
University of Pennsylvania
ScholarlyCommons

Publicly accessible Penn Dissertations

Spring 5-16-2011

Algorithms for Bivariate Singularity Analysis
Timothy DeVries
tdevries@sas.upenn.edu

Follow this and additional works at: http://repository.upenn.edu/edissertations
Part of the Discrete Mathematics and Combinatorics Commons, and the Geometry and

Topology Commons

This paper is posted at ScholarlyCommons. http://repository.upenn.edu/edissertations/326
For more information, please contact repository@pobox.upenn.edu.

Recommended Citation
DeVries, Timothy, "Algorithms for Bivariate Singularity Analysis" (2011). Publicly accessible Penn Dissertations. Paper 326.

http://repository.upenn.edu?utm_source=repository.upenn.edu%2Fedissertations%2F326&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/edissertations?utm_source=repository.upenn.edu%2Fedissertations%2F326&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/edissertations?utm_source=repository.upenn.edu%2Fedissertations%2F326&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/178?utm_source=repository.upenn.edu%2Fedissertations%2F326&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/180?utm_source=repository.upenn.edu%2Fedissertations%2F326&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/180?utm_source=repository.upenn.edu%2Fedissertations%2F326&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/edissertations/326?utm_source=repository.upenn.edu%2Fedissertations%2F326&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/edissertations/326
mailto:repository@pobox.upenn.edu

Algorithms for Bivariate Singularity Analysis

Abstract
An algorithm for bivariate singularity analysis is developed. For a wide class of bivariate, rational functions F =
P/Q, this algorithm produces rigorous numerics for the asymptotic analysis of the Taylor coefficients of F at
the origin. The paper begins with a self-contained treatment of multivariate singularity analysis. The analysis
itself relies heavily on the geometry of the pole set VQ of F with respect to a height function h. This analysis is
then applied to obtain asymptotics for the number of bicolored supertrees, computed in a purely multivariate
way. This example is interesting in that the asymptotics can not be computed directly from the standard
formulas of multivariate singularity analysis. Motivated by the topological study required by this example, we
present characterization theorems in the bivariate case that classify the geometric features salient to the
analysis. These characterization theorems are then used to produce an algorithm for this analysis in the
bivariate case. A full implementation of the algorithm follows.

Degree Type
Dissertation

Degree Name
Doctor of Philosophy (PhD)

Graduate Group
Mathematics

First Advisor
Robin Pemantle

Keywords
asymptotics, singularity analysis, generating function, Morse theory, combinatorics, numerics

Subject Categories
Discrete Mathematics and Combinatorics | Geometry and Topology

This dissertation is available at ScholarlyCommons: http://repository.upenn.edu/edissertations/326

http://repository.upenn.edu/edissertations/326?utm_source=repository.upenn.edu%2Fedissertations%2F326&utm_medium=PDF&utm_campaign=PDFCoverPages

ALGORITHMS FOR BIVARIATE SINGULARITY ANALYSIS

Timothy DeVries

A Dissertation

in

Mathematics

Presented to the Faculties of the University of Pennsylvania in Partial Fulfillment of
the Requirements for the Degree of Doctor of Philosophy

2011

Supervisor of Dissertation:

Robin Pemantle, Merriam Term Professor of Mathematics

Graduate Group Chairperson:

Jonathan Block, Professor of Mathematics

Dissertation Committee:

Herman Gluck, Professor of Mathematics

James Haglund, Associate Professor of Mathematics

Robin Pemantle, Merriam Term Professor of Mathematics

Acknowledgments

There are many people without whom this thesis would not exist, not least among whom

are the professors I have worked with while a student at the University of Pennsylvania. I

am eternally grateful to my advisor Robin Pemantle. Robin was a perfect advisor, quickly

ascertaining both my strengths and my interests and guiding my research accordingly. I

would also like to thank Mark Ward, in whose course I was first exposed to the joys of

symbolic combinatorics. Together, Robin and Mark have opened a special place in my life

for analytic combinatorics.

In the course of working on my thesis I have had the chance to work with and learn

from many brilliant mathematicians. I thank Mark Wilson and Alex Raichev for producing

the seed from which the first two chapters of this thesis grew. I thank Joris van der Hoeven

for his work on rigorous numerics, and for our upcoming collaboration on implementing

the algorithms described in this paper. I thank Philippe Flajolet and Robert Sedgewick for

writing Analytic Combinatorics, the book that reignited by interest in discrete math.

The process of producing this thesis was arduous, but I was fortunate enough to have

been around people who made the process easier. I would like to thank all the students

who made graduate life more enjoyable, especially Jen Hom and Michael Lugo. Our con-

versations and commiseration kept my mind at ease. And without the fantastic staff of the

ii

math department, things would have been a mess. Janet Burns, Monica Pallanti, Robin

Toney and Paula Scarborough: I thank you.

Of course I would not be studying mathematics at all without the influence of many

outstanding educators. Specifically, I would like to thank Carolyn Petite and Wade Tolleson,

my high school computer science and calculus teachers, respectively. Their encouragement

came at a critical time in my life, and gave me confidence in my abilities. I am also indebted

to Louis Billera, whose course in combinatorics at Cornell steered my main mathematical

interest.

I would like to give my sincerest thanks to my family. My father, Paul DeVries, and my

mother, Emily DeVries, have supported me in every decision I have made. They provided

me with every opportunity and trusted me to make the right choices. I thank my Dad for

always being available to listen to and help with my (non-math) problems. I thank my

brother Chris DeVries for sharing his knowledge of academia, and for understanding the

trials I have faced. I thank my brother Matt DeVries for taking me backstage and forcing

me to have fun every once in a while.

Most of all I would like to thank Jenna Thompson, soon to be Jenna DeVries. All that

I have produced and all that I will ever be is touched by the light you bring to my life. I

love you.

iii

ABSTRACT

ALGORITHMS FOR BIVARIATE SINGULARITY ANALYSIS

Timothy DeVries

Robin Pemantle, Advisor

An algorithm for bivariate singularity analysis is developed. For a wide class of bivariate,

rational functions F = P/Q, this algorithm produces rigorous numerics for the asymptotic

analysis of the Taylor coefficients of F at the origin. The paper begins with a self-contained

treatment of multivariate singularity analysis. The analysis itself relies heavily on the ge-

ometry of the pole set VQ of F with respect to a height function h. This analysis is then

applied to obtain asymptotics for the number of bicolored supertrees, computed in a purely

multivariate way. This example is interesting in that the asymptotics can not be computed

directly from the standard formulas of multivariate singularity analysis. Motivated by the

topological study required by this example, we present characterization theorems in the

bivariate case that classify the geometric features salient to the analysis. These character-

ization theorems are then used to produce an algorithm for this analysis in the bivariate

case. A full implementation of the algorithm follows.

iv

Contents

1 Singularity Analysis Background 1

1.1 Introduction . 1

1.2 Coefficient representation . 6

1.3 The residue theorem . 9

1.4 Critical points of the height function . 16

2 Application to Bicolored Supertrees 20

2.1 Problem specification . 20

2.2 Describing the variety . 23

2.3 Representing the intersection cycle . 27

2.4 Saddle location and contour analysis . 30

2.5 Saddle point integration . 37

3 Homology of the Intersection Class 41

3.1 Setup and assumptions . 41

3.2 Describing the variety at large height . 43

3.3 Unveiling the rest of the singular variety . 52

v

3.4 The intersection cycle . 58

3.5 First characterization theorem . 61

3.6 Generalized characterization theorem . 69

4 Algorithmic Implementation 74

4.1 Introduction . 74

4.2 Describing the pseudo-language . 77

4.3 Examining the height near infinity . 83

4.4 Finding solutions to a polynomial system 86

4.5 Finding the saddle and non-smooth points 87

4.6 Computing possible height values . 89

4.7 Computing a terminal condition . 90

4.8 Determining a local parameterization variable 93

4.9 Isolating roots . 94

4.10 Finding a parameterization neighborhood 96

4.11 Calculating the degeneracy of a saddle point 101

4.12 Finding a neighborhood for ascent steps . 102

4.13 Computing a single ascent step . 109

4.14 Chaining the ascent steps together . 110

4.15 The main algorithm . 112

vi

List of Figures

2.1 The zero sets of Im f and f . 25

2.2 The branch cuts where parameterization by x fails. 26

2.3 The Riemann surface for
√

f(x). 26

2.4 A constructive view of the topology of VQ. 28

2.5 The pentagonal path p. 32

3.1 The region VQ local to σ0 with respect to height h̃. 57

3.2 The region VQ local to σ0 with respect to height h. 57

3.3 The cycle ∂X̃>c−ε/2 local to a saddle σ of degeneracy k = 3. 65

3.4 The cycle ∂X>c−ε/2 local to a saddle σ of degeneracy k = 3. 65

3.5 The difference between the cycles ∂X̃>c−ε/2 and ∂X>c−ε/2. 65

3.6 A representation of κ0 local to a saddle σ. 67

3.7 A representation of κ0 after preliminary alterations. 67

3.8 A representation of κ after final alterations. 68

4.1 The geometric structure local to a saddle point. 105

vii

Chapter 1

Singularity Analysis Background

1.1 Introduction1

Let A denote a combinatorial class, i.e. a set of combinatorial objects. For example, A

could be the set of all trees of a particular type, or the set of all walks on a two-dimensional

grid having a particular structure, or any other manner of combinatorial object. We assume

that A admits a natural partition into a collection of finite subsets Ar indexed by d-tuples

r = (r1, . . . , rd) of natural numbers. For example Ar could denote the set of trees with r1

nodes (indexed by 1-tuples), or the set of paths on an r1 by r2 grid (indexed by 2-tuples),

etc. The main task in enumerative combinatorics is to count the objects of A by obtaining

formulas for the sizes ar := |Ar| of these partitions. Often it is difficult to obtain exact

formulas for the ar directly, and so instead we shall seek asymptotic approximations for the

ar as r → ∞.

Our analysis begins with the construction of the ordinary generating function of the

1Portions of Chapters 1 and 2 were first published in Contemporary Mathematics in volume 520, published

by the American Mathematical Society, c© 2010 by the American Mathematical Society.

1

class A, which is the d-variable formal power series defined by

F (x) =
∑

r∈Nd

arx
r

(where xr is shorthand for xr11 · · · · · xrdd). The combinatorial structure of A often reveals F

to be an analytic function in a neighborhood of the origin 0 ∈ Cd, leading to a closed-form

representation for F . It is then hoped that analytic properties of F may be used to extract

information about its coefficients, freeing the problem from its discrete roots and opening it

up to the techniques of analysis. This method is known as singularity analysis, due to the

strong relationship between the asymptotic growth of the coefficients ar and the singular

set of the generating function F .

Singularity analysis in the univariate, d = 1 case has been studied thoroughly (see

[FS09]) and is well understood, e.g. formulas exist for computing asymptotics for univari-

ate generating functions that are rational, algebraic-logarithmic, or even of several more

complicated or implicitly defined classes. The multivariate, d ≥ 2 case is far less well un-

derstood. Recently, however, a line of research begun by Robin Pemantle and Mark Wilson

(see [PW02] and [PW08]) has proved to be a fruitful generalization of singularity analysis

to higher dimensions.

The singularity analysis of Pemantle and Wilson has the following basic structure: be-

gin with Cauchy’s Integral Formula, manipulate the integral/integrand, and end with sad-

dle point integration. To be more explicit, we assume that the generating function of

a particular combinatorial class takes the form F = η/Q, with η : Cd → C entire and

Q ∈ Q [x1, . . . , xd] . Cauchy’s Integral Formula then expresses the coefficients of F as an

integral of a particular d-form. By appropriately adjusting this integral, we can rewrite this

as the integral of a related (d− 1)-form defined on the variety VQ = {x : Q(x) = 0} along a

2

cycle C ⊆ VQ. We define a height function h on the variety VQ related to the rate of decay

of this new integrand. We then push this cycle down along VQ, minimizing the maximum

of h along C at critical points of the function h. Under the right conditions, the coefficients

can finally be approximated as saddle point integrals along C in small neighborhoods of a

finite set of these critical points, known as the contributing points. We shall study these

techniques in more detail in the remainder of Chapter 1.

It is shown in [PW02] and [PW08] how these techniques produce automatic asymp-

totic formulas for many bivariate rational generating functions. Specifically when all the

contributing points are minimal — that is, on the generating function’s boundary of conver-

gence — then an explicit algorithm exists for determining which critical points contribute

and computing the saddle point integral near these points (in the bivariate case). And when

the generating function is combinatorial, i.e. when all its coefficients are non-negative, then

the contributing points will all be minimal (under the standing assumption of [PW08],

Assumption 3.6).

Hoping to extend this analysis to algebraic generating functions, it was noted by Alex

Raichev and Mark Wilson in [RW08] that the algebraic case reduces to the rational case,

albeit in one higher dimension. This is due to Safonov’s algorithm, which realizes the

coefficients of any algebraic generating function as a so-called diagonal of the coefficients of

a rational function in one more variable [Saf00]. It is then hoped that the results of [PW02]

will be applicable to this newly-formed rational function. An analysis of this form is carried

out in Chapter 2 to count the number of bicolored supertrees, but an obstacle prevents

this analysis from being a straightforward application of the formulas in [PW02]. The

obstacle is that the rational function produced by Safonov’s algorithm is not necessarily

3

combinatorial; only along a diagonal do the coefficients in this new generating function

actually count something, and off the diagonal the coefficients are free to be (and often are)

negative.

In the non-combinatorial case, [PW02] does not provide us with the locations of the

contributing points. Worse than that, however, is that even once the contributing points

have been found, there is no formula automatically producing the correct saddle point

computation in a neighborhood of these points. This is because the structure of C local

to the contributing points is not automatically known. (On the contrary, for minimal

contributing points, an explicit construction for C near these points is known; see [PW02]).

This is particularly bad when the contributing point is a degenerate saddle point for the

height function. Since the height on C is locally maximized at the contributing point, it

must locally approach and depart along ascent and descent paths. A greater degree of

degeneracy means more ascent/descent paths, hence more possibilities for the local path

followed by C. And indeed in the case of bicolored supertrees the contributing point is a

degenerate saddle point of the height function.

Understanding the saddle point integration near these degenerate saddles is particularly

important because degenerate saddles arise frequently in combinatorial applications (despite

the fact that they are nongeneric). A careful analysis of [PW02] reveals that, in the absence

of such degenerate saddles, one obtains leading term asymptotics only of the form cAnnp/2

(for constants c, A and integer p). By Safonov’s algorithm, any univariate algebraic gen-

erating function can be realized as the diagonal of a bivariate rational generating function.

But by univariate asymptotic methods, we know that the coefficients of such univariate

functions can produce leading term asymptotics of the form cAnnp/q for arbitrary q ∈ N

4

(see [FS09, Section VII.7]), and so a multivariate analysis of the corresponding bivariate

rational function should turn up a degenerate saddle whenever q > 2.

In Chapter 3 we explore the topology of VQ (for bivariate Q) and the homology class

of the cycle C on VQ. Under certain assumptions on Q and the height function h, we will

ultimately produce a topological characterization of the set of contributing points and of

the structure of the cycle C local to these points. This characterization is particularly nice

in that it is effectively computable, though this is not obvious. Finally in Chapter 4 we

use the topological characterization of Chapter 3 to present a fully implemented algorithm

for locating the contributing points and describing the structure of C local to these points.

Note that portions of Chapters 3 and 4 will appear in a forthcoming work, [DPvdH11].

Chapter 2 is a case study in the techniques developed in the subsequent chapters. It

shall serve as a motivating example for understanding how to apply singularity analysis to

a possibly non-combinatorial rational generating function F = P/Q. Though the results of

Chapter 2 are subsumed in the later work, the intuition behind the more general results will

be better understood after seeing an example. Note that the techniques applied to describe

VQ in Chapter 2 are somewhat ad-hoc, and not appropriate for an automatic computation.

The next task is to explain the basic technique of singularity analysis in more detail,

laying the groundwork for later chapters.

5

1.2 Coefficient representation

For the duration of this paper, let F : Cd → C be a function analytic in a neighborhood of

the origin, having representation

F (x) =
∑

r∈Nd

arx
r,

where xr is shorthand notation for xr11 . . . xrdd . The goal is to obtain an asymptotic expansion

for the coefficients ar given F, and the main tool for this is Cauchy’s Integral Formula.

Theorem 1.2.1 (Cauchy’s Integral Formula). Let F be as above, analytic in a polydisc

D0 = {x : |xj | < εj ∀ j}, for some positive, real εj . Assume further that F is continuous on

the distinguished boundary T0 of D0, a product of loops around the origin in each coordinate,

each one positively oriented with respect to the complex orientation of its respective plane.

Then

ar =

∫

T0

ωF ,

where

ωF =
1

(2πi)d
· F (x)

x1 · . . . · xd
x−r dx.

Cauchy’s Integral Formula can be found in most textbooks presenting complex analysis

in a multivariable setting, and follows easily as an iterated form of the single variable

formula. See, for example, [Sha92, p. 19].

We wish to use the structure of Cauchy’s formula to obtain an asymptotic formula for

ar as r → ∞, but first we need to be more precise about what is meant by “r → ∞.”

There are many ways to send the vector r to infinity, but one of the most natural ways is

to fix a direction in the positive d-hyperoctant and send r to infinity along this direction.

6

Specifically, define the (d− 1)-simplex ∆d−1 by

∆d−1 =

(r̂1, . . . , r̂d) : r̂j ≥ 0 ∀j,
d
∑

j=1

r̂j = d

,

where we choose the convention that the r̂j sum to d for later notational convenience. Then

any r in the positive d-hyperoctant can be written uniquely as r = |r|r̂, where |r| ∈ R+ and

r̂ ∈ ∆d−1. We examine r as |r| → ∞ and r̂ → r̂0 for some fixed direction r̂0 ∈ ∆d−1.

Now we turn to the structure of the integrand ωF , specifically x−r (the portion that

changes as we vary r). With an eye on the end goal of reducing our computation to a saddle

integral, we use the following representation (away from the coordinate axes):

x−r = exp

−
d
∑

j=1

rj log xj

 = exp (|r|Hr̂(x)) ,

where we define the multi-valued function

Hr̂(x) := −
d
∑

j=1

r̂j log xj . (1.2.1)

When no confusion exists, we will simply refer to the function Hr̂ as H. Now the over-

all magnitude of the integrand will be an important factor in computing an asymptotic

expansion for ar, and so we next examine the magnitude of exp (|r|Hr̂(x)) . We have

|exp (|r|Hr̂(x))| = exp (|r|ReHr̂(x)) = exp (|r|hr̂(x)) ,

where we define the single-valued function

hr̂(x) := ReHr̂ = −
d
∑

j=1

r̂j log |xj |. (1.2.2)

When no confusion exists, we will simply refer to the function hr̂ as h. The geometry of the

height function h will play an important role in our analysis.

7

As |r| → ∞, the above equations show that the magnitude of the integrand grows at

an exponentially slower rate along points further away from the origin (where the height

function h is smaller). This motivates pushing the domain of integration out towards infinity,

reducing the growth rate of the integrand on the domain over which it is integrated. Of

course if F has poles they will present an obstruction, but we can still try push the domain

of integration around these poles. In the end we obtain an integral over two domains: one

near the pole set of F (obtained by pushing the original domain around the poles), and one

past the pole set of F (far away from the origin). This idea is formalized in the theorem

below.

Theorem 1.2.2. Let F = P/Q, with P,Q : Cd → C entire, where the vanishing set VQ of

Q is smooth. Let T0 be a torus as in Cauchy’s Integral Formula. Let T1 ⊆ Cd be a torus

homotopic to T0 under a homotopy

K : T × [0, 1] → Cd, with T0 = T × {0}, T1 = T × {1},

passing through VQ transversely. Identifying K with its image in Cd, assume further that

K does not intersect the coordinate axes, and that ∂K ∩ VQ = ∅. Define

C = K ∩ VQ.

Then for any tubular neighborhood ν of of C in K, we have

ar =

∫

T0

ωF =

∫

∂ν
ωF +

∫

T1

ωF ,

given the proper orientation of ∂ν.

Note: when we say VQ is smooth we mean that VQ has the structure of a smooth

manifold (see [Bre93, p. 68]). And when we say that K passes through VQ transversely we

8

mean that the image of K intersects with VQ transversely as (real) submanifolds of Cd (see

[Bre93, p. 84]).

Proof. Counting (real) dimensions, dimVQ = 2d − 2 and dimK = d + 1. Hence their

transverse intersection C is a d− 1 real-dimensional subspace of K.

Now take any tubular neighborhood ν of C in K. As ν is a full-dimensional submanifold

of the orientable manifold K, ν is orientable and hence its boundary ∂ν is orientable too.

Given the proper orientation of ∂ν, we have that

∂(K \ ν) = T1 − T0 + ∂ν.

Note that ωF is holomorphic on K \ ν. By Stokes’ Theorem ([Bre93, p. 267]) and the

fact that ωF is an exact form we get

∫

T1−T0+∂ν
ωF =

∫

K\ν
dωF =

∫

K\ν
0 = 0,

leading to the equality of the theorem.

When T1 is far enough away from the origin,
∫

T1
ωF is negligible (possibly even 0), and

so the asymptotic analysis of the coefficients ar reduces to an integral near the pole set of

F. In the next section, we reduce this further to an integral on the pole set of F.

1.3 The residue theorem

In this section we present a theory generalizing the theory of residues of the complex analysis

of one variable. The theory was developed by Jean Leray in 1959, and more details regarding

the construction can be found in [AY83, Section 16]. The main result we obtain is Theorem

9

1.3.6 below, an analogue of the Cauchy Residue Theorem in one variable. Its application

to coefficient analysis is found in Corollary 1.3.7.

We restrict our attention to a limited part of Leray’s theory, focusing on meromorphic

d-forms in Cd.

Definition 1.3.1. Let η be a meromorphic d-form, represented as

η =
P

Q
dx on a domain U ⊆ Cd

where P and Q are holomorphic on U. Denote by VQ the zero set of Q on U, and assume

that η has a simple pole everywhere on VQ. Denote by ι : VQ → U the inclusion map. Then

we define the residue of η on VQ by

Res(η) = ι∗θ,

where ι∗ denotes pullback by ι (see [Bre93, p. 263]), and where θ is any solution to

dQ ∧ θ = P dx.

