top-k results of a user query whose results are closely inspected. We develop an

information need-driven strategy where we consider only alignments that have the potential
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Figure 6.4: Propagation of labels in a column-value graph, using the Modified Adsorption
(MAD) algorithm (Section 6.3.2.2). From left to right: the original graph with two column
nodes and three value nodes; each column node injected with its own label (labels inside
the rectangle); after two iterations of label propagation with estimated labels shown inside
hexagons.

to affect existing user queries (Section 6.3.3). As we later show in Section 6.5, this restricts

the space of potential alignments to a small subset of the search graph, which grows at a

much lower rate than the search graph itself. We then develop techniques for correcting

bad alignments through user feedback on the results of their queries (Section 6.4).
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6.3.2 Alignment Primitives

Since we focus here on system architecture and learning methods, our goal with Q is to

develop an architecture and learning methods that are agnostic as to the specific schema

matching or attribute alignment techniques used, such that we can benefit from existing

methods in databases and machine learning.

To demonstrate the architecture’s ability to accommodate different schema matching

algorithms, we incorporate two complementary types of matchers in Q. The first type

consists of typical similarity-based schema matchers from the database community that

rely on pairwise matches between source and target relations, primarily looking at schema

rather than instance-level features, and which we aim to plug into our architecture as “black

boxes”. The second kind are matchers that globally aggregate the compatibilities between

data instances. To that end, we develop a new schema matching technique that looks at

“type compatibility” in a way that considers transitivity: if attribute A has 50% overlap in

values with attribute B, and attribute B has 50% overlap in values with source C, all three

attributes likely come from the same domain even if A and C do not share many values.

Here we adapt a technique from the machine learning and Web community called label

propagation that exploits transitivity and data properties, which has not previously been

applied to schema matching. We briefly review both kinds of matchers, then describe how

we incorporate them into Q.

6.3.2.1 Alignment with Metadata Matcher

Prior work on schema matching has shown that it is useful to consider multiple

kinds of features, both at the data and metadata level, when determining alignments.

Many different schema matchers that incorporate multiple features have been proposed

in recent years [Rahm and Bernstein, 2001], with one of the most sophisticated be-

ing COMA++ [Do and Rahm, 2007]. The creators of the COMA++ schema match-

ing tool graciously provided a copy of their system, so our specific implementation
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incorporates COMA++ through its Java API. This system is described in detail else-

where [Do and Rahm, 2007]. Briefly, we used COMA++’s default structural relationship

and substring matchers over metadata to produce proposed alignments1.

6.3.2.2 Alignment with Label Propagation

Our second matcher focuses on which attributes are type-compatible at the instance level.

The notion of label propagation has been used in recent machine learning work for find-

ing associated metadata based on weighted transitive relationships across many sources.

Informally, this work represents a generalization of some of the ideas in similarity flood-

ing [Melnik et al., 2002] or the Cupid algorithm [Madhavan et al., 2001], but at a larger

scale. In label propagation, we are given a graph G = (V,E,W ) with nodes V , directed

edges E, and a weight function W : E → R that assigns a weight (higher is better) to each

edge. Assume some of the nodes i ∈ V initially are given labels li. Labels are propagated

from each node along its out-edges to its neighboring nodes with a probability proportional

to edge weight, eventually yielding a label probability distribution Li for each node. In-

tuitively, this model is similar to PageRank [Brin and Page, 1998], except that it computes

how likely a “random surfer” starting at an initial node with a particular label will end up

at some other node, based on a Markovian (memory- or history-free) behavioral assump-

tion. In this work, we use the Modified Adsorption (MAD) [Talukdar and Crammer, 2009]

label propagation algorithm.

MAD is one of a family of related label propagation algorithms used in sev-

eral areas [Zhu et al., 2003]. While these algorithms can be explained in several

ways [Baluja et al., 2008], for simplicity we will rely here on the random walk interpre-

tation of MAD.

Let Gr = (V,Er,Wr) be the edge-reversed version of the original graph G =

(V,E,W ), where (a, b) ∈ Er iff (b, a) ∈ E, and Wr(a, b) = W (b, a). Now, choose a

1COMA++ also optionally includes instance-level matching capabilities, but despite our best efforts and
those of the authors, we were only able to get the metadata matching capabilities of COMA++ to work
through its Java API.
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node of interest q ∈ V . To estimate Lq for q ∈ V , we perform a random walk on Gr

starting from q to generate samples for a random label variable L. After reaching a node i

during the walk, we have three choices:

1. With probability pcont
i , continue the random walk to a neighbor of i.

2. With probability pabnd
i , abandon the random walk. This abandonment probability

makes the random walk stay relatively close to its source when the graph has high-

degree nodes. When the random walk passes through such a node, it is likely that

further transitions will be into regions of the graph unrelated to the source. The

abandonment probability mitigates that effect.

3. With probability pinj
i , stop the random walk and emit either Li if i is one of the

initially labeled nodes.

Lq will converge to the distribution over labels L emitted from random walks ini-

tiated from node q. In practice, we use an equivalent iterative fixpoint view of

MAD [Talukdar and Crammer, 2009], shown in Algorithm 6. In this algorithm, Iv is the

injected label distribution that a node is seeded with; Rv is a label distribution with a single

peak corresponding to a separate “none of the above” label >. This dummy label allows

the algorithm to give low probability to all labels at a node if the evidence is insufficient.

In the next section, we shall see how MAD can be used to discover attribute associations.

6.3.2.3 Combining Matchers in Q

We now describe how we fit each type of matcher into Q, starting with the “black box”

interface to COMA++. Later in the chapter, we discuss how we can combine the outputs

of multiple matchers, using user feedback to determine how to weigh each one.

