
University of Pennsylvania
ScholarlyCommons

Departmental Papers (CIS) Department of Computer & Information Science

12-1-2009

Timing Analysis of Mixed Time/Event-Triggered
Multi-Mode Systems
Linh T.X. Phan
University of Pennsylvania, linhphan@seas.upenn.edu

Samarjit Chakraborty
Institute for Real-Time Computer Systems, TU Munich, Germany, samarjit@tum.de

Insup Lee
University of Pennsylvania, lee@cis.upenn.edu

Copyright 2009 IEEE. Reprinted from:
Linh T.X. Phan , Samarjit Chakraborty , Insup Lee. Timing Analysis of Mixed Time/Event-Triggered Multi-Mode Systems. Proceedings of the 30th
IEEE Real-Time Systems Symposium (RTSS 2009), Dec. 1-4, 2009. Washington, D.C., USA

This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE endorsement of any of the
University of Pennsylvania's products or services. Internal or personal use of this material is permitted. However, permission to reprint/republish this
material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by
writing to pubs-permissions@ieee.org. By choosing to view this document, you agree to all provisions of the copyright laws protecting it.

This paper is posted at ScholarlyCommons. http://repository.upenn.edu/cis_papers/425
For more information, please contact repository@pobox.upenn.edu.

http://repository.upenn.edu
http://repository.upenn.edu/cis_papers
http://repository.upenn.edu/cis
http://repository.upenn.edu/cis_papers/425
mailto:repository@pobox.upenn.edu

Timing Analysis of Mixed Time/Event-Triggered Multi-Mode Systems

Abstract
Many embedded systems operate in multiple modes, where mode switches can be both time- as well as event-
triggered. While timing and schedulability analysis of the system when it is operating in a single mode has
been well studied, it is always difficult to piece together the results from different modes in order to deduce the
timing properties of a multi-mode system. As a result, often certain restrictive assumptions are made, e.g.,
restricting the time instants at which mode changes might occur. The problem becomes more complex when
both time- and event-triggered mode changes are allowed. Further, for complex systems that cannot be
described by traditional periodic/sporadic event models (i.e., where event streams are more complex/bursty)
modeling multiple modes is largely an open problem. In this paper we propose a model and associated
analysis techniques to describe embedded systems that process multiple bursty/complex event/data streams
and in which mode changes are both timeand event-triggered. Compared to previous studies, our model is
very general and can capture a wide variety of real-life systems. Our analysis techniques can be used to
determine different performance metrics, such as the maximum fill-levels of different buffers and the delays
suffered by the streams being processed by the system. The main novelty in our analysis lies in how we piece
together results from the different modes in order to obtain performance metrics for the full system. Towards
this, we propose both – exact, but computationally expensive, as well as safe approximation techniques. The
utility of our model and analysis has been illustrated using a detailed smart-phone case study.

Comments
Copyright 2009 IEEE. Reprinted from:

Linh T.X. Phan , Samarjit Chakraborty , Insup Lee. Timing Analysis of Mixed Time/Event-Triggered Multi-
Mode Systems. Proceedings of the 30th IEEE Real-Time Systems Symposium (RTSS 2009), Dec. 1-4, 2009.
Washington, D.C., USA

This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way
imply IEEE endorsement of any of the University of Pennsylvania's products or services. Internal or personal
use of this material is permitted. However, permission to reprint/republish this material for advertising or
promotional purposes or for creating new collective works for resale or redistribution must be obtained from
the IEEE by writing to pubs-permissions@ieee.org. By choosing to view this document, you agree to all
provisions of the copyright laws protecting it.

This conference paper is available at ScholarlyCommons: http://repository.upenn.edu/cis_papers/425

http://repository.upenn.edu/cis_papers/425

Timing Analysis of Mixed Time/Event-Triggered
Multi-Mode Systems

Linh T.X. Phan1 Samarjit Chakraborty2 Insup Lee1
1Department of Computer and Information Science, University of Pennsylvania, USA

2Institute for Real-Time Computer Systems, TU Munich, Germany
e-mail: {linhphan, lee}@seas.upenn.edu, samarjit@tum.de

Abstract—Many embedded systems operate in multiple modes,
where mode switches can be both time- as well as event-triggered.
While timing and schedulability analysis of the system whenit
is operating in a single mode has been well studied, it is always
difficult to piece together the results from different modes in
order to deduce the timing properties of a multi-mode system.
As a result, often certain restrictive assumptions are made,
e.g., restricting the time instants at which mode changes might
occur. The problem becomes more complex when both time- and
event-triggered mode changes are allowed. Further, for complex
systems that cannot be described by traditional periodic/sporadic
event models (i.e., where event streams are more complex/bursty)
modeling multiple modes is largely an open problem. In this
paper we propose a model and associated analysis techniquesto
describe embedded systems that process multiple bursty/complex
event/data streams and in which mode changes are both time-
and event-triggered. Compared to previous studies, our model is
very general and can capture a wide variety of real-life systems.
Our analysis techniques can be used to determine different
performance metrics, such as the maximum fill-levels of different
buffers and the delays suffered by the streams being processed
by the system. The main novelty in our analysis lies in how
we piece together results from the different modes in order to
obtain performance metrics for the full system. Towards this,
we propose both – exact, but computationally expensive, as well
as safe approximation techniques. The utility of our model and
analysis has been illustrated using a detailed smart-phonecase
study.

I. I NTRODUCTION

The increasing complexity and costs of modern embedded
systems require them to operate in multiplemodes, where
each mode – among other things – may be characterized
by a different set of tasks, different data arrival rates, and a
different scheduling policy. Mode switches may be both time-
as well as event-triggered. Examples of the former consist of
servicing time-triggered interrupts, while the latter might be
mode switches triggered by events like an incoming call in a
mobile phone, or a buffer in the system filling up beyond a
certain level.

Modeling and analyzing such systems have therefore been
a topic of great interest within the real-time and embedded
systems community. Here, the main challenge is to compose
timing/performance analysis results from individual modes in
order to derive the properties of the overall system. In order to
simplify this problem, often some restrictive assumptionsare
made. For example, in the time-triggered language Giotto [1],
it is required that tasks which are interrupted by mode switches
should have the same activation rates in both the source as well

as the target modes. A result of this restriction is that timing
constraints of the overall system are guaranteed if the system
is feasible while operating in the individual modes. Hence,
it is sufficient to verify feasibility of the individual modes –
which is a much easier and well-studied problem – and modes
changes need not be explicitly accounted for while performing
timing analysis.

The analysis becomes substantially more complex if
both time- and event-triggered mode changes are allowed.
Further, if the system in question is to be described using
complex event/data models – i.e., those beyond classical
periodic/sporadic event models – then modeling and
analyzing mode changes for such systems is currently a
largely unexplored problem.
Our contributions: In this paper we propose a model for
describing multi-mode systems which process multiple com-
plex/bursty event/data streams, and in which mode changes
may be both time- as well as event-triggered. A wide variety
of embedded devices have such characteristics. For example,
consider a smart-phone which can be used to play streaming
audio/video, as well as make and receive phone calls. De-
pending on the operating mode of the system – i.e., whether
an incoming call was received while a video application was
running – the priorities of the different tasks may be changed,
or certain tasks might be put to sleep or even terminated.

