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Real-Time Monitoring of Video Quality
In IP Networks

Shu Tao,Member, IEEEJohn ApostolopoulosSenior Member, IEEBRoch Guérin Fellow, IEEE

Abstract— This paper investigates the problem of assessing Video quality is jointly affected by various network-
the quality of video transmitted over IP networks. Our goal dependent and application-specific factors. For instance,
is to develop a methodology that is both reasonably accurate packet losses and delay jitter (which can also translate int

and simple enough to support the large-scale deployments ah . .
the increasing use of video over IP are likely to demand. 0SS€S in the playback buffer) are the major network-depand

For that purpose, we focus on developing an approach that factors, while video codec, loss recovery technique, ogdin
is capable of mapping network statistics, e.g., packet loss, bit rate, packetization scheme, and content charact=istie
available from simple measurements, to the quality of video the major application-specific factors affecting video lijya
sequences reconstructed by receivers. A first step in that diction and its sensitivity to network errors. Real-time video djyal

is a loss-distortion model that accounts for the impact of itoring has t . - ts: (i) th ilabil
network losses on video quality, as a function of applicatio- MONIOrNG has two main requirements. (i) the availabilty

Specific parameters such as video COdeC, loss recovery te'cq'u'e’ a m0de| that accounts fOI‘ VaI’iOUS network a.nd application
coded bit rate, packetization, video characteristics, etc The parameters and accurately maps them into video quality esti
model, although accurate, is poorly suited to large-scaleon-line  mates; and (i) the ability to easily evaluate these pararset

monitoring, because of its dependency on parameters that ar g4 a5t allow real-time video quality estimation of a poten-
difficult to estimate in real-time. As a result, we introducea . .
tially very large number of video streams.

“relative quality” metric (rPSNR) that bypasses this problem . . ;
by measuring video quality against a quality benchmark that Meeting both requirements raises several challenges. ®n on

the network is expected to provide. The approach offers a hand, as described above, generating accurate videoyjesdit
lightweight video quality monitoring solution that is suitable for  timates calls for detailed network and application infotima.
large-scale deployments. We assess its feasibility and acacy o the other hand, obtaining all these parameters in ree-ti
through extensive simulations and experiments. . L .
and in a scalable fashion is difficult. As a result, any prati
_ Index Terms—Video quality, IP networks, relative video qual-  splution must embody a trade-off between accuracy and real-
ity, PSNR time usability. While models and systems exist for estingati
video quality in packet networks [9], [10], [11], [12], [16]
. INTRODUCTION [23], [24], [7], they typically require detailed knowledgs

Recent study [1] shows video as a fast-growing coryideo content and features, and often rely on deep inspectio
tributor to Internet traffic, and an increasing number &f video packets. Such methods are, therefore, betterdsuite

traditional and emerging video providers are adopting 1P &' ©ffline or per-stream video quality estimation, and ac¢ n
their vehicle for video delivery (e.g., the emergence of wpT '€@lly applicable to real-time, large-scale monitoringvafeo
service). As this transition continues, one can expecfictrafqua“ty' _— N

from video applications to increasingly stress the perfamoe Qur contributions in this paper are, ther_efore, tWO'fOI_d'

of IP networks. This in turn will affect the quality of the First, we develop a model that characterizes the relatipnsh
video delivered by those applications, as they are remwéoetween packet loss and video distortion as a function of

sensitive to network performance fluctuations [14], [2]], [3 SPecific video codec, loss recovery technique, coding bit
[6], [5], [27]. As a result, in order to ensure a successfiipte, packetization, and content characteristics. Thpqzed

transition to IP-based video, it is key that its quality pdpss-distortion model IS generally applicable to any motio
consistently comparable to that of traditional video segsi compensated wdeo_compressmn scheme,_e.g., any MPEG'X or
(i.e., cable or satellite). This calls for an understandifigow -26x codec. More importantly, our model is designed in such
IP networks affect video quality, as well as mechanisms th&tvay that most of its parameters can be either readily obtain
allow real-time, large-scale monitoring of video quality IP from the application, or easily measured from network paths

networks [21], [22], [4]. Our goal in this paper is to develor_;ro validate our model, we explore two different and pradiljca
solutions to these two closely related problems. important video codecs, MPEG-2 and H.264/MPEG-4 AVC,

and conduct experiments using a broad range of video content
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portions of a frame). Traditionally, this information hasdm include all possible parameter combinations, it provides a
either obtained through offline simulations [9], or extextt framework that incorporates the impact of these different
based on detailed parsing of the video stream [12]. Sufdctors, and we demonstrate its flexibility and effectivene
approaches are clearly impractical when consideringties- by testing it under several typical application settings.
quality monitoring of a large number of video streams, as we The goal of a comprehensive framework for estimating
expect to be the case in networks that distribute a wide tyarievideo quality over packet networks was shared by severairoth
of video content to their customers. To address this issee, works. In particular, the framework of Reibmaat al. [12],
introduce a new concept—relative PSNR (rPSNR)—that c§t3] is closest to ours in terms of motivation and approach.
be evaluatedndependentlyof video content characteristics,In fact, our initial model can be viewed as belonging to its
yet still captures the impact of network impairments on wvideNoParseclass of methods [12]. Unlike methods in tkell-
quality. rPSNR is a metric relative to the quality of a videdarse and QuickParseclasses [12]NoParsemethods do not
transmitted on a reference network path whose losses yiedlly on deep packet inspection or explicit parsing of theswid
acceptable video quality. Using this metric, video quatign bit stream. Hence, they have much lower complexity, at the
be estimated using only network statistics, and basic codmmst of generating less accurate video quality estimates. O
configuration parameters that can all be easily obtainesheffl approach also differs from the existifgpParsemethod [12]
i.e., as a one time operation. We use extensive experimeintdwo aspects. First, the existing method [12] models video
to demonstrate that rPSNR can provide accurate and reglrality as a linear function of loss rate, which is less aatair
time video quality estimates across a broad range of netwawkth bursty losses [9], [12]. Our model is designed to ac¢oun
conditions and variations in content characteristics. for both loss rate and loss burstiness, and in particular the