Before delving into the existence and uniqueness of the residue, we do a few example

computations.

Example 1.3.2. For η = P/Qdx as above, wherever Qi =
∂Q
∂xi

does not vanish we have the

representation

Res(η) = (−1)i−1 P

Qi
dx1 ∧ · · · ∧ dxi−1 ∧ dxi+1 ∧ · · · ∧ dxd.

As a special case, note that for Q = x1 we obtain

Res(η) = P (0, x2, . . . , xd) dx2 ∧ · · · ∧ dxd.

10

In the case where d = 1, this reduces to Res(P (x)/x) = P (0), which is precisely the ordinary

residue of P (x)/x at x = 0. This motivates the above definition as a genuine extension of

the single variable residue.

Example 1.3.3. As the most pertinent case of the Example 1.3.2, we examine Res(ωF) where

F = P/Q is meromorphic. Away from the coordinate axes, ωF can be written as

ωF =

1
(2πi)d

· P (x)
x1...xd

exp(|r|H(x))

Q(x)
dx,

where the numerator and denominator are holomorphic functions. So wherever Qd and the

xj do not vanish (for all j), we have

Res(ωF) =
(−1)d−1

(2πi)d
· P (x)

x1 . . . xdQd(x)
e|r|H(x)dx1 ∧ · · · ∧ dxd−1.

We now show existence and uniqueness of the residue form along the simple pole set

VQ.

Proposition 1.3.4. Let η be as in Definition 1.3.1. Then for any point p ∈ VQ, there is a

neighborhood V ⊆ U of p and a holomorphic (d− 1)-form θ on V solving the equation

dQ ∧ θ = P dx. (1.3.1)

Furthermore, the restriction ι∗θ induced by the inclusion ι : VQ ∩ V → V is unique.

Proof. First, we prove the existence of a solution θ to (1.3.1) in a neighborhood of p. As Q

has a simple zero at p, the implicit function theorem implies that for some neighborhood

V of p there is a biholomorphic function ψ : Cd → V such that Q(ψ(x)) = x1. Define the

form θ0 by

θ0 = (P ◦ ψ)|J | dx2 ∧ · · · ∧ dxd,

11

where J is the Jacobian of the function ψ. The claim is that θ = (ψ−1)∗θ0 is a solution to

(1.3.1).

Indeed, by definition of θ0 we have that dx1∧θ0 = (P ◦ψ)|J | dx. Pulling back both sides

of this equation by ψ−1 yields

d(ψ−1(x)1) ∧ (ψ−1)∗θ0 = P · (ψ−1)∗(|J | dx),

which simplifies to dQ ∧ θ = P dx, as desired.

To prove uniqueness, assume that we have two (d−1)-forms θ and θ̃ such that dQ∧ θ =

P dx and dQ ∧ θ̃ = P dx. Then dQ ∧ (θ − θ̃) = 0, which implies

ψ∗(dQ ∧ (θ − θ̃)) = dx1 ∧ ψ∗(θ − θ̃) = 0.

But this means that ψ∗(θ− θ̃) is a multiple of dx1. Pulling back by (ψ−1)∗, this implies that

θ− θ̃ is a multiple of dQ. Finally, pulling back by ι∗, this implies that ι∗(θ− θ̃) is a multiple

of d(Q ◦ ι) = 0. Thus ι∗(θ − θ̃) vanishes, and so ι∗θ = ι∗θ̃.

Remark 1.3.5. Let η be as in the definition of the residue form, and let ψ : V → U be a

biholomorphic function. Then

1. The residue form is natural, i.e. Res(η) does not depend on the particular P and Q

chosen to represent η as (P/Q) dx.

2. The residue form is functorial, i.e. Res(ψ∗η) = ψ∗Res(η) (where on the right side of

the equation, ψ is restricted to the domain ψ−1(VQ) = VQ◦ψ).

Theorem 1.3.6 (Cauchy-Leray Residue Theorem). Let η be a meromorphic d-form on

domain U ⊆ Cd, with pole set V ⊆ U along which η has only simple poles. Let N be a

12

d-chain in U, locally the product of a (d − 1)-chain C on V with a circle γ in the normal

slice to V , oriented positively with respect to the complex structure of the normal slice. Then

∫

N
η = 2πi

∫

C
Res(η).

Proof. We proceed by examining the structure of the integral locally. So fix an arbitrary

p ∈ C. In a neighborhood V ⊆ Cd of p, the surrounding space looks like a direct product

of V ∩ V (isomorphic to Cd−1 for V small) and the normal space to V ∩ V (isomorphic to

C). Hence there is a biholomorphic function

ϕ : V → C× Cd−1

x 7→ (ϕ1(x), ϕ2(x))

where the map ϕ−1
2 is a parametrization of V ∩ V, and

ϕ(V ∩ V) = {0} × ϕ2(V ∩ V),

ϕ(N ∩ V) = γ × ϕ2(C ∩ V),

where γ ⊆ C is a loop around the origin, positively oriented. Furthermore, if V is chosen

small enough, we can guarantee that the meromorphic form (ϕ−1)∗η has a global represen-

tation as P/Qdx. Note that, by the structure of η and definition of ϕ, Q must vanish on

the set

ϕ(V ∩ V) = {x ∈ Cd : x1 = 0},

where it has only simple zeros.

I claim that if we can prove the equality stated in the residue theorem restricted to

V , we will be done with the theorem. This is due to the additivity of integration and the

13

compactness of C: we can split up a tubular neighborhood of C (containing N) into finitely

many such neighborhoods on which the theorem holds, then prove the theorem by breaking

the integral into a sum over these pieces.

So without loss of generality, we may assume that this local structure holds globally on

C and that the domain of the map ϕ is all of Cd. By changing variables, we get

∫

N
η =

∫

γ×ϕ2(C)

P

Q
dx =

∫

p∈ϕ2(C)

(

∫

γ×{p}

P

Q
dx1

)

dx2 ∧ · · · ∧ dxd. (1.3.2)

the upshot being the ability to split the above into an iterated integral, by the product

structure of γ × ϕ2(C).

The next step is to compute the inner integral from (1.3.2) by the ordinary residue

theorem, but doing so will require a change of variables. To that end, define the function

ψ : Cd → Cd by

ψ(x) = (Q(x), x2, x3, . . . , xd),

and fix some p ∈ Cd−1. The claim is that ψ is biholomorphic in a neighborhood W ⊆ Cd

of (0,p). By the inverse function theorem, this is true if and only if |J(p)| = Q1(p) 6= 0,

where J is the Jacobian of ψ. As Q has a simple zero at p, it can’t be true that Qi(p) = 0

for all i. But Qi(p) = 0 for all i 6= 1, because Q is constant (equal to 0) on the entire plane

x1 = 0. Thus Q1(p) 6= 0, as desired. Note that ψ−1 must have the form

ψ−1(x) = (f(x), x2, x3, . . . , xd)

for some function f, and that Q ◦ ψ−1 = x1.

We’d like to perform a change of variables and compute the inner integral from (1.3.2)

over the domain ψ(γ × {p}). The only problem with this is that there is no guarantee that

γ × ϕ2(C) ⊆W. But we can make this guarantee by shrinking N, i.e. shrinking the loop γ

14

closer to the origin, and by (potentially) restricting our attention to a small portion of C.

Note that shrinking N has no effect on the original integral (the new N will differ from the

old N by a boundary, and we are integrating a closed form), and that, as we have already

stated, we need only prove the residue theorem locally. Thus we may assume without loss

of generality that γ × ϕ2(C) is contained entirely within the domain of ψ.

After the suggested change of variables, we obtain

∫

N
η =

∫

p∈ϕ2(C)

(

∫

ψ(γ×{p})

P ◦ ψ−1

x1

∂f

∂x1
dx1

)

dx2 ∧ . . . ∧ dxn.

By the form of ψ, ψ(γ × {p}) is simply a loop around the origin in the plane {x ∈ Cd :

(x2, . . . , xd) = p}. So by the ordinary residue theorem we can compute

∫

ψ(γ×{p})

P ◦ ψ−1

x1

∂f

∂x1
dx1 = 2πi · P (ψ−1(0,p))

∂f

∂x1
(0,p).

Substituting back into (1.3.2) yields

∫

N
η = 2πi

∫

p∈ϕ2(C)
P (ψ−1(0,p))

∂f

∂x1
(0,p) dx2 ∧ . . . ∧ dxn

= 2πi

∫

{0}×ϕ2(C)
Res

(

P ◦ ψ−1 · ∂f
∂x1

x1
dx

)

,

where the second equality comes from the residue computation of Example 1.3.2.

But note that

(ψ−1)∗
(

P

Q
dx

)

=
P ◦ ψ−1

x1

d
∑

j=1

∂f

∂xj
dxj

 ∧ dx2 ∧ · · · ∧ dxd

=
P ◦ ψ−1

x1

∂f

∂x1
dx,

and so the integral equation becomes

∫

N
η = 2πi

∫

{0}×ϕ2(C)
Res

(

(ψ−1)∗
(

P

Q
dx

))

= 2πi

∫

{0}×ϕ2(C)
Res

(

(ψ−1)∗(ϕ−1)∗η
)

.

15

Finally, by the functoriality of the residue form, we obtain

∫

N
η = 2πi

∫

{0}×ϕ2(C)
(ψ−1)∗(ϕ−1)∗Res(η) = 2πi

∫

C
Res(η).

The residue theorem applies directly to the coefficient analysis of the previous section

by the following corollary.

Corollary 1.3.7. Under the assumptions and notation of Theorem 1.2.2

ar = 2πi

∫

C
Res(ωF) +

∫

T1

ωF ,

given the proper orientation of C.

Proof. By the residue theorem,
∫

∂ν ωF = 2πi
∫

C Res(ωF). The result follows by substituting

this equality into the conclusion of Theorem 1.2.2.

And thus the asymptotic coefficient analysis reduces to the integration of a d− 1 form

along a cycle on the pole set of the coefficient generating function. The final step is to

compute this integral by means of the saddle point method.

1.4 Critical points of the height function

The goal is to obtain an asymptotic expansion for 2πi
∫

C Res(ωF), where F = P/Q for some

entire functions P and Q, F is analytic in a neighborhood of the origin, and VQ is smooth.

By Example 1.3.3 we can expect Res(ωF) to take the form

Res(ωF) =
(−1)d−1

(2πi)d
· P (x)

x1 . . . xdQd(x)
e|r|H(x)dx1 ∧ · · · ∧ dxd−1

16

(where Qd does not vanish), and as before we see that the exponential growth of this form

is governed by the height function h. This motivates a deformation of the cycle C along VQ,

pushing C down to a homologous cycle C̃ on which the maximum modulus of h is minimized.

This procedure is obstructed when the cycle gets trapped on a saddle point of h on VQ,

and the idea is to arrange C̃ so that the local maxima of h along C̃ are all achieved at such

saddle points. Away from the highest saddle points (the contributing points) the integral

will contribute asymptotically negligible quantities, and near the contributing points the

integral will be amenable to the saddle point method.

Thus the first task is to identify the location of the critical points of hr̂|VQ
. We denote

this set of points by Σr̂, or simply by Σ when the direction r̂ is understood. Then the points

of Σr̂ can be realized as the zero set of d equations, as exhibited below.

Theorem 1.4.1 (Location of Critical Points). Assume r̂d 6= 0. Then the set Σr̂ consists

precisely of the points p ∈ Cd satisfying the following d equations:

Q(p) = 0,

r̂dpjQj(p)− r̂jpdQd(p) = 0 ∀ j 6= d.

In the case d = 2, these critical points are actually saddle points of hr̂|VQ
.

For the purposes of computation it should be noted that when Q is a polynomial, the

above set of critical points is generically finite and can be found algorithmically by the

method of Gröbner bases (see [CLO05, Section 1.3]).

Proof. The equation Q(p) = 0 is clear: any critical point of h|VQ
will have to be on VQ. So

we turn to the remaining d− 1 equations.

17

Fix a point p ∈ VQ (not on the coordinate axes). By the Cauchy-Riemann equations, p

is a critical point of Re
(

H|VQ

)

if and only if it is a critical point of Im
(

H|VQ

)

. Thus p is

a critical point of h|VQ
exactly when

∇(H|VQ
)(p) = 0.

But ∇(H|VQ
)(p) is simply the projection of ∇H(p) onto the tangent space TpVQ. Hence

the previous equation is true if and only if

∇H(p) || ∇Q(p),

as ∇Q(p) is a vector normal to the tangent space to VQ at p. This condition reduces to the

equation
(−r̂1
p1

, . . . ,
−r̂d
pd

)

= λ (Q1(p), . . . , Qd(p))

for some scalar λ, which is captured by the remaining d− 1 equations of the theorem.

For the d = 2 case, let p be any critical point of h|VQ
(hence a critical point of H|VQ

by

the above). In a chart map in a neighborhood of the origin, we can write

H|VQ
(z) = c0 + ckz

k(1 +O(z)),

for some constants c0 and ck and k ≥ 2. As h = Re(H), it follows that h|VQ
has a kth order

saddle at p.

After deforming the domain of integration so that h is locally maximized at the critical

points located above, the final step is to obtain an asymptotic expansion by applying the

saddle point method near these points. In the case where d = 2, this results in a single

variable saddle integral. Specifically, we will make use of the following theorem.

18

Theorem 1.4.2. Let A and φ be holomorphic functions on a neighborhood of 0 ∈ C, with

A(z) =
∞
∑

j=l

bjz
j , φ(z) =

∞
∑

j=k

cjz
j

where l ≥ 0, k ≥ 2 and bl 6= 0, cj 6= 0. Let γ : [−ε, ε] → C be any smooth curve with

γ(0) = 0, γ′(0) 6= 0 and assume that Reφ(γ(t)) ≥ 0 with equality only at t = 0. Denote by

γ+ the image of γ restricted to the domain [0, ε]. Then for some coefficients aj we have a

full asymptotic expansion

∫

γ+
A(z)e−λφ(z) dz ∼

∞
∑

j=l

aj
k
Γ

(

1 + j

k

)

(ckλ)
−(1+j)/k

as λ→ ∞, where the choice of kth root in (ckλ)
−(1+j)/k is made by taking the principal root

of v−1(ckλv
k)1/k where v = γ′(0). The leading two coefficients aj are given by

al = bl, al+1 = bl+1 −
2 + l

k
· ck+1

ck
.

For the purposes of computation it should be noted that each coefficient aj can be effectively

computed from the values bl, . . . , bj and ck, . . . , ck+j−l.

See [Pem09] for the proof, or [Hen91, Section 11.8] for a treatment from which the above

may be derived. It should be noted that, while the saddle point method is a very well known

and well understood technique, it is often presented only as a method for solving a general

class of problems — theorems are usually only given for limited, special case applications.

Theorem 1.4.2 is stated in a generality not easily found in the literature.

In the next chapter, we apply these techniques to a specific combinatorial example.

19

Chapter 2

Application to Bicolored

Supertrees

2.1 Problem specification

We define the class K of bicolored supertrees as follows. First, denote by G the class of

Catalan trees, i.e. rooted, unlabeled, planar trees, counted by the number of nodes. The

class G has generating function

G(x) =
1

2

(

1−
√
1− 4x

)

,

whose coefficients are the Catalan numbers. Denote by G̃ the class of bicolor-planted Catalan

trees: Catalan trees having an extra red or blue node attached to the root (likewise counted

by the number of nodes). The class G̃ has generating function

G̃(x) = 2xG(x).

20

The class of bicolored supertrees is then defined by the combinatorial substitution K = G◦G̃.

That is, the elements of K are Catalan trees with each node replaced by bicolor-planted

Catalan trees. The class K has algebraic generating function K(x) = G(G̃(x)). More

explicitly,

K(x) =
1

2
− 1

2

√

1− 4x+ 4x
√
1− 4x = 2x2 + 2x3 + 8x4 + 18x5 + 64x6 +O(x7),

with coefficients from [Slo09]. Denote by kn the coefficient of xn in the expansion of K(x)

above, i.e. the number of bicolored supertrees having n nodes. An asymptotic estimate for

the kn has been obtained by univariate analysis of K(x) [FS09, examples VI.10 and VII.20],

namely

kn ∼ 4n

8Γ(3/4)n5/4
. (2.1.1)

The class of bicolored supertrees was constructed in [FS09] precisely to have an asymptotic

growth rate of this shape, with subexponential factor of the form np/4. The fractional power

of −5/4 occurs due to the manner in which the root functions are composed in the generating

function K(x). As mentioned in Chapter 1, a subexponential factor of the form np/q with

q > 2 is atypical of the results previously obtained by bivariate singularity analysis, and

thus a bivariate analysis of the class of bicolored supertrees should serve as a good test case

for the general theory.

To that end, we note that Raichev and Wilson applied Safonov’s algorithm to K(x) in

[RW08] to produce a rational function

F (x, y) = P (x, y)/Q(x, y) =
∑

r,s≥0

ar,sx
rys

such that an,n = kn for all n. That is, they realized the coefficients of K(x) as the diagonal

coefficients of a rational generating function F (x, y). Specifically, P andQ have the following

21

specification:

P (x, y) = 2x2y
(

2x5y2 − 3x3y + x+ 2x2y − 1
)

,

Q(x, y) = x5y2 + 2x2y − 2x3y + 4y + x− 2.

(2.1.2)

We wish to use produce asymptotics on an,n as n → ∞, recapturing the result of equation

(2.1.1). Recall that, due to the non-combinatorial nature of F , we can not use the formulas

of [PW02] to obtain the result we desire automatically. Thus we follow the procedure

outlined in Chapter 1 in full.

We carry over the notation of Chapter 1. In the case of bicolored supertrees this means

F =
P

Q
, P and Q defined as in (2.1.2)

|r| = n, r̂ = r̂0 = (1, 1),

H(x, y) = − log x− log y

h(x, y) = − log |x| − log |y|.

Then as outlined in Chapter 1, the procedure will be as follows.

1. Reduce the asymptotic computation to an integral on the variety VQ using Corollary

1.3.7.

2. Locate the critical points of h|VQ
and deform the contour of integration so as to

minimize the maximum of h at such points.

3. Compute an asymptotic expansion for this integral by applying Theorem 1.4.2 near

these maxima and bounding the order away from these maxima.

These three steps will be carried out in the sections that follow. Thanks to all the work laid

out in the previous chapter, many of these steps will be automatic. The most difficult step

22

will be step (2), finding the new saddle point contour and actually proving that it possesses

the right properties (Lemma 2.4.3). The rest will be a matter of applying the theorems

when appropriate.

Before jumping into computations, however, we will need to do some initial work on

describing the variety VQ.

2.2 Describing the variety

Because Q is quadratic in the variable y, we can explicitly solve Q = 0 for y as a function

of x. This will allow us to parametrize VQ by x where possible. So define

y1(x) =
−x2 + x3 − 2 +

√
x4 + 4x2 − 4x3 + 4

x5
,

y2(x) =
−x2 + x3 − 2−

√
x4 + 4x2 − 4x3 + 4

x5
,

where in each case the principal root is chosen. Then by the quadratic formula

VQ = {(x, yj(x)) : x ∈ C \ {0}, j = 1, 2} ∪ {(0, 1/2)},

(though note that we may write (0, 1/2) = (0, y1(0)) by analytically continuing y1 at x = 0).

To parametrize VQ by x, we define the parametrization functions

ι1(x) = (x, y1(x)), ι2(x) = (x, y2(x)),

where in the construction of ι1 we assume that the singularity at x = 0 has been removed.

For the purposes of later computation, it will be nice to know the domain on which these

parametrization functions are holomorphic.

Lemma 2.2.1. The function ι1 is holomorphic on C \ B, while ι2 is holomorphic on C \

23

({0} ∪B), where

B :=
{

x = a+ ib ∈ C : a2 − 2a− b2 = 0, |b| ≥ Im
(

1 +
√
1 + 2i

)}

.

Proof. By definition of the functions y1 and y2, the only points where ι1 and ι2 may fail to

be holomorphic are when x = 0 (in the case of ι2 only) or f(x) = x4 + 4x2 − 4x3 + 4 ≤ 0

(by the choice of principal square root). Thus we examine when f(x) is a nonpositive real

number.

Denote a = Re(x) and b = Im(x). We are interested in when f(a + ib) ≤ 0, so we first

examine the equation Im f(a+ ib) = 0, or

4b(a− 1)(a2 − 2a− b2) = 0.

The solution set of the above equation is the union of the lines a = 1, b = 0 and the

hyperbola a2 − 2a − b2 = 0. The points x = 1 ±
√
1± 2i where f(x) = 0 partition the set

Im f(x) = 0 into 5 components on which Re f(x) is either all positive or all negative (by

continuity of f on the connected set Im f(x) = 0). See Figure 2.1 for a depiction of these

components.

By plugging sample points from each component into f , we can determine the compo-

nents on which f is negative. For example, we have

f(0) = 4,

f(−1± i
√
3) = −44,

f(3± i
√
3) = −44,

24

Imx

Rex

Figure 2.1: The zero sets of Im f and f .

and so we see that f(x) < 0 exactly on the four components contained in the set B, i.e.

along the branches of the hyperbola that lie outside the strip

Im
(

1±
√
1− 2i

)

< Imx < Im
(

1±
√
1 + 2i

)

.

For the purposes of constructing an appropriate cycle along which to integrate, we will

only need the fact that ι1 and ι2 are holomorphic on the punctured strip

{

x ∈ C \ 0 : Im
(

1±
√
1− 2i

)

< Imx < Im
(

1±
√
1 + 2i

)}

.

For the sake of completeness, however, we note that the details of Lemma 2.2.1 enable us to

understand the global topology of VQ as a Riemann surface. We take a moment to sketch

the construction.

Recall that the Riemann surface for
√
x is constructed by taking two copies of the slit

plane C \ {x : x ≤ 0} and gluing the “top” of the branch cut on one sheet to the “bottom”

25

Imx

Rex

Figure 2.2: The complex plane with

four branch cuts (the components of

B).

