December 1984

Natural motion for robot arms

Daniel E. Koditschek
University of Pennsylvania, kod@seas.upenn.edu

Follow this and additional works at: http://repository.upenn.edu/ese_papers

Recommended Citation

This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE endorsement of any of the University of Pennsylvania's products or services. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing to pubs-permissions@ieee.org. By choosing to view this document, you agree to all provisions of the copyright laws protecting it.

NOTE: At the time of publication, author Daniel Koditschek was affiliated with Yale University. Currently, he is a faculty member in the Department of Electrical and Systems Engineering at the University of Pennsylvania.
Natural motion for robot arms

Abstract
This paper describes some initial steps toward the development of more natural control strategies for free motion of robot arms. The standard lumped parameter dynamical model of an open kinematic chain is shown to be stabilizable by linear feedback, after nonlinear gravitational terms have been cancelled. A new control algorithm is proposed and is shown to drive robot joint positions and velocities asymptotically toward arbitrary time-varying reference trajectories.

Comments

This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE endorsement of any of the University of Pennsylvania's products or services. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing to pubs-permissions@ieee.org. By choosing to view this document, you agree to all provisions of the copyright laws protecting it.

NOTE: At the time of publication, author Daniel Koditschek was affiliated with Yale University. Currently, he is a faculty member in the Department of Electrical and Systems Engineering at the University of Pennsylvania.

This conference paper is available at ScholarlyCommons: http://repository.upenn.edu/ese_papers/418
Natural Motion for Robot Arms

Dan Koditschek
Center for Systems Science,
Department of Electrical Engineering,
Yale University

This paper describes some initial steps toward the development of more natural control strategies for free motion of robot arms. The standard lumped-parameter dynamical model of an open kinematic chain is shown to be stabilizable by linear feedback, after nonlinear gravitational terms have been cancelled. A new control algorithm is proposed and is shown to drive robot joint positions and velocities asymptotically toward arbitrary time-varying reference trajectories.

1. Introduction

Typical robotic tasks may be described by appeal to dynamical models of motion rather than explicit geometric means such as curves or knots. The terminology "natural motion" expresses the hope that these models which in some way match the internal dynamics of the robot will afford more accurate performance with less effort. This approach requires (i) specification of a suitable class of reference models; (ii) a control strategy for their use; resulting in (iii) asymptotically stable error equations. This paper addresses the second and third aspects of the problem while suggesting future directions of investigation within the first.

A familiar model for the dynamics of a robot arm with n joints whose positions and velocities are represented by the generalized coordinates, \(\theta \), \(\dot{\theta} \), respectively, may be written as

\[
\dot{\theta} = \omega \\
\omega = \cdot M \ddot{\theta}, B(\theta, \dot{\theta}) \omega + k(\theta) \cdot \tau , \tag{1}
\]

where \(M \) the positive definite moment of inertia matrix, and \(k \) the gravitational vector field depend upon products of transcendental terms in \(\theta \) and \(B \) (representing coriolis and centripetal forces) is linear in \(\omega \) and involves products of transcendental terms in \(\theta \). A commonly proposed paradigm for the control of robot arm motion involves the a priori generation of an algebraic reference trajectory, resolved into joint space, and introduced to a set of actuating motors in the presence of error and state feedback. Let \(\dot{\theta}^*, \omega^*, \) and \(\tau^* \) specify some desired motion, velocity, and acceleration profile, and define the errors

\[
\delta \ddot{\theta} = \dot{\theta} - \dot{\theta}^* \\
\epsilon \ddot{\omega} = \omega - \omega^*. \tag{2}
\]

The control strategy

\[
\tau_P = B \ddot{\omega} + k(\theta) \omega + M(\dot{w}^* + \gamma \dot{\theta} + \gamma \ddot{\theta}); \gamma \ddot{\theta} > 0
\]

may be shown, theoretically, to drive the position and velocity errors to zero, exponentially in time, for arbitrary initial values. This method has been called the "computed torque" technique [1], or the "inverse problem" [3]. The general scheme proposed independently in [3] amounts to just this strategy in the context of robot arm control. An analogous procedure, termed "resolved acceleration control" [5] can be used when the reference signals are expressed in Cartesian or task space coordinates.