COMA++ as a black-box matcher. An off-the-shelf “black box” schema matcher typi-

cally does pairwise schema matching, meaning that each new source attribute gets aligned

with only a single attribute in the existing set of data sources (rather than, e.g., an attribute

in each of the existing data sources). Moreover, matchers tend to only output their top
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alignment, even when other potential alignments are considered. Our goal in Q is to de-

termine the top-Y (where Y is typically 2 or 3) candidate alignments for each attribute,

unless the top alignment has very high confidence: this way we can later use user feedback

to “suppress” a bad alignment and see the results of an alternative.

To get alignments between the new source’s attributes and all sources, we do a pairwise

schema alignment between the new source and each existing source. We thus obtain what

COMA++ assumes to be the top attribute alignments between each relation pair.

While we do not do this in our experiments, it is feasible (if expensive) to go be-

yond this, to force COMA++ to reveal its top-Y overall alignments. Between each pair

of schemas, we can first compute the top alignment. Next, for each alignment pair (A,B)

that does not have a high confidence level, remove attribute A and re-run the alignment,

determining what the “next best” alignment with B would be (if any). Next re-insert A

and remove B, and repeat the process. If there are additional schema matching constraints

(e.g., no two source attributes may map to the same target attribute), we can again iter-

ate over each alignment pair (A,B). Now remove all attributes from A’s schema that are

“type compatible” with A, except for A itself; and run the alignment. Then replace those

attributes, and repeat the process removing attributes type-compatible with B other than B

itself.

Ultimately, we will have obtained from the matcher a set of associations (equivalent

here to the alignments) and their confidence levels. Depending on the matcher used, the

confidence scores may need to be normalized to a value between 0 and 1; in the case of

COMA++, its output already falls within this range. These confidence scores will be used

in forming a new edge cost (Section 6.3.4).

MAD to discover compatible datatypes. We developed a matcher module (paralleliz-

able for Hadoop MapReduce), which performs MAD across schemas, using techniques

described in [Talukdar and Crammer, 2009]. While this matcher implementation is in some

sense a part of Q, it is implemented in a way that does not provide any special interfaces,

i.e., from Q’s perspective it remains a black box. This matcher first creates an internal
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label propagation graph that incorporates both metadata and data. From the search graph,

we take all relation attributes from all sources, and create a node in the label propagation

graph for each attribute, labeled with its canonical name. We also take all data values and

create a label propagation graph node for each unique value. We add to the graph an edge

between a value node and each node representing an attribute in which the value appears.

Now we annotate or label each attribute node with its name. A sample graph is shown in

the left portion of Figure 6.4; for simplicity, all the edges have weight 1.0.

We run the MAD algorithm over this graph, propagating sets of annotations from node

to node. The algorithm runs until the label distribution on each node ceases to change

beyond some tolerance value. Alternatively, the algorithm can be run for a fixed number

of iterations. Each value node ultimately receives a distribution describing how strongly

it “belongs” to a given schema attribute, and each attribute node receives a distribution

describing how closely it matches other attribute nodes.

In the graph in the second column in the Figure 6.4, we see that the attribute nodes

are annotated with labels matching their names, each with probability 1. These labels

are propagated to the neighboring nodes and multiple iterations are run until convergence

is reached (shown in the rightmost graph). At the end, we see that all data values are

annotated with both go id and acc since there is significant value overlap between the

two attributes. Note that MAD does not require direct pairwise comparison of sources.

This is very desirable as such pairwise comparisons can be expensive when many sources

are involved.

We use the label distributions generated by MAD to generate uncertainty levels from

which edge costs will be derived for Q’s search graph. For each node n in the MAD graph,

we select the top-Y attributes from its label distribution, and we add an edge in the search

graph between the attribute node for l and the attribute node for n. The confidence level

for each such edge will be Ln(l). Section 6.3.4 describes how this level is combined with

other weighted parameters to form an edge cost.

129



Algorithm 6: Modified Adsorption (MAD) Algorithm
Input: Graph: G = (V,E,W ), Seed labeling: Iv ∈ Rm+1 for v ∈ V , Probabilities:
pinjv , pcontv , pabndv for v ∈ V , Label priors: Rv ∈ Rm+1 for v ∈ V , Output: Label
Scores: Lv for v ∈ V

1: Lv ← Iv for v ∈ V {Initialization}
2: Mvv ← µ1 × pinjv + µ2 × pcontv ×

∑
uWvu + µ3

3: repeat
4: Dv ←

∑
i

(
pcontv ×Wvi + pcont

i ×Wiv

)
× Ii

5: for all v ∈ V do
6: Lv ← 1

Mvv
× (µ1 × pinjv × Iv + µ2 ×Dv+

7: µ3 × pabndv ×Rv

)
8: end for
9: until convergence

Algorithm 7: VIEWBASEDALIGNER(G,G
′
, K, C, α). Input: Search graph G, new

sourceG′ , keywords (K) associated with current view, cost function C, cost threshold
α. Output: Augmented schema graph G′′ , with alignments between G and G′ .

1: G
′′ ← G ∪ G′

2: S ← ∅
3: for k ∈ K do
4: S = S ∪ GETCOSTNEIGHBORHOOD(G,C, α, k)
5: end for
6: for v ∈ S do
7: A = BASEMATCHER (G′

, v)
8: E(G′′)← E(G

′′
) ∪ A

9: end for
10: Return G′′

6.3.3 Searching for Associations

We just saw how to harness individual schema matchers to find alignments of sources,

and hence association edges between existing and new source relations. However, we need

to ensure that the alignment algorithms can be applied scalably, as we increase the number

of data sources that we have discovered.

Of course, the simplest (though least scalable) approach is to simply perform exhaustive

matching: upon the registration of a new data source, we iterate over all existing data
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Algorithm 8: PREFERENTIALALIGNER(G,G
′
, P ). Input: Search graph G, new

source G′ , vertex cost function P . Output: Augmented schema graph G′′ , with align-
ments between G and G′ .