Figure 2.3: The Riemann surface for

√

f(x).

of the branch cut on the other, and vice versa.

Similarly the Riemann surface for
√
x4 + 4x2 − 4x3 + 4 can be constructed by beginning

with two copies of C \ B, i.e. two copies of the complex plane each with four branch cuts

along which f(x) = x4 + 4x2 − 4x3 + 4 ≤ 0. Local to the points x = 1 ±
√
1± 2i where

f(x) = 0, the Riemann surface for
√

f(x) should look like the Riemann surface for
√
x, and

the branch cuts are glued together accordingly. Specifically, the tops of each of the branch

cuts on one sheet are glued to the bottoms of the corresponding branch cuts on the other

sheet, and vice versa. See Figure 2.2 for a representation of one of the sheets used in this

construction, and Figure 2.3 for a depiction of the Riemann surface of
√

f(x).

The Riemann surface representation for VQ is then the same as the Riemann surface for

√

f(x), however with with a puncture point added to one sheet owing to the fact that ι2(x)

is not defined at x = 0. The upshot of this representation is that we can use it to classify

the the topology of VQ. Namely, the singular variety is homeomorphic to a single-holed

26

torus with three puncture points. See Figure 2.4 on page 28 for a step-by-step construction

demonstrating this fact.

Finally, as evidenced by Example 1.3.3, it will be useful for representing the residue

form along VQ to know where Qy =
∂Q
∂y is nonzero. Computing a Gröbner basis of the ideal

〈Q,Qy〉 in Maple ([Wat08]) via the command

Basis([Q,diff(Q,y)],plex(y,x));

we obtain the univariate polynomial x4 + 4x2 − 4x3 + 4 as the first basis element. Hence

the x coordinate of any point where Q and Qy simultaneously vanish must be a root of this

polynomial. This justifies the following remark.

Remark 2.2.2. Along VQ, Qy is nonzero whenever x 6= 1±
√
1± 2i (the roots of the equation

x4 + 4x2 − 4x3 + 4 = 0).

2.3 Representing the intersection cycle

The following lemma accounts for the first step of the analysis: using Corollary 1.3.7 to

reduce the computation of an,n to an integral on VQ.

Lemma 2.3.1. For ε > 0, define

Cε = {x ∈ C : |x| = ε},

the circle of radius ε about 0 ∈ C, oriented counterclockwise. Then for sufficiently small

ε > 0,

an,n = 2πi

∫

ι1(Cε)
Res(ωF) + 2πi

∫

ι2(Cε)
Res(ωF). (2.3.1)

27

21

43

65

Figure 2.4: A step-by-step construction starting with the two-sheeted representation of VQ

and ending with a single-holed torus with three puncture points.

28

Proof. We first verify that the variety VQ is smooth. This is true only if Q, Qx and Qy do

not simultaneously vanish, which is true if and only if the variety I = 〈Q,Qx, Qy〉 is trivial

(the whole polynomial ring). We check this algorithmically, using Gröbner bases. In Maple,

we compute the Gröbner basis of I with the command

Basis([Q,diff(Q,x),diff(Q,y)],plex(y,x));

Maple returns the basis [1] for I, so the ideal is indeed trivial.

Now, let ε > 0, δ > 0 be sufficiently small so that

an,n =

∫

T0

ωF , where T0 = {(x, y) ∈ C2 : |x| = ε, |y| = δ}

by Cauchy’s Integral Formula. Define the quantities

m0 = inf{|yj(x)| : x ∈ Cε, j = 1, 2},

M0 = sup{|yj(x)| : x ∈ Cε, j = 1, 2}.

For ε sufficiently small, note that M0 < ∞ (by continuity of the yj ; see Lemma 2.2.1) and

m0 > 0 (the x-axis intersects VQ only at the point (2, 0)).

Assume δ is chosen small enough so that δ < m0. Fix any M > M0. Then define the

homotopy

K : T0 × [0, 1] → C2

(x, y, t) 7→
(

x, y
(

1 + t
(

M
δ − 1

)))

,

expanding T0 in the y direction past VQ. Then K intersects VQ in the set C = ι1(Cε)∪ι2(Cε)

and avoids the coordinate axes. Furthermore, K intersects VQ transversely (as K expands

in the y direction, intersecting VQ where it is a graph of x). Thus, by Corollary 1.3.7 we

29

obtain

an,n = 2πi

∫

ι1(Cε)
Res(ωF) + 2πi

∫

ι2(Cε)
Res(ωF) +

∫

T1

ωF , (2.3.2)

where Cε is oriented counterclockwise (determined by examination of Theorem 1.2.2 and

the Residue Theorem).

Now fix n large and letM vary. As the rest of the terms in (2.3.2) have noM dependence,

∫

T1
ωF must be a constant function of M. But by trivial bounds, we can show that

∫

T1

ωF = O(M1−n) as M → ∞,

as P
(2πi)2xyQ

= O(1), exp(nH) = O(M−n) and the area of T1 is O(M). For n > 1, M1−n → 0

as M → ∞. Hence the only constant
∫

T1
ωF can be equal to is 0.

2.4 Saddle location and contour analysis

Step (2) in the analysis is to locate the saddle points of h|VQ
and deform the contour of inte-

gration appropriately, using this information. The saddle points can be found automatically

as follows.

Lemma 2.4.1. h|VQ
has three saddle points, located at

(

2, 18
)

= ι1(2),

(

1−
√
5, 3+

√
5

16

)

= ι1(1−
√
5),

(

1 +
√
5, 3−

√
5

16

)

= ι2(1 +
√
5).

Proof. By Theorem 1.4.1, the critical points of h|VQ
are those points where Q and xQx−yQy

simultaneously vanish. We can compute these points algorithmically by computing the

30

Gröbner basis for the ideal I = 〈Q, xQx − yQy〉 . This is done in Maple with the command

Basis([Q,x*diff(Q,x)-y*diff(Q,y)],plex(y,x));

which returns a basis consisting of the following two polynomials:

32− 8x2 − 32x+ 20x3 − 8x4 + x5, x4 − 48− 6x3 + 8x2 + 128y + 16.

The first polynomial factors as (x2 − 2x − 4)(x − 2)3, with roots x = 2 and x = 1 ±
√
5.

Substituting these values of x into the second polynomial and solving for y yields the critical

points claimed in the lemma.

We note here the interesting geometry near the critical point (2, 1/8), which will turn

out to be the sole contributing point. Expanding H(ι1(x)) near x = 2, we obtain

H(ι1(x)) = H(ι1(2)) +
1

16
(x− 2)4 +O((x− 2)6),

and hence h|VQ
has a degenerate saddle (of order 4) near this critical point, with steepest

descent directions emanating from x = 2 at angles π/4+ j(π/2) radians (j = 1, 2, 3, 4.). We

also see that along the path |x| = 2, h(ι1(x)) is locally minimized at x = 2, as this path

passes through the critical point along ascent directions. Hence x = 2 is a local maximum

for |y1(x)| along this path, and so there are points (x, y) ∈ VQ near (2, 1/8) such that |x| = 2

and |y| < 1/8. Because VQ cuts in toward the origin near ι1(2), this critical point is not on

the boundary of the domain of convergence of F. In the terminology of the introduction,

this critical point is not minimal.

Knowing where the saddle points of h are, the next task is to deform the contour of

integration in (2.3.1) so as to minimize the maximum modulus of h along the new contour

at said saddle points. The integral over domain ι2(Cε) will actually be shown to vanish,

31

Imx

Rex

p2
p3

p4

p5
p1

Figure 2.5: A pentagonal path p. The dashed lines indicate the boundary

of the punctured strip along which ι1 and ι2 are holomorphic.

while the domain ι1(Cε) will be pushed to a “pentagonal” path through the critical point

(2, 1/8).

The specific path to which ι1(Cε) will be deformed is ι1(p) where p is the pentagonal

path depicted in Figure 2.5, with vertices at the points

{

4
3 − i23 , 2,

4
3 + i23 ,−2

3 + i23 ,−2
3 − i23

}

.

Denote by p1, . . . , p5 the edges of p, as denoted in the figure.

Performing the suggested deformation results in the following lemma.

Lemma 2.4.2.

an,n = 2πi

∫

ι1(p)
Res(ωF), (2.4.1)

where p is oriented counterclockwise.

32

Proof. For δ < ε, let K be a homotopy shrinking the circle Cε to the circle Cδ. By holo-

morphicity of ι2 (Lemma 2.2.1), ι2 ◦K is a homotopy from ι2(Cε) to ι2(Cδ) along VQ, and

Res(ωF) is holomorphic along this homotopy. By Stokes’ Theorem we obtain

∫

ι2(Cε)
Res(ωF) =

∫

ι2(Cδ)
Res(ωF).

Now fix n large and let δ vary. Note that as the left hand side of the above equation

has no δ dependence, neither does the right.

By the fact that y2(x) = −4x−5(1 + O(x)) as x → 0, we get that −P
(2πi)2xyQy

= O(δ−4),

exp(nH) = O(δ4n) and the area of ι2(Cδ) is O(δ−4) as δ → 0. This implies that

∫

ι2(Cδ)
Res(ωF) =

∫

ι2(Cδ)

1

(2πi)2
· −P
xyQy

enH dx = O(δ4n−8)

as δ → 0 (note that this representation of the residue is valid by Remark 2.2.2). For n > 2,

δ4n−8 → 0 as δ → 0. Thus we must have that this integral is equal to 0.

As for the the integral over ι1(Cε) in (2.3.1), let K now be a homotopy expanding the

circle Cε to the pentagonal path p. Then by Lemma 2.2.1, ι1 ◦K is a homotopy from ι1(Cε)

to ι2(p) along VQ, and Res(ωF) is likewise holomorphic along the image of this homotopy.

Then by Stokes’ Theorem,

∫

ι1(Cε)
Res(ωF) =

∫

ι1(p)
Res(ωF),

where p is oriented counterclockwise. The theorem follows.

Now we show that h is indeed maximized on ι1(p) uniquely at the point (2, 1/8). That

this is true local to the saddle point (2, 1/8) is clear from the form of H near this point, as

explored following the proof of Lemma 2.4.1. To show that this is true globally will require

more effort.

33

Lemma 2.4.3. h(ι1(x)) < h(ι1(2)) = log 4 ∀x ∈ p \ {2}.

Proof. Because h(ι1(x)) is continuous on the connected set p, we need only show that

h(ι1(x)) 6= log 4 for all x ∈ p \ {2}, and that h(ι1(x)) < log 4 for some x ∈ p \ {2}. The

latter condition can be easily checked by plugging some arbitrary point into h(ι1(x)). As

for the former condition, the idea will be to cook up some polynomial equations that must

be satisfied in order for it to be true that h(ι1(x)) = log 4. We then use techniques from

computational algebra to show that these equations can not be satisfied for any (x, y) with

x ∈ p \ {2} and y = y1(x).

The conditions from which we will derive our polynomial equations are as follows:

1. x ∈ pj for some j ∈ {1, . . . , 5}.

2. y such that (x, y) ∈ VQ.

3. h(x, y) = log 4, or eh(x,y) = 4.

Each of these conditions implies a (set of) polynomial equations in the variables Re(x),

Im(x), Re(y) and Im(y), as we will show shortly. Note that we are throwing away some

important information in condition 2 above, namely we want y = y1(x), not y = y2(x). This

will be important later in the proof.

We examine first the case where x ∈ p3. Denote a = Re(x), b = Im(x), c = Re(y) and

d = Im(y). Then condition 1 implies the polynomial constraint:

P1 = b− 2

3
= 0.

Note: condition 1 implies the additional constraint a ∈ [−2/3, 4/3], which we will make use

of shortly.

34

Condition 2 implies the following two polynomial constraints:

P2 = Re(Q(a+ ib, c+ id)) = 0,

P3 = Im(Q(a+ ib, c+ id)) = 0.

Finally, condition 3 translates to 4|x||y| = 1, or

P4 = 16(a2 + b2)(c2 + d2)− 1 = 0.

We are interested in whether these four polynomial equations have a common real-valued

solution, and we will use Gröbner bases and Sturm sequences to answer this question. Since

we expect the variety generated by I = 〈P1, P2, P3, P4〉 to be finite — I is generated by four

polynomials in four unknowns — we hope to use Gröbner bases to eliminate variables and

produce a univariate polynomial B(a) ∈ I. Any point (a, b, c, d) solving Pj = 0 for all j will

likewise solve B = 0. Then we try to use Sturm sequences to that such a B has no real

roots a ∈ [−2/3, 4/3], proving that h(ι1(x)) 6= log 4 for x ∈ p3.

We compute the Gröbner basis with the command

Basis([P1,P2,P3,P4],plex(d,c,b,a))

and find that the first element B of the basis is univariate in the variable a, a polynomial

of degree 16. We can check that B(−2/3) 6= 0 and B(4/3) 6= 0 by direct computation in

Maple. To check whether or not B has any roots on the interval (−2/3, 4/3) we employ

Sturm’s Theorem (see [BPR06, p. 52]).

To employ Sturm’s Theorem, we must verify that B is squarefree. This is true if and

only if the ideal 〈B,B′〉 is equal to the trivial ideal 〈1〉 . Indeed, computing the Gröbner

basis for 〈B,B′〉

35

Basis([B,diff(B,a)],plex(a));

returns the trivial basis [1], i.e. B is squarefree.

Then to count the number of roots in (−2/3, 4/3) via Sturm’s Theorem, we enter the

command

sturm(sturmseq(B,a),a,-2/3,4/3)

and Maple returns that there are 0 real roots on the interval (−2/3, 4/3).

Computations are similar for p4 and p5, but things are a bit more complicated along p1

and p2. Let’s look at p2. The first polynomial equation becomes

P1 = a+ b− 2 = 0,

with a ∈ [4/3, 2], while the rest of the polynomial equations remain the same. Going through

the same procedure as before, we can produce a Gröbner basis for 〈P1, P2, P3, P4〉 with an

element B(a) univariate in a. B(a) factors as

B(a) = (a− 2)4B̃(a),

where by direct computation we see that B̃ is nonzero at a = 4/3 and a = 2. Note: we

expected that B would have a root at a = 2, corresponding to the fact that h(ι1(2)) = log 4.

The next step would be to attempt to show that B̃ has no roots on the interval (4/3, 2),

but this is not true. Using Sturm sequences, one can show that B̃ has exactly one root

a0 ∈ (4/3, 2), and this is because there is a pair x, y with x ∈ p2 \ {2} and h(x, y) = log 4.

The claim is that this corresponds to a point where y = y2(x), not where y = y1(x).

To see that there must be such a pair, note that y2(x) → 0 as x→ 2. Hence h(ι2(x)) → ∞

as x → 2. But by direct computation we can show that h(ι2(4/3)) < log 4. As h(ι2(x)) is

36

continuous on p2 \ {2}, there must be some x ∈ p2 \ {2} such that h(ι2(x)) = log 4. This

pair x, y = y2(x) satisfies the polynomial equations Pj = 0.

Now assume by way of contradiction that h(ι1(x)) = log 4 for some x ∈ p2\{2}. Because

B̃ has just one root a0 ∈ (4/3, 2), it must be that this occurs at the same x value for which

h(ι2(x)) = log 4, specifically x0 = a0 + (2− a0)i. Hence we have

|x0||y1(x0)| = |x0||y2(x0)| =
1

4
,

which implies that |y1| = |y2| at the point x0. So at this value of x we have

c2 + d2 = |y|2 = |y1y2| =
|x− 2|
|x|5

The preceding equation implies that |x|10(c2 + d2)2 = |x − 2|2, which translates into the

polynomial equation

P5 = (a2 + b2)5(c2 + d2)2 − ((a− 2)2 + b2) = 0.

We now have a new polynomial equation that must be satisfied in order to have that

h(ι1(x)) = log 4 on p2 \ {2}. But if we compute a Gröbner basis for 〈P1, . . . , P5〉 , we get

the trivial basis [1], meaning that the polynomials have no common solution. Hence

h(ι1(x)) 6= log 4 for x ∈ p2 \ {2}. Analogous methods can be used to handle the case of

p1.

2.5 Saddle point integration

The final step in the analysis is to use saddle point techniques and order bounds to prove

(2.1.1).

37

Theorem 2.5.1.

kn = an,n ∼ 4n

8Γ(3/4)n5/4
.

Proof. We proceed from Lemma 2.4.2. The theorem will be proved in 2 steps: bounding

the integral in (2.4.1) outside a neighborhood of the critical point, then applying saddle

point techniques near that critical point.

For any neighborhood N of x = 2, we look at
∫

ι1(p\N)Res(ωF), which can be written as

∫

ι1(p\N)

1

(2πi)2
· −P
xyQy

enH dx

(note that this representation is valid by Remark 2.2.2). As h ◦ ι1 is continuous on the

compact set p \N, h ◦ ι1 achieves an upper bound M on p \N. By Lemma 2.4.3, M < log 4.

Thus by trivial bounds we have

∫

ι1(p\N)
Res(ωF) = O(eMn) = o((4− δ)n)

for sufficiently small δ > 0, as n→ ∞. Hence

an,n = 2πi

∫

ι1(p∩N)
Res(ωF) + o((4− δ)n). (2.5.1)

for any neighborhood N of x = 2, provided δ is sufficiently small.

For N small enough, p ∩ N = (p1 ∩ N) ∪ (p2 ∩ N). We examine the integral over

ι1(p1 ∩N) and ι1(p2 ∩N) separately, starting with ι1(p2 ∩N). By using the aforementioned

representation of the residue form (and changing variables), we obtain

2πi

∫

ι1(p2∩N)
Res(ωF) =

∫

p2∩N

1

2πi
· −P (ι1(x))
xy1(x)Qy(ι1(x))

enH(ι1(x)) dx.

After another change of variables (x→ x+2) and a suitable choice of neighborhood N, the

above integral can be rewritten as

4n
∫

γ+
A(x)e−nφ(x) dx,

38

where we have, for some fixed ε > 0,

γ(x) = (i− 1)x; x ∈ [−ε, ε],

A(x) =
1

2πi
· −P (ι1(x+ 2))

(x+ 2)y1(x+ 2)Qy(ι1(x+ 2))
,

φ(x) = log 4−H(ι1(x+ 2)),

and we recall that γ+ is the restriction of the image of γ to the domain [0, ε]. The series

expansion of A and φ at x = 0 begin

A(x) =
i

16π
x3 +

i

32π
x4 +O(x5),

φ(x) =
−1

16
x4 +O(x6),

and Reφ(x) is uniquely minimized on γ+ at x = 0 where we have φ(0) = 0, as a consequence

of Lemma 2.4.3. Thus this is exactly the situation where the saddle point technique of

Theorem 1.4.2 can be applied. The values of bj and cj are as in the expansions above. Then

v = γ′(0) = i− 1, and we compute the principal root

(cknv
k)1/k

v
=

((−1/16)n(i− 1)4)1/4

i− 1
=

−1− i

2
√
2
n1/4.

The conclusion of Theorem 1.4.2 is then

2πi

∫

ι1(p2∩N)
Res(ωF) ∼ 4n

(

−i
4π
n−1 +

(1 + i)
√
2Γ(5/4)

8π
n−5/4 +O(n−3/2)

)

As for the integral over ι1(p1 ∩N), the same argument yields

2πi

∫

ι1(p1∩N)
Res(ωF) = −4n

∫

γ+
A(x)e−nφ(x) dx,

where A and φ are the same but γ is defined by γ(x) = (−i − 1)x (and the negative sign

out in front comes from a reversal of orientation). For v = γ′(0) = −i− 1, we compute the

39

principal root

(cknv
k)1/k

v
=

((−1/16)n(−i− 1)4)1/4

−i− 1
=

−1 + i

2
√
2
n1/4.

Then by Theorem 1.4.2 we obtain

2πi

∫

ι1(p1∩N)
Res(ωF) ∼ 4n

(

i

4π
n−1 +

(1− i)
√
2Γ(5/4)

8π
n−5/4 +O(n−3/2)

)

.

Adding up the contribution over each piece and plugging into (2.5.1) yields

an,n ∼ 4n

(√
2Γ(5/4)

4π
n−5/4 +O(n−3/2)

)

+ o((4− δ)n) ∼ 4n
√
2Γ(5/4)

4π
n−5/4.

Using the identity Γ(5/4)Γ(3/4) = π/(2
√
2), the theorem follows.

40

Chapter 3

Homology of the Intersection Class

3.1 Setup and assumptions

We would like to produce an algorithm automating the analysis applied in the previous chap-

ter. Tracing through the asymptotic analysis of bicolored supertrees, it becomes apparent

that the main difficulty in realizing this goal will be achieving a sufficient understanding

of the homology class of the intersection cycle. To obtain a homologous representative of

the intersection cycle amenable to saddle point methods requires some global description of

the singular variety – a potentially complicated space. Thus to begin, we must produce a

description of the singular variety amenable to algorithmic study.

The idea will be to tackle this problem in stages, first focusing on understanding a

small subset of the singular variety. Once we are done with that, we will begin revealing

more and more of the surface, understanding how the topology changes along the way. The

mechanism enabling this study is known as Morse Theory, in which a manifold M is studied

with respect to some height function h : M → R. The manifold M is first restricted to

41

those points of sufficiently high (or low) value with respect to the height function, and the

methods of Morse Theory reveal how the topology changes as regions of lower (or higher)

height are unveiled. More details will be given in the following sections.

Portions of the following analysis will rely on topological properties of the bivariate

case, and thus from here onward we will assume that d = 2 variables. Hence the notation

and the setup of the problem will be similar to that employed in the previous chapter.

We write z = (x, y) rather than x = (x1, x2) to indicate points in C2. Similarly we write

r = (r, s) = n(r̂, ŝ) rather than r = (r1, r2) = |r| (r̂1, r̂2).

We further impose the following assumptions on our analysis:

Assumption 3.1.1. Assume that r̂ and ŝ are positive rationals.

The preceding assumption is so that the points in Σ (the critical points of h on VQ)

can be found algorithmically using Gröbner bases. The additional assumption that r̂ and

ŝ both be nonzero is to guarantee that this problem does not reduce to one of univariate

rational asymptotics.