The remainder of this paper is organized as follows. Wenpact on the effectiveness of loss recovery mechanisms.
review related works in Section II. Section Il then presenfThis significantly improves the accuracy of quality estiesat
the loss-distortion model on which our approach is builicross loss patterns [18], [19], while remaining considira
and discusses how it captures the impact on video qualitynpler than the~ullParse and QuickParsemethods. Second,
of codec selection, coding bit rate, packetization, ance@id as pointed out by Reibmaet al. [12], the NoParsemethod
characteristics. In Section 1V, we explore qualitativehet requires calibrating the distortion caused by single Iss$ais
accuracy and practicality of the model. Section V introducealibration is unfortunately dependent on the specific eoint
the rPSNR metric and demonstrates its effectiveness in patithe video stream, making it difficult to carry out in reahe.
quality estimation. Finally, Section VI concludes the papéur loss-distortion model exhibits similar limitationsutbwe
with a summary of our findings and possible extensions. overcome this problem (see Section V) by introducing a new

quality metric—rPSNR—that can be estimated independent of
Il. RELATED WORKS video content,

A variety of approaches have been developed for assessing . LossDISTORTION MODELING
the quality of video delivered over packet networks. For ex-
ample, a straightforward solution for video quality asassst
is to directly compare the reconstructed video sequendeeat
receiver with the original video sequence at the sender. [3
This yields the most accurate assessment of video qual
However, such an approach is unsuitable for real-time ghar
scale usage, as it requires the availability of both theivede
and the original videos. In our context, quality estimatt@m
only take place at either the sender or the receiver, he
making a direct quality comparison infeasible.

A number of other approaches rely on loss-distortion mod- elk] = flk] — f[k], 1)
els, i.e., models that map packet losses into video quality
(in the form of distortion). Most of these works [9], [10],WhiCh represents the signal impairment in frameaused by
[11], [12], [16], [23], [24], [7] focus on only a subset of thePacket losses. The MSE in franieis defined as
network and application factors we are trying to account for 2130 _ (T
in this paper. For instance, Stuhimullet al. [16] modeled o [k] = (e7[k] - e[k])/ (N1 - No). 2
distortion in the decoded video sequence as a linear furidae total distortion for a video sequence is the MSE averaged
tion of the average loss rate. Liargd al. [9] extended this over all its frames. The value of?[k] for a given loss
work to incorporate the effect of different loss patterns. leventis affected by several network and application-ddpen
contrast to these studies, we seek to develop a model tfadtors. For example, the length of a loss burst determines
accounts forall major network-dependent and applicationhow many pixels are affected in a frame as well as the
specific parameters, including packet losses (in terms tf bawumber of subsequent frames in which this effect propagates
loss probability and loss burstiness), packetizationetyh Additionally, the latter also depends on the number of pecke
video codec, video content characteristics, and loss srgovper frame. Conversely, error concealment techniques in the
mechanisms. Although our study is not exhaustive so as decoder together with the prediction strategy applied &y th

In order to estimate video quality, we need to first investi-
pate the relation between packet losses and distortionen th

coded video. In the following analysis, we use the natatio

Liang et al. [9], and measure video distortion through the

ean Square Error (MSE). Consider a video sequence with
rames of sizeN; x N, pixels, f[k] denotes the 1-D vector
(of size Ny x N,) obtained by line-scanning franie and f [£]
n%%notes the corresponding frame restored by the decoder. Th
error signal in framek is then



encoder and the characteristics of the video itself (ilee, t Because in IP networks, video data losses are in the form
spatial-temporal correlation between different macroekk), of packets instead of slices, the next step in our modeling
also play a role in the resulting distortion in the decodetkw. effort involves mapping lost packets to lost slices. Whegirlg
n (n > 1) consecutive packets in a single loss evefity)
slices will be affected, whergf/(n) is a mapping from the
number of lost packets to the number of lost slices. This
An important issue in modeling the distortion that a losgapping is a function of both the implementation of the codec
event can cause to prediCtively encoded VideO, is the ext@pfd the loss recovery technique [25]’ [26] For instance, if
to which the resulting error propagates across frames.iBpegach packet contains exactly one ske the decoder simply
ically, since temporal prediction introduces dependenbie- skips decoding of the slices contained in the lost packie¢s) t
tween adjacent frames, a single packet loss affects nottbaly f(n) = n; however, if a decoder discards an entire frame
frame with data carried in the missing packet, but also oth@henever a single one of its packets is lost, the mapyimg
frames with coding dependencies on it. Fortunately, bexalis takes on a very different form, as discussed in Section IlI-
the eXpIiCit or Imp|ICIt Spatial f|lter|ng applled at the dmber B. Neverthe'essy for any given Code'(ﬁn) can typ|ca||y be
(which can be modeled as a low pass filter [16]), the errgomputed, and once known, the overall distortion caused by
signal introduced by a lost packet tends to decay over tifne.consecutive packet losses can then be modeled as progdrtion

an error results in an MSE of?[k] in frame k, the power of tg the distortion caused by an individual slice loss, i.e.,

the propagated error in fram@ + ¢) can be approximated as
[9]: D,, = f(n)D:. (6)

o?[k+i] = o®[k]y". (3) As previously studied [9], [19], this additive model may
The attenuation factory (y < 1) accounts for the effect slightly underestlmate the d!stor_n_on In th_e case of bursty

e : losses. However, it greatly simplifies the final model. More
of spatial filtering, and is therefore dependent on the power

spectrum density of the error signal and the spatial filgarir{mportantly’ as we show later, this simplification enablegal

applied by the decoder, i.e., varies as a function of thewidg.eveIOp avideo quality metric that is independent of indizl

characteristics and decoder processing. qul?r?ecfri]r?g?cstgmilﬁsé)ur modeling is to capture the average
To limit error propagation, periodic intra coding is often b 9 P 9

S . . distortion as a function of loss patterns, and in partictiher
used in video compression. As a result, errors in one frarge

only propagate until the corresponding macro-blocks (e t uration and spacing of error bursts. We uSg to denote
Y propag P gn : l?he probability of having: consecutive packets lost in a loss
entire frame) are refreshed by intra coding. For instante, |

(T—1) frames are predictively coded (P-framgbetween two event, andP,, to denote the probability that Fwo consecutive
consecutive intra-coded frames (I-frames), the totalodiem loss events are: packets apart (from the starting packet of the

caused by losses in franieis first loss event to that of the second loss event). We assume
y that each frame is transmitted usingpackets, and that and