1: G
′′ ← G ∪ G′

2: Vs = SORT(V (G), P )
3: for i = 1 to Vs.length do
4: r = GETRELATIONNODE (Vs[i])
5: A = BASEMATCHER (G′ , r)
6: E(G′′)← E(G

′′
) ∪ A

7: end for
8: Return G′′

sources in turn, and run our alignment algorithm(s). We term this approach EXHAUSTIVE,

and note that it will scale quadratically in the number of attributes in each source. As we

shall see in Section 6.5, even for small numbers of attributes schema alignment takes time,

and with large numbers of sources it may be costly to find new associations.

As was previously noted, we can exploit the fact that new associations are only “visible”

to users if they appear in any queries returning top-k results. Hence we exploit existing user

views, and the existing scores of top-k results, to restrict the search space of alignments. As

new queries are materialized within the system, we would incrementally consider further

alignments that might affect the results of those queries.

Algorithm 7 shows code for VIEWBASEDALIGNER, which reduces the number of

schema alignment comparisons (calls to BASEMATCHER) through a pruning strategy that

is guaranteed to provide the same top-k answer set for a query as EXHAUSTIVE. Given an

existing schema graph G = (V,E,C) where C is a nonnegative real-valued cost function

for each edge (discussed in the next section), a set of keyword nodes K, and the cost α of

the kth top-scoring result for the user view, VIEWBASEDALIGNER considers alignments

between the new source’s schema graph G′, and the projection of the graph that is within α

of any keyword node. To affect the view output, any new node from G′ must be a member

of a Steiner tree with cost ≤ α; given that edge costs are always non-negative, our pruning

heuristic guarantees that we have considered all possible alignments that could lead to this
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Figure 6.5: A schema graph for the keywords term and plasma membrane. Edges are
annotated with costs. The shaded region is the α-cost neighborhood (α = 2) of the two
keywords, i.e. all nodes reachable with cost ≤ 2 from a keyword.

condition.

We illustrate this with an example in Figure 6.5, where we assume two keywords have

matched and the kth best score α = 2. Here, VIEWBASEDALIGNER only considers align-

ments between a new source and those nodes within the shaded cost neighborhood. This

yields savings in comparison with EXHAUSTIVE, which would additionally need to com-

pare the new source against the two sources outside of the region. Of course, in a real

search graph many more sources are likely to be outside the region than inside it.

If we need even more aggressive pruning, we can adapt ideas from network formation

in social networks [Barabasi and Albert, 1999], and assume the existence of an alignment

prior (P ) over vertices of the existing search graph G, specifying a preference ordering for

associations with the existing nodes. This can capture, e.g., that we might want to align
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with highly authoritative or popular relations. Algorithm 8 shows pseudocode for such a

PREFERENTIALALIGNER. A new source, G′ , is compared against the existing nodes in

G in the order of the ranking imposed by the prior P . The prior might itself have been

estimated from user feedback over answers of keyword queries, using techniques similar

to those of the next section, or it might be computed using alternate methods such as link

analysis [Balmin et al., 2004].

6.3.4 Measuring Schema Graph Edge Quality

As we take the output of the aligner and use it to create an association in the search graph,

we would like to set the edge cost in a principled way: ideally the value is not simply a

hard-coded “default cost,” nor just the confidence value of the aligner, but rather it should

take into account a number of factors. For instance, the edge cost might take into account

costs associated with the relations being joined, derived from their authoritativeness or

relevance; and when we are using multiple matchers to create an alignment, we might want

to perform a weighted sum of their confidence scores.

We use a cost function for each edge that considers a combination of multiple weighted

components, some of which may be shared across edges, and others of which may be

exclusive to a specific edge. We formalize this by describing the cost of an edge as a

sum of weights times feature values (also called scores). The weights will be learned

by Q (Section 6.4), whereas the features are the base cost components whose value does

not change. For instance, to incorporate the uncertainty score from a black-box schema

matcher, we capture it as a feature, whose associated weight we will learn and maintain. In

some cases, we consider features to be Boolean-valued: for instance, if we want to learn a

different weight for each edge, then we will create a feature for that edge whose value is 1

for that edge (and 0 elsewhere).

Let the set of predefined features across the search graph be F = {f1, . . . , fM}. For-

mally, a feature maps edges to real values. For each edge (i, j), we denote by f(i, j) the

feature vector that specifies the values of all the features of the edge. Each feature fm has a
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corresponding weight wm. Informally, lower feature weights indicate stronger preference

for the edges that have those features. Edge costs are then defined as follows:

C((i, j),w) =
∑
m

wm × fm(i, j) = w · f(i, j) (6.1)

where m ranges over the feature indices.

When we add a new association edge based on an alignment, we set its cost based on

the following weighted features:

• A default feature shared with all edges and set to 1, whose weight thus comprises a

default cost added to all edges.

• A feature for the confidence value of each schema matcher, whose weight represents

how heavily we (dis)favor the schema matcher’s confidence scores relative to the

other cost components.

• A feature for each relation R connected by the association, whose value is 1 for this

relationR, and whose weight represents the negated logarithm of the R’s authorita-

tiveness.

• A feature that uniquely identifies the edge itself, whose value is 1, and whose weight

comprises a cost added to the edge.

Together, the weighted features form an edge cost that is initialized based not only on the

alignment confidence levels, but also on information shared with other nodes and edges.

6.4 User Feedback & Corrections

When the user sees a set of results, he or she may notice a few results that seem either

clearly correct or clearly implausible. In Q the user may provide feedback by optionally

annotating each query answer to indicate a valid result, invalid result, or a ranking con-

straint (tuple tx should be scored higher than ty). Q first generalizes this feedback by

taking each tuple, and, by looking at its provenance, replacing it with the query tree that
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produced it, using a scheme similar to [Talukdar et al., 2008b]. Recall that our model is

one of tuple and edge costs so a lower cost results in higher ranking.

The association cost learner converts each tuple annotation into a constraint as follows:

• A query that produces correct results is constrained to have a cost at least as low as

the top-ranked query result.

• A query Qx that should be ranked above some other query Qy is constrained to have

a cost that is lower than Qy’s cost.