Assumption 3.1.2. Assume that Σ is a finite set.

Note that the preceding assumption is generically true, but may fail for certain directions

(r̂, ŝ).

Assumption 3.1.3. Assume that VQ is smooth.

Our analysis will apply under the preceding assumptions, with one last technical as-

sumption to come later. Note that the assumption that VQ be smooth will be relaxed

slightly at the end of this chapter.

42

3.2 Describing the variety at large height

Our Morse-theoretic analysis of VQ begins with the selection of a suitable height function.

For the singular variety VQ, we have the somewhat natural height function h = h(r̂,ŝ), the

function governing the exponential growth rate of the integrand from which we compute

the asymptotics. Our first goal will be to describe what VQ looks like for very large values

of h. Consequently, we develop the following notation for better describing such sets.

Definition 3.2.1. For each constant M ∈ R we define the set

V>M = {z ∈ VQ :M < h(z) <∞} .

We define the sets V≥M , V<M and V≤M similarly.

Note that implicit to the preceding definition is the fact that the variety VQ is endowed

with a specific height function. Later, when we describe VQ relative to an auxiliary height

function, we will indicate this by modifying our notation for the variety itself.

We next wish to develop a description for V>M for sufficiently large M . By definition of

h we know that the height along VQ is arbitrarily large only when |x| or |y| are sufficiently

small, so we first turn to understanding the variety near such points. We have the following

useful characterization of a complex variety local to any x or y value:

Theorem 3.2.2. Let B ⊆ C be a circular neighborhood of x0 ∈ C slit along a ray emanating

from x0. If the radius of B is sufficiently small, then on B every branch of Q(x, y) = 0

admits a representation y = f(x) of the form

f(x) =
∑

j≥j0
cj(x− x0)

j/k,

43

for a fixed determination of (x− x0)
1/k, where j0 ∈ Z and k ∈ N. The function f is called

a Puiseux expansion of y.

See [FS09, Theorem VII.7] for a proof, or [BK86] for a more in-depth discussion. Note

that a similar result holds for obtaining the Puiseux expansion of x in terms of y near any

fixed value y = y0.

This local representation allows us to prove the following theorem.

Theorem 3.2.3. The set VQ ∩{(x, y) : 0 < |x| < R}, for sufficiently small R, is diffeomor-

phic to a finite set of disjoint, punctured open disks.

Each such diffeomorphism takes the form

G : U −→ D

z 7−→ (zk, g(z))

for some integer k ≥ 1, where U is the punctured disk BR1/k(0) − {0} and g is some

holomorphic function on U .

Proof. By Theorem 3.2.2, for x restricted to a small enough slit neighborhood of 0 in C,

any branch of VQ can be represented as (x, f(x)) for some fractional expansion

f(x) =
∑

j≥j0
cjx

j/k.

We may assume that f has been represented such that k is as small as possible. Removing

the slit, f can be extended to a neighborhood of the form

{x ∈ C : |x| < R, x 6= 0}

by analytic continuation to a multiple-valued, locally holomorphic function. The goal is

then to better characterize this full branch (x, f(x)) in VQ.

44

Begin by defining the function

g(x) =
∑

j≥j0
cjx

j ,

a function holomorphic on the punctured disk U = BR1/k(0) \ {0}. From this, we define the

function

G : U −→ C2

z 7−→ (zk, g(z))

The goal is to show that G is actually a diffeomorphism between the punctured disk and

the previously described branch, thus completing the theorem.

The first step is to show that G is one-to-one, so begin by assuming that it is not. Then

there are z1 6= z2 in U satisfying

zk1 = zk2

g(z1) = g(z2)

Denote z0 = zk1 = zk2 . This means that for two fixed determinations z1 and z2 of z
1/k
0 ,

g(z1) = g(z2). Now we can write z2 = ξz1 for some kth root of unity ξ 6= 1. This means

that

g(z1) = g(ξz1),

and so

zm1 g(z1) = zm1 g(ξz1),

where m = max (0,−j0). But the functions zmg(z) and zmg(ξz) are holomorphic on the

disk BR1/k(0) (multiplying by zm was done precisely to force holomorphicity at z = 0), and

so by the properties of complex analytic functions there are only two possibilities. Either:

45

1. The functions zmg(z) and zmg(ξz) agree on BR1/k(0), or

2. By sufficiently minimizing the radius R, we can assure that zmg(z) and zmg(ξz) agree

nowhere except possibly at the origin.

In the first case, it must be that the coefficients in the Taylor expansions of zmg(z) and

zmg(ξz) all agree, which means that cj = cjξ
j for all j ≥ j0. Hence cj = 0 whenever ξj 6= 1.

This means that cj 6= 0 only when j ∈ sZ for s ≥ 2 equal to the order of ξ, a divisor of k.

But this implies that the fractional expansion f(x) can be written in terms of the (k/s)th

roots x(k/s), contradicting the minimality of k. Thus we must be in the second case.

Hence by sufficiently minimizing the radius R for each possible kth root of unity ξ, we

can guarantee that the function G is indeed one-to-one. The inverse function G−1 is locally

smooth because the function z 7→ zk has a locally smooth inverse away from z = 0. Hence

G−1 is smooth, and so we see that G is indeed a diffeomorphism.

Note that a similar result holds if we restrict to sufficiently small magnitudes of y rather

than x. And furthermore, because Q(0) 6= 0 (as P/Q was assumed to be holomorphic near

0 ∈ C), we can find a sufficiently small value of R so that no (x, y) ∈ VQ satisfies both

|x| < R and |y| < R. The fact that these neighborhoods can be made disjoint will be

important later on.

Now that we have a good understanding of the topology of VQ near x = 0 and near y = 0,

the next thing we wish to do is to evaluate the height function on these neighborhoods. As

a first step, we would like to show that the height function is eventually monotonically

increasing or decreasing to ±∞ as x or y go to 0. Unfortunately this is not always the case,

and requires a final assumption regarding the direction in which asymptotics are taken.

46

Assumption 3.2.4. By the Puiseux expansion, we know that we can parameterize each

branch of VQ local to x = 0 in terms of x by writing

y = cxα(1 + o(1))

as x→ 0 for some constants c 6= 0 and α. We assume that

α 6= −r̂
ŝ

for all such branches.

Similarly, we can parameterize each branch of VQ local to y = 0 in terms of y by writing

x = cyβ(1 + o(1))

as y → 0 for some constants c 6= 0 and β. We assume that

β 6= −ŝ
r̂

for all such branches.

This assumption precludes us from taking asymptotics in only finitely many directions,

as there are only finitely many branches of VQ near x = 0 and y = 0. We also note that

the finitely many possible values of α and β may be read from Newton polygon of the

polynomial Q; see section 4.3 for further details.

The idea behind this assumption is to guarantee that h does not remain bounded as

x→ 0 and, necessarily, y → ∞ (or vice versa). This assumption is essential to the following

lemma.

Lemma 3.2.5. As in the conclusion of Theorem 3.2.3, fix a branch of VQ near x = 0

that is diffeomorphic to a punctured disk. By the fractional expansion y = f(x) in this

47

neighborhood, we can write y ∼ cxα as x→ 0, for some α ∈ Q and some constant c. Then,

for sufficiently small R and any θ ∈ [0, 2π], the function

hθ : (0, R] −→ R

ρ 7−→ h(ρeiθ, f(ρeiθ))

is monotone. That is, if the punctured disk is sufficiently small, the height function is

monotone along rays emanating from the origin.

Furthermore, as ρ → 0, the height hθ approaches ∞ or −∞ according to whether α >

−r̂/ŝ or α < −r̂/ŝ, respectively.

Proof. Locally, thanks to the Puiseux expansion of y in terms of x, we can consider the

functions H and h to be functions of a single complex variable. Namely

H(x) = −r̂ log x− ŝ log f(x), and h(x) = ReH(x).

Then dhθ
dρ is simply the derivative of h(x) with respect to ρ, where x = ρeiθ. As h = ReH,

this can be represented as

dhθ
dρ

=

(

Re
dH

dx

)

cos θ −
(

Im
dH

dx

)

sin θ

∣

∣

∣

∣

x=ρeiθ

So we turn to evaluating dH
dx .

By the Puiseux expansion, we can write f(x) = cxα(1 + g(x)) for some fractional ex-

pansion g(x) that is o(1) as x→ 0. Then

H(x) = −r̂ log x− ŝ log (cxα(1 + g(x)))

= (−r̂ − ŝα) log x− ŝ log (1 + g(x))− ŝ log c.

48

We note briefly from the above form for H that ReH approaches ±∞ as x → 0 according

to the sign of (−r̂− ŝα), as claimed in the statement of the lemma. Now dH
dx takes the form

H ′(x) =
−r̂ − ŝα

x
− g′(x)

1 + g(x)

=
1

x

(

−r̂ − ŝα− xg′(x)
1 + g(x)

)

∼ −r̂ − ŝα

x

as x→ 0.

We can rewrite 1/x as cos θ/|x| − i sin θ/|x|, from which we obtain that

Re
dH

dx
∼ (−r̂ − ŝα) cos θ

|x|

and

Im
dH

dx
∼ (r̂ + ŝα) sin θ

|x| .

And so dhθ
dρ ∼ −r̂−ŝα

|x| as x → 0. But −r̂−ŝα
|x| → ±∞ as x → 0, and so we see that on a

sufficiently small neighborhood, this derivative can never vanish. Hence we have mono-

tonicity.

And again, note that there is nothing special about focusing our attention on branches

near x = 0. An analogous lemma holds on branches near y = 0.

We now have enough information to describe the space VQ at sufficiently large height.

Theorem 3.2.6. For sufficiently large M , the set V>M is diffeomorphic to a finite set of

disjoint, punctured open disks.

Proof. Pick R sufficiently small so that

1. If Q(x, y) = 0, then either |x| < R or |y| < R but not both.

49

2. The sets VQ ∩{(x, y) : 0 < |x| < R} and VQ ∩{(x, y) : 0 < |y| < R} are each

diffeomorphic to finite sets of disjoint, punctured open disks (as in the conclusion of

Theorem 3.2.3).

By the structure of h we now pick M large enough so that h(x, y) ≥ M requires either

that |x| < R or |y| < R. Note that this implies that

V≥M ⊆ VQ ∩{(x, y) : 0 < |x| < R or 0 < |y| < R}.

We examine a particular punctured disk D, say one arising from a branch (x, f(x)), where

f(x) = xα(1 + o(1))

is a Puiseux expansion of y in x. We look at the parametrization of D that we get from

Theorem 3.2.3:

G : U −→ D

z 7−→ (zk, g(z))

where U = BR1/k(0) \ {0} and g(z) = f(zk) for some positive integer k.

By Lemma 3.2.5, h ◦G is monotone on U along radial paths emanating from the origin

(note that G sends rays to rays). As h(x, y) < M along ∂D by construction, we have two

possibilities:

1. If h ◦G is monotone decreasing to −∞ as |z| → 0 in U , then V≥M ∩D = ∅.

2. Otherwise, h ◦ G is monotone increasing to ∞ as |z| → 0 in U , and so for each

θ ∈ [0, 2π] we obtain a unique ρ(θ) ∈ (0, R1/k) such that h(G(ρ(θ)eiθ)) = M . Note

that the function ρ(θ) is continuous by the continuity of h ◦G.

50

So in this second case we obtain a simple closed curve s defined by

s : [0, 2π] −→ U

θ 7−→ ρ(θ)eiθ

which traces out the preimage of M under the map h ◦ G. By monotonicity, this implies

that the set V>M ∩D is parametrized by G
∣

∣

U0
, where

U0 = {ρeiθ ∈ C : 0 < ρ < ρ(θ)},

which is homeomorphic to U (hence to a punctured, open disk). By applying this argument

to every such D, and using the fact that V>M is contained in the union of all such disks D,

the conclusion of the theorem follows.

To further better describe how the components of V>M are structured (for sufficiently

large M), we introduce the following notation.

Definition 3.2.7. For M ∈ R, we partition the set V>M into its connected components as

V>M = {Rj : j ∈ J}.

Then we define the set X>M ⊆ V>M by

X>M = {Rj : ∀ ε > 0, ∃ (x, y) ∈ Rj s.t. |x| < ε},

i.e. the set of all components of V>M containing points of arbitrarily small x-coordinate.

Similarly we define the set Y >M by

Y >M = {Rj : ∀ ε > 0, ∃ (x, y) ∈ Rj s.t. |y| < ε}.

We call the components of X>M the x-components of V>M , and similarly the components

of Y >M are called the y-components of V>M .

51

We define the sets X≥M and Y ≥M analogously.

Note that it may be possible that either X>M or Y >M is empty for a given M . As we

shall see in the next section, however, it can not be the case that X>M and Y >M are both

empty unless VQ is empty itself.

We also note that there may be overlap between the x- and y-components of V>M , but

as evidenced in the proof of the preceding theorem this does not happen for sufficiently large

M . For large enough M , the space V>M decomposes uniquely into x- and y-components,

each of which is homeomorphic to an open, punctured disk.

3.3 Unveiling the rest of the singular variety

Having understood V>M for sufficiently large M , we begin revealing the rest of the variety

by decreasing the value of M . We use Morse theory to examine how the topology changes

as we do so.

There are two important structural theorems that will allow us to accomplish our task,

which are as follows.

Theorem 3.3.1 (First Structure Theorem). Let m1 < m2 ∈ R be such that h has no

critical values in the interval [m1,m2]. Then V>m1 is topologically equivalent to V>m2; in

fact V>m2 is a deformation retract of V>m1.

For a discussion, see [Mil63]. The only special feature of h that is used in the preceding

theorem is the fact that h is proper on VQ. This is guaranteed by Assumption 3.2.4, which

implies that the inverse images under h
∣

∣

VQ
of bounded sets are again bounded.

The second structural theorem, which deals with when the topology changes, is as

52

follows:

Theorem 3.3.2 (Second Structure Theorem). Let c be a critical value of the height function

h on VQ, and define the set Σ(c) ⊆ Σ by

Σ(c) = {σ ∈ Σ : h(σ) = c},

necessarily finite by Assumption 3.1.2. Let m1,m2 ∈ R be values such that m1 < c < m2 and

such that c is the only critical value of h in the interval [m1,m2]. Then, topologically, V>m1

can be obtained from V>m2 by the attachment of |Σ(c)| disks. Each disk is attached along

k disjoint subarcs of its boundary, where k is the degree of degeneracy of the corresponding

critical point.

Note that in decreasing the value of M , no new components of V>M are ever formed.

Thus V>M is never empty unless VQ is empty itself.

Before continuing with the proof of this theorem, we note that it could be proved from

standard Morse theorems by a perturbation argument, modifying h slightly to assure that

the critical points are non-degenerate and occur at different heights. The reason we present

a full proof, however, is that the structure of the proof will be useful examining the homology

class of the intersection cycle on VQ.

Proof. We first prove the theorem assuming that Σ(c) is but a single point σ0 = (x0, y0).

Then we will explain how the proof may be modified to allow for more critical points.

Our goal is to understand how the topology of V>m changes as m decreases from m2 to

m1. The idea is to modify the height function h to obtain a new proper height function h̃

that has all the same critical points, but such that the height at σ0 will have been lowered to

a new value c̃ such that m1 < c̃ < c. We shall denote by Ṽ the variety V endowed with this

53

auxiliary height function. We will then use Ṽ as a tool in understanding V>m for various

values of m. The reasoning is detailed in the following steps:

1. The construction of h̃ will be such that h̃ ≤ h everywhere and h̃ = h on V>m2 . Thus

we have V>m2 = Ṽ>m2 .

2. Now let m0 be any value such that c̃ < m0 < c. By the first structure theorem of

Morse Theory, as there are no critical values of h̃ in [m0,m2], we have that Ṽ>m2 is

topologically equivalent to Ṽ>m0 .

3. We now return to our original height function h. We will be able to understand exactly

what happens topologically as we shift from Ṽ>m0 to V>m0 .

4. Finally, again by the first structure theorem of Morse Theory and due to the fact

that there are no critical values of h in [m1,m0], we have that V>m0 is topologically

equivalent to V>m1 .

Thus by understanding the topological changes in the third step, we will completely

understand how V>m2 and V>m1 differ. With that outline in mind, we turn toward an

examination of the height function.

We begin by examining the height function near the critical point σ0. By smoothness

of the variety at σ0, VQ may be parameterized local to σ0 in terms of either x or y. Assume

without loss of generality that we can parameterize in terms of x. Then because h has a

critical point at σ0, and because h is the real part of the complex analytic function H, we

must have that dH
dx vanishes at x0 (when H is parameterized by x). Thus locally H takes

54

the form:

H(x) = c+ id+

∞
∑

j=k

cj(x− x0)
j ,

where k ≥ 2 and ck 6= 0. Denoting C = c+ id and g(x) =
∑∞

j=k cj(x− x0)
j−k we get

H(x) = C + (x− x0)
kg(x),

where g(x0) 6= 0.

Now as g(x0) 6= 0, we have in a small neighborhood of x0 that g(x)1/k, the kth principal

root of g(x), is an analytic function. Thus locally the function

w = (x− x0)g(x)
1/k

is analytic, and by inspection we see that the derivative dw
dx does not vanish at x = x0. So

by the inverse function theorem we can parameterize H locally by w. Note that, in terms

of the variable w, H takes on the relatively nice form:

H(w) = C + wk.

Next we move our attention from H to the actual height function h. Representing w in

polar coordinates as w = ρeiθ, we get

H(ρ, θ) = C + ρkeikθ,

so h = ReH takes the form

h(ρ, θ) = c+ ρk cos(kθ).

under this parameterization. Now let δ > 0 be sufficiently small so that the ball Bδ(0)

about w = 0 lies within the region on which this parameterization holds, and such that

δ < (m2 − c)1/k. The second condition guarantees that h(w) < m2 on Bδ(0), which we will

need later.

55

We now begin the construction of the modified height function h̃. To that end we must

first construct a bump function for lowering the height of σ0. So let b : [0, δ] → R be some

smooth function such that

b(ρ) =

1 for ρ ≤ δ/3

0 for ρ ≥ 2δ/3

and 0 ≤ b(ρ) ≤ 1 for δ/3 ≤ ρ ≤ 2δ/3. Then h̃ is constructed as follows: on Bδ(0), in

polar coordinates, we have h̃(ρ, θ) = h(ρ, θ)− εb(ρ) (where ε is a sufficiently small positive

constant). And outside of Bδ(0) we have that h̃ ≡ h. Thus h̃ is obtained from h by

subtracting a very small bump function in a neighborhood of the critical point σ0. Note

that h̃ is still proper.

Assuming that ε is sufficiently small, h̃ will have no new critical points beyond those

of the original height function (∇h 6= 0 inside the modified annulus), and this will be

the sought-after modified height function. Note that the height of σ0 has been lowered:

c̃ = h̃(σ0) = c − ε (which is between m1 and c for sufficiently small ε). Note further that

because h̃ < m2 on Bδ(0), we indeed have h̃ = h on V>m2 as required.

Now let m0 = c − ε/2, a value between c̃ and c. We wish to understand what the set

Ṽ>m0 looks like inside the neighborhood Bδ(0). To do that we first examine the constant

height curves h̃ = m0 in this neighborhood. By the definition of h̃, these curves consist of

1. The constant height curve h = m0 on points w = ρeiθ such that ρ ≥ 2δ/3.

2. The constant height curve h = m0+ε = c+ε/2 on points w = ρeiθ such that ρ ≤ δ/3.

3. Curves that interpolate between these segments for points w = ρeiθ such that δ/3 <

ρ < 2δ/3.

56

Figure 3.1: The region VQ local to

σ0, where Ṽ>m0 is shaded and the

degeneracy k = 3.

Figure 3.2: The region VQ local to

σ0, where V>m0 is shaded and the

degeneracy k = 3.

Then we see that the set Ṽ>m0∩Bδ(0) is composed of k connected components bound inside

Bδ(0) by the curves described above. See Figure 3.1 for an example with k = 3.

Finally, we wish to return to our original height function, and see how the topology

changes when we go from Ṽ>m0 to V>m0 . Because h and h̃ only differ on the set B2δ/3(0),

we see that the change is only local to σ0. And by inspection, we see that V>m0 is obtained

from Ṽ>m0 by adding a “star-shaped” region that joins the k components of Ṽ>m0 ∩Bδ(0).

See Figure 3.2 for a picture. This proves the theorem in the case that |Σ(c)| = 1.

If |Σ(c)| > 1 we proceed as before, however the height function h̃ is now obtained from

h by subtracting non-overlapping bump functions in a neighborhood of each of the points

in Σ(c).

Thus we have our piecewise understanding of the topology of VQ. Before proceeding

with an investigation of the intersection cycle, we note the following corollary of the first

57

structure theorem.

Corollary 3.3.3. Let M ∈ R be such that

M > max {h(σ) : σ ∈ Σ}.

Then V>M is diffeomorphic to a finite set of disjoint, punctured open disks, each of which

is an x-component or a y-component, but not both.

Proof. By Theorem 3.2.6, V>M0 takes the desired form for sufficiently large M0 > M . But

as h has no critical values in the interval [M,M0], the first structure theorem tells us that

the topologies of V>M and V>M0 are identical.

Furthermore, we noted that the components of X>M0 and Y >M0 are disjoint for suf-

ficiently large M0. As V>M deformation retracts onto V>M0 , the same is true of their

individual connected components. Hence X>M and Y >M are likewise disjoint.

3.4 The intersection cycle

We now have a sufficient description of the singular variety to produce an appropriate

intersection cycle, and to analyze the homology of said cycle. We construct such a cycle in

the following theorem/definition.

Theorem 3.4.1. Let M ∈ R be larger than the maximum critical value for h. By Corol-

lary 3.3.3, V>M is diffeomorphic to a set of open, punctured disks that partition into x-

components and y-components. Let the curve C consist of a set of disjoint cycles, one

in each x-component of V>M oriented positively about the puncture point. We call C the

intersection cycle. Then

ar,s =
1

2πi

∫

C
Res

(

P

xyQ
enH dx ∧ dy

)

+O(δn)

58

as n→ ∞, for any arbitrarily small δ > 0.