Given the burstiness in the arrival patterns of audio/video
data, as well as the high variability in their execution re-
quirements, it is often overly pessimistic to use standard
periodic/sporadic event models. Hence, mode changes in such
systems need to be modeled in conjunction with more general
event models that are better suited to capture bursty event/data
streams. Towards this, we rely on the Real-Time Calculus
(RTC) framework to describe – in a flexible manner – the
arrival pattern and processing requirements of the different
streams to be processed by the system. The RTC framework
was introduced in [2], [3] and subsequently extended in a
number of other papers (e.g., see [4], [5]). It relies on acount-
based abstractionto model the timing properties of the input
streams, as well as the availability of the resources, and is
more general than classical event/service models.

The systems we study are assumed to consist of multiple
tasks which get triggered by incoming data/event streams. The
arrival patterns of these streams, as well as their processing
requirements – as mentioned above – are described using the

RTC framework (details of which follow later in the paper).
The arriving streams (which are waiting to be processed)
are stored in input buffers and processed streams in output
buffers that are read out by output devices. Eachmodein the
system is defined by the set of active tasks, the arrival ratesof
the streams triggering these tasks, and the scheduling policy
according to which these tasks are served. Mode changes,
as already mentioned, can be both time- as well as event-
triggered. For example, certain tasks are activated after pre-
defined time periods, while the task priorities might change
(hence a mode change) depending on the fill-levels of the
different buffers in the system. In this setting, we ask questions
of the form: what is the maximum fill level of a given buffer,
what is the delay suffered by an individual stream, what is the
delay suffered by a stream in a particular mode, etc.

While such questions have been answered before within
the RTC framework (e.g., see [2]) for unimodal systems, the
known techniques do not extend to the case of multi-mode
systems. The main novelty of the analysis techniques that
we propose in this paper lies in how we piece together the
results from individual modes to derive timing/performance
properties of the entire system. Towards this we combine
analysis techniques from the RTC framework with state-space
exploration methods that are used to analyze state-based
models such as timed automata. Besides computing delay
and buffer fill-level metrics exactly – which turn out to
be computationally expensive – we also propose safe
approximations of these metrics in out setting. Finally, we
illustrate our model and analysis techniques using a realistic
smart-phone case study, where we show that explicitly
modeling the multiple modes (rather than approximating the
system behavior as a unimodal system) results in tighter
estimates of the different performance metrics.
Related work: There has been a number of previous attempts
to extend models and timing analysis techniques from the
real-time systems literature to accommodate more complex
behaviors. For example, the framework presented in [6] allows
certain tasks to intentionally change their execution periods,
which is a type of mode change. The associated scheduling
technique then adapts the periods of the other tasks within
allowable limits in order to maintain a schedulable system.
Similarly, the model proposed in [7] allows a system to be in
multiple modes, where each mode consists of a set of tasks
possibly overlapping with other modes. The system uses Rate
Monotonic scheduling for all the modes. The problem is then
to select suitable parameters for all the tasks, such that the
system is schedulable in all modes.

Different mode change protocolshave been studied in [8],
[9] and have been classified in [10]. Here, again, a system
consists of multiple modes, where each mode consists of a
set of tasks. A mode change is triggered by a mode change
request (MCR), and transitions from an old to a new mode
take non-zero time. During this transition, the system has tasks
from both the old and the new modes, which might produce
a temporal overload. However, MCRs cannot arrive during a
transition period. The goal is to develop techniques that ensure

that no deadlines are violated during the transition periods.
Such techniques consist of suitable mode changeprotocols
(e.g., to restrict mode changes only at pre-specified time
instants, or allow only synchronous mode changes), as well
as analysis techniques toverify the feasibility of the system in
the different modes and during the transition periods.

In contrast to the above approaches, we make the simplistic
assumption of instantaneous mode changes. However, we have
a richer model for specifying task activation patterns at the
different modes (using the RTC framework). Moreover, –
unlike the above studies – we also accommodate mixed time-
and event-triggered mode changes and our analysis seamlessly
handles both. While mixed time- and event-triggered embed-
ded systems have been studied in the past (see, e.g., [11] and
[12]) they have either been in the context of bus protocols
like FlexRay or in the context of synchronous programming
languages (integrating urgent events that require preemption in
a synchronous programming environment). We, on the other
hand, focus on timing and performance analysis of multi-
mode systems where mode changes can be time- and event-
triggered (rather than formulating the mode change protocols
themselves).

Finally, it may be noted that we recently proposed a
multi-modeextension to the RTC framework [13], which is a
different model compared to what we study in this paper. In
multi-mode RTC, arrival patterns of streams and availability
patterns of resources are modeled as automata, whose states
are annotated with functions denoting arrival/service rates.
The arrival and service automata in [13] aim at modeling
(independently) complex arrival patterns of event streams
and resource availability patterns; however, they follow a
relatively simple processing semantics. Here, we are interested
in the system as a whole, thereby having a single model for
the system does not only reduce the analysis complexity but
also provides a better intuition to the system’s behavior. The
concept of “mode” in this current paper is a more natural one,
viz. operating modes of a system. While the arrival/service
patterns considered here are simpler than the ones studied in
[13], we allow a richer processing semantics with different
tasks and scheduling policies explicitly captured and adapted
to the dynamic characteristics of event streams and resources.

Organization of the paper: In the next section we describe
our model, followed by our analysis techniques in Sections III
and IV. Finally, we present a smart-phone case study in Sec-
tion V and conclude with a discussion on possible extensions
of this work. Due to space restrictions, the proofs for all
lemmas may be found in [14].

II. T HE SYSTEM DESCRIPTIONS

A. Basic models
The system consists of a finite set of tasksT = {T1, . . . ,Tn}

that are mapped on the same processor, wheren∈ N, n≥ 1.
Each taskTi processes an input data streamsi , item by item,
in a first-come first-served basis. Upon arriving at the system,
incoming data items fromsi are stored at an input bufferBi

before being processed byTi , and the processed data items

are then written to an output bufferB′
i . Fig. 1(a) shows a

system consisting of three tasksT = {T1,T2,T3}, with each
Ti associated with an input bufferBi and an output bufferB′

i .
The backlog (fill-level) of a bufferBi at time t, denoted by
Bi(t), is the number of items in the buffer at timet. We shall
refer to Bi as the name of the buffer as well as the variable
whose value gives the current fill-level of the buffer.

M2 M3

[5, 20]

[10, ∞][9, 30]

b

b

a

B2 ≤ 15 ∧ B3 ≤ 2

τ1 = {T1, T2}

τ2 = {T2} τ3 = {T2, T3}

B2 ≥ 5

M1 = 〈β1, τ1 , TDMA, 5, {(α11, 3), (α12, 2)}〉
M2 = 〈β2, τ2 , - , 0, {(α22, 1)}〉
M3 = 〈β3, τ3 , FP, 0, {(α32, 2), (α33, 1)}〉

M1T1
s1

B1 B1′

T2
s2

B2 B2′

T3
s3

B3 B3′

d1, e1

d2, e2

d3, e3

(a). A task set (b). The corresponding TET automaton

Fig. 1: Example of a task set and its TET automaton.
Task models. We assume a data-driven dispatch model
for the tasks, where an instance of a task is immediately
triggered when a data item arrives at the corresponding input
buffer. Each taskTi ∈ T has a fixedrelative deadlineof
di time units and a fixed maximumexecution demandof
ei processor cycles. In Fig. 1(a),di and ei are the relative
deadline and execution demand ofTi , respectively,∀1≤ i ≤ 3.

Data streams modeled as arrival functions.An arrival
pattern of a data stream is specified as a cumulative function
A(t) which gives the number of items arrived in the interval
[0,t) The set of all arrival patterns of a stream is captured
by anarrival function α = (αu,α l), whereαu(∆) andα l (∆)
specify the maximum and minimumnumber of data itemsthat
can arrive from the stream in any time interval of length∆. In
other words,A(t) is an arrival pattern of a data stream modeled
by α (or simply, of α) iff

α l (∆) ≤ A(∆ + t)−A(t)≤ αu(∆), ∀∆, t ≥ 0.