A. Basic model

z—1 m are independent random variables. Then, the expected MSE
D= o’k+i, (4)  of the reconstructed video can be computed as
1=0 JE—
wherez is the number of frames from where the original loss D= 2o PnDn f(_n) LDy, (7
occurred (framek) to the next I-frame. 2o Pm (m/L) m
This simple model can then be used to evaluate the distof-equivalently, - o
tion caused by losing a single slice (a block of indepengentl D = P.f(n)LDx, (8)

coded pixels) in a frame. Assuming that the expected initiWherePe is the probability of loss events (of any length) in the

dl_?:](_)mon Ca(ljj.s?.d ?y a (Ijoso': slice in ?fframeai, alnd tthat video stream;f(n) is the average number of slices affected
within -a predictively coded group ot trames the focation by a loss event. In this modeling?. and f(n) capture the
of the frame with the lost slice is uniformly distributed in

0.T—11 th | di . dbv losi . characteristics of the loss process seen by the video stream
[sli7ce_is ]g,]it/eitg;/a average distortion caused by losing a smgf? (n) is also affected by packetization and the loss recovery

techniques used at the decoder), whileand D, are specific

T-1 _ i to the codec and the video content. For instarices typically
D = Z o3y (1 — T) larger when video is coded at a higher bit rate, @hdis itself
i=0 dependent omv ando%, as indicated in Eq. (5).
_ T+ I+ T
N T(1—7)2 s B. Modeling the impact of different codecs
= aog, (5) Although most video compression standards support picture

segmentation in the form of slices, different codecs react
differently to slice losses. For illustration and compans
purposes, we study an MPEG-2 codec and an H.264 codec
1To simplify the analysis, we do not consider bi-directidpgbredicted that have different error handling capabilities. In the MB2E
frames (B-frames) in our model. codec, packet losses are handled as follows: If the decoder

where« is a function ofy and 7', and accounts for the total
propagation effect of the error signal.



. . . li
detects any number of packet losses in a frame, it discards Qually

the entire damaged frame and replaces it with the previeusly
decoded frame. The H.264 codec employs more sophisticated
error-concealment techniques: All received slices ar@ded,
while the slices contained in the lost packets are recovered
using the corresponding slices in the previous frame and the
motion-compensation information of the other slices in the
same frame.

The above two codecs are likely to result in rather different knee point
loss-distortion models, because of the different mappiras
packet losses to slice losses, as captured by their regpecti
f(n) values. In the MPEG-2 codec, a loss event affects not 0 best)
only the slices contained in the lost packets, but also therot PSNR
slices in the same frame, while in the H.264 codec, only the
slices in the lost packets are affected. As a consequenee, fil§- 1. Mapping between PSNR and video quality as suggest¢80i.
value of f(n) of the MPEG-2 codec tends to be larger than
that of the H.264 codec, even if they experience the sag@

1 (worst)

better quality

te that the above model captures the effect of (1) the packe
0SS patterns as expressedibgnd P., (2) the transmission bit
as expressed by the required number of slices per frame

loss process. Note that the above descriptions of MPE
and H.264 represent specific implementations. Some MPE

X s I
based systems incorporate more sophisticated loss cenc %ven bysL), (3) the packetization strategy as expressed by

ment schemes similar to those used by our sample H.2 . :
codec. Conversely, some H.264 systems use only simple | ‘é the video codec and loss recovery mechanisms as captured
' rough the expression of(n) for MPEG-2 and H.264, and

handling schemes, as basic MPEG-2 systems do. However, eth i tent vty € : ied
believe that the above examples of MPEG-2 with a simple Io% € video content sensilivity 1o errors as incorpora
5

recovery scheme and H.264 W'th.a more sophisticated I.O Once the distortion ) has been captured, the resulting
recovery scheme, are representative of ma_my_systems e.lt\?%%reo quality can be characterized using the conventional
deployed or being deployed and of the applications for Whlcmeasure of Peak Signal-to-Noise Ratio (PSNR) [30], i.e.,
they are used.
For the sake of analytical simplicity, we assume that each B 2552

video packet contains slices, and that each video frame is PSNR=1010g19 D (12)
transmitted using. pac_ket%. In addition, we also assume thalpgNR s, however, not a metric that directly measures human
in eaf:h frame.the_ starting point of a Io_ss event (when it (E)Curperception of video quality. Rather, it can be mapped to a
is uniformly d|str|bute<_j bet\{vgen the_flrst and the last péske subjective video quality index varying from 0 (best quality
Under these assumptions, it is possible to defiye) for both ¢ (worst quality), as suggested by the Video Quality Experts

codecs. _ Group (VQEG) [30] and illustrated in Fig. 1. The relation
_For the MPEG-2 codec, let = nmod L, f(n) is then pepveen the two is non-linear and of the form
given by _ 1
Ca[ln (o Lyn A s PR ) Y
fo)=sL|g7+(1-1 (L+1)
wherebl andb2 are parameters that need to be adjusted as a
if r =0, and function of video characteristics. Eq. (13) suggests t/8XtR
L—r+1tn r—1/rn only reflects subjective video quality in a certain ranger Fo
fn) = sL [T [f} L ([f} 1)} instance, when its value is less than the one corresponding t
if » > 1, which in both cases simplifies to a linear functior]'ihe “_knee_pomt” of_F|g. 1, PSNR has indeed a mostly linear
of n: relatlonshlp to quqllty. However, once the I?SNR vglue eiseg
fn)=sn+L—1). @) that associated with the knee point, subjective video tuali
essentially “saturates”, so that further increases in PSNR
For the H.264 codec, the mapping is simply not translate into video quality improvements that are pierc
F(n) = sn, (10) able to the human eye. In Section V, we further discuss how

to utilize this mapping between PSNR and perceptual video

since each packet loss causes the loss slices. Combining quality to derive practically meaningful quality estimste
Egs. (8), (9) and (10), the overall distortion caused to &eid

sequence by: consecutive packet losses can be modeled as IV. ASSESSMENT OF THEM ODEL
=_ ) s@+L-1)PLDy : MPEG-2 Although the above loss-distortion model explicitly inpor
D— /- (11)
snP.LD; : H.264 rates parameters that account for the effect of both netanedk

) _ application factors on video quality, its accuracy stileds to
The model can be extended to accommodate more general viales t b ified. In thi . . lati d art
mission schemes, e.g., whenor L are random variables [31], [32], [28], Q€ Verified. In this section, we use simulations and experiee

[29]. to explore the accuracy of the model in characterizing the



TABLE |
APPLICATION CONFIGURATIONS AND THE CORRESPONDING LOSS
Video Sink 2 STATISTICS.