The cycle C is not the exact intersection cycle as constructed in Chapter 1, but is a

representative of the same homology class. Note that C is defined to be the empty cycle if

X>M is empty for sufficiently large M .

Proof. Let R be sufficiently small and M sufficiently large so that

1. M > max {h(σ) : σ ∈ Σ}.

2. If Q(x, y) = 0, then either |x| < R or |y| < R but not both.

3. The sets VQ ∩{(x, y) : 0 < |x| < R} and VQ ∩{(x, y) : 0 < |y| < R} are each

diffeomorphic to finite sets of disjoint, punctured open disks (as in Theorem 3.2.3).

4. The set V>M is diffeomorphic to a finite set of disjoint, punctured open disks (as in

Theorem 3.2.6).

5. The set V>M is a subset of the set VQ ∩{(x, y) : 0 < |x| < R or 0 < |y| < R}, i.e.

h(x, y) > M implies that either |x| < R or |y| < R.

Now fix rx < R and ry sufficiently small so that

ar,s =
1

(2πi)2

∫

T0

P

xyQ
enH dx ∧ dy,

where T0 = {(x, y) ∈ C2 : |x| = rx, |y| = ry}. Define

M0 = sup {|y| : (x, y) ∈ VQ and |x| = rx}

m0 = inf {|y| : (x, y) ∈ VQ and |x| = rx}

Note thatM0 <∞ because y is locally a function of x along the designated set, andm0 ≥ R

by choice of R: |x| and |y| can not simultaneously be less than R.

59

Now fix any positive m1 < min {ry,m0} and define the torus T = {(x, y) ∈ C2 : |x| =

rx, |y| = m1}. Then fix any M1 > M0 and define the homotopy

K : T × [0, 1] −→ C2

(x, y, t) 7−→
(

x, y

(

1 + t

(

M1

m1
− 1

)))

K intersects VQ in the set

C = {(x, y) ∈ VQ : |x| = rx},

and the intersection itself is transverse – the homotopy K is obtained by expanding in the

norm of y through points on the variety where VQ is locally parameterizable in terms of x.

By Theorem 1.2.2, this means that

ar,s =
1

2πi

∫

C
Res

(

P

xyQ
enH dx ∧ dy

)

+
1

(2πi)2

∫

T1

P

xyQ
enH dx ∧ dy.

where T1 = K(T × {1}). By trivial bounds, we have

1

(2πi)2

∫

T1

P

xyQ
enH dx ∧ dy = O

((

1

rr̂xM
ŝ
1

)n)

as n→ ∞,

as the only n dependence in the integral comes from the enH term. As M1 may have been

chosen to be arbitrarily large, this term is O(δn) for any arbitrarily small, positive δ.

We now turn our attention to the cycle C. C consists of a set of cycles, one on each

punctured disk in the set VQ ∩{(x, y) : 0 < |x| < R}, oriented positively around the puncture

point. We examine such a disk D and one such portion C0 of the intersection cycle.

By Lemma 3.2.5, there are only two possibilities for the behavior of h on the punctured

diskD: either h→ −∞, eventually and monotonically, as x→ 0 (in the case that α < −r̂/ŝ)

or h→ ∞, eventually and monotonically, as x→ 0 (in the case that α > −r̂/ŝ).

60

In the former case, by shrinking C0 closer to |x| = 0, we may assume that the maximum

value of h along C0 is arbitrarily large negative – for instance, by properly shrinking C0 to

the puncture point we may assume that the maximum height along C0 is less than log δ for

any small, positive δ. Then again by trivial bounds, this leads to

1

2πi

∫

C0

Res

(

P

xyQ
enH dx ∧ dy

)

=
1

2πi

∫

C0

−P
xyQy

enH dx = O(δn)

as n → ∞. This we may drop this portion C0 of the intersection cycle, and collect the

difference into the O(δn) error term.

In the latter case we have that h→ ∞ near the puncture point of D. This implies that

D contains one of the x-components from the set V>M . By shrinking C0 sufficiently close

to |x| = 0, we may assume that C0 is contained entirely within this x-component.

Doing this for every such D and piece C0 of the intersection cycle, we obtain a new cycle

C such that

ar,s =
1

2πi

∫

C
Res

(

P

xyQ
enH dx ∧ dy

)

+O(δn),

where γ consists of one cycle per x-component of V>M , oriented positively around the

puncture points.

To finish the theorem, we have to show that this works not just for sufficiently large

height M but for any M larger than all critical values of h. But this follows exactly from

the first structure theorem of Morse theory (see Corollary 3.3.3).

3.5 First characterization theorem

We are nearly ready to characterize the homology class [C] ∈ H1(VQ). We simply need

several definitions.

61

Definition 3.5.1. We define the number cxy by

cxy = inf {c ∈ R : X>c ∩ Y >c = ∅} ∈ [−∞,∞).

Thus the value cxy captures the largest height c at which the components of X≥c and

Y ≥c overlap. Note by the first structure theorem that this can only occur at a critical value

for h, i.e. if cxy > −∞ then cxy is a critical value for the height function.

Definition 3.5.2. Define Ξ to be the set of all σ ∈ Σ such that

1. h(σ) = cxy, and

2. For arbitrarily small neighborhoods U ⊆ VQ of σ, U ∩X>cxy and U ∩ Y >cxy are both

non-empty.

We call Ξ the set of contributing points.

Intuitively, the set Ξ is the set of saddles at which x- and y-components first join.

Finally, we characterize the structure of VQ local to any saddle point σ ∈ Σ.

Definition 3.5.3. For σ ∈ Σ, denote by k ≥ 2 the degree of degeneracy of h at σ. As

detailed in the proof of the second structure theorem, there is a parameterization of VQ

local to σ on which h takes the form

h(w) = h(σ) + Rewk.

Thus on any neighborhood U of σ on which this parameterization holds, we see that U ∩

V>h(σ) consists of k connected components, which we term ascent regions. Similarly we see

that U ∩ V<h(σ) consists of k connected components, which we term descent regions.

Then we have the following theorem, which characterizes the homology class [C] in a

manner amenable to saddle point analysis.

62

Theorem 3.5.4 (First Characterization Theorem). If the set Ξ is non-empty, then the

homology class [C] contains a representative cycle κ such that

1. The height along κ is maximized precisely at the points in Ξ, and

2. For a fixed σ ∈ Ξ and U ⊆ VQ a sufficiently small neighborhood of σ, denote the

ascent regions in U by A0, . . . , Ak−1 (ordered counterclockwise about σ). Denote by

Dj the descent region between Aj and Aj+1 mod k. Then for each j there is a curve γj

in U , starting at σ and traveling down Dj, such that

κ ∩ U =
k−1
∑

j=0

(X(j + 1 mod k)−X(j))γj ,

where X(j) := 1 if Aj ⊆ X>cxy while X(j) := 0 if Aj ⊆ Y >cxy (well-defined by

definition of cxy).

If the set Ξ is empty, then the homology class [C] contains a representative cycle κ supported

on V≤m for arbitrarily small m ∈ R.

We pause to note that the prescribed representative κ is in some sense the best we can

get in that there are local obstructions to lowering the height any further. Specifically, for

σ ∈ Ξ and for U a sufficiently small neighborhood of σ, the cycle κ ∩ U is a nontrivial

element of the relative homology group H1(U,U ∩ V≤cxy−ε) (for ε > 0 sufficiently small).

Proof. We begin by assuming that Ξ is non-empty, and we want to use our Morse-theoretic

understanding of the space VQ to find a cycle κ sought by the theorem. To begin with, let

M0 ∈ R be any value larger than all critical values of h. We examine C on V>M0 . Recall

that C is composed of a disjoint set of cycles, one in each x-component of V>M0 oriented

positively about the puncture points. Note that C is homologous to ∂X>M0 (along which

63

h ≡ M0). We wish to show that this characterization of [C] remains true when M0 is

replaced by any M ∈ (cxy,M0]. We do so inductively.

By the first structure theorem of Morse theory, the topology of V>M (and hence the

characterization of [C]) changes only as M passes through critical values of h. So let c ∈

(cxy,M0] denote some critical value of h, and assume that C is homologous to ∂X>M in

V>M for any M ∈ (c,M0]. Using the proof of the second structure theorem as a guide, we

examine the topological changes that occur local to Σ(c) as M is decreased below c.

Exactly as in the the proof of the second structure theorem, we form a new height

function h̃ that differs from our old height function only in small neighborhoods of the

points in Σ(c), on which h̃ = h − εb for some sufficiently small ε > 0 and some bump

function b. Denote by X̃>M and Ỹ >M the x- and y-components of Ṽ>M as prescribed by

this new height function h̃. By the definition of h̃, we know that X̃>c+ε/2 and X>c+ε/2 are

topologically equivalent, and hence that C is homologous to ∂X̃c+ε/2. This implies that C

is homologous to ∂X̃c−ε/2, there being no critical values of h̃ in [c − ε/2, c + ε/2]. Finally,

we wish to show that ∂X̃c−ε/2 is homologous to ∂Xc−ε/2.

First, note that ∂X̃>c−ε/2 and ∂X>c−ε/2 agree outside of small neighborhoods of the

points in Σ(c). So we examine these cycles local to said critical points. As c > cxy, there

are only two possibilities for each σ ∈ Σ(c):

1. The ascent regions local to σ are all in Y >c, or

2. The ascent regions local to σ are all in X>c.

We examine each possibility in turn.

In the first case, there is no piece of ∂X̃>c−ε/2 or of ∂X>c−ε/2 local to σ. So assume

that we are in the second case. Denote by k the degeneracy of the saddle σ. Then local

64

Figure 3.3: The cycle ∂X̃>c−ε/2 local

to a saddle σ of degeneracy k = 3.

Figure 3.4: The cycle ∂X>c−ε/2 local

to a saddle σ of degeneracy k = 3.

Figure 3.5: The difference between the cycles repre-

sented in Figure 3.3 and Figure 3.4.

to σ, ∂X̃>c−ε/2 consists of k curves bounding the k disjoint components where h̃ > c− ε/2

(see Figure 3.3 for an example with k = 3). But note that in this small neighborhood, this

cycle is homologous to ∂X>c−ε/2, as their difference is a boundary (see Figures 3.4 and 3.5).

And thus globally the difference between ∂X̃>c−ε/2 and ∂X>c−ε/2 is a finite union of such

boundaries, which shows that these cycles are homologous.

Thus we have that C is homologous to ∂X>c−ε/2, and by induction we can see that C is

homologous to ∂X>M for M ∈ (cxy,M0). So what happens to [C] as M is lowered beyond

65

cxy? We examine the topological changes that occur local to the set Σ(cxy). The analysis is

similar to our prior analysis but with the added kink that there are points from both X>cxy

and Y >cxy local to the contributing points.

As before we form a modified height function h̃ that locally pushes down the points of

Σ(cxy). With respect to this new function we again have that C is homologous to ∂X̃>cxy−ε/2

for some small ε > 0. So define the cycle κ0 = ∂X̃>cxy−ε/2. With a few alterations, we will

be able to turn κ0 into the desired representative.

Outside of small neighborhoods of the points in Σ(cxy) we have that h ≡ h̃, and hence the

height h along κ0 is equal to cxy − ε/2 away from these points. And by the same reasoning

as in the inductive argument above, we can alter κ0 local to the points of Σ(cxy) \ Ξ to

obtain a homologous cycle whose height h is bounded below cxy local to these points. What

remains is to examine κ0 local to the points of Ξ.

In a sufficiently small neighborhood U of any σ ∈ Ξ, the cycle κ0∩U consists of one curve

for each ascent region in X>cxy (see Figure 3.6, with two ascent regions from X>cxy and one

ascent region from Y >cxy). Each such curve enters the neighborhood at some point p1 and

leaves at some point p2, where p1 and p2 lie in separate descent regions (see Figure 3.6).

And each such curve is homotopic to a curve whose height is maximized at the saddle point,

namely one that travels straight from p1 to σ (contained within one descent region), and

then from σ to p2 (contained within a separate descent component). See Figure 3.7. Making

these adjustments to κ0 at every such contributing point results in a cycle homologous to

C along which h is maximized precisely at the points of Ξ.

To complete the construction, a few more changes must be made to κ0. Note that

currently, in a sufficiently small neighborhood U of any contributing point σ, κ0∩U consists

66

X

X
p
1

Y

p
2

Figure 3.6: A representation of κ0

local to σ with two ascent regions

in X>cxy and one ascent region in

Y >cxy . The set Ṽ>cxy−ε/2 is shaded.

X

X
p
1

Y

p
2

Figure 3.7: A representation of the

two pieces of κ0 after performing the

alteration described in the text.

of a set of curves in the descent regions Dj local to σ as follows:

1. If Dj is located between an ascent region in X>cxy and an ascent region in Y >cxy

(in that order, counterclockwise about σ), then κ0 ∩Dj consists of a single curve γj

traveling up Dj to σ.

2. If Dj is located between an ascent region in Y >cxy and an ascent region in X>cxy

(in that order, counterclockwise about σ), then κ0 ∩Dj consists of a single curve γj

traveling down Dj from σ.

3. If Dj is located between two ascent regions in Y >cxy , then κ0 ∩Dj = ∅.

4. If Dj is located between two ascent regions in X>cxy , then κ0 ∩ Dj consists of two

pieces, a curve entering σ and a curve exiting σ.

See Figure 3.7 for an example. Note that in case (4) above, the portion of κ0 in said descent

67

X

X
p
1

Y

p
2

Figure 3.8: A representation of κ local to a σ ∈ Ξ, after performing the

final alterations.

region can be “broken off” and pushed down the descent region, so the height along this

portion will be bounded strictly below cxy. See Figure 3.8 for an example, and compare to

Figure 3.7. After making the prescribed changes local to every point point of Ξ, we obtain

the cycle κ as prescribed in the statement of the theorem.

In the case that Ξ is empty, cxy = −∞ and the inductive argument applied from the

beginning of this proof can be extended to arbitrary large negative height. That is, C is

homologous to ∂X>m (along which the h ≡ m) for arbitrarily small m ∈ R. This yields the

representative claimed in the statement of the theorem.

The representative κ ∈ [C] is precisely the type of cycle amenable to the technique of

saddle point integration techniques. Before exploring said techniques, however, we shall

weaken one of our original assumptions in order to prove a slightly stronger version of the

preceding characterization theorem.

68

3.6 Generalized characterization theorem

In this this section we begin by weakening Assumption 3.1.3 to obtain the following.

Assumption 3.6.1. Assume that the critical points of VQ are isolated (and hence finite).

For the purpose of our impending algorithmic study of VQ, we note that the preced-

ing assumption is equivalent to the condition that the polynomial ideal 〈Q,Qx, Qy〉 be

0-dimensional, a fact that can be checked via Gröbner basis computation.

Under this assumption, we have the following definitions:

Definition 3.6.2. We define the constant c0 by

c0 = max {h(z0) : z0 ∈ VQ, VQ is not smooth at z0},

and we define the constant cxy by

cxy = inf {c > c0 : X
>c ∩ Y >c = ∅} ∈ [c0,∞)

Note that this definition of cxy generalizes the previous one if we adopt the convention

that c0 = −∞ in the case that VQ is smooth. We similarly generalize the definition of Ξ as

follows.

Definition 3.6.3. Define the set Ξ to be the set of all σ ∈ Σ such that

1. h(σ) > c0,

2. h(σ) = cxy, and

3. For arbitrarily small neighborhoods U ⊆ VQ of σ, U ∩X>cxy and U ∩ Y >cxy are both

non-empty.

69

We call Ξ the set of contributing points.

Note that Ξ is empty if cxy = c0.

Then the key is to notice that V>c0 is a smooth manifold, and that on this surface the

analyses carried out up to this point still hold. Thus we can define the intersection cycle C

on V>M for sufficiently large M , we can use the structure theorems of Morse theory to find

representatives for [C] as we decrease M , and generally implement all the methods from

before – as long as we restrict our attention to V>c0 . If Ξ is not empty, this enables us

to find a cycle κ ∈ [C] exactly as before. On the other hand if Ξ = ∅, then we can find

representative cycles for [C] along which the height is arbitrarily near, but greater than, c0.

This yields the following corollary to the first characterization theorem.

Corollary 3.6.4 (Generalized Characterization Theorem). If the set Ξ is non-empty, then

the homology class [C] contains a representative cycle κ just as in Theorem 3.5.4. On the

other hand if Ξ is empty, then [C] contains a representative cycle κ supported on V≤M for

any M > c0.

Applying the method of steepest descent to the cycle κ described in the characterization

theorem, we obtain the following corollary for the asymptotic analysis of the ar,s.

Corollary 3.6.5. Denote Ξ = {σ1, . . . , σm} and let κ be the cycle as prescribed in the

characterization theorem. If Ξ is not empty then we have

ar,s ∼
m
∑

i=1

enH(σi)
∞
∑

j=0

ui,jn
−(1+j)/ki ,

where ki ≥ 2 is the degree of degeneracy of σi. Moreover, the coefficients ui,j are computable,

assuming computability of the σi and of the tangent direction of the pieces of κ local to each

σi.

70

On the other hand if Ξ is empty, then we have that

ar,s = o(enM)

for any M > c0.

Proof. We begin by assuming that the set Ξ is non-empty. Recall that by Theorem 3.4.1

we can write

ar,s =
1

2πi

∫

κ
Res

(

P

xyQ
enH dx ∧ dy

)

+O(δn) (3.6.1)

for arbitrarily small δ > 0. We will apply the method of steepest descent to obtain an

asymptotic expansion for the preceding integral.

For each i ∈ {1, 2, . . . ,m}, let Ui be a small neighborhood of σi in VQ. Let U =
⋃m
i=1 Ui.

Then we can split the cycle γ0 into two pieces

κ = κ1 + κ2,

where κ1 = κ ∩ U and κ2 = κ \ κ1. Then because h < cxy along the compact curve κ2, we

can find a sufficiently small ε such that

h(z) ≤ c− ε for z ∈ κ2

But the residue form Res
(

P
xyQe

nH dx ∧ dy
)

admits the form

−P
xyQy

enH dx or
P

xyQx
enH dy

(according to when Qy 6= 0 or Qx 6= 0), and so by trivial bounds we have that

1

2πi

∫

κ2

Res

(

P

xyQ
enH dx ∧ dy

)

= O(en(c−ε)).

Thus equation 3.6.1 reduces to

ar,s =
1

2πi

∫

κ1

Res

(

P

xyQ
enH dx ∧ dy

)

+O(en(c−ε)),

71

and the computation is reduced to a set of integrals local the points of Ξ.

Local to a particular saddle point σi, smoothness of VQ guarantees that one of Qy or

Qx does not vanish. Assume without loss of generality that Qy 6= 0. Then locally we have

Res

(

P

xyQ
enH dx ∧ dy

)

=
−P
xyQy

enH dx = enH(σi)A(x)e−nφ(x),

where

A(x) =
−P
xyQy

φ(x) = H(σi)−H

parameterized locally by x.

Assuming that Ui is sufficiently small, the curve Ui ∩ κ1 consists of pieces exiting σi

and traveling down certain descent regions and pieces entering σi by traveling up certain

descent regions. To finish the theorem we must integrate over these pieces and finally sum

over all such i from 1 to m.

So let γ be an arbitrary curve segment exiting σi and traveling down a descent region.

We have

1

2πi

∫

γ
Res

(

P

xyQ
enH dx ∧ dy

)

=
enH(σi)

2πi

∫

γ
A(x)e−nφ(x) dx

where A and φ satisfy the conditions of Theorem 1.4.2. Thus we get a series expansion of

the form
∫

γ
A(x)e−nφ(x) dx ∼

∞
∑

j=0

ajn
−(1+j)/ki

where ki is the index of the first non-vanishing term of φ(x), also the degree of degeneracy of

h at the saddle point σi. Note that the coefficients aj are computable from the coefficients

of A and φ and from the tangent direction in which γ exits σi. The coefficients of A and

72

φ are in turn computable from the partials of P , Q and H at σi. Thus computability of

the asymptotic expansion rests on computability of the saddle point σi and the directions

of each γ in the description of κ local to Ξ.

Integrating over Ui ∩ κ1 consists of integrating over finitely many such γ either with

positive or negative orientation, and by summing over corresponding expansions we get an

expansion of the following form

1

2πi

∫

Ui∩κ1
Res

(

P

xyQ
enH dx ∧ dy

)

∼ enH(σi)
∞
∑

j=0

ui,jn
−(1+j)/ki .

Summing similar computations over all such points σi ∈ Ξ yields the desired result.

On the other hand if Ξ is empty, then by Theorem 3.6.4 we can find a cycle κ ∈ [C]

along which h ≤M for any M > c0. Then again by trivial bounds we obtain

1

2πi

∫

κ
Res

(

P

xyQ
enH dx ∧ dy

)

= O(enM).

And as ar,s = O(enM) for all M > c0, we must have ar,s = o(enM) for all M > c0.

By this corollary we see that computing an asymptotic series/bound for the ar,s reduces

to locating the points of Ξ and computing the structure of κ local to the points of Ξ. In

the next chapter, we produce an algorithm for this task.

73

Chapter 4

Algorithmic Implementation

4.1 Introduction

In the following chapter we present rigorous numerics for computing the location of Ξ and

the directions of κ ∈ [C] local to the points of Ξ, where Ξ and κ are as characterized

in Corollary 3.6.4. That is, we exhibit a rigorous algorithm for computing the preceding

information to within arbitrary numerical accuracy. As indicated in Corollary 3.6.5, this

information can then be used to compute asymptotic formulas/bounds for the coefficients

ar,s.

Motivated by the characterization theorem, we begin by examining the structure of V>c

local to any σ ∈ Σ, where c = h(σ). On a sufficiently small neighborhood U ⊆ VQ of σ, we

have that U ∩ V>c decomposes into k ascent regions, where k is the degeneracy of h at σ.

Assuming that c ≥ cxy and c > c0, we know that each such region A belongs either to X>c

or to Y >c, but not both. If we can determine which occurs for each region A and for every

such saddle point σ, we will have exactly the information necessary to construct Ξ and the

74

relevant cycle κ ∈ [C] local to the points in Ξ.