As a practical matter, a number of objections to this strategy come to mind quite readily. The global stability of the scheme is founded upon such assumptions as that

(i) equation (1) provides an accurate model of the true robot arm dynamics;

(ii) the terms in (2) may be computed sufficiently quickly;

(iii) the terms in (2) may be computed with sufficient accuracy;

(iv) the actuators are capable of delivering the torques required by (2).

Work by a number of researchers, most notably in [4], has persuasively demonstrated that the second assumption is, or may soon be justifiable. However, the rest of these assumptions merit much less confidence. The new algorithm reported here may ameliorate some of the problems hidden by these assumptions, although analysis that might conclusively demonstrate its superiority to (2) is not yet available. Since it may lead toward appropriate dynamical reference models, the algorithm should be interesting in its own right.

Rewriting the the scheme (2) as

\[
\tau_P = [E - \gamma M] \ddot{\omega} + k(\theta) \omega + [E - \gamma M] \dot{\theta} + \gamma \ddot{\theta} + \gamma \dot{\theta} + \gamma \ddot{\theta} \]

makes obvious its intuitive analogy to the technique of pole placement. In a linear time invariant setting, state feedback is used to cancel undesired coefficients of the characteristic polynomial and replace them with coefficients which result in the desired root locations prior to the introduction of the reference command signal. In the present context, the cancellation of all nonlinear terms of the vector field reflects the designer's uncertainty as to which of them should be considered "undesirable". Notice that after the first three state feedback (pole placing) terms of \(\tau_P \) above, is a set of three terms involving the reference signal. If \(M \) were constant and assuming \(\omega \) is indeed assigned to be the derivative of \(\dot{\theta} \), these terms would constitute the output of a system whose transfer function is the inverse of exactly that linear time invariant system whose poles the plant has been assigned. It will be convenient in the sequel to use this analogy by referring to the first three terms of \(\tau_P \) (and the corresponding terms of the new algorithm, \(\tau_P \), proposed in Section 4) as the "pole placement" portion, and the
last three terms as the “inverse filter” portion of the control strategy.

Intuition might suggest, to the contrary, that terms which do not contribute to instability ought not to be cancelled: if inverse filtering is countenanced, it should be as closely matched to the stable part of the plant as possible. The central result of this paper, presented in Section 3, is the demonstration that system (1) can be stabilized by linear state feedback in the absence of the gravitational term of the vector field, \(k(\theta) \). In consequence, a new algorithm which incorporates the moment of inertia and coriolis matrices in the precompensating “inverse filter” rather than “pole placement” portion of the strategy, is shown, in Section 4, to drive \(\theta \) and \(\omega \) toward arbitrary reference trajectories. This arrangement begins to suggest the sort of reference models whose output might specify “natural motion.”

2. Notation and Preliminary Results

To aid the exposition of the main result, it is worth pausing to review the derivation of (1) and introduce some notation. If \(g: \mathbb{R}^n \rightarrow \mathbb{R}^m \) has continuous first partial derivatives, denote its \(m \times n \) jacobian matrix as \(d_g \). When we require only a subset of derivatives, e.g., when \(x = [x_1, x_2] \), \(x_1 \in \mathbb{R}^n, n_1 + n_2 = n \), and we desire the jacobian of \(g \) with respect to the variables \(x_1 \), as \(x_2 \) is held fixed, we may write

\[d_{x_1} g \triangleq d_g \left[\begin{array}{c} I_{n_1} \\ 0 \end{array} \right] \]

where \(I_{n_1} \) is the \(n_1 \times n_1 \) identity matrix, and \(0 \) is the \(n_2 \times n_1 \) zero matrix. If \(A \in \mathbb{R}^{n \times m} \) then its representation in \(\mathbb{R}^{n \times m} \) formed by “stacking” each column below the previous - Bellman’s “stack” operator \([2]\) - will be denoted \(A^s \). If \(A \) is an \(n \times m \) array, and \(B \) is an \(p \times q \) array then their kronecker product is defined as the \(np \times mq \) array

\[B \times A \triangleq \begin{bmatrix} A b_{11} & \ldots & A b_{1q} \\ \vdots & \ddots & \vdots \\ A b_{p1} & \ldots & A b_{pq} \end{bmatrix} \]

If \(g(x) \triangleq A(x)b \), where \(b \) is a constant vector in \(\mathbb{R}^m \), then it may be shown that

\[d_g = [b \otimes I_n]^T d_A^T, \]

where \(I_n \) denotes the \(n \times n \) identity matrix.