These constraints are fed into an algorithm called MIRA [Crammer et al., 2006b],

which has previously been shown to be effective in learning edge costs from user feedback

on query results [Talukdar et al., 2008b]. We briefly summarize the key ideas of MIRA

here, and explain how we are using it in a less restricted way here, learning over real-valued

features, as opposed to the Boolean features in the previous work [Talukdar et al., 2008b].

Relationship between Edge Costs and Features. Recall from Section 6.3.4 that each

edge is initialized with a cost composed of multiple weighted features: the product of

the weight and the feature value comprise a default cost given to every edge, a weighted

confidence score from each schema alignment algorithm, the authoritativeness of the two

relations connected by the edge, and an additional cost for the edge itself. Q’s association

cost learner takes the constraints from user feedback and determines a weight assignment

for each feature — thus assigning a cost to every edge.

Learning Algorithm. The learning algorithm (Algorithm 9) reads training examples se-

quentially and updates its weights after receiving each of the examples based on how well

the example is classified by the current weight vector. The algorithm, which was first

used in [Talukdar et al., 2008b], is a variant of the Margin Infused Ranking Algorithm

(MIRA) [Crammer et al., 2006b]. We previously showed in [Talukdar et al., 2008b] that

MIRA effectively learning top-scoring queries from user feedback; however, in that work

only binary features were used, while here we need to include real-valued features from

similarity costs. Using real-valued features directly in the algorithm can cause poor learn-
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Algorithm 9: ONLINELEARNER(G,U, k). Input: Search graph G, user feedback
stream U , required number of query trees k, zero-cost constraint edges A. Output:
Updated costs of edges in G.

1: w(0) ← 0
2: r = 0
3: while U is not exhausted do
4: r = r + 1
5: (Sr, Tr) = U.NEXT()
6: Cr−1(i, j) = w(r−1) · fij ∀(i, j) ∈ E(G)
7: B = KBESTSTEINER(G,Sr, Cr−1, K)
8: w(r) = arg minw

∥∥w− w(r−1)
∥∥

9: s.t. C(T,w)− C(Tr,w) ≥ L(Tr, T ), ∀T ∈ B
10: w · fij = 0 ∀(i, j) ∈ A
11: w · fij > 0 ∀(i, j) ∈ E(G) \ A
12: end while
13: Let C(i, j) = w(r) · fij ∀(i, j) ∈ E(G)
14: Return C

ing because of the different ranges of different real-valued and binary features. Therefore,

as described above, we bin the real-valued features into empirically determined bins; the

real-valued features are then replaced by features indicating bin membership.

The weights are all zero as Algorithm 9 starts. After receiving feedback from the user

on the rth query Sr about a top answer, the algorithm retrieves the listB of the k lowest-cost

Steiner trees using the current weights. The user feedback for interaction r is represented

by the keyword nodes Sr and the target tree Tr that yielded the query answers most favored

by the user. The algorithm then updates the weights so that the cost of each tree T ∈ B is

worse than the target tree Tr by a margin equal to the mismatch or loss L(Tr, T ) between

the trees. If Tr ∈ B, because L(Tr, Tr) = 0, the corresponding constraint in the weight

update is trivially satisfied. The update also requires that the cost of each edge be positive,

since non-positive edge costs will result in non-meaningful Steiner tree computations. To

accomplish this, we include the default feature listed above, whose weight serves as a

uniform cost offset to all edge weights in the graph, which keeps the edge costs positive.

Some edges in the query graph are constrained to have a fixed edge cost, irrespective of
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learning. For example, attribute-relation edges have a cost of zero that should always be

maintained. We achieve this by adding such constraints to the MIRA algorithm. Our

implementation requires a modification of MIRA (shown in Algorithm 9) that takes as

input a set A specifying edges with zero cost constraints.

An example loss function, used in our experiments, is the symmetric loss with respect

to the edges E present in each tree:

L(T, T ′) = |E(T ) \ E(T ′)|+ |E(T ′) \ E(T )| (6.2)

The learning process proceeds in response to continued user feedback, and finally re-

turns the resulting edge cost function.

6.5 Experimental Analysis

In this section, we use Q as a platform to validate our strategy of performing schema align-

ment in a query-guided manner (Section 6.5.1), as well as our techniques for using user

feedback over data to correct bad alignments (Section 6.5.2). The search graph mainte-

nance modules in Q comprise approximately 4000 lines of Java code, and all experiments

were run on a Dell PowerEdge 1950 computer running RedHat Enterprise Linux 5.1 with

8GB RAM. We used the COMA++ 2008 API, and a Java-based implementation of our

MAD-based schema matcher.

Our focus in Q is on supporting bioinformatics applications, and hence wherever possi-

ble, we use real biological databases and compare with gold standard results, i.e., reference

results supplied by domain experts. This enables us to perform an experimental study with-

out having to conduct extensive user studies.

For the first set of experiments, we use a dataset for which we have logs of actual

SQL queries executed by Web forms, such that we can determine which proposed source

associations are actually valid (as witnessed by having real queries use them). This dataset,

GBCO2, consists of 18 relations (which we model as separate sources) with 187 attributes.
2http://www.betacell.org/
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In the second set of experiments, we used a different dataset, based on the widely used

(and linked) Interpro and GO databases, where we could obtain keyword queries and find

multiple alternative means of answering these queries. This dataset consists of 8 closely

interlinked tables with 28 attributes.

6.5.1 Incorporating New Sources

We first look at the cost of adding new data sources to an existing search graph, in a way

that keeps the alignment task tractable by limiting it to the “neighborhood” of an existing

query. We set up the experiment, using the GBCO dataset described above, as follows.

We first scanned through the GBCO query logs for pairs of SQL queries, where one

query represented an expansion of the other, base, query: i.e., the expanded query either

joined or unioned additional relations with the base query. Intuitively, the expanded query

tells us about new sources that would be useful to add to an existing search graph that had

been capable of answering the base query. When the expanded query represents the union

of the base query with a new query subexpression, then clearly adding the new data source

results in new association edges that provide further data for the user’s view. When the

expanded query represents an additional join of the base query with new data, this also

affects the contents of the existing view if the additional join represents a segment of a new

top-scoring Steiner tree for the same keyword query.