So let σ ∈ Σ be such that h(σ) ≥ cxy and h(σ) > c0, and let A be any local ascent

region. Let γ : [0, 1) → VQ be any path that begins at γ(0) = σ, travels out through A, is

monotonically increasing with respect to h and approaches arbitrarily large height. (Note

that the existence of such a path follows directly from the Morse-theoretic decomposition of

VQ.) Because h(γ(t)) → ∞ as t→ 1, we must have that γ((0, 1)) includes points arbitrarily

close to x = 0 and/or y = 0. But we can’t have both, as the condition c ≥ max {cxy, c0}

assures that X>c and Y >c are disjoint. Thus if it can be determined whether γ comes

arbitrarily close to x = 0 or y = 0, then it can be determined whether A belongs to X>c or

Y >c.

This suggests the following outline for an algorithm:

1. Input Q, r̂ and ŝ.

2. Use Gröbner basis computations to find the points of VQ where h has saddle points

(the set Σ) and where the variety VQ is not smooth. Terminate if any of these points

are not isolated. Denote by c0 the height of the highest non-smooth point (c0 = −∞

if the variety is smooth).

3. Step through each σ ∈ Σ in decreasing order of height, while h(σ) > c0. For each such

σ, do the following:

(a) Use Gröbner basis computations to compute the degree of degeneracy k of h at

σ.

(b) Compute the k steepest ascent directions for h at σ, i.e. the directions of the k

ascent regions.

75

(c) For each ascent region A, follow a strictly ascending path along VQ beginning

at σ and traveling through A. Follow each such path until it is clear whether

the path will approach arbitrarily close to x = 0 or y = 0. Keep track of this

information, which determines to which of X>c or Y >c each ascent component

belongs.

4. In the preceding loop: if ever a σ is found for which some of the ascent components

belong to X>c while others belong to Y >c, note the height cxy = h(σ) and add σ to

Ξ. Continue through the rest of the saddles at height cxy, adding them to Ξ according

to the same rule. Terminate the loop when done with the saddles at height cxy.

5. The algorithm terminates with the following conditions

(a) If Ξ is empty, then there is a cycle κ ∈ [C] such that supκ h ≤M for any M > c0.

This gives a bound on the growth of the coefficients ar,s as prescribed in Corollary

3.6.5.

(b) If Ξ is not empty, then there is a cycle κ ∈ [C] such that the height along κ

is maximized precisely at the points of Ξ, and the structure of κ local to Ξ is

as prescribed in the characterization theorem. Note that all of the information

necessary to describe this local structure is contained in the steps of the preceding

algorithm.

Of course it remains to be shown that an algorithm of this form can be effectively imple-

mented. In what follows, we demonstrate this to be so by presenting a complete pseudo-code

implementation. The first step is to sufficiently develop the notations/assumptions of the

pseudo-language that we shall use.

76

4.2 Describing the pseudo-language

Central to the pseudo-language is a suitable means of representation for certain computable

numbers, and a system whereby these numbers can be acted upon by certain computable

functions and operations. Specifically, we draw upon the construct of ball numbers and ball

arithmetic as developed in Mathemagix ([vdH08]). Note that the exact notation and func-

tions developed below may not be as implemented in Mathemagix, but equivalent functions

either exist or can be produced in this language.

We begin by describing the ball data type, which we shall use to represent certain

computable numbers to within arbitrary precision. Each variable b of type ball, or ball

number, represents some computable number b ∈ C. Associated to b are a variable (b.tol)

and two functions (b.approx() and b.mod()). The variable b.tol is a positive rational

number set at the time of b’s initialization, but may be changed by the user at any time. It

stores a computation tolerance. The function b.approx() then returns an element b̃ ∈ Q[i]

such that |b̃ − b| is less than the tolerance b.tol. The user may also pass an optional

argument to b.approx(); if we call b.approx(r) with r a positive rational number, then

this function will return an approximation of b to within a tolerance of r (regardless of, and

without changing, the value of b.tol). Finally, the function b.mod() returns an element of

Q that approximates |b| to within a tolerance of b.tol. And as with b.approx(), b.mod()

also accepts an optional rational argument for specifying a temporary tolerance value.

The pseudo-language also includes two ball number subtypes: real ball numbers (de-

noted by the type realball), and algebraic ball numbers (denoted by the type algball).

The realball data type is nearly identical to the ball data type, but is used only in the

representation of computable real numbers. In this case, the approx() subfunction always

77

returns an element of Q. The algball data type is used for specifically to represent al-

gebraic numbers. An algebraic ball number b representing some algebraic b ∈ C includes

all the attributes associated to a generic ball number, but also includes a new subfunc-

tion: b.poly(). This function takes an indeterminate as its input (e.g. x), and outputs a

rational-coefficient polynomial in that indeterminate (e.g. P(x)) of which b is a root. Note:

if it is not clear which data type is to be used in initializing an expression, the type will be

expressly indicated using functional notation; e.g., realball(expression).

Central to the construction of the ball data types is the existence of a sort of arithmetic

of ball numbers. Namely many of the usual computable functions/operations that can be

applied to elements of C can be applied to ball numbers, resulting in a ball number output

representing the result of the computation. Specifically, the pseudo-language allows us

to apply all arithmetic operations, roots, exponentiation, complex conjugation, complex

modulus, trigonometric functions and the real logarithm to ball numbers. In the case of the

complex modulus function, the output is assumed to be a real ball number. In the case of

the real logarithm, the input is assumed to be a real ball number.

Having specified the structure of ball numbers, we must take some time to discuss the

origin of said objects. For certain fundamental computable constants (e.g. π), we assume

that a ball number representation is available in the language (e.g. Pi). The vast majority of

ball numbers, however, will come from solving univariate polynomial equations. Specifically,

we assume the existence of a function solve(), whose input is a univariate polynomial P with

coefficients in Q[i] and whose output is an array of algebraic ball numbers corresponding

to the distinct roots of P. Note that such a function exists and has been implemented in

Mathemagix. We further assume that the roots in this array are initialized with the same

78

tolerance, and that the tolerance has been suitably shrunk; specifically, that the tolerance

is less than three times the distance between any two distinct roots of P. These assumptions

will be useful later on, allowing us to bound subsequent root approximations away from

one another (the distance between any two such approximations being greater than this

initial tolerance). We will also make use of a similar function realsolve(), whose input is

a univariate polynomial P with coefficients in Q and whose output is an array of algebraic

ball numbers corresponding to the distinct real roots of P.

In addition to the ball data type, we also construct two special data types for the

representation of saddle and singular points. These data types are nothing more than

specialized arrays containing the many pieces of information that we wish to store about

such points. Note that each element of the array is empty at the time of initialization, and

is set in the course of the algorithm.

The simpler of the two data types is that which is used for singular points: the type

nonSmooth. An element p of nonSmooth includes three pieces of information: algebraic

ball numbers p.x and p.y, and a real ball number p.height. The numbers p.x and p.y

represent the x- and y-coordinates of a singular point (x, y), while the number p.height

represents the exponential of its height, eh(x,y).

The data type for saddle points – saddle – includes far more information. Let sigma

be an arbitrary saddle variable, meant to represent a saddle point σ ∈ Σ. In addition to

the location and height information (sigma.x, sigma.y and sigma.height), sigma also

includes the following eight pieces of information:

1. sigma.byX – a boolean value which is set to True if VQ is locally parameterizable by

x in a neighborhood of σ. In this case we think of x as an independent variable and

79

y as a dependent variable. It is set to False otherwise, in which case the roles of x

and y are reversed. Note that this boolean is only used for saddle points higher than

c0, where VQ is smooth.

2. sigma.Ri – a positive rational number. This denotes the “radius of the independent

variable.” sigma.Ri is the radius of a neighborhood in the plane of the independent

variable on which parameterization by the independent variable holds.

3. sigma.Rd – a positive rational number. This denotes the “radius of the dependent

variable.” When VQ is parameterized by the independent variable on a disk of radius

sigma.Ri, the corresponding value of the dependent variable remains in a disk of

radius sigma.Rd.

4. sigma.R – a rational number. The number sigma.R < sigma.Ri represents a radius

on which parameterization by the independent variable is geometrically nice (in a

sense to be described in Lemma 4.12.1 below). This radius is used in the construction

of short ascent paths as parameterized by the independent variable.

5. sigma.pathToX – an array of boolean values. The length of sigma.pathToX is equal

to the degeneracy of h at σ, and the value of sigma.pathToX[i] is set to True if an

ascent path from σ through the ith ascent component local to σ is found to approach

x = 0. It is set to False otherwise.

6. sigma.xPole – a boolean value. sigma.xPole is set to True if all of the values in

the array sigma.pathToX are set to True. It is set to False if all of the values in

the array sigma.pathToX are set to False. This is to keep track of whether σ is in

X≥h(σ) or Y ≥h(σ). Note that this value is not initialized for h(σ) ≤ cxy.

80

7. sigma.out – an array of ball numbers. If sigma is found to be a contributing saddle,

then by the characterization theorem there is an κ ∈ [C] whose structure local to σ

consists of a set of short paths emanating from σ in various directions. sigma.out is

an array of those directions along which κ is parameterized to flow away from σ (as

parameterized by the independent variable).

8. sigma.in – an array of ball numbers. This is similar to the array sigma.out, but

stores the directions of curves along which κ is parameterized to flow into σ.

Concerning functions, we assume that the pseudo-language includes a full implementa-

tion of Gröbner basis computation. We use Maple ([Wat08]) as a notational guide. Specifi-

cally we make use of a function Basis(), whose input consists of an array I of generators of

a polynomial ideal, and an ordering O on monomials. The function then outputs a Gröbner

basis for that ideal as an array of polynomials, where the first element in the array is the

elimination polynomial. That is, if the ideal I is zero-dimensional, then the first element of

Basis(I,O) is a univariate polynomial in the indeterminate of smallest order. We make use

of a function plex() for producing orderings. The usage is as follows: plex(x1,x2,...,xn)

produces the pure lexicographic ordering on monomials induced by the relation x1 > x2 >

... > xn on the indeterminates.

All remaining functions that we shall use are relatively simple, and the vast majority

are described in the following list:

• diff() – This function takes two inputs: a rational function R (in any number of

indeterminates), and an indeterminate z. The output is the partial derivative of R

with respect to z.

81

• Re() and Im() – These functions take as input a polynomial (in any number of

indeterminates) having coefficients in Q[i]. Let P be such a polynomial. We can write

P uniquely as P1 + I*P2, where P1 and P2 are polynomials with coefficients in Q, and

I represents i ∈ C. Then the output of Re(P) is P1 while the output of Im(P) is P2.

• abs() – This function takes as input a polynomial
∑

j ajx
j with rational coefficients,

and outputs the polynomial
∑

j |aj|xj. It is used in upper bounding polynomials by

the triangle inequality.

• subs() – This function takes two inputs: an expression of the form z=n (where z is

an indeterminate and n is a number), and a polynomial P (in any number of indeter-

minates). The function returns the result of substituting n in for z in the polynomial

P.

• exponents() – This function takes two variables: a polynomial P in any number of

indeterminates, and an array [x1,x2,...,xn] of the indeterminates in P. The output

is an array of lists of exponents, where [i1,i2,...,in] is an element of the output

if and only if the monomial x1^i1*x2^i2*...*xn^in has nonzero coefficient in P.

• dotprod() – This function takes as input two same-length arrays (vectors) of rational

numbers, and returns their dot product as a rational number.

• BAFZ() – This function takes as input a ball number b that is known to be non-zero.

The function then progressively lowers the value of b.tol until b.mod is greater than

2*b.tol. Thus a call to the function b.approx() will subsequently be bounded away

from 0 by a distance of at least b.tol.

82

• type() – This function takes as input any variable, and outputs the variable’s type;

e.g. integer or ball, etc.

• len() – This function takes an array as an input, and outputs the length of the array

as an integer.

• a.append() – To any array a is associated the function a.append(), which takes any

variable as an argument and appends it to the end of the array a.

It is hoped that the use of any functions not explicitly detailed will be clear from context.

We make two additional notes about the structure of the pseudo-language. First, to

improve readability of the algorithm, comments are included. The comment character is %.

Consequently any text that appears after the symbol % on a given line of code a comment,

and is immaterial to the functioning of the code. Second, note that the scope of all loops

and if/then statements is indicated by level of indentation.

We are now ready to construct the functions necessary to carry out our algorithm.

The supporting functions are constructed one-by-one, section-by-section, culminating in

the creation of the main algorithm itself: main().

4.3 Examining the height near infinity

Specification of finiteHeight()

Input:

• Q(x,y) – a polynomial with rational coefficients in variables x and y. This is the

singular polynomial Q(x, y) of the generating function under investigation.

83

• r – a rational number. Together with s, this defines the direction [r,s] = (r̂, ŝ) in

which asymptotics are taken.

• s – a rational number. Together with r, this defines the direction [r,s] = (r̂, ŝ) in

which asymptotics are taken.

Description: This function examines the variety VQ and searches for branches along which

the height h approaches a constant as x → ∞ (and hence as y → 0) or as y → ∞ (and

hence as x→ 0). By Assumption 3.2.4, this is exactly when there are branches of the form

y ∼ cx−r̂/ŝ as x→ 0 or x ∼ cy−ŝ/r̂ as y → 0 (c 6= 0).

Output: FHAI – a boolean variable. FHAI stands for Finite Height At Infinity. It is set

to True if the height function is ever bounded as x → ∞ or as y → ∞ on VQ. It is set to

False otherwise.

Supporting Theorem

The key theorem on which the implementation of this function relies is Newton’s polygon

method. We begin with a definition.

Definition 4.3.1. To any polynomial Q(x, y) =
∑

j∈J cjx
ajybj with non-zero coefficients

cj , we define the Newton diagram of Q to be the set of points

{(aj , bj) : j ∈ J} ⊆ N× N.

Then we have the following theorem.

Theorem 4.3.2 (Newton Polygon Method). There exists a branch of VQ with y ∼ cxα (as

x → 0) if and only if α corresponds to one of the inverse slopes of the left-most convex

envelope of the Newton diagram of Q.

84

See [FS09, section VII.7.1]. As a corollary, we obtain the following.

Corollary 4.3.3. The height function h approaches a constant as x → ∞ or as y → ∞

along VQ if and only if ŝ/r̂ is the slope of a line-segment on the left-most or right-most

convex envelope of the Newton diagram of Q.

Proof. By Newton’s Polygon Method, there exists a branch of VQ of the form y ∼ cx−r̂/ŝ as

x → 0 if and only if the left-most convex envelope of the Newton diagram of Q includes a

line segment of slope ŝ/r̂. Similarly, there is a branch of VQ of the form x ∼ cy−ŝ/r̂ as y → 0

if and only if the left-most convex envelope of the Newton diagram of R(x, y) := Q(y, x)

includes a line segment of slope r̂/ŝ. But the Newton diagram of R is simply the Newton

diagram of Q reflected over the line x = y, and hence this will be true if and only if the

right-most convex envelope of the Newton diagram of Q includes a line segment of slope

ŝ/r̂.

Implementation

finiteHeight(Q(x,y),r,s)

FHAI = False % FHAI stands for Finite Height At Infinity

diagram = exponents(Q,[x,y])

% Cycle through pairs of points in the Newton diagram

j = 0

while ((FHAI == False) AND (j < len(diagram))):

k = 0

onLine = False; sideA = False; sideB = False

while(((sideA AND sideB) == False) AND (k < len(diagram)))

if (j != k):

% Where does point k lie with respect to the line of slope s/r through

% the point j? Check with a dot product.

position = dotprod(diagram[j] - diagram[k],[-s,r])

if (position == 0):

onLine = True % the line through j and k has slope s/r

else if (position < 0):

sideA = True % k is to one side of the line

else:

85

sideB = True % k is to the other side of the line

k = k + 1

% Was a point found on the line of slope s/r through point j, with the

% rest of the Newton diagram either to the left or the right?

if ((onLine == True) AND ((sideA AND sideB) == False)):

FHAI = True

j = j + 1

return FHAI

4.4 Finding solutions to a polynomial system

Specification of solveSystem()

Input:

• P1(x) – a polynomial in x with rational coefficients.

• xroots – an array of algebraic ball numbers. Each of the numbers in this array is

assumed to be a root of P1(x).

• P2(y) – a polynomial in y with rational coefficients.

• yroots – an array of algebraic ball numbers. Each of the numbers in this array is

assumed to be a root of P2(y).

• system – an array of polynomials in x and y with rational coefficients.

Description: This function uses Gröbner basis computations to find solutions (x, y) to

the system of polynomials system, where the x and y come from xroots and yroots,

respectively.

Output: solutions – an array of pairs of algebraic ball numbers. The array consists of

the pairs [x0,y0] (x0 from xroots and y0 from yroots) such that R(x0,y0) = 0 for every

polynomial R in the array system.

86

Implementation

solveSystem(P1,xroots,P2,yroots,system)

solutions = empty array

membership = len(xroots) by len(yroots) matrix of 1s

for P(x,y) in system:

% Construct a polynomial in t whose solutions are the possible values

% of P(x0,y0) for x0 in xroots and y0 in yroots

B = Basis([P1,P2,t-P],plex(x,y,t))

Pt = B[0]

troots = solve(t*Pt) % multiply by t to ensure t = 0 is a root

for j from 0 to (len(xroots) - 1):

for k from 0 to (len(yroots) - 1):

% Approximate the modulus of P(xroots[j],yroots[k]). If it is

% sufficiently close to 0 it must be 0.

evaluate = P(xroots[j],yroots[k]) % a ball number

if (evaluate.mod(troots[0].tol) > troots[0].tol):

membership[j,k] = 0

for j from 0 to (len(xroots) - 1):

for k from 0 to (len(yroots) - 1):

if membership[j,k] == 1:

solutions.append([xroots[j],yroots[k]])

return solutions

4.5 Finding the saddle and non-smooth points

Specification of findPoints()

Input:

• saddleBX – an array of polynomials with rational coefficients in variables x and y.

This is a Gröbner basis defining the set Σ, whose first entry eliminates the variable y.

• saddleBY – an array of polynomials with rational coefficients in variables x and y. This

is a Gröbner basis defining Σ as well, however the first entry in this array eliminates

the variable x.

• smoothBX – an array of polynomials with rational coefficients in variables x and y.

87

This is a Gröbner basis defining the set of singular points on VQ, whose first entry

eliminates the variable y.

• smoothBY – an array of polynomials with rational coefficients in variables x and y. This

is a Gröbner basis defining the singular points as well, however the first polynomial

in this array eliminates the variable x.

• isSmooth – a boolean. This value is set to True if VQ is a smooth manifold. It is set

to False if it contains isolated singular points.

Description: This function computes the locations (x, y) of all saddle and non-smooth

points of VQ such that x 6= 0 and y 6= 0.

Output: points – an array of numbers of type saddle or nonSmooth. This array consists

of all the saddle points and singularities of VQ not on the coordinate axes, initialized to

include their x- and y-coordinate data.

Implementation

findPoints(saddleBX,saddleBY,smoothBX,smoothBY,isSmooth)

points = empty array

Px = saddleBX[0] % Poly of possible x values for saddles

% Divide Px by the highest degree of x possible, so 0 isn’t a soln.

n = min(exponents(Px,[x])); Px = Px/(x^n) % now Px(0) != 0

xroots = solve(Px)

Py = saddleBY[0] % Poly of possible y values for saddles

n = min(exponents(Py,[y])); Py = Py/(y^n) % now Py(0) != 0

yroots = solve(Py)

polyArray = saddleBX[1..(len(saddleBX) - 1)] % Cut elimination poly

% Find all points [x0,y0] solving the saddle point Groebner basis

saddles = solveSystem(Px,xroots,Py,yroots,polyArray)

% Initialize them as saddle points and add to the point vector

for [x0,y0] in saddles:

b = new variable of type: saddle

b.x = x0

b.y = y0

88

points.append(b)

if (isSmooth == False):

Px = smoothBX[0] % Poly of possible x values for singularities

n = min(exponents(Px,[x])); Px = Px/(x^n) % now Px(0) != 0

xroots = solve(Px)

Py = smoothBY[0] % Poly of possible y values for singularities

n = min(exponents(Py,[y])); Py = Py/(y^n) % now Py(0) != 0

yroots = solve(Py)

polyArray = smoothBX[1..(len(smoothBX) - 1)] % Cut elim poly

% Find all points [x0,y0] solving the singular point Groebner basis

singular = solveSystem(Px,xroots,Py,yroots,polyArray)

% Initialize them as nonSmooth points and add them to the point vector

for [x0,y0] in singular:

b = new variable of type: nonSmooth

b.x = x0

b.y = y0

points.append(b)

return points

4.6 Computing possible height values

Specification of possHeight()

Input:

• Px – a polynomial with rational coefficients in the variable x. The x-coordinates of

every saddle and singular point of VQ are assumed to be roots of this polynomial.

• Py – a polynomial with rational coefficients in the variable y. The y-coordinates of

every saddle and singular point of VQ are assumed to be roots of this polynomial.

• r and s – as in previous functions.

Description: This function is ultimately used to order all saddle/singular points by height.

To do so, the function uses a Gröbner basis computation to construct a polynomial Pt whose

89

real roots include all possible values of

eh(x,y) = |x|−r̂|y|−ŝ,

such that (x, y) is a singular or saddle point (and x 6= 0, y 6= 0). The key fact is that eh is

algebraic in the real and imaginary parts of x and y. After constructing Pt, the function

returns its real roots.

Output: troots – an array of real ball numbers. These are possible values of eh at the

saddle points and singular points of VQ.

Implementation

possHeights(Px,Py,r,s)

n = lcm(denominator(r),denominator(s))

% Construct a polynomial whose solutions are t = e^h(a+I*b,c+I*d)

hPoly = (t^(2*n))*((a^2 + b^2)^(n*r))*((c^2 + d^2)^(n*s)) - 1

% Use Groebner bases to construct a polynomial in t whose real roots

% include all e^h(x,y) where x solves Px and y solves Py

I = [Re(Px(a+I*b)),Im(Px(a+I*b)),Re(Py(c+I*d)),Im(Py(c+I*d)),hPoly]

B = Basis(I,plex(a,b,c,d,t))

Pt = B[0] % Pt is the desired polynomial

troots = solvereal(Pt)

return troots

4.7 Computing a terminal condition

Specification of termCriteria()

Input:

• Q(x,y), r and s – as in previous functions.