Resource availability modeled as service functions.A
service pattern of the processor is captured by a cumulative
function C(t), with C(t) denoting the number of processor
cycles available in the time interval[0, t). The set of all service
patterns of the processor is modeled by aservice function
β = (β u,β l), whereβ u(∆) andβ l (∆) give the maximum and
minimum number of processor cycles availablein any time
interval of length∆. Thus,C(t) is a service pattern ofβ iff

β l (∆) ≤C(∆ + t)−C(t)≤ β u(∆), ∀∆, t ≥ 0.

Execution semantics modeled as TET automata.The ex-
ecution semantics of a system is described by a multi-mode
mixed time- and event-triggered (TET) automaton. A TET au-
tomaton is a finite automaton whose states represent different
operating modes of the system and transitions represent mode
changes. Each mode (state) of the automaton is of the form
〈

β ,τ,SP,c,
{

(αi ,ci) | Ti ∈ τ
}〉

, which comprises

• a service functionβ that bounds the total resource avail-
able when the system is in this mode;

• a set of tasksτ ⊆ T that are executed at the mode;
• a scheduling policySP that is used to schedule the tasks

in τ. When τ contains only one task andSP is Fixed
Priority, we omit SP since the system allocates all its
available resource to this task.

• a length c for each TDMA cycle whenSP= TDMA,
wherec≥

∑

Ti∈τ ci (and if SP6= TDMA, c is unused);
• a pair (αi ,ci) for each Ti ∈ τ, where αi is the arrival

function of the input streamsi and ci denotes either (i)
the length of the slot allocated toTi in each TDMA cycle
if SP= TDMA, or (ii) the priority of Ti if SP= FP.

Note that the specification of the scheduling parameters in a
mode can be adapted to the scheduling policy used. In our
model, arrival and service functions remain constant when the
system is in a mode. However,when the system moves to a
new mode, they are reset to the new values associated with the
new mode. Before formally defining TET automata, we first
state some relevant notations:

• INT =
{

[a1,a2] | 0≤ a1 ≤ a2 ∧ a1,a2 ∈ N
}

.
• ΦB: the set of all buffer guardsϕ of the form

ϕ = a1 ≤ Bi ≤ a2 | Bi ≥ a1 | ϕ1∧ϕ2

whereBi ∈ B, [a1,a2] ∈ INT, andϕ1,ϕ2 ∈ ΦB. SinceBi

only takes integer values,a1 ≤ Bi ≤ a2 and Bi ∈ [a1,a2]
are equivalent and thus used interchangeably.

• ϕi : the guard on the bufferBi that appears inϕ .
• ϕmax

i : the maximum value ofBi that satisfiesϕ . (If ϕi

contains no guards of the forma1 ≤ Bi ≤ a2, ϕmax
i = ∞).

• ϕmax = {ϕmax
1 , . . . ,ϕmax

n }.

Definition 1 (TET Automata). Given a finite set of tasks
T =

{

T1, . . . ,Tn
}

and its associated sets of input streams
S= {s1, . . . ,sn}, input buffersB = {B1, . . . ,Bn}, and output
buffersB′ = {B′

1, . . . ,B
′
n}. The multi-mode TET automaton that

executesT is a tupleA = (M,Min, Inv,Σ,R) where

• M = {M1, . . . ,Mm} is the set of modes, with Mj =
〈

β j ,τ j ,SPj ,c j ,
{

(α j ,i ,c j ,i) | Ti ∈ τ j
}〉

, τ j ⊆ T , j = 1,m.
• Min ∈M is the initial mode ofA.
• Inv : M → INT is the mode invariant function, where

Inv(M j) = [L j ,U j] specifies the interval during whichA
can stay at Mj (i.e., it must stay at Mj for at least
L j and for no more than Uj time units). After Uj time
units staying at Mj , the automaton must take an enabled
transition to another mode, or it will go to deadlock.

• Σ is the set of signals that trigger the mode changes,
which can be controlled by an external controller.

• R⊆M×Σ×ΦB×N×M is the transition relation. Each
transition in R is of the form(M,a,ϕ ,D,M′) where (i)
M is an origin mode and M′ is a destination mode, (ii)
a is an external signal that triggers the transition, (iii)
ϕ is a guard on the fill-levels of the input buffers, which
must be satisfied for the transition to be enabled, and (iv)
D ∈ Inv(M) is the time at which the transition is enabled
(relative to the instant the automaton enters M).

We assume that if there are more than one enabled out-going
transitions from a mode at the same time, the automaton non-
deterministically selects one. All transitions arenot urgent,
unless otherwise specified. When there is a transition that is
enabled, we say there is amode change request.

As an example, Fig. 1(b) sketches a TET automaton cor-
responding to the task set given in Fig. 1(a). In the figure,a
and b denote the external signals that trigger the transitions
of the automaton. Table I details the service function, the
scheduling policy, the active tasks and their corresponding
arrival functions in each mode of the automaton.

Mode M1 Mode M2 Mode M3
Service β1 β2 β3

Scheduling TDMA - FP
T1 α1,1 slot = 3
T2 α1,2 slot = 2 α2,2 α3,2 prio = 2
T3 α3,3 prio = 1

TABLE I: Mode characteristics for the system in Fig. 1.

Mode change semantics.At the instant when there is a mode
change request, the processor may be executing some task.
There may also be pending data items in the input buffers
which are waiting to be processed. In general, there are various
ways how a system could response. In this paper, we assume
that when there is a mode change request to a new modeM j :

1) The automaton enters Mj instantaneously.
2) The arrival functions of the input streams, the service

function of the resource, and the scheduling policy are
reset (to the ones associated with Mj) immediately.

3) New items of the streams processed by the tasks inτ j

can arrive immediately after mode switching and their
arrival patterns follow the updated arrival functions.

4) The system will continue executing the unfinished task
(if any) before scheduling the tasks inτ j . Note that this
unfinished task may or may not appear inτ j .

5) All pending data items in the input buffer of a task Tk /∈
τ j will be delayed until the system moves to a mode that
contains Tk.

6) No new data items arrive from the data streams that are
not processed byτ j .

The rationale behind the above assumptions is that in a
streaming environment, the currently processed streams are
often paused as the system services more critical tasks and
resumed at some point later. It is hence important to maintain
the buffer state when the system moves to a new mode.
Further, our protocols are more general than the ones where
all pending data of a task in the old mode but not in the
new mode will also be processed. This can be achieved in
our model by including the task into the new mode while
setting its arrival function to be zero. Protocols where there
is some delayD between the arrival of a new task can
also be represented in our model by adding an intermediate
mode between the two modes and associating with it the
same set of tasks as that of the old mode besides a delayD
on the transition from this intermediate mode to the new mode.

Analysis problems.Given a systemSys= 〈T ,B,B′,S,A〉. We
would like to compute:

P1 The maximum backlog of a bufferBi ∈ B.
P2 The maximum delay experienced by a streamsi ∈ S.
P3 The maximum delay of any data item arriving at a mode.

Schedulabiliy of a task set can be derived from the computed
maximum delays, i.e.,Ti meets its deadline iff the maximum
delay ofsi is always less than or equal todi .

In this paper, we consider specifically Fixed Priority (FP)
and Time Division Multiple Access (TDMA); however, the
same technique can be applied to other scheduling policies.
The main difference would be in the computation of the
execution demand at each node with respect to the chosen
scheduling policy. The details of FP and TDMA scheduling
are explained in [14].