Video Source 1 Video Sink 1

Network Emulator

Video Source 2

i

LE ideo S s Loss rate| Loss pattern] Format| s | L | P. n
\ oo | 2| L[ 0020( 102
semout || 11210020, 101
. _ o 204 CIF 1] 8| 0.019]| 1.02
Fig. 2. The network emulator used to simulate path perforearariations 21 1710.018] 1.05
Bursty QCIF 11 2| 0017 1.17
CIF 2] 4] 0014 1.43
impact of various application and network parameters oewid 1]8]0.010] 2.08
quality. We also point to limitations of the model as it stand QCIF i % 8'828 i'gg
which we use to motivate our introduction of the relative Bernoulli > 21700381 104
PSNR (rPSNR) metric in Section V. 4% CIF 1 1] 8] 0038|104
QCIF 21 1] 0.040] 1.05
o Bursty 1]2]0.036| 1.13
A. A qualitative assessment clE | 2] 410028 143
1| 8 | 0.020| 2.06

We carry out a qualitative assessment of the model, with
a focus on its ability to capture basic relationships betwee
video quality and loss patterns, especially as a function of ]
packetization schemes and types of video codecs. rates of 2% aqd 4%, where f(_)r_each loss rate we include two
One important consideration is to determine if the model/§VelS Of burstiness: Bernoulli (i.eby = b1 = 0.02 or 0.04)
simple mapping.f(n), from packet losses to slice losses i@nd bursty (i.e.py = 0 andb, = 0.9). For bursty losses, we
sufficient to account for the interplay between packetimati select/\o_ and\; so as to generate the _deswed target loss rate.
and the codec’s error concealment strategy. A related issue FOr this test, we used a 10-second video sequéforeman
whether Eq. (11), which accounts for different loss patterr_?Oded in bot_h QCIF and CIF formats by the two codecs. Our
only through the loss rate and burstiness as representediBplementations of the MPEG-2 and H.264 codecs are based
7 and P., is adequate to capture across different codecs tAB their reference code libraries [33] and [34], respediveor
impact of the full loss statistics experienced by the asgedi ©ach combination of codec and frame format, we also vary the
videos. In particular, video streams using, say, a diﬁEreHacketlzathn parameters, i.e., comblnatlo_ns ahd L values,
number of packets per frameL), sample network paths that d_etermme how slices are _packa_ged into network packets
differently, and hence experience different packet-ldoss The video streams are transmltted s_|multaneous_ly.throhght
processes. For instance, as shown by @aal. [20], streams network emulator, and their respgctlve Io§s statisties, F.
with larger L values tend to see longer packet loss bursts th@Rd 7., are measured at the receivers, which also decode the
those with smaller values. received video sequences and compute the corresponding MSE
For this initial assessment, we rely on the MPEG-2 antflues.
H.264 codecs introduced in Section I1I-B. For both codeas, w We repeated each experiment for 30 runs. The packet
also vary frame size and format to investigate the sersitivil0Ss statistics and application configuration parameters f
of the model to these factors. In particular, we use twall measurements are summarized in Table |. Fig. 3 shows
common frame formats: QCIF and CIF. A QCIF frame hae average, minimum and maximum (shown as error bar)
144 x 176 pixels, while a CIF frame hag88 x 352 pixels. distortions measured from each experiment. Based on these
Correspondingly, each QCIF frame contains 2 slices, whilsults, we make the following observations.
each CIF frame is composed of 8 slices. o The number of lost packets is the dominant factor affect-
Our experimental setting is as shown in Fig. 2. It consists ing video quality in each video configuratid®pecifically,
of video sources transmitting packetized video to recsiver  for a give packetization scheme (represented bynd ),
through a Linux-based network emulator, where packets are frame size, codec selection, and loss burstiness fi)e.,
dropped based on configured path characteristics (i.eilasim the distortion is proportional to the loss event probapilit
to the dummynetool [15]). The emulator implements paths P,, which is consistent with the general form of Eq. (11).
alternating between two levels of congestion using a simple For instance, for the MPEG-2 encoded QCIF video with
two-state Markov model [20]. The time that an emulated s = 2, L = 1 and Bernoulli losses, a 2% loss rate
path stays in the two congestion states, states 0 and 1, is corresponds to a distortion of 48.5, while a 4% loss rate
exponentially distributed with respective means\gfand \;. corresponds to a distortion of 95.0.
In states 0 and 1, the emulator drops packets with probgbilit « The impact of packetization is codec dependsngen-
bo and by, respectively. Paths with different packet loss rates eral, the performance of the MPEG-2 codec degrades as
and burstiness can be emulated simply by varyingi, Ao, L increase$ This is because a single lost packet affects
and A\;. We have emulated paths with a wide range of loss not only the slices in that packet, but also all the other
rates and burstiness, but only report here on a represantati
subset. Specifically, we present results for two sets of los$Note that the total number of slices in a framd;, remains constant.
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Fig. 3. Video distortion in different loss conditions andthvivarious application configurations.

slices in the same frame. As predicted by Eq. (9), this losses in a single frame rather than spread them across
effect grows with .. The situation is quite different for multiple frames. As a result, codecs that like our MPEG-2
the H.264 codec, for which Fig. 3 shows that varyihg codec use a coarse frame-level error concealment scheme
only has a minor effect on video quality. This is consistent  perform better (exhibit lower quality distortion) under
with Eqg. (11), which states that since for a given frame  bursty losses than under Bernoulli losses for a given loss
format and loss rate, the expected number of lost slices rate. This is again illustrated in Fig#3

per frame should remain constant, so should the resultinge The effect of video frame size is function of the error

distortion. concealment schemEig. 3 shows that for the same loss
o The error concealment scheme determines the codec’s rate, the error concealment scheme of the H.264 codec
sensitivity to loss patterndAs illustrated in Fig. 3, the performs better for the CIF format than for the QCIF one.