Description: This function creates a set of termination criteria for the eventual path

climbing algorithm. Ultimately this will guarantee the construction of each ascent path to

90

terminate after a finite number of steps, and to determine which plane (x = 0 or y = 0) the

path approaches.

Output: [hStop,epsilon] – an array consisting of two rational numbers. Their role in

the termination of ascent paths is described following the subsequent lemma.

Supporting Lemma

The utility of this function relies on the following lemma.

Lemma 4.7.1. Let Q ∈ Q[x, y] such that Q(0) 6= 0 and such that the variety VQ has

finitely many non-smooth points. Fix r̂, ŝ > 0, and define the height function h(x, y) =

−r̂ log |x| − ŝ log |y|. Let ε > 0 be sufficiently small so that

|x| < ε and |y| < ε⇒ |Q(x, y)| > 0,

and define

M = −r̂ log ε− ŝ log ε.

Then for any (x, y) ∈ VQ such that h(x, y) > M and such that (x, y) is higher than any

non-smooth point of VQ, we have either that |x| < ε or |y| < ε, but not both. If |x| < ε,

then (x, y) ∈ X>M . Otherwise, (x, y) ∈ Y >M .

The function termCriteria computes such an ε (epsilon) by the triangle inequality,

producing a lower bound for |Q(x, y)| when |x|, |y| ≤ ε and sufficiently shrinking ε until this

lower bound is positive. The function returns epsilon along with a rational upper bound

for M (hStop). These values can then be used to determine if an ascent path that climbs

higher than hStop is in a component of X>M or Y >M : simply check the values of |x| and

|y| to determine which is less than epsilon.

91

Proof. Let (x0, y0) ∈ VQ, and assume both that h(x0, y0) > M and that (x0, y0) is higher

than any non-smooth point of VQ. First note by the structure of h that we cannot have

h(x0, y0) > M unless at least one of |x0| or |y0| is less than ε. But note that by definition

of ε we cannot have both: Q(x0, y0) 6= 0 for both |x0| < ε and |y0| < ε.

To prove the second part of the lemma, let γ : [0, 1) → VQ be a curve that starts at

(x0, y0), is non-decreasing in height, and approaches arbitrarily large values of h. (The

existence of such a curve follows from the Morse-theoretic decomposition of V≥h(x0,y0).)

Denote γ(t) = (x(t), y(t)). In order for h(γ(t)) → ∞ as t → 1, we must have that x(t) or

y(t) approaches arbitrarily close to 0. Now assume that |x0| < ε. We claim that |y(t)| ≥ ε

for all t, and hence that x(t) must approach arbitrarily close to 0. This will prove that

(x0, y0) is in X>M . A symmetric argument then shows that |y0| < ε implies that (x0, y0)

belongs to Y >M .

To prove this final claim, we assume by way of contradiction that |y(t)| < ε for some

value of t. Define

t0 = inf {t ∈ (0, 1) : |y(t)| < ε}.

Then there exist arbitrarily small δ > 0 such that |y(t0 + δ)| < ε, and hence such that

|x(t0 + δ)| ≥ ε (as h(γ(t0 + δ)) > M). Taking the limit as δ → 0, this implies that

|x(t0)| ≥ ε and y|(t0)| ≤ ε. But |y(t0)| ≥ ε, as |y(t)| ≥ ε for all t < t0, and hence |y(t0)| = ε.

Thus we have

h(γ(t0)) ≤ −r̂ log ε− ŝ log ε =M,

which contradicts the assumption that γ is non-decreasing.

Implementation

termCriteria(Q(x,y),r,s)

92

epsilon = 16 % arbitrary starting point

Qbound = abs(Q(0,0)) - abs(Q(x,x) - Q(0,0)) % poly in x

% Shrink epsilon until until |Q(epsilon,epsilon)| > 0

while (Qbound(epsilon) <= 0):

epsilon = epsilon / 2

height = realball(-r*log(epsilon) - s*log(epsilon))

% Compute an upper bound for height -- this is the terminal height

hStop = height.approx(0.01) + 0.01 % tolerance is arbitrary

return [hStop, epsilon]

4.8 Determining a local parameterization variable

Specification of paramByX

Input:

• Q(x,y) – as in previous functions.

• x0 – a ball number. This represents the x-coordinate of a point (x0, y0) ∈ VQ.

• y0 – a ball number. This represents the y-coordinate of a point (x0, y0) ∈ VQ.

Description: Given a polynomial Q and a point (x0, y0) on VQ at which Q is known to be

smooth, this function determines a variable (either x or y) with respect to which VQ admits

a local parameterization. This is accomplished by computing Qy(x0, y0) and Qx(x0, y0) to

greater and greater accuracy, until it can be determined that one of these two values is

non-zero. The rest follows from the implicit function theorem.

Output: byX – a boolean. byX is set to True if the set Q(x,y) = 0 is parameterizable local

to the point [x0,y0] by x. It is set to False if it is found to be locally parameterizable in

terms of y.

93

Implementation

paramByX(Q(x,y),x0,y0)

% Compute partials of Q at the point (x0,y0)

Qx = diff(Q,x); Qx0 = Qx(x0,y0)

Qy = diff(Q,y); Qy0 = Qy(x0,y0)

tolerance = 1 % ball approximation tolerance

nonZeroX = False; nonZeroY = False

% Compute Qx0 and Qy0 to greater and greater precision until it can

% be verified that one is not zero.

while ((nonZeroX == False) AND (nonZeroY == False)):

if (Qx0.mod(tolerance) > tolerance): % is Qx(x0,y0) not 0?

nonZeroX = True

if (Qy0.mod(tolerance) > tolerance): % is Qy(x0,y0) not 0?

nonZeroY = True

tolerance = tolerance / 2

if (nonZeroY == True):

byX = True % if dQ/dy is nonzero, parameterize by x

else:

byX = False % otherwise, parameterize by y

return byX

4.9 Isolating roots

Specification of isoRoot

Input:

• Q(w,z) – a polynomial with rational coefficients in variables w and z. This is the same

singular polynomial Q from before, but in a new coordinate system. The variables x

and y have been replaced by w and z (either by w = x and z = y or vice versa). The

manner in which the new variables have been selected is to assure that Qz is non-zero

at the point [w0,z0] on VQ(w,z). Hence locally we may assume the singular variety is

parameterizable by w.

• w0 – an algebraic ball number. This is the w-coordinate of a point on VQ(w,z).

94

• z0 – an algebraic ball number. This is the z-coordinate of a point on VQ(w,z).

Description: This function finds a neighborhood in the z-plane on which the only root of

Q(w0, z) = 0 is z = z0.

Output: isolate – a rational number. The number isolate satisfies the condition that

if Q(w0,z) = 0 and |z - z0| is less than isolate, then z = z0.

Supporting Lemma

The construction of the number isolate depends principally on the following lemma.

Lemma 4.9.1. Let Q ∈ Q[w, z] and (w0, z0) ∈ C2 such that Q(w0, z0) = 0 and Qz(w0, z0) 6=

0. Let ε > 0 be such that

1

|z − z0|
|Q(w0, z)− (z − z0)Qz(w0, z0)| < |Qz(w0, z0)| (4.9.1)

for z 6= z0 such that |z − z0| < ε. Then Q(w0, z) = 0 and |z − z0| < ε implies that z = z0.

Note that the function

f(z) :=
Q(w0, z)− (z − z0)Qz(w0, z0)

z − z0

appearing on the left-hand side of the inequality (4.9.1) is O(z − z0) as z → z0. The

function isoRoot thus constructs an ε > 0 for which the preceding inequality holds by

upper bounding |f(z)| given a starting bound on |z − z0| (z 6= z0), then by shrinking the

bound on |z − z0| until it can be shown that |f(z)| must be less than |Qz(w0, z0)|.

Proof. Let ε be as prescribed, and let z be such that |z− z0| < ε and z 6= z0. Motivated by

expanding Q(w0, z) in z about z = z0, we write

Q(w0, z) = (z − z0)

(

Qz(w0, z0) +
1

z − z0
(Q(w0, z)− (z − z0)Qz(w0, z0))

)

.

95

From this, we obtain

|Q(w0, z)| ≥ |z − z0| ·
(

|Qz(w0, z0)| −
∣

∣

∣

∣

1

z − z0
(Q(w0, z)− (z − z0)Qz(w0, z0))

∣

∣

∣

∣

)

> |z − z0| · (|Qz(w0, z0)| − |Qz(w0, z0)|) = 0

where the second inequality is by definition of ε. Thus Q(w0, z) 6= 0. That is, the only root

of Q(w0, z) = 0 with |z − z0| < ε is z = z0.

Implementation

isoRoot(Q(w,z),w0,z0)

isolate = 16 % arbitrary starting value for isolating radius

% Compute a lower bound for diff(Q,z) at (w0,z0)

Qz = diff(Q,z)

Q0 = ball(Qz(w0,z0))

BAFZ(Q0);

Qlb = Q0.mod() - Q0.tol % lower bound for |Qz(w0,z0)|

% Compute upper bounds for |w0| and |z0|

w0ub = w0.mod(0.1) + 0.1

z0ub = z0.mod(0.1) + 0.1

% Construct a polynomial for the Lemma inequality; bound from above

P = (1/D)*(Q(a,b + D) - Qz(a,b)*D - Q(a,b)) % poly in a, b and D

P = abs(P)

P = subs(a = w0ub, P)

P = subs(b = z0ub, P) % P is now a poly in D

% NOTE: P has no constant term!

while(P(isolate) >= Qlb):

isolate = isolate / 2

return isolate

4.10 Finding a parameterization neighborhood

Specification of paramNbd()

Input:

• Q(w,z), w0 and z0 – as in previous functions.

96

Description: This function produces a neighborhood of (w0, z0) in C2 on which the variety

VQ is parameterizable by w.

Output: [delta,epsilon] – an array of two rational numbers. Local to the point [w0,z0],

the variety VQ is parameterizable by w on the neighborhood |w - w0| < delta. The cor-

responding z value is in the neighborhood |z - z0| < epsilon.

Supporting Lemma

The following lemma will be used to characterize the appropriate radii of a polydisc on which

VQ(w,z) can be parameterized by w. Note that lemma is presented in (x, y) coordinates,

assuming local parameterization by x. This is for ease of notation in later lemmas, where

the height function will be invoked.

Lemma 4.10.1. Let Q ∈ Q[x, y], and let (x0, y0) ∈ VQ ⊆ C2 such that Qy(x0, y0) 6= 0. Let

δ, ε be positive constants such that

Q(x0, y) = 0 and |y − y0| < ε =⇒ y = y0,

and such that for all (x, y) with x ∈ Bδ(x0) and y ∈ B2ε(y0) \Bε(y0), the following inequal-

ities hold:

|Qy(x, y0)−Qy(x0, y0)| <
1

2
|Qy(x0, y0)| , (4.10.1)

1

|y − y0|
|Q(x, y)−Q(x, y0)− (y − y0)Qy(x, y0)| <

1

4
|Qy(x0, y0)| , (4.10.2)

|Q(x, y0)| <
ε

4
|Qy(x0, y0)| . (4.10.3)

Then VQ∩D is parameterizable by x, where D := Bδ(x0)×Bε(y0) (a polydisc about (x0, y0)).

97

The function paramNbd() will construct such δ and ε. The method used is analogous to

the upper bounding technique employed in the function isoRoot().

Proof. The first task is to show that, under the assumptions of the theorem, the equation

Q(x, y) = 0 has no solutions (x, y) ∈ Bδ(x0)× (B2ε(y0) \Bε(y0)). To that end, we fix some

such (x, y) and examine Q(x, y).

We begin by writing Q as a partial expansion

Q(x, y) = Q(x, y0) + (y − y0)Qy(x, y0) +R(x, y),

where the remainder function R is defined by

R(x, y) = Q(x, y)−Q(x, y0)− (y − y0)Qy(x, y0).

Hence by the triangle inequality we have that

|Q(x, y)| ≥ |y − y0| ·
(

|Qy(x, y0)| −
|R(x, y)|
|y − y0|

)

− |Q(x, y0)| . (4.10.4)

From the upper bound in (4.10.1) we get the lower bound |Qy(x, y0)| > 1
2 |Qy(x0, y0)|.

Combined with the upper bound (4.10.2) and the fact that |y − y0| > ε, this yields

|y − y0| ·
(

|Qy(x, y0)| −
|R(x, y)|
|y − y0|

)

>
ε

4
|Qy(x0, y0)| .

Finally, applying the preceding lower bound together with the upper bound (4.10.3) to the

inequality (4.10.4) yields

|Q(x, y)| > ε

4
|Qy(x0, y0)| −

ε

4
|Qy(x0, y0)| = 0.

In other words, Q(x, y) 6= 0, as we wished to show.

We wish to use this property to show that VQ ∩D is parameterizable by x. We make

use of the fact that, as x varies over C, the corresponding y-roots of Q(x, y) = 0 vary

98

continuously with x (assuming we include ∞ as a possible y-root in the usual way). This

can be seen, for instance, by expressing each y-root locally as a Puiseux expansion in x.

Now by assumption, there is exactly one y-root of Q(x0, y) = 0 that lies in the ball

Bε(y0). In fact there is only one such root when counted with multiplicity, as Qy(x0, y0) 6= 0.

And because Q(x0, y) has no y-roots in the annulus B2ε(y0) \ Bε(y0), all other such y-

roots must lie in C \ B2ε(y0). As x varies over the ball Bδ(x0), the corresponding y-roots

of Q(x, y) = 0 vary continuously and never enter the annulus B2ε(y0) \ Bε(y0). Thus

for x ∈ Bδ(x0) there is one and only one y-root in Bε(y0) such that Q(x, y) = 0; on a

neighborhood of x0 we have effectively isolated one y-root from all others. This enables us

to construct a well-defined implicit function

f : Bδ(x0) → Bǫ(y0)

by the rule Q(x, f(x)) = 0.

Assuming that f is analytic, we have constructed the desired parametrization of VQ on

the polydisc D. But again, we can see this by the Puiseux expansion theorem. Representing

f local to any x1 ∈ Bδ(x0) by a Puiseux expansion, we see that f fails to be holomorphic at

x1 if and only if either: the expansion has non-trivial singular part (in which case y → ∞

as x → x1) or the expansion contains non-integral powers of (x − x1) (in which case there

will be a coalescence of roots as x→ x1). By the isolation exhibited earlier, neither of these

cases is possible. Thus f is analytic, and the theorem follows.

Before proceeding with with the implementation of this algorithm, we pause to draw

attention to a useful property of this parameterization that was uncovered in the proof.

When parameterizing VQ near (x0, y0) by x on Bδ(x0), the corresponding y root is the

99

unique root of Q(x, y) = 0 in Bε(y0), and all other roots of Q(x, y) = 0 lie outside the

region B2ε(y0). This isolation will be particularly useful when we parameterize a path on

VQ by one variable and must analytically continue the other to the correct corresponding

value.

Implementation

paramNbd(Q(w,z),w0,z0)

% Isolate the z0 root

isolate = isoRoot(Q(w,z),w0,z0)

Qz = diff(Q,z)

Q0 = ball(Qz(w0,z0))

BAFZ(Q0); BAFZ(w0); BAFZ(z0)

Qlb = Q0.mod() - Q0.tol % rational lower bound for |Qz(w0,z0)|

wlb = w0.mod() - w0.tol % rational lower bound for |w0|

zlb = z0.mod() - z0.tol % rational lower bound for |z0|

% Bound w and z away from 0

delta = wlb/2; epsilon = min(isolate,zlb/2) % attempt at radii

% Obtaining the first inequality from the lemma:

P1 = Qz(a + D,b) - Qz(a,b) % polynomial in a, b and D

P1 = abs(P1)

P1 = subs(a = w0.mod() + w0.tol,P1)

P1 = subs(b = z0.mod() + w0.tol,P1) % P1 is now a poly in D only

% NOTE: P1 has no constant term!

while(P1(delta) >= Qlb/2):

delta = delta/2

% Obtaining the second inequality from the Lemma:

P2 = (Q(a+D,b+E) - Q(a+D,b) - E*Qz(a+D,b))/E % poly in a,b,D,E

P2 = abs(P2)

P2 = subs(a = w0.mod() + w0.tol,P2)

P2 = subs(b = z0.mod() + z0.tol,P2)

P2 = subs(D = delta) % P2 is now a poly in E only

% NOTE: P2 has no constant term!

while(P2(2*epsilon) >= Qlb/4):

epsilon = epsilon/2

% Obtaining the third inequality from the lemma:

P3 = Q(a + D,b) - Q(a,b) % polynomial in a, b and D

P3 = abs(P3)

P3 = subs(a = w0.mod() + w0.tol,P3)

P3 = subs(b = z0.mod() + z0.tol,P3) % P3 is now a poly in D only

% NOTE: P3 has no constant term!

while(P3(delta) >= Qlb*epsilon/4):

100

delta = delta/2

return [delta, epsilon]

4.11 Calculating the degeneracy of a saddle point

Specification of degeneracy()

Input:

• Q(w,z), w0, z0, r, s, byX – as in previous functions.

Description: This function calculates the degree of degeneracy of the height function at

the point represented by [w0,z0], assumed to be a saddle. This is accomplished by repeated

differentiation and applications of the function solveSystem().

Output: [n,DH] – an array of two elements: an integer n and a rational function DH in

variables w and z. The integer n is the degeneracy of h at [w0,z0], while DH is a formula

for dn

dwnH(w, z(w)) local to this point (in terms of w and z).

Implementation

degeneracy(Q(w,z),w0,z0,r,s,byX)

% Compute Dz, the derivative of z with respect to w on Q = 0.

Dz = -diff(Q,w)/diff(Q,z)

% Compute DH, the first derivative of H with respect to w.

if (byX == True):

DH = -r/w - (s/z)*Dz

else:

DH = (-r/z)*Dz - (s/w)

n = 2

% Set DH equal to the second derivative of H with respect to w.

DH = diff(DH,w) + diff(DH,z)*Dz

Hnum(w,z) = numerator(DH)

% Is (w0,z0) a solution of DH = 0?

solns = solveSystem(w0.poly(x),[w0],z0.poly(y),[z0],[Hnum(x,y)])

% While (w0,z0) is such a solution, set DH to the next derivative

while (solns is not empty):

101

n = n + 1

DH = diff(DH,w) + diff(DH,z)*Dz

Hnum(w,z) = numerator(DH)

solns = solveSystem(w0.poly(x),[w0],z0.poly(y),[z0],[Hnum(x,y)])

return [n,DH]

4.12 Finding a neighborhood for ascent steps

Specification of ascentNbd()

Input:

• w0, z0, r, s, byX – as in previous functions.

• Ri – a rational number. This is the “radius of the independent variable.” We assume

that VQ(w,z) is parameterizable by w for |w - w0| < Ri. This is an output of the

function paramNbd().

• Rd – a rational number. This is the “radius of the dependent variable.” When pa-

rameterizing by w on the neighborhood described above, the corresponding z satisfy

|z - z0| < Rd. This is an output of the function paramNbd().

• n – an integer. This is the degree of degeneracy of the height function at the point

[w0,z0].

• DH – a rational function in variables w and z. This is a local formula for dn

dwnH(w, z(w))

near the point [w0,z0].

Description: This function finds a neighborhood on which the parameterization of VQ(w,z)

by w is particularly nice in a geometric sense (to be detailed following Lemma 4.12.1). In

particular, this neighborhood is perfectly suited to constructing local ascent paths.

102

Output: R – a rational number. The number R < Ri is the radius of a neighborhood of

w0 on which parameterization by w is well-understood geometrically.

Supporting Lemma

We will require significant setup/notation to construct a geometrically useful neighborhood

of parameterization, which we now develop.

For a given Q ∈ Q[x, y], let (x0, y0) ∈ VQ be such that x0 6= 0, y0 6= 0 and Qy(x0, y0) 6= 0.

Now let δ, ε be positive constants as in the conclusion of Lemma 4.10.1, so that VQ is

parameterizable by x on the polydisc D = Bδ(x0) × Bε(y0). Assume further that δ and ε

are sufficiently small so that 0 /∈ Bδ(x0) and 0 /∈ Bε(y0).

Denote by

ι : Bδ(x0) → VQ ∩D

this parametrization, and define the function H on Bδ(x0) by H(x) = H(ι(x)) (for any

determination of H local to (x0, y0)). Define

n = inf {k ≥ 1 : H(k)(x0) 6= 0},

which is well-defined assuming thatH has isolated critical points on VQ. Define the constant

M by

M =

√

(r̂ log (|x0| − δ) + ŝ log (|y0| − ε))2 + (2π(r̂ + ŝ))2,

and let ρ ∈ (0, 1) be sufficiently small so that

ρ

(1− ρ)2
(n+ 1− nρ) <

δn
∣

∣H(n)(x0)
∣

∣

(n− 1)!M
√
2
.

We conclude the following:

103

Lemma 4.12.1. For any any θ ∈ R such that

2nθ + 2arg
(

H(n)(x0)
)

+ π/2 ∈ [0, π] mod 2π,

define the curve γθ : [0, ρδ] → C by γθ(t) = x0 + teiθ. Then the height along ι ◦ γθ is

monotone (that is, the function Re (H ◦ γθ) is monotone).

Similarly for c < ρδ and any θ ∈ R such that

2nθ + 2arg
(

H(n)(x0)
)

= π/2 mod 2π,

define the curve σc,θ : [0, π/2n] → C by σc,θ(t) = x0+ ce
i(θ+t). Then the height along ι ◦σc,θ

is monotone.

This lemma may seem quite technical, but the message is relatively simple. Within

a wedge of angle π/2n of the 2n steepest ascent/descent directions, the height along the

radial paths exiting (x0, y0) (the γθ paths) is monotone (as parameterized by x on Bρδ(x0)).

Similarly, within a wedge of angle π/2n of the 2n constant height directions, the height

along circumferential paths about (x0, y0) (the σc,θ paths) is monotone (again, on a small

neighborhood as parameterized by x). See Figure 4.1.