III. E XACT TIMING ANALYSIS

We first define the concept of execution traces ofA. Observe
that when the automaton is in a mode, each stream arrives at a
different rate which is controlled by the corresponding arrival
function. We callA= (A1, . . . ,An) anarrival pattern of a mode

M =
〈

β ,τ,SP,c,
{

(αi ,ci) | Ti ∈ τ
}

〉

iff Ai is an arrival pattern
of αi if Ti ∈ τ, andAi = 0, otherwise. Since there is only one
service function associated withM, C is a service pattern of
mode Miff it is a service pattern ofβ .

Definition 2 (Buffer Mapping). A buffer mapping function Buf
of A is a function that computes the fill-levels of the buffers
at time t+ ∆ based on the fill-levels of the buffers at time t
when the system stays put at a mode. Specifically, define Bi(t)
to be the fill-level of Bi after t time units the automaton spent
at M ∈ M. Denote B(t) =

{

B1(t), . . . ,Bn(t)
}

. Suppose A is
an arrival pattern of M, C is a service pattern of M, and
t + ∆ ∈ Inv(M j). Then, B(t + ∆)

def
= Buf

(

B(t),A,C,SP,∆,t
)

When t = 0, B(∆) = Buf
(

B(0),A,C,SP,∆,0
)

, or simply
Buf

(

B(0),A,C,SP,∆
)

. The function Buf varies with the
scheduling policySP, however, it is always deterministic.
Given below areBuf function for FP and TDMA scheduling.

• Buf
(

B(t),A,C,FP,∆,t
) def

= (b1, · · · ,bn) such that bi =

max
n

0, Ai(t + ∆)−Ai(t) + Bi(t)−
j

pi
ei

ko

∀1 ≤ i ≤ n where,

pi =C(t +∆)−C(t)−
P

ck<ci

n

ek.
ˆ

Ak(t +∆)−Ak(t)+Bk(t)
˜

o

.

• Buf
(

B(0),A,C,TDMA ,∆
) def

= (b′1, · · · ,b
′
n) where

b′i = max
{

0, Ai(∆)+Bi(0)−
⌊ p′i

ei

⌋}

p′i = C(ci).
⌊∆

c

⌋

+C
(

min
{

ci , ∆−c.
⌊∆

c

⌋

−
∑

χk<χi

ck

})

assumingχk is the index of slotck in a TDMA cycle.

Definition 3 (Mode Execution). A tuple (A,C,B,∆) is an

execution of a mode M=
〈

β ,τ,SP,c,
{

(αi ,ci) | Ti ∈ τ
}

〉

iff

• A is an arrival pattern of M,
• C is a service pattern of M,
• B(x) = Buf(B(0),A,C,SP,x) for all 0≤ x≤ ∆, and
• ∆ ∈ Inv(M).

Definition 4 (TET Execution). A sequence

tr =
〈

Mk1, tr1
〉

→
〈

Mk2, tr2
〉

→ ···
〈

Mkh, trh
〉

is an execution trace ofA iff Mk1 ≡ Min and for all 1≤ j ≤ h:

• Mkj ∈M,
• tr j = (A j ,Cj ,B j ,∆ j) is an execution of Mkj ,
• (Mkj ,a,ϕ j ,Mkj+1) ∈R for some a∈ Σ and ϕ j ∈ ΦB,
• B j(∆ j) satisfiesϕ j and Bj(∆ j) = B j+1(0).

Maximum backlog analysis.To analyze the maximum back-
logs of the buffers, we construct an underlyingbehavioral
automatonof A, denoted byBeh(A). Beh(A) is a state machine
whose states are configurations of the form(M,b,A,C,t),
whereM is a mode ofA, b is a vector ofn integers denoting
the fill-levels of the buffers inB after t time units the system
staying put atM j , A is an arrival pattern andC is a service
pattern ofM defined to timet, and t ∈ Inv(M). The initial
state is the configuration(Min,bin,Ain,Cin,0), whereMin is the
initial mode ofA andbin, Ain, Cin are all zero functions.

There is a transition from(M,b,A,C, t) to (M′,b′,A′,C′,t ′)
if one of the following holds.

• M′ = M, t ′ = t + 1, A′(∆) = A(∆) andC′(∆) = C(∆) for
all 0 ≤ ∆ ≤ t, and b′ = Buf(b,A,C,SP,1, t) whereSP is
the scheduling policy ofM.

• M′ 6= M, b′ = b, A′
i(0) = 0 for all 1≤ i ≤ n, C′(0) = 0,

t ′ = 0 and there is a transition(M,a,ϕ ,M′) in A such
that (i) b satisfiesϕ or ϕ = /0, and (ii) t = D if there is a
time D associated with the transition.

From the reachable states ofBeh(A), we can derive the exact
maximum backlogs of the buffers. Specifically, the maximum
backlog ofBi is the maximum value ofbi(t) for all reachable
states(M,b,A,C,t) in Beh(A).

Maximum delay analysis.The maximum delay experienced
by a stream can be done similarly by introducing additional
variables into the behavioral automaton of the system. These
variables are used to keep track of the waiting time of the
data items.

Discussions.Observe that if there is no upper bound on the
invariant of a mode,A may stay put at at a mode forever (i.e.,
the value oft in each configuration ofBeh(A) is not bounded).
As a result, the behavioral automaton ofA may potentially be
infinite. To address this, we construct a regional automatonof
A, denoted asReg(A), which is a time abstract representation
of Beh(A). Each state ofReg(A) corresponds to a set of
reachable configurations ofBeh(A) that have the same TET
mode and the same values of buffer fill-level (i.e., theb vector).
There is a transition from a state(M,b) to a state(M′,b′) in
Reg(A) if there is a transition from a state(M,b,A,C,t) to
a state(M′,b′,A′,C′, t ′) in Beh(A). The analysis can then be
done based onReg(A).

Although the size ofReg(A) is significantly smaller than
that of Beh(A), it might still be infinite since the values
of the buffer fill-level at the state may not be bounded. To
allow feasible computation ofReg(A), we assume that there
is an upper boundN on the size of the buffers. The size

of the Reg(A) automaton will then beO(Nn‖M‖). More
efficient abstraction approach such as the zone automata used
in rectangular hybrid automata can be applied. However, we
still require a known upper bound on the size of the buffers
for the automaton to be finite.

IV. A PPROXIMATE TIMING ANALYSIS

The analysis approach presented in the previous section,
though being exact, can be computationally expensive as the
size of the region automaton is exponential in the size of
the buffer and the number of tasks. Further, it is only finite
assuming an upper bound on the size of the buffer, which must
be specified a priori. The exact method can verify if a buffer
fill-level exceeds the specified maximum size, however in the
case the fill-level of the buffer is unbounded, the analysis goes
on forever in searching for the largest backlog value.

In general, there could be scenarios where the maximum
backlog of a buffer is unbounded – in which case the system
is said to beunstable. While stability is often assumed for
single-mode systems, the same might not hold for the case of
multi-mode systems, unless being verified. As a result of mode
switching, the backlog of a buffer can get accumulated when
executing along a sequence of modes. If the system does not
have enough resource to clear the backlog and/or does not put
any constraint on when the mode switching can take place,
this backlog may potentially become infinite. As a result, we
cannot simply assume that the system is stable. In fact, it is
important for the analysis to be able to detect the instability
of the system quickly and provide diagnosis feedbacks for the
system designer to improve the system.

The above observations have motivated us to develop
an alternative method that is much more efficient, capable
of identifying system instability as well as computing safe
estimations on the system performance properties.