more sophisticated slice-level interpolation scheme of With bigger frames, the lost packets/slices account for a
our H.264 codec is sensitive to loss burstiness, which smaller fraction of an entire frame, which facilitates erro
typically degrades its error-concealing capability. Tisis concealment. On the other hand, as predicted by Eq. (9),
because bursty losses affect a larger number of slices the coarse error concealment scheme of the MPEG-2
in a frame, which makes it less likely that lost slices codec exhibits the opposite behavior. This is because the
can be accurately extrapolated from the received ones. multiplicative factor(m+ L —1) is higher for larger frame
For the MPEG-2 codec, although the above effect still  sizes, as each loss event is converted into a larger number
exists, it is over-shadowed by the multiplicative effectth

the coarser frame-based error concealment mechaniﬂiﬁote that the figure shows the H.264 codec performing worse the
G-2 codec even in the presence of full frame losses (@len L = 1).

has on losses. Specifically, we see from Eq. (9) tha@is is because the motion-compensated concealment GeEhof the H.264
whether one or all packets in a frame are lost, theference software [34] does not perform well when a comepfeame is
resulting number of lost slices is the same. Hence, forlcr‘ft‘ An improved concealment algorithm would switch betweéhe motion-

. o . , compensated and previous frame concealment techniqué iprésence of
givenpacket loss rate, it is preferable to “group” packeii frame losses, and avoid this problem altogether.



of lost slices.

The above observations provide some level of validation of 10000 |
Eq. (11) and of the fact that our model indeed captures, at
least qualitatively, the many interactions that relatewoek
losses, codec configuration and types, and video quality.

T
Foreman

Mother & daughter ---—--—-— ]

1000

Distortion

B. Limitations of the model 100

Recall that the main purpose for developing a loss-digiorti
model, as captured in Eq. (11), was to enable accurate,
real-time video quality monitoring. Realizing this goalllsa
for more than just a model. It also requires that all the
parameters used in the model be either readily available or 1
easily measurable in real-time.

In order to assess whether Eq. (11) satisfies this requiremen

we re-write it as consisting of three terms, as shown frig. 4. The value ofD; for slices in QCIF videdForemanand Mother &
Daughter Each frame is segmented into 2 slices. Both video sequearees

Eq. (14)- encoded with an intra-coding period of 15 frames. The redolt 50 frames

D = (sL) x ¢ x Dy. (14) (100 slices) are shown in the plot.

Slice

The first term,sL, accounts for the impact of packetization.

Both of its parameterss and L, can be readily obtained causes more distortion than losing the second slice, shere t
from the codec configurations. The second term, denotedigsypically more motion in the top half of its frames.

the loss factory in Eq. (14), captures the combined effect These observations indicate that video quality estimates
of the loss pattern experienced by the video stream, i.e., dspend on thespecific characteristicof individual videos.
measured througii and P., and the codec’s error concealmenHence, on the same path and with the same loss process, the

mechanism: quality of two received videos may be significantly differen
f@+L—1)P, : MPEG-2 Moreover, for the same video sequence, even if path comditio
Y= { 7P . H264 (15)  remain unchanged, quality could vary with scene changes. As

a result, estimatingbsolutevideo quality on a path calls for

For the MPEG-2 codecy is a function of L (which is dynamically assessing the impact of video characterifigs.
determined by the packetization scheme), as wellvaand This is nontrivial [9] and typically requires parsing or aeing
P., which are the only two parameters involved«nfor the the transmitted video bit stream. In practice, carrying suth
H.264 codec. Since boti and . can be readily monitored processing in real-time and for a large number of streams is
in real-time,?) can be estimated for both codecs. very challenging, if not impossible. This means that our eipd

Unfortunately, obtaining the last ternd); = ac? as per as captured in Eq. (14), still falls short of our initial tetgpf
Eqg. (5), which represents the level of distortion introddicerealizing accurate, real-time video quality monitorinde&rly,
by a single slice loss, is not easy. Estimating the value a€hieving this goal requires removing from the model any
D, on-line is challenging because it is not only a functiodependencies associated with individual video charatiesi
of codec implementation, but also highly dependent on video
characteristics. As reported by Stuhlmullet al. [16], the V. PRACTICAL VIDEO QUALITY ESTIMATION
value of % depends on the power spectrum density of the

error signal caused by a slice loss, and the strength of lo : . .
filtering in the decoder. In general, videos with higher ronti 8Bal|ty metric, IPSNR, that builds on the modef of Eg. (11),

make it more difficult to infer the missing data and therebbut circumvents the problem of dependencies on individual
9 Video characteristics. We demonstrate that rPSNR is a enetri

conceal the losses. Consequently, the distortion causea b
slice loss also tends to be higher for high-motion video. and evaluate its accuracy along multiple dimensions. We als

To illustrate th!s gffect, we plgt n Fig. 4.the distortion rovide additional evaluations based on experiments over a
caused by each individual lost slice in two video sequenc%

Foreman and Mother & Daughter which exhibit high and Vigj:ozss\.rea testbed and with different types of codecs and
low levels of motion, respectively. It is clear from the figur

that D, is typically higher forForemanthan for Mother & ) . ) )

Daughter It can also be observed that the valueldf varies A- Relative video quality metric

even within a video sequence. For instance, the error signalThe basic idea behind rPSNR is to estimate the quality
caused by the loss of an I-slice (e.g., slice number 15, 4%, video transmission on a given path not as an absolute
and 75) is typically stronger than that caused by the loss wietric, but as one that is relative to some other path with
a P-slice. Furthermore, slices in the same frame may alkoown performance. In Section V-D, we discuss further the
have different importance in video decoding. For instarice, characteristics of thiseferencepath, as captured in the pa-
Mother & Daughter losing the first slice in a frame typically rametersi = n° and P. = PY. It typically corresponds to a