To derive (1) we will use the Lagrange formulation of the dynamical equations. If \(\theta \) is a vector of generalized coordinates, with derivatives, \(\omega \), then it can be shown that the total kinetic energy of the robot arm is given by

\[K \triangleq \frac{1}{2} \omega^T M \omega, \]

where \(M \) depends upon transcendental terms in \(\theta \), arising from the kinematics of the arm. If \(\phi \) is the gravitational potential, and \(\tau \) is the vector of generalized forces applied at each joint, then the equations of motion obtain from

\[r^2 = \frac{d}{dt} \omega^T L - d_\omega L \]

where \(L \triangleq k - \phi \). If, as in this case, \(\phi \) does not depend upon \(\omega \), then we may write

\[\frac{d}{dt} \omega^T L = \frac{d}{dt} d_\omega \phi \]

\[= [M \omega + \dot{M} \omega] \]

It follows that the only terms multiplying \(\phi \) in (1) arise from

\[\dot{M} \omega = \frac{1}{2} [d_\phi]^T. \]

Now notice that

\[\dot{M} \omega = [\omega \otimes I] [d_\phi]^T \]

while

\[\frac{1}{2} \dot{M} \omega = \frac{1}{2} \omega [\omega \otimes I] [d_\phi]^T. \]

Expression (3) may thus be re-written as

\[\frac{1}{2} \dot{M} \omega + \frac{1}{2} \left[(\omega \otimes I)^T (d_\phi^2) - [d_\phi]^T (\omega \otimes I) \right] \omega = \frac{1}{2} \left[\dot{M} - J \right] \omega, \]

where \(J \) is a skew-symmetric matrix for all \(\omega \) and \(\theta \). In other words, \(J \), the coriolis and centripetal force term in (1) may be written as the sum of the time derivative of the positive definite symmetric moment of inertia matrix, \(M \), and a skew-symmetric matrix, \(J \).

3. A Simpler Stabilizing Feedback Strategy

It is now possible to show that in the absence of gravity, and admitting assumption (i), from Section 1, any kinematic chain possessed of a positive definite moment of inertia matrix is stable in the large. The same Lyapunov function used in the latter demonstration may be again employed to show that the system is stabilizable - i.e., may be made globally asymptotically stable - using linear state feedback. For the sake of brevity, it is preferable to prove a single statement regarding the full robot model presented in the introduction.

Define a simpler pole placement feedback algorithm

\[\tau_p \triangleq k(\theta) - \gamma_1 \omega - \gamma_0 \theta, \]

which gives rise to the closed loop system

\[\dot{\theta} = \omega \]

\[\dot{\omega} = -M^{-1}(\theta) [(B + \gamma_1)\omega + \gamma_0 \theta]. \]

Theorem 1: System (4) is globally asymptotically stable.

Proof: Consider the positive definite Lyapunov candidate

\[V = \frac{1}{2} (\gamma_0 \theta^T \theta + \omega^T M \omega), \]

whose time derivative is given by

\[\dot{V} = \gamma_0 \theta^T \omega + \frac{1}{2} \omega^T \dot{M} \omega - \omega^T B \omega - \gamma_1 \theta^T \omega - \gamma_0 \omega \theta \]

\[= \frac{1}{2} \omega^T \tau - \gamma_1 \omega^T \omega. \]
Since J is skew-symmetric, the first term of the last equation is zero, and $\dot{\nu}$ is negative semi-definite. Thus, the error system is globally stable, and ω converges to zero. To show that the system is globally asymptotically stable - i.e. that θ converges to zero as well - it suffices to show that the vector field in (4) is never directed toward the interior nor lies upon the boundary of the surface described by $\nu = 0$. In the case at hand, this surface is the time-invariant subspace $\omega = 0$, and the vector field restricted to this subspace is given by

$$f_{\omega} = 0 = \gamma_0 \left(\begin{array}{c} 0 \\ M^{-1} g \end{array} \right)$$

Since M is positive definite, the condition is satisfied, and the result follows.