Overview of TET approximate analysis: The key idea of
TET approximate analysis is that – instead of enumerating
all possible values of the buffer backlog during execution as
done in the exact method – we keep track of only the execution
paths that lead to the maximum backlogs of the buffers and
the maximum backlog values at each mode along the paths.
While the exploration of the path is based on the structure
of the input TET automatonA, the maximum backlog of a
buffer at each mode in an explored path is “computed” directly
from the arrival and service functions of the mode using RTC
technique, without having to consider every TET execution to
search for the value. This exploration results in an abstract
treeG = (V,E) which captures all execution traces inA that
will lead to a maximum buffer backlog.G can be viewed as an
abstraction of the region automaton used in the exact method,
and it is used to compute the timing properties of the system.

In the two coming sections, we detail the construction of
G. Section IV-C and IV-D show how maximum backlog and
maximum delay can be computed based onG. It is worth
noting that, since the RTC method is not tight in general, the
method presented here is inherently an approximate analysis.

A. The key idea and basic results for the construction ofG

G is formed by a set of nodesV and a set of edges
E. Each nodev ∈ V consists of a modeM ∈ M and a
tuple inB= (inB1, . . . , inBn) whereinBi specifies the maximum
initial backlog ofBi when the system entersv. In addition,v
is associated with an n-tupleBLv whereBLv,i is the maximum
backlog ofBi when the system is atv. Each edgee∈E from a
nodev = (M, inB) to a nodeu = (M′, inB′) is associated with
a tupleκ = (κ1, . . . ,κn) where

• κi = 1 if the value ofinB′
i is always upper bounded by the

buffer guard associated with the transition fromM to M′

in A, or by the values of the arrival and service functions
associated withM;

• κi = 0, otherwise.
The attributes associated with a node and a transition ofG are
summarized in Fig. 2.

M

 inB

BLv

 node v

M′
 inB′

BLu

 node u

κ

inBi = maximum initial backlog of Bi when the system enters M

BLv,i = maximum backlog of Bi when the system stays put at M

κi = 1, if inBi′ is always bounded due to the buffer guard associated with

 transition M →M’ or values of the arrival and service functions at M.

κi = 0, otherwise.

inB = (inB1, … , inBn)
BLv = (BLv,1 , … , BLv,n)
κ = (κ1 , … , κn)

Fig. 2: Attributes of a node and a transition inG.

Fig. 3 gives an overview on the construction ofG. As high-
lighted in the figure (by the pointing fingers), at each reachable
node v =

〈

M, inB
〉

, we need to computeBLv. Further, for
each modeM′ reachable fromM (by taking an enabled out-
going transition), we need to compute the maximum initial
backlogs when the system entersM′. Below we describe
the computation of these attributes, which will serve as the
building blocks for the construction ofG detailed in the next
section.

SupposeM =
〈

β ,τ,SP,c,
{

(αi ,ci) | Ti ∈ τ
}

〉

. To obtain
the maximum buffer backlogs atM and the maximum initial
backlogs upon enteringM, we compute:
(S1) The service functionβi of the resource allocated to each

taskTi ∈ τ based onβ , SP, αi , and the initial maximum
buffer backlogs whenA entersM.

(S2) The maximum buffer backlogs whenA stays put atM.
based onβi and Inv(M).

(S3) The maximum buffer backlogs whenA moves toM′,
for every transition fromM to M′ in A that is enabled.

Computing (S1). The service functionβi that bounds the
portion of resource given to streamsi when the system is atM
is given by a function calledServ. Typically, Serv is defined
based onβ , αi , SP, and the execution demand dfi of Bi (i.e.,
the number of processor cycles required to process the data
items currently inBi).

Definition 5. Suppose dfi is execution demand of Bi when
the system enters M and let df= (df1, . . . ,dfn). The service

TET Automaton

 Add 〈Min, 0〉 into G and unVisited

unVisited = ∅

Take a node v = 〈M, inB〉 from unVisited

Remove all 〈M, inB’〉 with inB’ ≤ inB from unVisited

Find an infinite backlog cycle containing u

 Compute maximum backlogs BLv at v

Compute maximum initial backlog inB’ of M’

∃〈M’ , inB‘’〉∈G:

inB’ ≤ inB’’

Add u = 〈M’ , inB‘ 〉 into unVisited and G

∃ (M, ϕ, M’) : BLv satisfies ϕ

YES

NO

NO

YES

FOUND

NOT

FOUND

YES

NO

C
o

m
p

u
ta

ti
o

n
 a

t
a

 r
ea

ch
a

b
le

 m
o

d
e

M
’ f

ro
m

 M
C

o
m

p
u

ta
ti

o
n

 a
t

 M

(S1, S2)

 (S3)

Finite Tree

G = (V,E)

SYSTEM UNSTABLE

Fig. 3: Overview on the construction ofG.

function of the resource allocated to each task Ti ∈ τ when
the system is at M is given by Serv(i,df,α,β ,SP).

Lemma IV.1 and IV.2 defineServ for FP and TDMA. The
proofs for the lemmas are available in [14].

Lemma IV.1. Let df = (df1, . . . ,dfn) with dfi denoting the
execution demand of Bi when the system enters M. Letτ i ⊆ τ
be the set of tasks inτ that have higher priority than Ti , i.e.,

τ i =
{

Tk ∈ τ | ck < ci
}

.

The lower service function that bounds the amount of resource
allocated to a task Ti ∈ τ when SP= FP is given by

Serv(i,df,α,β ,FP)
def
=

(

β l −
∑

Tk∈τ i

{

dfk +ekαu
k

}

)

+

where f+(x) = max{ f (x),0} for all f : N → N and x≥ 0.

When SP is TDMA, in each TDMA cycle,Ti may not be
allocated resource during a time interval of length∆ = c−ci ,
however it is granted full access to the resource during a time

interval of lengthci . As a result, one can compute the service
function of the resource given toTi using Lemma IV.2 below.

Lemma IV.2. The lower service function that bounds the
amount of resource allocated to a task Ti ∈ τ when SP=

TDMA is given by Serv(i,df,α,β ,TDMA)
def
= β i where

β i(∆) = max
{⌊∆

c

⌋

.β l(ci
)

, β l (∆)−
⌈∆

c

⌉

.β l(c−ci
)

}

∀ ∆ ≥ 0.

Computing (S2). Since the execution demand ofTi is ei , the
following corollary holds.

Corollary IV.3. Let dfv = (dfv,1, . . . ,d fv,n) with dfv,i denoting
the maximum execution demand of Bi when the system enters
v. Then, dfv,i = ei .inBi for all 1≤ i ≤ n.

Lemma IV.4. Denote[L,U] = Inv(M). The maximum backlog
of Bi when the system stays put at M is given by

BLv,i
def
=

{

inBi + max
0≤∆≤U

{

αi(∆)−βi(∆)
}

, if Ti ∈ τ

inBi , otherwise.

whereβi =
⌊

Serv(i,dfv,α,β ,SP)/ei
⌋

.

Computing (S3). Supposer = (M,a,ϕ ,M′) is a transition
in A. Let [L,U] = Inv(M) ∩ [D,U] if there is a time D
associated withr, and [L,U] = Inv(M) otherwise. In other
words,[L,U] is the interval duringr can be taken. Recall that
βi =

⌊

Serv(i,dfv,α,β ,SP)/ei
⌋

andϕmax
i is the maximum value

of Bi that satisfiesϕ .