In this section, we introduce the concept ofralative

uitable for real-time, large-scale monitoring of videaaliy



path whose performance is known to yield acceptable video /\

quality, e.g., based on benchmarking and provisioning ley th
network service provider. The relative path quality, or KRS 1-p @ @ 1-q

is defined as the difference between the actual PSNR and the

target PSNR (i.e., the PSNR of the transmitted video on the q
reference path). In other words, rPSNR measures how far a
path is, quality-wise, from the reference path. Fig. 5. The GE model used for simulating different loss ctiods. State 1:

The motivation behind the use of such a relative metric {&5s: state 0: no loss.
that by comparing performance along two paths, dependgncie
on individual video characteristics actually cancel oyte&fi-
cally, assume that the loss performance of the referenteipat
characterized by parametets= n° andP. = P?, and that the n=1/q. (18)
actual path over which the video is being transmitted exibi

. S e
loss performance with paramet ' and P, = F. Let P{F‘Iue ofg in [0.6, 1] for a total of 400 different combinations

D =D represent the actual video distortion on the curreor loss processes. Correspondingly, the loss event priilyabi
path, andD = D° the video distortion on the reference path; P ‘ P gy P

. . . varies from 0 to 0.167, while the loss burstiness varies from
Combining Eq. (12) and Eg. (11), rPSNR is then given by Bemoulli (ie., 7 ~ 1) to bursty & = 1.67). We apply

while the average loss burst length is equal to

In our evaluation, we vary the value pfin [0, 0.2] and the

(PSNR = 10log, £52 ~ 10logy, 252 each simulated loss process to the packet sequences of two
D’ DY video clips, Foremanand Mother & Daughter and measure
= 10logy, Yo the resulting distortion in the decoded frame sequenceh Eac
(04 video sequence consists of 300 frames and is transmitted in

n’+L-1)P)

101log;, ((n’+L71)P(; . MPEG-2 both QCIF and CIF formats. As before, each QCIF frame

i) (16) contains 2 slices, while each CIF frame contains 8 slices.
10logyo 77pr : H.264 In both cases, each slice is transmitted in a separate packet
From the above equation, we see that rPSNR no lon Hre QCIF and CIF sequences have the same frame rate of
depends on the third parametBr, of Eq. (14), thus can beg30 frames per second, but different bit rates of 100 kb/s and
computed solely based on estimates for the paramef&rs 500 kb/s, respectively. In addition, the two video sequsrace

PO, L, ', and P’. The quantities:’ and P° are predefined coded using both the MPEG-2 and H.264 codecs to investigate
the value of L is easy to determine based on applicatiof{'€ impact of different codecs. o ,
configurations, and estimates fof and P/ can be obtained Fig. 6(a) is a scatter plot of the distortion as a function of

through simple network measurements. For example, menit§f€ 0ss factor), for both videos in CIF format and using
ing software can be installed in the client devices, e.g-, s¢ .264 coding. Fig. 6(b) shows the same results for the videos

top boxes, to collect loss statistics. Alternatively, ifstis not 1" QCIF format with MPEG-2 coding. Similar results were
feasible, solutions based on polling or lightweight prapin obtained for the other combinations of video format and code
e.g., the method proposed by Tabal. [20], can be used to As can be seen from the figures, the average distortion can

acquire the necessary information. In the rest of the paplldeed be modeled reasonably well as a linear function,of

we assume that accurate estimates are available for all firePredicted by Eq. (14). _

parameters of Eq. (16). V\_/e_also qbserve that the resu_lts for f[he CIE videos generally
exhibits a tighter agreement with a linear fit than those for

the QCIF videos. This is because, while in our simulations

the number of frames is the same in both formats, a CIF

Riideo frame requires 4 times as many packets as a QCIF

cific factors is the assumption in Eq. (14) that the averagieo frame. As a result, the QCIF video stream samples the

distortion, D, experienced by a wdeo_stream 1S proporthnfil(l)ss process less frequently than the CIF video stream, and
to the loss factorp. Therefore, our first step in assessin

Sherefore experiences fewer loss events. The smaller nuafibe

ghee evr?cljlg:él O'];'htirs]eisrlzz?rl;:z d r:l?tdg:réi tr? avzg];yo;hslismtrllaiziiorﬁamples translates into statistically larger variatiarss(aller
P y: o 9 (fgnfidence interval) in the resulting distortion measures.
and measurements. Specifically, we measure the actual value

of D for a video stream under various loss conditions that )
correspond to increasing values of the loss fagtorThese C- Robustness of the metric
different loss conditions were generated using the Gitbert We further extend the previous investigation to focus on
Elliott (GE) model [8] (see Fig. 5), as it allows a simple bumeasuring the accuracy of Eq. (16) in computing actual rPSNR
systematic exploration of loss processes with differersslovalues. Specifically, we select a reference path and stuely th
rates and loss burstiness. In the GE model, two parametersPSNR measurement error on 380 different paths that are
and ¢, control the loss event probability and loss burstinesggain generated using the GE model of Fig. 5. In this set
The steady state loss event probability is given by of experiments, we use values of € [0,0.1], and ¢ €
Pq [0.5, 1], which span a range of common loss conditions in real
Fe = p+q’ (17) networks. The loss process for the reference path is sdlecte

B. Linear relation between loss factor and distortion
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Fig. 6. Video distortion (MSE) as a function of loss facior (a) the results Fig. 7. The accuracy of rPSNR estimation as the function tfiacideo
for videos in CIF format and using H.264 coding (top); (b) tlesults for quality (in PSNR): (aForeman(top) and (b)Mother & Daughter(bottom).
videos in QCIF format and using MPEG-2 coding (bottom).