For each base query, we constructed a corresponding keyword query, whose Steiner

trees included the relations in the base query. Next, we initialized the search graph to in-

clude all sources except the ones unique to the expanded query. We initially set the weights

in the search graph to default values, then provided feedback on the keyword query re-

sults, such that the SQL base query from our GBCO logs was returned as the top query.

For all experiments in this section, the edge costs learned in the process were used as the

value of the function C in the VIEWBASEDALIGNER algorithm. The vertex cost func-

tion P in PREFERENTIALALIGNER was similarly estimated from the weights of features

corresponding to source identities.
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Figure 6.6: Running times (averaged over intro of 40 sources) when aligning a new source
to a set of existing sources (COMA++ as base matcher). VIEWBASEDALIGNER and
PREFERENTIALALIGNER significantly reduce running times vs. EXHAUSTIVE.

6.5.1.1 Cost of Alignment

Our first experiment measures the cost of performing alignments between the new source

and a schema graph containing all of the other sources — using our EXHAUSTIVE, VIEW-

BASEDALIGNER, and PREFERENTIALALIGNER search strategies, with the COMA++

matcher. Figure 6.6 compares the running times of these strategies. Figure 6.7 shows

the number of pairwise attribute comparisons necessary, under two different sets of as-

sumptions. The Value Overlap Filter case assumes we have a content index available on

the attributes in the existing set of sources and in the new source; we only make compare

attributes that have shared values (hence can join). More representative is likely to be the

No Additional Filter case, which has only metadata to work from.
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Figure 6.7: Pairwise attribute comparisons performed in aligning new source(s) to existing
sources (averaged over intro of 40 sources in 16 trials, where each trial introduces one or
more new sources). VIEWBASEDALIGNER and PREFERENTIALALIGNER significantly
reduce comparisons vs. EXHAUSTIVE.

We observe that, regardless of whether a value overlap filter is available, limiting

the search to the neighborhood of the existing query (i.e., our information need-driven

pruning strategy) provides significant speedups (about 60%) versus doing an exhaustive

set of comparisons, even on a search graph that is not huge. Recall that VIEWBASED-

ALIGNER will provide the exact same updates to a user view as the exhaustive algorithm.

PREFERENTIALALIGNER does not have this guarantee, and instead focuses on the align-

ments specified in the prior, but gives even lower costs.

The differences in costs results from the fact that the number of comparisons in EX-

HAUSTIVE depends on the number of source relations in the schema graph, whereas the

number of comparisons in the other cases is only dependent on the number of nodes in the
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Figure 6.8: Number of pairwise attribute comparisons as the size of the search graph
is increased (averaged over introduction of 40 sources). VIEWBASEDALIGNER and
PREFERENTIALALIGNER are hardly affected by graph size.

local neighborhood of the query.

6.5.1.2 Scaling to Large Number of Sources

We next study how the cost of operations scales with respect to the search graph size. Since

it is difficult to find large numbers of interlinked tables “in the wild,” for this experiment

we generated additional synthetic relations and associations for our graph. We started with

the real search graph, and built upon it as follows. We initialized the original schema graph

of 18 sources with default costs on all edges. Then we took our set of keyword queries

and executed each in sequence, providing feedback on the output such that the base query

was the top-scoring one. At this point, the costs on the edges were calibrated to provide

meaningful results. Now we randomly generated new sources with two attributes, and then

141



connected them to two random nodes in the search graph. We set the edge costs to the

average cost in the calibrated original graph.

Once the schema graph of desired size was created, the three alignment methods were

used to align the new sources in the expanded graph. Since our mostly-synthetic expanded

search graph does not contain realistic node labels and attributes, we do not directly run

COMA++ on the results, but instead focus on the number of column comparisons that

must be performed. The results appear in Figure 6.8. Recall that Figure 6.6 shows that

COMA++’s running times grow at a rate approximately proportional to the number of

column comparisons. From Figure 6.8, we observe that the number of pairwise column

comparisons needed by VIEWBASEDALIGNER and PREFERENTIALALIGNER remained

virtually unchanged as the number of sources increased from 18 to 500, whereas EX-

HAUSTIVE grew quite quickly.

We conclude from the experiments in this subsection that localizing the search to the

neighborhood around a query yields much better scalability. VIEWBASEDALIGNER gives

the same results as the exhaustive strategy, and hence is probably the preferred choice.

6.5.2 Correcting Matchings

The previous section focused on the cost of running alignment algorithms, without looking

at their quality. We now look at how well Q takes the suggested alignments from the indi-

vidual alignment algorithms, as well as user feedback on query answers, to get the correct

associations. These experiments were conducted over the InterPro-GO dataset described

previously (shown visually in Figure 6.9), for which we were able to get a set of keyword

queries based on common usage patterns suggested in the description of the GO and Inter-

Pro databases3. We know from the original schema specifications and documentation that

there are 8 semantically meaningful join or alignment edges among these relations, but we

remove this information from the metadata.
3http://www.ebi.ac.uk/interpro/User-FAQ-InterPro.html
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Figure 6.9: Schema graph used in the experiments of Section 6.5.2 (attributes are not
shown).

Our experimental setup is to start with a schema graph that simply contains the tables in

Figure 6.9, and then to run the association generation step (using COMA++ and/or MAD)

to generate a search graph in the Y most promising alignments (for different values of Y )

are recorded for each attribute. Next we execute the set of keyword queries obtained from

the databases’ documentation. For each query, we generate one feedback response, mark-

ing one answer that only makes use of edges in the gold standard. Since the gold standard

alignments are known during evaluation, this feedback response step can be simulated on

behalf of a user. Our goal is to “recover” all of the links shown in Figure 6.9, which forms

the gold standard.