Lemma IV.5. The maximum backlog of Bi when the system
enters M′ by taking the transition r is given by

inBL(v,ϕ , i) = min
{

outBLv,i , ϕmax
i

}

where: outBLv,i
def
= max







max
0≤∆<L

{

αi(∆)−βi(∆)
}

inBi + max
L≤∆≤U

{

αi(∆)−βi(∆)
}

if Ti ∈ τ j , and outBLv,i = inBi otherwise.

B. Construction of the abstract treeG

This section gives a detailed description to the tree con-
struction in Fig. 3. We start with the root of the treevin =
〈

Min, inBin
〉

whereMin is the initial mode ofA and inBin is
ann-tuple of zeros (since buffers are initially empty). We add
vin into V and into the set of unvisited nodes termedunVisited.
Both V andunVisitedare empty initially.

Let v=
〈

M, inB
〉

be a node inunVisited. We first remove all
nodesv′ =

〈

M, inB′
〉

in unVisited such thatinB≥ inB′. This
is because corresponding to each pathρ from v to a nodew,
there is a pathρ ′ from v′ to a nodew′ passing through the
same sequence of modes as that ofρ and the maximum initial
backlogs when the system entersw is larger than or equal to
the maximum initial backlogs when the system entersw′. In
other words,BLw ≥BLw′ . As we are computing the maximum
backlog, it is sufficient to consider only paths starting from v.

We next compute the maximum backlogsBLv when the
system is atM using Lemma IV.4. Supposer = (M,a,ϕ ,M′)

is a transition inA such thatBLv satisfiesϕ . Then,r is enabled
and the maximum backlog ofBi when the system entersM′ is
given by inB′

i = inBL(v,ϕ , i) (Lemma IV.5). We create a new
nodeu =

〈

M′, inB′
〉

.
Case 1: If there is a nodew =

〈

M′, inB′′
〉

in G such that
inB′′ ≥ inB′, there is no need to exploreu. Hence, we delete
u and continue with the next transition fromM.

Case 2: If no such nodew exists, we addu into V and a
new edge(v,κ ,u) into E. Here,κi = 0 if ϕmax

i is infinite and

inB′
i = inBi + max

L≤x≤U

{

αi(x)−βi(x)
}

whereβi is the service function of the resource given tosi , and
[L,U] is the interval during whichr can be taken (as computed
in Section IV-A). Otherwise,κi = 1.

If there is an edge(u0,u1) in the path from the root tov
such thatu0 containsM andu1 containsM′, we will check if
this path contains a zero cycle that leads to an infinite buffer

backlog. Specifically, letρ = u0
κ1
→ u1

κ2
→ u2

κ3
→ ···

κh

→ uh be
the path fromu0 to u in G with uk =

〈

M jk , inBk
〉

, M j0 ≡ M,
M j1 ≡M′, v≡ uh−1 andu≡ uh. Note that, there exists 1≤ i ≤ n
such thatinBh

i > inB1
i (otherwise,u has been deleted earlier

in Case 1). There are two cases:
i If for all i such thatinBh

i > inB1
i , there existsκk

i = 1 for
some 1≤ k ≤ h, then the fill-level ofBi is always upper
bounded. We marku as aboundednode.

ii Otherwise, there is ani whereκk
i = 0, ∀1 ≤ k ≤ h. We

claim that the maximum backlog ofBi will be infinite if
we repeatsρ for an infinite number of times [14]. Hence,
we report an infinite buffer backlog atBi , return the path
from the root ofG to u, and terminate the construction.

We addu into the setunVisitedand continue with the next
transition fromv until all the transitions are explored. We then
continue with the next node inunVisitedset until it is empty.

Lemma IV.6. The construction ofG is decidable.

For each modeM that appears in a cycle inA and
τ = (M′,ϕ ,M) is an incoming transition fromM, let Xτ

i =
maxL≤x≤U{αi(x)− βi(x)}, where βi is the service allocated
to Ti assuming zero initial buffer backlogs for the buffers,
and [L,U] is the interval during whichτ can be taken. Define
Kτ

i = 1 if ϕmax
i = ∞ and ϕmax

i /Xτ
i , otherwise. Further, letKi

be the maximum value ofKτ
i for all incoming transitionτ of

M. From the construction, we imply thatKi is the maximum
number of values for the initial maximum backlog ofBi when
A entersM. Thus, the number of timesM appears in a node
in G is at mostK =

∏n
i=1Ki . As a result, the size of the tree

G is O(K‖M‖). Since the number of modes in the automaton
is relatively small, the algorithm is highly scalable.

C. Computing maximum backlog

The maximum backlog of the bufferBi at a modeM j is the
maximum value ofBLv,i for all v∈V that containM j :

BL(Bi ,M j) = max
v∈V

{

BLv,i | v =
〈

M j , inB
〉

∧ inB∈ N
n}

The maximum backlog ofBi experienced by the stream is:

BL(Bi) = max
{

BL(Bi ,M j) | M j ∈M
}

D. Computing maximum delay

We now present our method for computing the maximum
delay of an event streamsi at a modeM ∈M. Let

tr = 〈Min, tr in〉 → ·· · →
〈

Mk1, tr1
〉

→
〈

Mk2, tr2
〉

→ ···

be an execution trace ofA that results in the maximum delay
of si at modeM, whereMk1 ≡ M and trkj = (A j ,Cj ,B j ,∆ j)
for all j ≥ 1. Supposeev is an event/item ofsi which has
the longest delay among all items ofsi that arrive when the
system is at modeM. The maximum delay ofsi at M is then
the delaydelay(M, i) experienced byev.

Since we only consider systems that have finite buffer
backlogs,delay(M, i) is finite. Thus,evwill be fully processed
at some∆h time units after the system enters a modeMkh with
1≤ h≤ ∞. Denoteλ as the amount of time from the instant
A entersM to the instantev arrives. Then,

delay(M, i)+ λ = ∆1 + · · ·+ ∆h (1)

Further,delay(M, i) is the amount of time needed to process
the B j ,i(0) items initially in the bufferBi when the system
entersM and the data items that arrive during theλ time
units the system is atM. Since the number of items that arrive
from si and the amount of resource allocated tosi in M are
independent of the data that arrive fromsi in previous modes,
the delay ofev is largest impliesB j ,i(0) equals the maximum
backlog ofBi whenever the system entersM, i.e.,

B j ,i(0) = max
〈

M,inB
〉

∈V

{

inBi
∣

∣

〈

M, inB
〉

∈V
}

def
= inBmax

M,i

Let vk1 =
〈

M, inB1
〉

∈ V be a node containingM at which
inB1

i = inBmax
M,i . Then

〈

Mk1, tr1
〉

→···→
〈

Mkh, trh
〉

corresponds
to a pathπ = vk1 → ··· → vkh in G with vkj =

〈

Mkj , inB j
〉

for all 1 ≤ j ≤ h. Moreover, the amount of resource given
to si when the system is atvp is bounded byβ p,i =
Serv(i,dfvp,αp,βp,SPp), where dfvp = (dfvp,1, . . . ,dfvp,n) and
dfvkj

,i = ei inBj
i for all 1 ≤ i ≤ n. Sinceev is fully processed

after the system being atMkh for ∆h units of time, the total
execution demand of the data items that arrive beforeev and
evmust be no more than the total resource given by the system
along pathπ in the worst case. In other words,

(

αu
k1,i(λ)+ inB1

i

)

ei ≤ β k1,i(∆1−λ)+
h

∑

j=2

β kj ,i(∆ j) (2)

From Eqs (1) and (2), we imply that

delay(M, i) ≤ max
{

delay(π , i)
∣

∣ Mk1 ≡ M ∧ inB1 = inBmax
M,i

∧ π =
〈

Mk1, inB1〉 → ··· →
〈

Mkh, inBh〉 ∈ G
}

,

where:delay(π , i) = max
λ∈Inv(M)

{

min
∆ j∈Inv(Mkj

)

{

h
∑

j=1

∆ j − λ
∣

∣

∣

(

αu
k1,i(λ)+ inB1

i

)

ei ≤ β k1,i
(∆1−λ)+

h
∑

j=2

β kj ,i(∆ j)
}

}

The overall maximum delay experienced by a streamsi is
then the maximum value ofdelay(M, i) for all M ∈M.