- _ . video transmitted on each path.

to be Bernoull W't.h a loss rate df% (ile..p=0.01,q=1). As can be seen from the figure, for most of the simulated
We use QIF versions of the wdedr‘@remanland Mothe_r & |oss models the rPSNR estimation error is relatively small,
Daughterin both H.264 and MPEG-2 coding, and simulatg, exhibits roughly similar behaviors for both the MPEG-2
the transmission of 3000 frames over the reference path H.264 codecs. Specifically, as the actual PSNR decreases
the 380 paths. We then measure the PSNR of each oneﬂg rPSNR estimation error tends to increase. For example, a
the decoded frame sequences, which ?IIOV_\’S us to compute ﬁ%@ative slope in the relation between PSNR and the rPSNR
exact rPSNR value of each path combination. As before, eaél?or can be observed in Fig. 7. This is primarily because
encoded frame is transmitted using 8 packets=(, L = 8). 5 gecrease in actual PSNR is typically associated with an

The first step in the experiments is to measure the PSNRigf o 156 in the frequency of loss events. As a consequence,

the two videos over the reference path using both the H.288nsecutive loss events may interfere with each other. This
and MPEG-2 codecs. Fdforeman the resulting reference is not accounted for in our model, which assumes that the

PSNR values_ are 38.5 d_B in H.264 coding and 27.7 dB Hlstortion effects of loss events are independent of ealcérot
MPEG-2 coding, respectively. Faviother & Daughter the s assumption results in underestimating the resultisg d

reference values are 39.2 dB in H.264 coding and 34.6 dB i}y hence overestimation of PSNR [9]. We also note that

MPEG-Z_coding. Similar measurements are t.hen perfo_rmed e H.264 and MPEG-2 codecs do not behave identically when
all 380 simulated paths, so that the actual difference in RS

comes to rPSNR error. This is in part because their error

b(re]tween ealch path an(Ij the reference pa(;h Cart]1 be eva(ljuaé?)ﬂcealment mechanisms interact differently with the ouasi
Theseactual rPSNR values are compared to teemputed |55 hrocesses, and in particular exhibit different séisit

rPSNR values derived from Eq. (16) using the loss statistigs |osg event frequency and loss burstiness. We explore this
measured for each path. Fig. 7 reports the differences mw%spect further next

the compytedand gctual rPSNR values, as a function of Specifically, we re-plot the rPSNR estimation error as a
absolutevideo quality as measured through the PSNR of tq‘ﬁnction of p andg in Fig. 8 to better understand how these

5We discuss the selection of the reference path in more det&iéction V- two Characlteris_tics of th_e loss process aﬁem_ the accmcy
D. rPSNR estimation for different codecs and videos. Note that
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Fig. 8. The estimation error for rPSNR (relative to the acti®SNR of the decoded video sequence) as a functiop afd g.

for a fixed value ofp, increasingg leads to shorter loss bursts, In summary, while there are differences in how the model
while for a fixed value ofy, increasing leads to a higher loss performs in estimating rPSNR across different codecs and
event probability. videos, its overall performance is acceptable and robust to

As shown in Figs. 8(a) and (c), for the H.264 codec, theriations in loss characteristics. This is especially tiuwe
estimated rPSNR tends to become bigger than the actual vdilit ourselves to moderate loss scenarios (note that the lo
asq decreases. This is in part because the error concealmBi@cesses we studied have a loss rate yp'tp+q) = 16.7%).
mechanism of H.264 becomes less effective in the presencdrbfPractice, these are the more likely scenarios, in which
multiple close-by losses, which magnifies the aforemeetionaccurately assessing how far video quality deviates fram it
limitation of the model in properly accounting for conseeet intended target is of significance. Accurately estimatirpo
losses. In contrast, as illustrated in Fig. 8(b) and (d)rB@NR quality degradation in high loss scenarios is less critical
error is relatively insensitive to changes gnwhen using the as classifying those as corresponding to poor (unaccegtabl
MPEG-2 codec. This is again because of how the MPEGY#eo quality can be done relatively easily, e.g., simplgdzh
error concealment mechanism handles losses. Specmt'jfwy’ on loss measurements. In other WOI’dS, differentiating betw
MPEG-2 codec discards entire frames whenever it detect$@d and very bad video quality is not tremendously meaningfu
single loss in a frame. As a result, increasing loss burssindn practice.
does not necessarily increase the number of consecutive los
frames. The situation is somewhat reversed when it com@s Selecting the reference path
to assessing the impact pf as while both codecs see higher As discussed earlier, another factor that can affect the
rPSNR errors ap increases, they exhibit different sensitivitiesaccuracy of the rPSNR estimate is the selection of the ref-
In particular, the MPEG-2 codec shows a steeper increaseeience path. Ideally, one should select a reference patlsevho
rPSNR error ap increases. This is because a higher frequenpgrformance is such that the resulting video is of acceptabl
of loss events increases the likelihood of consecutive lagtiality, i.e., meets certain target requirements. Undeh s
frames for MPEG-2. choice, rPSNR then measures how much worse (or better)
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the actual video quality is, compared to its target. However
correctly selecting the reference path conditions is nmiat.

This is in part because, as mentioned earlier (cf. Eq. (13)) g/l .
video quality is subjective and related to PSNR in a nonlineae=z >  £muyjator T
fashion. Intuitively, the reference path condition shoulel UPenn
selected at the “knee point” of the curve in Fig. 1, so that

a positive rPSNR measure indicates that the video qualityFg. 10. The setup of loss emulation in our experiments.
good, while a negative rPSNR measure indicates that th@vide

quality is worse than expected in a manner that varies rgughl ) ) o )
linearly with the estimated rPSNR level. spent in each state are exponentially distributed with mean

Nevertheless, finding the knee point on the quality-PSN@?d/\l’ which are themselves uniformly distributed between 1
mapping curve is not easy. In particular, recall that theigal 2nd 10 seconds. The valuestof b1, Ao, andA, are updated
of b, and b, in Eq. (13) may vary for videos with different after each state transition. In each experiment, we redoed t

characteristics. To solve this problem, we suggest selgttie P2cket traces at the receiver for offline analysis.

reference path condition based on the loss factor, which haéo‘dS s_f;lowndm F'E' 10’;hﬁ sendelr at UPgntr: transmﬂ; pa%ke-
proved to have a direct impact on video quality. SpecificallthZe Video ata through t E emu gtor and the net\;vor pa_t to
an empirical reference value of the loss faatotan be defined 1€ receiver at UMN. At the receiver, we not only monitor
as a function of the intra-coding peri@d and the number of the loss stgtlst!cs required for evaluating the loss faetor
packets per framé. Intuitively, if the loss factor is sufficiently (N€nce estimating rPSNR), but also decode and record the

small with respect to the number of packets transmitted n:iame sequence that would have actually been seen by the
an intra-coding period, the resulting video quality shobl USer. Thu_s, we can compute the rPSN_R from Eq. (16) and
reasonably good. compare it to the actual rPSNR \{alue derived from the dec_oded
In Fig. 9, we plot the quality of three QCIF video sequenceErame sequenéeln order to obtain the actual rPSNR, we first
Foreman éarphone and Mother & Daughter for different measure the PSNR value of the tested video transmitted over
Bernoulli loss processes with varying from 1/20 to 1/320. tEe Irae;ilr;ncf patt:n danddth((jer]: calculate the dlffeae[\hqe lm?twe
These three video samples cover a reasonably broad rangé f of each decoded Irame sequence and this relerence
motion levels:Foremanhas lots of motion and scene change%l'a ue.