We now present our results using precision, recall and F-measure as our evaluation

metrics. We compute these metrics with respect to the search graph, as opposed to looking
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Y System Precision Recall F-measure

1
COMA++ 62.5 62.5 62.5
MAD 70 87.5 77.78

2
COMA++ 63.64 87.5 73.68
MAD 66.67 100 80

5
COMA++ 63.64 87.5 73.68
MAD 66.67 100 80

Table 6.1: Evaluation of top-Y edges (per node) induced by COMA++ and MAD for vari-
ous values of Y (see Section 6.5.2.1). The schema graph of Figure 6.9 was used as the gold
reference. Precision-Recall plots for COMA++ and MAD for the Y = 2 case are are shown
in Figure 6.10.

at query answers. For different values of Y , we compare the top Y alignment edges in the

search graph (that also fall under a cost threshold) for each attribute, versus the edges in

the gold standard. Clearly, if the alignment edges in the schema graph exactly match the

gold standard, then they will result in correct answers.

6.5.2.1 Baseline Matcher Performance

Our first set of experiments compares the relative performance of the individual matchers

over our sample databases, as we increase the number of alternate attribute alignments we

request from the matcher in order to create the search graph. We briefly describe setup

before discussing the results.

COMA++ setup. As described in Section 6.3.2.1, COMA++ [Do and Rahm, 2007] was

applied as a pairwise aligner among the relations in Figure 6.9. This involved computing

alignments and scores in COMA++ for attributes in each pair of relations. Using this

scheme we were able to induce up to 34 alignment edges.

MAD setup. We took the relations in Figure 6.9 and the values contained in the tables, and

constructed a MAD graph resembling Figure 6.4. All nodes with degree one were pruned

out from the MAD graph before the matching algorithm was run, as they are unlikely to

contribute to the label propagation. Also, all nodes with numeric values were removed, as
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they are likely to induce spurious associations between attributes. The resulting graph had

87K nodes. We used the heuristics from [Talukdar and Crammer, 2009] to set the random

walk probabilities.

MAD was run for 3 iterations (taking approximately 4 seconds total), with µ1 = µ2 =

1, and µ3 = 1e−2. Each unique column name (attribute) was used as a label, and so 28

labels were propagated.

Results. For each of the algorithms, we added to the search graph (up to) the top-Y -

scoring alignments per attribute, for Y values ranging from 1 to 5, as shown in Table 6.1.

Our general goal is to have the matchers produce 100% recall, even at the cost of precision:

the Q learner must be able to find the correct alignment in the search graph if it is to be

able to allow for mapping correction.

We conclude that our novel MAD scheme, which is purely based on data values, does

very well in this bioinformatics setting, with a recall of 7 out of 8 edges even with Y = 1,

and 100% recall with Y = 2. COMA++ produced good output (7 out of 8 alignments)

with Y = 2, but we were not able to get it to detect all of the alignments even with high Y

values.

Note that we compute precision under a fairly strict definition, and one might com-

pellingly argue that some of the “wrongly” induced alignments are in fact useful in answer-

ing queries, even if they relate attributes that are not synonymous. For instance, if we look

at the “incorrect” edges induced by MAD, we see one between interpro.method.name

and interpro.entry.name. The data shows an overlap of 780 distinct values (out

of 53,007 entries in interpro.method.name and 14,977 in interpro.entry.name).

Joining these two tables according to this alignment may in fact produce useful results

for exploratory queries (even if these results should be given a lower rank in the output).

We hope in the future to conduct user studies to evaluate how useful biologists find Q’s

answers.
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Figure 6.10: Precision vs. recall for COMA++, MAD and Q (which combines COMA++
and MAD). Q was trained from feedback on 10 keyword queries, replayed three times
to reinforce the feedback. Precision and Recall were computed by comparing against the
foreign key associations in Figure 6.9.

6.5.2.2 Correcting Associations

We next study Q’s performance in combining the output of the two matchers, plus process-

ing feedback to correct alignments. This performance (measured in precision and recall) is

dependent on how high a similarity (how low a cost) we require between aligned attributes.

Generally, the more strict our similarity threshold, the better our precision and the lower

our recall will be.

Benefits of learning. In Figure 6.10, we take the schema alignments from both matchers

(COMA++ and MAD) when Y = 2 (the lowest setting where we get 100% recall, see

Table 6.1) and combine them, then provide feedback on 10 different two-keyword queries

146



0.15

0.363

0.575

0.788

1

0.125 0.25 0.375 0.5 0.625 0.75 0.875 1

Precision-Recall Plots for Q with Different Levels of Feedback
P

re
ci

si
o

n

Recall

Q (1 x 1) Q (10 x  1)
Q (10 x 2) Q (10 x 4)
Average (COMA++, MAD)

Figure 6.11: Precision versus recall in Q, given default weighting, then successively
greater amounts of feedback.

(created as previously discussed), with k = 5 (see Algorithm 9). In order to ensure that

weight updates are made in a way that consistently preserves all of the “good” answers,

we actually apply the feedback repeatedly (we replay a log of the most recent feedback

steps, recorded as a sliding window with a size bound). Here we input the 10 feedback

items to the learner four times in succession (i.e., replay them three times) to reinforce

them. In order to remove the edge cost variations resulting from intermediate feedbacks,

we consider the average edge cost over all feedback steps.

To see the relationship between recall and precision levels, we vary a pruning threshold

over the schema graph: any alignment edges with cost above this threshold will be ignored

in query result generation, and any below will be included. Compared to both schema

matchers in isolation, with the ten feedback steps, Q does a much better job of providing
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Figure 6.12: Average costs of gold edges (i.e., those in Figure 6.9) vs. non-gold edges
in the search graph, as more feedback is applied. To obtain Steps 11–40 we repeat the
feedback steps from 1–10 up to 3 times. Q continues to increase the gap between gold and
non-gold edges’ average scores.

both good precision and recall: we can get 100% precision with 100% recall.