Note that both the computations of backlog and delay are
safe approximation in that the actual maximum backlog of a
buffer and maximum delay of a stream will be less than or
equal to the computed values.

V. CASE STUDY

In this section we present a case study to illustrate the
applicability of TET automata in realistic multi-mode real-
time systems. In particular, we look into a smart-phone which
is equipped with advanced features such as emails, Internet
connectivity via Wi-Fi, and media multitasking. We show how
the proposed model can be used to describe such a system and
to derive various performance properties using our analysis
methods. Based on the obtained analysis results, designersare
able to tune the system design to minimize resource usage
while assuring quality of service requirements.

We assume that the system consists of five main tasks
(Table II) executing on a single processor architecture (Fig. 4).

Task Functionality

Tkernel
Kernel threads that should be running at all time, for instance,
system clocks and I/O user inputs.

Tmonitor
Connection monitoring activities such as telemetry and wire-
less data collection, which is activated periodically.

Tupdate
System updates and maintenance routines such as display
updating, which is executed periodically everyDu time units.

Taudio Audio processing of voice data when users receive/make calls.
Tvideo Video processing when users stream video using WiFi.

TABLE II: Different tasks of a smart-phone.

Tu

Tk

system

updates

kernel

routines

Tv

Tm

input video stream

(via Internet)

telemetry

data stream

Ta
input audio stream

(incoming voice calls)
Ba Ba

Bv Bv

′

′

Bm Bm′

Bu Bu′

Bk Bk′

MULTIMODE SCHEDULER

APPLICATION TASKS

Ta : Taudio

Tv : Tvideo

Tm : Tmonitor

Tu : Tupdate

Tk : Tkernel

Tasks:

Ba , Bv , Bm ,Bu , Bk

Input buffers:

Ba , Bv , Bm ,Bu , Bk

Output buffers:

′ ′ ′ ′ ′

NOTATIONS

Fig. 4: The system architecture of a smart-phone application.

As in many complex real-time applications, the smart-
phone has a dynamic scheduler. It is a multi-mode system,
with each operating mode executing a different subset of
the above tasks. The processor frequency is scaled to best
match with the processing requirement of each mode. The
scheduling of the tasks active at each mode is also chosen
with respect to the tasks’ execution patterns and the overall
performance objectives. In this case study, we assume that
Fixed Priority is employed for all modes. Further, voice calls
have higher performance requirements than that of video
streaming. However, the scheduler will allocate more resources
to the video stream to take advantage of idle periods during the
call and hence there is only little voice data (e.g., background
noise). On the whole, we have seven different modes:

• Active: The system is idle and executes onlyTkernel and
Tmonitor, with Tkernel having higher priority thanTmonitor.

• Call: The system enters this mode when the user
makes/receives a call. Here, three tasksTkernel, Tmonitor and
Taudio are executed, withTkernel having highest priority
andTmonitor having the lowest priority.

• Video:The system is in this mode when the user watches
streaming video. In this mode, three tasksTkernel, Tmonitor

and Tvideo are executed, withTkernel having the highest
priority andTvideo having the lowest priority.

• Full-A: The system is in this full-on mode when the user
watches video while taking/making a phone call. Thus,
four tasksTkernel, Tmonitor , Taudio, andTvideo get executed,
in decreasing order of priority.

• Full-V: The system enters this mode if the fill-level of
the audio stream is below a certain threshold and it has
spent at leastDa time units inFull-A. This happens when
there is an idle period during the conversation and the
audio traffic contains mainly background noise. Hence,
we assign a higher priority to the video stream. The
system will switch back toFull-A mode if the fill-level
of the audio buffer exceeds a valueCa (i.e., the end of
the idle period).

• Update: In this mode, only two tasksTkernel and Tupdate

are executed, withTupdate having higher priority.
• Sleep:The system enters this power saving mode if there

is no activity after a duration ofDs time units. It will
execute onlyTkernel and periodically wakes up to perform
system update and returns back to sleep.

When the system is inSleepmode, the processor runs at
the smallest frequencyf0. When it is inActivemode, it runs
at the normal frequencyf1. When there are computationally
expensive tasks such as audio and/or video processing, the
processor operates at the maximum frequencyf2.

In designing such a system, an important question that
must be addressed is to decide how much buffer space is
required to ensure there will be no buffer overflows. A typical
way of doing this is to compute the maximum backlogs
of the different buffers in the system; these computed
values can then be used as the minimum buffer capacities
that need to be allocated to each task to avoid buffer overflows.

TET model of the smart-phone multi-mode system.We
now demonstrate how TET automata can easily capture the
dynamic behavior of the given multi-mode system. Based on
the resulting model, we compute the maximum backlogs of
the buffers using our proposed analysis methods. Note that
it might be possible to represent the system using a model
that has no mode modeling capability by viewing the system
as having a single mode (with the worst combination of the
properties of the original modes). However, this approach often
leads to overly pessimistic results as we will demonstrate later.
In this case study, we are specifically focus on the input buffers
of the voice and video streams (due to space restrictions).

Fig. 5 depicts the TET automaton for the smart-phone
system. For ease of presentation, the modeUpdate is not
shown in the automaton. There should be a transition to and
from each mode of the automaton to modeUpdate, as shown

call

Ba ≤ Ca

Sleep

[1, Du]

wake-up
Ds

Full-V

[1, Du]
Call Video

[1, Du]

Active

[Da , Du]
Full-A

call video

doneC doneV

video

doneV doneC

doneV doneC

Ba ≥ Ca

[1, Du]

[1, Du]

Update

Bu = 0
Du

Ba = 0 Bv = 0

Bv = 0 Ba = 0

Bv = 0 Ba = 0

τActive = {Tk ,Tm}

τCall = {Tk ,Tm ,Ta}

τVideo = {Tk ,Tm ,Tv}

τFull-A = {Tk ,Tm ,Ta ,Tv }

τFull-V = {Tk ,Tm ,Tv ,Ta }

τSleep = {Tk} τUpdate = {Tu ,Tk}

Processor frequency: f0 < f1 < f2

 f0 : Sleep; f1 : Active; f2 : Call, Video, Full-A, Full-V

′

TET MODEL OF THE SMARTPHONE MULTI-MODE SYSTEM

Fig. 5: The TET model of the multimode scheduler (cf. Fig. 4).

in the dashed box. In the figure, the tasks at each mode are
listed from the highest priority to the lowest priority.Du is
the period ofTupdate, Da is the minimum duration the system
must stay at modeFull-A, andDs is the amount of inactivity
time for the system to go toSleepmode. In the figure,Ba and
Bu denote the input buffer of the audio (voice) stream and the
stream of update jobs, respectively. Further,Ca,C′

a ∈N are the
pre-specified thresholds of the buffer fill-level for which the
system switches between the two full-on modes. We assume
that when the system is in theUpdate mode, it keeps the
same processor frequency as the previous mode it came from.1

Experimental setup and results.Since Tkernel, Tmonitor and
Tupdateare periodic tasks, their arrival functions are computed
directly from the chosen periods. We assume that the arrival
functions for these tasks remain constant for all the modes.