Carphonehas mild motion and limited scene changesither ¢ we firsft usetr? lO-se_c;(D)ndkH.Zh6_4hv::jeo clip_((t:ontai?iﬂg EOO
& Daughteris a head-and-shoulder type of video with minimalrames) rom the moviejark, Which has a mixiure ot hig
otion and low motion scenes. Fig. 11 reports the rPSNR

motion. All video samples were encoded with an intra-codi . . ) : .
period (7)) of 16 and 32 frames, respectively. In all tests omparison for a 1000-second period, during which the video
each frame was transmitted usir’lg 2 packets (e~ 2) Sequence was repeatedly transmitted. The rPSNR estimation

As can be seen from the figure, for all three videos ar?dﬁd me_asurementwere performed every 10 seconds. As shown
both codecs, the video samples with— 16 have a quality in the figure, the proposed method generates reasonably ac-

score close to O whems < 1/160, and conversely when curate estimates of quality variations of the transmittetbo,

T = 32 the quality of the videos saturates (approaches 0) fgreept in some instances of fairly good video quality (i.e.,

W < 1/320. Accordingly, we select a Bernoulli loss proces eriods of rare losses). This can be explained as follows.

with ¢ = 1/(5T'L) as the threshold for defining the referencz%our loss-distortion model relies on averaging the impact of

path. We have also tested other loss models using differ pocS across the various (slice gnd frame) Iogation; where
application parameters, and the results consistentlycideli they may occur. Hence, the resulting rPSNR estimate is most

thaty = 1/(5TL) is a reasonable empirical value to identify;CCl{tr?te \f{\;}hendtvlvo condltltons sr%_ll_?et: (|)ﬂ2he av:arag(:) loss
the reference knee point. urst length and loss event probability can themselves be ac

curately estimated; (ii) the characteristics of the videatent
remain relatively constant over the measurement intesal,
E. Experimental validations that averaging over that time frame is meaningful. When the

To further validate the proposed rPSNR methodology f&stimation intgryal is rel_atively short,.say, 10 secon@m-.c
video quality estimation, we conducted extensive expentsie (€Nt characteristics are likely to remain constant butaegi
on a number of real network paths. Here, we report a Qgcurate loss statistics will be difficult. This is partiaty so
of experimental results collected from a path connectirgy ti{/NeN 10SS events are rare. As Fig. 11 shows, there is typiaall
University of Pennsylvania (UPenn) and the University Jreater difference between the estimated rPSNR and thelactu
Minnesota (UMN). Our purpose was to validate that oufalue when the latter is close to 0, i.e., loss events arerso ra
model did not overlook major degradation factors that arodd@t video quality is r:jear_ perfect. Ig th]ls example, th|e| HBIIEd
in practice. However, since this path, like most other gstéFSNR opfaveragde_ deviates 2.5 dB from |t|s actual value.
paths, experienced relatively low losses most of the time, w To slatls y con 't'?]n 0, I\g’e ca;lr} usgh 0”93F estimation
also inserted into the path the network emulator described'ptﬁlrva Sa Howeverht IS could con ict V]‘c”th con ;_tlon ("a?c‘ _
Section IV. We let the emulator simulate a channel with €/l @S decrease the responsiveness of the quality mangtori

I\/_Iarl_<0v sta’Fes, with loss prObab”itids) an_d b1, uniformly 6Based on our analysis in Section V-D, we use a Bernoulli losegss
distributed in [0,0.02] and [0.5,1], respectively. The times with loss factor1/(5T'L) as the reference path condition.

Internet
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10-second estimation interval.

mechanism to network performance fluctuations. The select
of an appropriate estimation interval is, therefore, a draff

60 80 100

Time (10 seconds)

the same experiment as that of Fig. 11, but with the estimatio
interval changed to 1 minute. In this experiment, we use a 1-
minute CIF video clip (1800 frameSYaken from the same
movie Dark, and transmit it repeatedly on the monitored path.
The estimated and actual rPSNR values for both the H.264
and MPEG-2 video clips are shown in the figure. The figure
shows a clear improvement in accuracy. The rPSNR error is
now only 1.8 dB and 1.4 dB, for H.264 and MPEG-2 videos
respectively. Again, the largest deviations occur in cagiesre
rPSNR is close to or above O (i.e., when losses are rare
and quality is good). Deviations in these cases are of lesser
importance in practice. Meanwhile, in instances when gali
is relatively bad, the estimated rPSNR is reasonably ateura
hence providing a good estimate of actual video quality. For
instance, focusing on cases where the actual PSNR value is
at least 5 dB worse than on the reference path, the rPSNR
estimation errors are only 0.9 dB and 0.8 dB for the two
codecs.

Besides the videdDark used in the above experiment,
we have conducted similar tests for other video clips, such
as Foreman Mother & Daughter Highway, etc. The results

between these considerations. Our measurement results sho
that a selection somewhere between a few tens of seconds aﬁHote that here we use a 1-minute video instead of repeatimd@hsecond

a couple of minutes typically yields reasonably accuratiewi

video used in the previous experiment. This is because tiegehe same clip
multiple times would make the video characteristics artifig more constant,

quality estimates. For instance, Fig. 12 shows the resalts fvhich leads to an unfair comparison in favor of the longeinestion interval.
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10 YR the impact of bidirectional coding (B-frames) into our less
Estimated —— distortion model is clearly of value given the prevalencét®f
s | ] usage in practice. Additionally, exploring video applioat

ﬁ with more sophisticated loss concealment (e.g., intetfmola
\ or loss recovery schemes (e.g., Forward Error Correction
(FEQC)), as well as those using adaptive coding and streaming
algorithms, are also interesting directions for futurecaash.

rPSNR (dB)
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