Relative benefits of feedback. Next we study how performance improves with succes-

sive feedback steps. Figure 6.11 repeats the above experiment with increasing amounts of

feedback. As a baseline, we start with the setting where the matchers’ scores are simply

averaged for every edge — in the absence of any feedback, we give equal weight to each

matcher. Next we consider a single feedback step, designated Q (1x1), then ten feedback

steps. Previously we had applied the feedback four successive times: we show here what

happens if we do not repeat the feedback (10x1), if we repeat it once (10x2), and if we

repeat it three times (10x4).
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Recall Level 12.5 25 37.5 50 62.5 87.5 100
Feedback Steps 1 2 2 2 2 2 2

Table 6.2: Number of feedback steps required to initially get precision 1 with a certain
recall level in the schema graph.

Looking at relative performance in Figure 6.11, we see that the baseline — the average

of the two matchers’ output — approximately follows the output of COMA++. It turns out

that COMA++ gives higher confidence scores on average than MAD, and hence this simple

average favors its alignments. Of course, we could adjust the default weighting accordingly

— but it is far better to have the system automatically make this adjustment. We see from

the graph that this happens quite effectively: after a single feedback step, we immediately

see a noticeable boost in precision for most of the recall levels below 60%. Ten items of

feedback with no repetitions makes a substantial difference, yielding precision of 100% for

recall values all the way to 50%. However, repeating the feedback up to four times shows

significant benefit.

Figure 6.12 shows the average costs of edges in the gold-standard (i.e., edges in Figure

6.9) versus non-gold edges, as we provide more feedback. Q assigns lower (better) costs on

average to gold edges than to non-gold edges, and the gap increases with more feedback.

Feedback vs. precision for different recall levels. Finally, we consider the question of

how much feedback is necessary to get perfect precision (hence, ultimately exact query

answers) if we are willing to compromise on recall: Table 6.2 summarizes the results.

Note that perfect precision is actually obtained with only 2 feedback steps even with 100%

recall. At first glance this may seem incongruous with the results of the previous figures,

but it is important to remember that each feedback step is given on a different query, and

each time the online learner makes local adjustments that may counter the effects of the

previous feedback steps. Hence we can see drops in precision with additional feedback

steps, and it takes several more steps (plus, as we saw previously, multiple repetitions)

before the overall effects begin to converge in a way that preserves all of the correct edges.
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We conclude from these experiments that (1) the simple act of combining scores from

different matchers is not enough to boost scores, (2) with a small number of feedback steps

Q learns to favor the correct alignments, (3) particularly if a sequence of feedback steps is

replayed several times, we can achieve very high precision and recall rates. Ultimately this

means that we can learn to generate very high-quality answers directly using the output of

existing schema matching components, plus feedback on the results.

6.6 Related Work

In this chapter, we addressed one of the shortcomings of the version of

Q presented in [Talukdar et al., 2008b], namely, that all alignments were

specified in advance. Many systems supporting keyword search over

databases [Bhalotia et al., 2002, Botev and Shanmugasundaram, 2005, He et al., 2007,

Hristidis and Papakonstantinou, 2002, Hristidis et al., 2003, Kacholia et al., 2005] use

scores based on a combination of similarity between keywords and data values, length

of join paths, and node authority [Balmin et al., 2004]. Existing “top-k query answer-

ing” [Cohen, 1998, Gravano et al., 2003, Li et al., 2005, Marian et al., 2004] provides the

highest-scoring answers for ranked queries.

Schema alignment or matching is well-studied across the database, machine learning,

and Semantic Web communities [Rahm and Bernstein, 2001]. General consensus is that

methods that incorporate both data- and metadata-based features, and potentially custom

learners and constraints, are most effective. Thus, most modern matchers combine output

from multiple sub-matchers [Do and Rahm, 2007, Doan et al., 2001, Melnik et al., 2002].

Our focus is not on a new method for schema matching, but rather an architecture for

incorporating the output of a matcher in a complete iterative, end-to-end pipeline where the

matches or alignments are incorporated into existing user views, and feedback on answers

is used to correct schema matching output. Our approach requires no special support within

the matcher, simply leveraging it as a “black box.”
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The notion of propagating “influences” across node connectivity for schema

alignment is used in similarity flooding [Melnik et al., 2002] and the Cupid sys-

tem [Madhavan et al., 2001], among other schema matching studies. However, in the ma-

chine learning and Web communities, a great deal of work has been done to develop a

principled family of label propagation algorithms [Baluja et al., 2008, Zhu et al., 2003].

In Section 6.3.2.2, we incorporate this kind of matching method not only to align com-

patible attributes in the output, but to discover synonymous tables and transitively re-

lated items. This builds upon recent observations (see Chapter 4) showing that one could

find potential labelings of tables extracted from the Web using the Modified Adsorption

(MAD) label propagation algorithm [Talukdar and Crammer, 2009]. Another benefit of the

MAD-based method presented in Section 6.3.2.2 is that it doesn’t require pariwise attribute

comparisons, a scalability bottleneck, which is otherwise necessary in similarity flooding

[Melnik et al., 2002].

Our ranked data model propagates uncertainty from uncertain mappings to out-

put results. Intuitively, this resembles the model of probabilistic schema map-

pings [Dong et al., 2007], although we do not use a probabilistic model. Our goal is to

learn rankings based on answer feedback, and hence we need a ranking model amenable

to this.

Our work is complementary to efforts on learning to construct

mashups [Tuchinda and Knoblock, 2008], in suggesting potential joins with new

sources. Recent work on “pay as you go” integration has used decision theory to determine

which feedback is most useful to a learner [Jeffery et al., 2008].

As opposed to feedback-driven query expansion and rewriting in [Pan et al., 2008], our

goal here is to exploit user feedback to learn to correct schema matching errors. As men-

tioned in Chapter 5, a method that learns to rank pairs of nodes based on their graph-

walk similarity is presented in [Minkov et al., 2006, Minkov and Cohen, 2007]. A similar

method that learns the random walk probabilities in a graph satisfying pairwise node or-

dering constraints is presented in [Agarwal et al., 2006]. In contrast, the learning method
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used in this chapter learns to rank trees derived from the query graph, and not just node

pairs. The method for incorporating user feedback as presented in [Chai et al., 2009] re-

quires developers to implement declarative user feedback rules. We do not require any

such intermediate rule implementation, and instead learn directly from user feedback over

answers.