The input audio and video streams in general can be bursty
and hence, their arrival functions take arbitrary forms. To
obtain the arrival functions of the video stream, we use a
set of representative video clips and simulate their executions
on a customized version of the SimpleScalar instruction set
simulator [15]. From the execution traces, we measured the
execution demands of the decoding tasks for each macroblock
and derived a functionA(t) which gives the number of
macroblocks arriving at the input bufferBv during the time
interval [0,t]. This function is then used to compute the arrival
functionαv(∆) of the video input stream. The arrival function
for the audio stream is obtained in a similar fashion.

1To capture this, instead of having only one sharedUpdate mode in the
automaton, we have one copyUpdateM for each modeM in the automaton
that is shown in Fig. 5 and set the frequency to be the same as that of M.

In our experiment, the arrival function of the video stream
is chosen to be the same for both the modesFull-A andFull-
V. The arrival function of the audio stream at modeFull-V is
smaller than at modeFull-A. This is because the system will
only give higher priority to the audio stream when there is less
input data from the audio stream (to maintain a high level of
service for voice calls at all time).

The service function of the system is computed based on
the frequency of the processor. We assume that the processor
does not run any other tasks besides the given task set. Hence,
its service function is given byβ l

f (∆) = β u
f (∆) = f .∆, where

f is the frequency of the processor. In our experiment, we set
f1 = 200MHz, f2 = 400MHz, and f3 = 600MHz. The threshold
at which the system moves to modeFull-V is set toC′

a = 500.
For the analysis, we implemented the approximation meth-

ods outlined in Section IV. Additionally, we performed an
analysis without mode modeling using the original RTC model
where we computed the maximum backlog of the video buffer
for each mode individually and took the worst value.

4186

4257

4342

4428

4513

4598

4737

3900

4100

4300

4500

4700

4900

1300 1400 1500 1600 1700 1800 1900

M
a

x
im

u
m

 b
a

ck
lo

g
 o

f
th

e
 i

n
p

u
t

v
id

e
o

 s
tr

e
a

m
 [

it
e

m
s]

Buffer-fill level threshold Ca [items]

SINGLE MODE APPROXIMATION
7714

MULTI-MODE TET ANALYSIS

Fig. 6: The maximum of the video input bufferBv (cf. Fig. 4).

Fig. 6 plots the resulting maximum backlog of the input
video bufferBv for different values ofCa (see Fig. 5) using
TET model, and using the single-mode RTC approximation.
The bar graphs represent the results of TET analysis, whereas
the horizontal line represents the result from the single-mode
approximation. When comparing the TET results with the
single-mode approximation, it may be seen that explicitly
modeling the dynamic behavior of the system results in sig-
nificantly tighter estimates, thereby leading to better resource
dimensioning (which, here, is the on-chip buffer memory).

Further, it may be observed that the maximum backlog of
Bv given by the TET analysis does not remain constant but
increases withCa. Based on these computed results, one may
easily determine the amount of buffer memory that should be
provisioned for the video stream, for any chosen threshold
value ofCa. Alternatively, this information can also help the
system developer in tuning the scheduler to minimize resource
usage (e.g., by selecting the best value ofCa that minimizes the
total memory requirement of the system). Such tuning would
not be possible with the simplistic single-mode model.

VI. CONCLUDING REMARKS

We have proposed a model called TET automata and a set
of associated techniques for analyzing multi-mode systems
where mode changes are both time- and event-triggered. Our
first approach uses automata verification techniques that tackle
stringent cases requiring an exact timing analysis. A second
technique was developed – incorporating both Real-Time
Calculus and automata state exploration – to provide approx-
imate performance metrics for the whole system based on the
results derived from the individual modes. This combination
of techniques from two different domains produced a solution
which is more efficient and at the same time is guaranteed
to give safe estimates. The applicability and benefits of our
proposed model have been demonstrated in a smart-phone
multi-mode system, where mode changes are driven by both
time and fill-level of various buffers in the system. It wouldbe
interesting to explore how the TET model can be lifted to an
interface-theoretic setting to enable more efficient/lightweight
compositional analysis and correct by construction design.

ACKNOWLEDGMENT

This research was supported in part by AFOSR FA9550-
07-1-0216, NSF CNS-0720703, and NSF CNS-0721541.

REFERENCES

[1] T. A. Henzinger, B. Horowitz, and C. M. Kirsch, “Giotto: atime-
triggered language for embedded programming,”Proceedings of the
IEEE, vol. 9, no. 1, pp. 84–99, 2003.

[2] S. Chakraborty, S. Künzli, and L. Thiele, “A general framework for
analysing system properties in platform-based embedded system de-
signs,” in DATE, 2003.

[3] L. Thiele, S. Chakraborty, M. Gries, and S. Künzli, “A framework for
evaluating design tradeoffs in packet processing architectures,” in 39th
Design Automation Conference (DAC), 2002.

[4] E. Wandeler, A. Maxiaguine, and L. Thiele, “Quantitative characteriza-
tion of event streams in analysis of hard real-time applications,” Real-
Time Systems, vol. 29, no. 2-3, pp. 205–225, 2005.

[5] E. Wandeler and L. Thiele, “Workload correlations in multi-processor
hard real-time systems,”Journal of Computer and System Sciences
(JCSS), vol. 73, no. 2, pp. 207–224, 2007.

[6] G. C. Buttazzo, G. Lipari, and L. Abeni, “Elastic task model for adaptive
rate control,” inRTSS, 1999.

[7] Y. Shin, D. Kim, and K. Choi, “Schedulability-driven performance
analysis of multiple mode embedded real-time systems,” inDesign
Automation Conference (DAC), 2000.

[8] G. Fohler, “Changing operational modes in the context ofpre run-time
scheduling,”IEICE Transactions on Information and Systems, vol. E76-
D, no. 11, pp. 1333–1340, 1993.

[9] L. Sha, R. Rajkumar, J. Lehoczsky, and K. Ramamritham, “Mode change
protocols for priority-driven preemptive scheduling,”Real-Time Systems,
vol. 1, no. 3, pp. 244–264, 1989.

[10] J. Real and A. Crespo, “Mode change protocols for real-time systems:
A survey and a new proposal,”Real-Time Systems, vol. 26, pp. 161–197,
2004.

[11] T. Pop, P. Eles, and Z. Peng, “Design optimization of mixed time/event-
triggered distributed embedded systems,” inCODES+ISSS, 2003.

[12] N. Scaife and P. Caspi, “Integrating model-based design and preemp-
tive scheduling in mixed time- and event-triggered systems,” in 16th
Euromicro Conference on Real-Time Systems (ECRTS), 2004.

[13] L. Phan, S. Chakraborty, and P. Thiagarajan, “A multi-mode real-time
calculus,” inRTSS, 2008.

[14] L. T. X. Phan, S. Chakraborty, and I. Lee, “Timing analysis of
mixed time/event-triggered multi-mode systems,” http://www.cis.upenn.
edu/~linhphan/papers/rtss09.pdf, 2009.

[15] T. Austin, E. Larson, and D. Ernst, “SimpleScalar: An infrastructure for
computer system modeling,”IEEE Computer, vol. 35, no. 2, pp. 59–67,
2002.

	University of Pennsylvania
	ScholarlyCommons
	12-1-2009

	Timing Analysis of Mixed Time/Event-Triggered Multi-Mode Systems
	Linh T.X. Phan
	Samarjit Chakraborty
	Insup Lee
	Timing Analysis of Mixed Time/Event-Triggered Multi-Mode Systems
	Abstract
	Comments