Future research may reveal terms in the gravitational part of the vector field of (1), k, to be harmless from the point of view of stability. This would afford a still simpler version of τ_P.

4. A New Algorithm

The strategy of τ_P - pole placement preceded by inverse filtering of the pole-placed system - may be imitated in light of Theorem 1 by the following feedback algorithm:

$$\tau_P' \dot{\tau} + k = M \dot{\theta} + B \dot{\omega} + \gamma_1 \dot{\epsilon} + \gamma_0 \dot{\epsilon}^2$$ \(5\)

The reader will notice that a portion of this expression exactly matches τ_P, while the remaining terms involving the reference signals constitute the “inverse filter” of system (4). The resulting error equations may be written as

$$\dot{\theta} = \epsilon$$
$$\dot{\epsilon} = -M^{-1} [B \epsilon + \gamma_1 \dot{\epsilon} + \gamma_0 \dot{\epsilon}^2]$$ \(6\)

and are seen to be globally asymptotically stable by appeal to the methods of Theorem 1.

Corollary 2: System (6) is globally asymptotically stable.

Proof: Define the Lyapunov candidate

$$V = \frac{1}{2} \left(\dot{\gamma}_0^2 \dot{\epsilon}^2 + \epsilon^2 M \dot{\epsilon} \right),$$

and follow the same argument as in the proof of Theorem 1. \square

Of course, it is no more possible to match coefficients exactly in an “inverse” pre-filter than to cancel them via state feedback: τ_P has, as yet, no better theoretical claim to having addressed the problems of assumption (iii) in the introduction than has τ_P. However, assuming that $k(\theta)$, the gravitational torques, may be computed with sufficient accuracy (they are computationally less complex), there is some reason to believe that τ_P' is preferable in this regard. In a linear setting, the stability of the closed loop may be compromised by trying to cancel parameters whose values are not known with sufficient accuracy in the feedback pathway: an inaccurate precompensating filter followed by a stable plant (stabilized without prescribed poles) may cause inaccurate tracking but will never produce instability. Independent theoretical arguments are needed to establish the analogous result for τ_P', since the computation of M and B still depends upon plant variables: this precompensating filter is not external to the nonlinear feedback loop.

A fundamental goal of this research is the means of command by dynamical reference models. The algorithm presented in (5) suggests regarding θ, ω, as the state variables of the exponentially stable linear time varying system

$$\dot{\xi} = \xi$$
$$\dot{\xi} = -M^{-1} (B + \gamma_1) \xi + \gamma_0 \xi \cdot \sigma.$$

That is to say, setting the command input to be

$$\tau_P' = k(\theta) + \sigma \cdot \gamma_1 \omega + \gamma_0 (\dot{\xi} \cdot \theta)$$ \(8\)

it follows that ω and θ must converge to ξ and ξ, respectively, according to Theorem 1.

The implication here is that suitable dynamical models of desired motion should include (7). Since the correct estimates of M and B will ultimately depend upon particular features of the task - for instance the mass and moments of a workpiece - as well as the current state of the plant, it makes some sense to isolate them from the plant error feedback loop. There would still remain the question of a suitable linear or sub-system of the reference model which must estimate a “proper” value of σ. Since (7) is linear and exponentially stable, there is some reason to hope that specifying a natural class of σ commands (i.e. those which produce the desired velocity and position reference signals) will be more tractable than the original problem of determining “natural motions” of (1), or even of the globally (exponentially) asymptotically stable, but nonlinear system (4).

References

Note that the stability of the unforced system is again established using the Lyapunov function.