6.7 Summary of Chapter

In this chapter, we have developed an automatic, information need-driven strategy for au-

tomatically incorporating new sources and their information in a data integration setting.

Schema matches or alignments, whether good or bad, only become apparent when they

are used to produce query answers seen by a user; we exploit this to make the process of

finding alignments with a new source more efficient, and also to allow the user with an

information need to actually correct bad mappings through explicit feedback (from which

the system learns new association weights). Through experiments on real-world datasets

from the bioinformatics domain, we have demonstrated that our alignment scheme scales

well. We have also demonstrated that our learning strategy is highly effective in combin-

ing the outputs of “black box” schema matchers and in re-weighting bad alignments. In

doing this, we have also developed a new instance-based schema matcher using the MAD

algorithm.

We believe that Q represents a step towards the ultimate goal of automated data inte-

gration, at least for particular kinds of datasets. In ongoing work we are expanding our

experimental study to consider a wider array of domains, including Web sources with in-

formation extraction components.
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Chapter 7

Conclusion

In this thesis, we argued in support of the statement: Graph-based representation of data

and learning over such graphs result in effective and scalable methods for large-scale

information extraction and integration. We made the following contributions:

• In Chapter 2, we proposed a novel context pattern induction method for entity ex-

traction. We demonstrated effectiveness of the proposed method by extending seed

entity lists of various types at fairly high precision. We also showed how perfor-

mance of a state-of-the-art discriminative tagger can be improved by adding features

derived from such extended entity lists.

• In Chapter 3, we used a graph-based semi-supervised label propagation algorithm,

Adsorption, for acquiring open-domain labeled classes and their instances from a

combination of unstructured and structured text sources. This allowed extractions

from diverse sources and different methods to be put together in a single framework

and perform joint learning and inference. This acquisition method significantly im-

proved coverage compared to a previous set of labeled classes and instances derived

from free text, while achieving comparable precision.

• Building on Adsorption, in Chapter 4, we presented a new label propagation algo-

rithm, Modified Adsorption (MAD). We compared many label propagation methods
153



on a variety of real-world learning tasks, including class-instance acquisition, and

found MAD to be the most effective. We also showed how class-instance acquisition

performance in the graph-based SSL setting can be improved by including additional

semantic constraints available in independently constructed knowledge bases.

• In Chapter 5, we focused on Information Integration and presented a novel system,

Q, which drew ideas from machine learning and databases to help a non-expert user

construct data-integrating queries based on keywords (across databases) and interac-

tive feedback on answers. We evaluated the effectiveness of Q against gold standard

costs from domain experts and demonstrated the method’s scalability.

• In Chapter 6, we presented an information need-driven strategy for automatically

incorporating new sources and their information in Q. This is particularly important

in today’s environment where new data sources are constantly showing up and there

is a pressing need to make new source’s data available to the user at the earliest.

We also demonstrated that our learning strategy is highly effective in combining

the outputs of “black box” schema matchers and in re-weighting bad alignments.

This removes the need to develop an expensive mediated schema which has been

necessary for most previous systems.

7.1 Future Work

In this section, we outline some of the promising avenues for future work:

• As one of the contributions of this thesis, we have demonstrated effectiveness of

graph-based semi-supervised learning (SSL) algorithms in large-scale acquisition of

class-instance pairs, which can be considered as extractions of a single relation: the

IS-A relation. It will be interesting to explore whether similar methods could also be

used to extract instantiations of other types of relations.
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• In Chapter 4, we found that incorporation of additional semantic constraints in the

form of (instance, attribute) pairs in the graph-based SSL setting can be quite helpful.

Inclusion of other types of constraints (e.g., instance similarity, attribute similarity,

per-node class sparsity, etc.) and measuring their impact is an interesting direction

of future work. We note that importance of constraints during SSL in general have

also been reported recently [Carlson et al., 2010]. Introduction of such additional

constraints may also allow one to move beyond bipartite graphs, the dominant graph

construction scheme used in Chapters 3, 4.

• For the experiments in Chapters 3 and 4, we have assumed that the entities are pre-

segmented. It will be interesting to explore whether large class-instance repositories

constructed by the methods proposed in this thesis can be used in conjunction with

recently proposed methods [Bellare and McCallum, 2009] to quickly bootstrap ex-

tractors for large number of classes, with the extractors performing entity segmen-

tation and classification at the same time. Additionally, exploring utility of such

class-instance resources in non-IE tasks (e.g., machine translation, Web search) is a

promising line of future work.

• So far, the language independent nature of the graph-based SSL methods proposed in

this thesis has not been exploited. It will be very interesting to evaluate effectiveness

of the proposed methods on non-English data sources.

• In Chapters 5 and 6, we have demonstrated Q’s effectiveness on a variety of datasets

obtained mostly from the life sciences domain. As part of future work, it will be inter-

esting to apply Q on datasets from other domains, including Web sources. Moreover,

a user study involving Q will also be very helpful in improving the system further.

Initial step in this direction is currently underway.

• In the current setting, whenever a new model needs to be trained for a new user,

the model parameters in Q are initialized to default values. Such cold starts may
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require larger amounts of feedback from the user, resulting in increased start-up time

and inconvenience for the user. Exploring how to use an existing model, already

trained for a current user, to warm start (or initialize) a model for a new user is an

exciting avenue for future work. Social network information, e.g., appropriate inter-

user similarity, and ideas from transfer learning [Raina et al., 2006] may be exploited

for this task.

• Finally, it will be worthwhile to integrate the IE components developed in this the-

sis into the Q system, which will then allow a non-expert user to pose queries and

integrate data from structured as well unstructured sources, in a feedback- and need-

driven basis.
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