The function ascentNbd() thus produces a radius of the form ρδ as prescribed in the

lemma.

Proof. Let γθ be as prescribed. We wish to show that the height along ι ◦ γθ is monotone.

We do so by showing that

d

dt
ReH(γθ(t)) = Re

(

H′(x0 + teiθ)eiθ
)

6= 0

for t ∈ (0, ρδ). Thus we simply need to show that the expression

H′(x0 + teiθ)eiθ

104

Figure 4.1: The geometric structure on a computable neighborhood lo-

cal to a point σ at which h has degeneracy of degree 2. The height is

monotone along indicated paths.

is not purely imaginary. We examine this expression in more detail.

By using the Taylor expansion for H about x0, we can rewrite this as

H′(x0 + teiθ)eiθ = eiθ
∞
∑

k=n

H(k)(x0)

(k − 1)!

(

teiθ
)k−1

= einθH(n)(x0)
tn−1

(n− 1)!
(1 +R(t)) ,

where

R(t) =
(n− 1)!

H(n)(x0)

∞
∑

k=n+1

H(k)(x0)

(k − 1)!

(

teiθ
)k−n

. (4.12.1)

Then we can write

arg
(

H′(x0 + teiθ)eiθ
)

= arg
(

einθH(n)(x0)
)

+ arg (1 +R(t)).

105

But by our choice of θ, we have either that

arg
(

einθH(n)(x0)
)

∈ [−π/4, π/4], or

arg
(

einθH(n)(x0)
)

∈ [3π/4, 5π/4]

Thus we can assure that H′(x0+teiθ)eiθ is not purely imaginary by showing arg (1 +R(t)) ∈

(−π/4, π/4). We accomplish this by showing that |R(t)| <
√
2/2.

To obtain this upper bound on the |R(t)|, we will need upper bounds on the derivatives

H(k)(x0). We can use Cauchy’s integral formula to write

H(k)(x0) =
k!

2πi

∫

C

H(x)

(x− x0)k+1
dx, (4.12.2)

where C is a circle of radius δ0 < δ centered at x0, oriented positively. To upper bound the

preceding integral we seek an upper bound on H on Bδ(x0). So we examine the function

H(x, y) = −r̂ log x− ŝ log y

on the polydisc D. Choose a branch of log x holomorphic on Bδ(x0) such that Im (log x) ∈

[−2π, 2π] for x ∈ Bδ(x0). Choose a similar branch of log y on Bε(y0). Then on D,

|H(x, y)| =
√

(ReH)2 + (ImH)2

≤
√

(r̂ log (|x0| − δ) + ŝ log (|y0| − ε))2 + (2π(r̂ + ŝ))2 =M.

Returning to equation (4.12.2), we obtain

∣

∣

∣
H(k)(x0)

∣

∣

∣
≤ k!

2π
2πδ0

M

(δ0)k+1
.

Simplifying and letting δ0 → δ, we have

∣

∣

∣
H(k)(x0)

∣

∣

∣
≤ k!

M

δk
.

106

Finally, applying this bound to equation (4.12.1), we get

|R(t)| = (n− 1)!
∣

∣H(n)(x0)
∣

∣

∣

∣

∣

∣

∣

∞
∑

k=n+1

H(k)(x0)

(k − 1)!

(

teiθ
)k−n

∣

∣

∣

∣

∣

≤ (n− 1)!
∣

∣H(n)(x0)
∣

∣

∞
∑

k=n+1

k!

(k − 1)!

M

δk
(ρδ)k−n

=
Mρ1−n(n− 1)!

δn
∣

∣H(n)(x0)
∣

∣

∞
∑

k=n+1

kρk−1.

But note that

∞
∑

k=n+1

kρk−1 =
d

dρ

∞
∑

k=n+1

ρk =
d

dρ

(

ρn+1

1− ρ

)

=
(n+ 1)ρn − nρn+1

(1− ρ)2
,

which yields

|R(t)| ≤ M(n− 1)!

δn
∣

∣H(n)(x0)
∣

∣

· ρ (n+ 1− nρ)

(1− ρ)2
<

1√
2
,

by definition of ρ. This is as we wished to show.

The proof that monotonicity of the height along each ι ◦ σc,θ is proved by the same

general method.

We note that the preceding lemma allows us to conclude the following.

Corollary 4.12.2. In the notation of Lemma 4.12.1, let (x1, y1) ∈ VQ such that |x1−x0| <

ρδ and |y1 − y0| < ε. Define c = min {h(x0, y0), h(x1, y1)}. Then (x1, y1) and (x0, y0) are

in the same component of V≥c.

This corollary will be used to determine whether or not a point (x1, y1) sufficiently close

to a saddle point (x0, y0) lies in a component of X≥c or Y ≥c, assuming that information to

be known of the saddle point.

Proof. First, we begin by assuming that c = h(x1, y1), so that h(x1, y1) ≤ h(x0, y0). The

claim is that there is an ascent path from (x1, y1) to (x0, y0), which will prove the claim in

this case.

107

By the results of Lemma 4.12.1, there is a neighborhood of (x0, y0) containing (x1, y1),

parameterized by x, which has the nice geometric structure as depicted in Figure 4.1. In

said neighborhood we deal with two cases: either (x1, y1) lies in a wedge on which the radial

paths to (x0, y0) are monotone in height, or it lies in a wedge on which the circumferential

paths about (x0, y0) are monotone in height.

In the former case, the path directly from (x1, y1) to (x0, y0) is the desired ascent. In

the latter case, we can traverse a circumferential ascent path within this wedge to some

intermediate point (x2, y2) such that h(x2, y2) = h(x0, y0). From there, we can travel along

the constant height path within this wedge until reaching (x0, y0). In either case, there is a

non-decreasing path from (x1, y1) to (x0, y0), as we wished to show.

On the other hand if h(x0, y0) ≤ h(x1, y1), a similar argument can be used to construct

a path of non-increasing height from (x1, y1) to (x0, y0), in which case we also obtain the

desired claim.

Implementation

ascentNbd(w0,z0,r,s,byX,Ri,Rd,n,DH)

% Compute a positive lower bound for |DH| at the point (w0,z0)

H0 = DH(w0,z0) % a ball number

BAFZ(H0)

Hlb = H0.mod() - H0.tol % lower bound for |DH(w0,z0)|

% Compute lower bounds for |w0| - Ri, |z0| - Rd

w1 = realball(|w0| - Ri); z1 = realball(|z0| - Rd)

BAFZ(w1); BAFZ(z1)

wlb = w1.approx() - w1.tol; zlb = z1.approx() - z1.tol()

% Compute an upper bound for M from the lemma

if (byX == True)

logBound = realball(r*log(wlb) + s*log(zlb))

else

logBound = realball(r*log(zlb) + s*log(wlb))

M = (logBound^2 + (2*Pi*(r+s))^2)^(1/2)

Mub = M.mod() + M.tol % upper bound for |M|

% Construct a rho satisfying the inequality for the lemma

108

rho = 0.8 % arbitrary starting value in (0,1)

bound = (Hlb*((Ri)^n))/((n-1)!*Mub*1.4143) % 1.4143 UB for sqrt(2)

while ((n + 1 - n*rho)*rho/(1-rho)^2 >= bound):

rho = rho/2

R = rho*Ri

return R

4.13 Computing a single ascent step

Specification of pathStep

Input:

• Q(w,z), w0, z0, n, DH, r, s – as in previous functions.

• dir – a ball number. dir represents one of the steepest ascent directions local to

[w0,z0] as parameterized by w.

Description: This algorithm constructs a single step along the variety VQ(w,z) that is guar-

anteed to be non-decreasing in height. It does so by calling paramNbd() and ascentNbd()

to find a geometrically nice neighborhood on which to parameterize by the variable w. Then

a step is taken in w within a wedge of angle π/2n of the direction dir. By Lemma 4.12.1,

this guarantees an ascent. The corresponding z-root is found according to the note following

the proof of Lemma 4.10.1.

Output: [w1,z1] – an array of two ball numbers (in fact, w1 is rational). These are the

coordinates of a point that can be reached from [w0,z0] by an ascent path parameterized

by w.

Implementation

pathStep(Q(w,z),w0,z0,n,DH,r,s,byX,dir)

109

% Compute radii for parametrization and ascent neighborhoods

[Ri,Rd] = paramNbd(Q(w,z),w0,z0)

R = ascentNbd(w0,z0,r,s,byX,Ri,Rd,n,DH)

m = realball(0.8*sin(Pi/(4*n)))

BAFZ(m)

tolerance = min(m.approx() - m.tol,0.2)

% Compute w1 such that the straight line from w0 to w1 lifts to an

% ascent, assuming that dir is a direction of steepest ascent

w1 = w0 + 0.8*R*dir % ball number

% Compute a complex rational approximation to w1, within small enough

% tolerance to keep it in the wedge of angle Pi/2*n of dir.

w1 = w1.approx(tolerance)

% Compute z roots corresponding to w1

P(z) = Q(w1,z) % polynomial in z with rational complex coefficients

zroots = solve(P(z))

% Find the z root within distance Rd of z0; this is the correct root

j = 0

rootFound = False

while (rootFound == False):

dist = z0 - zroots[j] % ball number

if (dist.mod(Rd/3) <= 4*Rd/3):

rootFound = True

z1 = zroots[j]

j = j + 1

return [w1,z1]

4.14 Chaining the ascent steps together

Specification of path

Input:

• Q(x,y), x0, y0, r, s – as in previous functions.

• hStop, radius – two rational numbers. These are the termination criteria as output

by termCriteria().

• saddles – an array of elements of type saddle. These are the saddle points on VQ

that are higher than the height c of the point [x0,y0].

110

Description: This function chains together calls to pathStep() in order to construct a

global ascent path. Each step is parameterized either by x or by y, where the particular

variable chosen is determined by a call to paramByX() at the beginning of each step. The

function terminates when it can be determined whether or not the path lies in X≥c or Y ≥c.

This occurs either when the height of the path is sufficiently large (see Lemma 4.7.1), or

when the path gets sufficiently close to a saddle point (see Corollary 4.12.2).

Output: xPole – a boolean. xPole is set to True if it is determined that the path is in

X≥c. It is set to False otherwise.

Implementation

path(Q(x,y),x0,y0,r,s,hStop,radius,saddles)

high = False; nearSaddle = False

while ((high == False) AND (nearSaddle == False)):

j = 0

% Cycle through saddles; examine distance from each saddle to (x0,y0)

while ((nearSaddle == False) AND (j < len(saddles))):

if (saddles[j].byX == True):

sw = saddles[j].x

sz = saddles[j].y

w0 = x0; z0 = y0

else:

sw = saddles[j].y

sz = saddles[j].x

w0 = y0; z0 = x0

R = saddles[j].R

Rd = saddles[j].Rd

wdist = sw - w0

% If distance is suff. small, ascent (x0,y0) and saddle have same type

if (wdist.mod(R/4) < 3*R/4):

zdist = sz - z0

if (zdist.mod(Rd/2) < 3*Rd/2):

nearSaddle = True

xPole = saddles[j].xPole

j = j + 1

if (nearSaddle == False):

height = realball(-r*log(|x0|) - s*log(|y0|))

height = height.approx(0.01) % tolerance arbitrary

111

% If the height of (x0,y0) is higher than hstop, determine pole type

if (height > hstop + 0.01):

high = True

tolerance = 0.1 % arbitrary pole-finding tolerance

poleFound = False

while (poleFound == False):

if (x0.mod(tolerance) < radius - tolerance):

poleFound = True; xPole = True

else if (y0.mod(tolerance) < radius - tolerance):

poleFound = True; xPole = False

else:

tolerance = tolerance / 2

% If no reason to terminate has been found, take another ascent step

if ((high == False) AND (nearSaddle == False)):

byX = paramByX(Q(x,y),x0,y0)

if (byX == True):

H1old(x,y) = -r/x + (s/y)*(diff(Q,x)/diff(Q,y))

H1(w,z) = H1old(w,z)

dir0 = conjugate(H1(x0,y0)) % ball number

[w1,z1] = pathStep(Q(w,z),x0,y0,1,H1,r,s,byX,dir0/|dir0|)

x0 = w1; y0 = z1

else:

H1old(x,y) = -s/y + (r/x)*(diff(Q,y)/diff(Q,x))

H1(w,z) = H1old(z,w)

dir0 = conjugate(H1(y0,x0)) % ball number

[w1,z1] = pathStep(Q(z,w),y0,x0,1,H1,r,s,byX,dir0/|dir0|)

x0 = z1; y0 = w1

return xPole

4.15 The main algorithm

We are finally ready to chain the preceding functions together to reproduce the algorithm

sketched at the beginning of this chapter.

Implementation of the main algorithm

main()

% Initialize the set of contributing points

contrib = empty array

% Input the polynomial Q and the direction [r,s]

Print "Please enter the polynomial Q(x,y): "

112

Input Q % a polynomial in x and y

Print "Please enter the direction for asymptotics, [r,s]: "

Input [r,s] % a pair of rational numbers

if ((r == 0) OR (s == 0)):

Print "This is a univariate asymptotics problem."

TERMINATE

if (finiteHeight(Q,r,s) == True):

Print "There are points at infinity of finite height."

TERMINATE

% Collect Groebner basis information on where V_Q is not smooth:

smooth = True

smoothBX = Basis([Q,diff(Q,x),diff(Q,y)],plex(y,x))

if smoothBX is not equal to [1]:

smooth = False

% Check if the elimination polynomial still has a y in it:

if (diff(smoothBX[0],y) is not equal to 0):

Print: "Nontrivial non-smooth portion."

TERMINATE

smoothBY = Basis([Q,diff(Q,x),diff(Q,y)],plex(x,y))

if (smooth == True):

smoothBY = [1]

% Collect Groebner basis information on where H has saddles on V_Q

saddleBX = Basis([Q,s*x*diff(Q,x) - r*y*diff(Q,y)],plex(y,x))

if (saddleBX == [1]):

Print "There are no saddles."

saddleBY = [1]

if (smooth == True)

TERMINATE

% Check if the elimination polynomial still has a y in it:

if (diff(saddleBX[0],y) is not equal to 0):

print "Nontrivial saddle portion."

TERMINATE

if (saddleBX != [1]):

saddleBY = Basis([Q,s*x*diff(Q,x) - r*y*diff(Q,y)],plex(x,y))

% Find points at which V_Q has saddles and/or is non-smooth

points = findPoints(saddleBX,saddleBY,smoothBX,smoothBY,smooth)

Px = smoothBX[0]*saddleBX[0]

Py = smoothBY[0]*saddleBY[0]

% Initialize the exponential heights of these special points

troots = possHieght(Px,Py,r,s)

tolerance = troots[0].tol

for p in points

p.height = realball(|p.x|^(-r)*|p.y|^(-s))

sort points: decreasing by .height.tol(tolerance)

saddles = points

if (smooth == False):

113

% Look for singularities

j = 0

while (type(points[j]) == saddle):

j = j + 1

% Truncate to remove all points at or below the highest singularity

k = 0

distance = |points[k].height - points[j].height|

while (distance.approx(tolerance) >= 2*tolerance):

k = k + 1

distance = |points[k].height - points[j].height|

saddles = points[0..(k-1)]

badHeight = points[k].height % e^height, highest singularity

if (saddles is an empty array):

Print "No saddles above highest singularity."

TERMINATE

% Initialize an e^height c at which to stop examining saddle points

c = badHeight

[hStop,radius] = termCriteria(Q,r,s)

for j from 0 to (len(saddles) - 1): % loop through the saddles

p = saddles[j]

addToContrib = False

% Check if the height of the saddle p is >= log(c)

heightCheck = p.height - c

if (heightCheck.approx(tolerance) + tolerance >= 0):

% Determine a parameterization variable and relevant neighborhoods

p.byX = paramByX(Q(x,y),p.x,p.y)

if (p.byX == True):

Qnew(w,z) = Q(w,z)

w0 = p.x; z0 = p.y

else:

Qnew(w,z) = Q(z,w)

w0 = p.y; z0 = p.x

[p.Ri,p.Rd] = paramNbd(Qnew,w0,z0)

[n,DH] = degeneracy(Qnew,w0,z0,r,s,p.byX)

p.pathToX = empty array of length n

p.R = ascentNbd(w0,z0,r,s,p.byX,p.Ri,p.Rd,n,DH)

dir0 = DH(w0,z0)

dir0 = (conjugate(dir0))^(1/n)

dir = dir0/|dir0| % a direction of steepest ascent

% For each ascent region: follow ascending path through that region

for k from 0 to (n - 1):

rotate = exp(k*2*Pi*I/n)

direction = dir*rotate

[w1,z1] = pathStep(Qnew,w0,z0,n,DH,r,s,p.byX,direction)

if (p.byX == True):

toX = path(Q,w1,z1,r,s,hStop,radius,saddles[0..(j-1)])

114

else:

toX = path(Q,z1,w1,r,s,hStop,radius,saddles[0..(j-1)])

p.pathToX[k] = toX % where does each path go?

% Check if the saddle p has paths going to x=0 and y=0

for k from 0 to (n - 1):

if (p.xPole[k] != p.xPole[(k+1) mod n]):

c = p.height % c_xy = log(c)

addToContrib = True

rotate = exp(k*2*Pi*I/n + Pi*I/n)

if (p.xPole[k] == True):

p.in.append(dir*rotate)

else:

p.out.append(dir*rotate)

if (addToContrib == False):

p.xPole = p.pathToX[0] % all paths go to a single pole

else:

contrib.append(p)

if (contrib is an empty array):

Print "No saddles stopped the flow of the intersection cycle."

else:

Print "A non-trivial contributing set was found."

TERMINATE

The main theorem

Theorem 4.15.1. The program main() terminates in finitely many steps. If Assump-

tions 3.1.2, 3.2.4 or 3.6.1 are not satisfied, the program terminates with an error message.

Otherwise, there are two possibilities for the program’s final state:

1. Ξ is empty, in which case contrib is an empty array. Or,

2. Ξ is not empty. In this case, σ ∈ Ξ if and only if there is an element p of type saddle

in contrib such that σ = (p.x,p.y).

In case (1), VQ is smooth if and only if the boolean variable smooth is set to True. If VQ

is smooth, then there is a cycle κ ∈ [C] contained in V≤m for arbitrarily small m. If on

the other hand VQ is not smooth, then the real ball number log(badHeight) represents the

115

height c0 of the highest critical point. In this case, there is a cycle κ ∈ [C] contained in

V≤c0+ε for arbitrarily small ε.

In case (2), there is a cycle κ ∈ [C] along which the height is maximized exactly at the

points in Ξ. Let σ ∈ Ξ be such a saddle, represented by p in contrib. Then on a sufficiently

small neighborhood U ⊆ VQ of σ, κ takes the form

κ ∩ U =
∑

j

γj −
∑

j

γ̃j ,

where each γj is a path exiting σ in the direction of p.out[j] (as parameterized by x if

p.byX == True, as parameterized by y otherwise), and each γ̃j is a path exiting σ in the

direction of p.in[j] (with similar parameterization conditions).

Proof. It should be clear by the characterization theorem and the structure of the algorithm

that, should the algorithm terminate, it will terminate with the prescribed conditions. Thus

we will be done if we can prove that the algorithm terminates in a finite number of steps.

Tracing the algorithm, we note that there is but one loop that does not terminate

simply by its structure alone: the loop in path(). The path algorithm loops through calls

to pathStep(), stopping only when the height of the path is sufficiently large or when the

path approaches sufficiently close to a saddle point. By way of contradiction, we assume

that these terminal conditions are never obtained for some call to path().

By non-termination, we must have that the height is bounded from above (and below,

as the path is non-decreasing). But path() is only called on varieties VQ along which the

height approaches ±∞ as x or y go to 0 or ∞. Thus the path is strictly bounded away from

0 and ∞. Similarly the path must be strictly bounded away from all critical points of h,

lest the loop terminate. Hence there is some compact set K ⊂ VQ on which this path lies,

where K includes no saddle points of h. Note further that we may assume VQ to be smooth

116

on K, as path() is only initialized at points above the height of the highest non-smooth

point.

Now we look at those steps of the path that are parameterized by x, hereupon called

x-steps. We denote the jth such step by

ιj(γj(t)) : [0, εj] → VQ

where εj > 0, γj(t) = x0 + ct for some x0, c ∈ C with |c| = 1, and ιj is some local

parameterization of VQ by x. First, we claim that path ascent algorithm is constructed in

such a way that these x-steps are bounded away from the points where Qy vanish. Why is

this so?

Smoothness of VQ along the compact set K gives us a lower bound for max {|Qx| , |Qy|}

on K. Thus when |Qy| is sufficiently small, |Qx| will be large enough to force the variable of

parameterization to be y (see the function paramByX()). This bounds the point of initiation

of any x-step away from the points where |Qy| = 0. But note further that each x-step is

constructed so that the value of |Qy| decreases by no more than half along the ascent

segment (see paramNbd()). Thus the entirety of each x-step is bounded away from such

points. Hence we have that all x-steps are supported on a compact set K0 ⊆ K on which

Qy does not vanish.

We now turn to examining the derivative of the height function along any such x-step.

The derivative takes the form

d

dt
h(ιj(γj(t)) = Re [c ·G (ιj(γj(t)))]

where the function G is defined by

G(x, y) =
ŝxQx(x, y)− r̂yQy(x, y)

xyQy(x, y)

117

we examine G(x, y) on K0.

Note that G is continuous on K0, because xyQy never vanishes on K0. G also never

vanishes on K0, as ŝxQx − r̂yQy only vanishes at saddle points. Thus, by compactness, we

have uniform continuity of G and a nonzero lower bound for |G| on K0. Consequently there

exist some m, δ1 > 0 such that for any (x, y), (x1, y1) ∈ K0 we have

m ≤ |G(x, y)|, and

|x− x1| < δ1, |y − y1| < δ1 ⇒ |G(x, y)−G(x1, y1)| < m/2.

And again by compactness, we also get uniform continuity over all of the parameterization

functions ιj . That is, there is some δ2 > 0 such that for x, x1 in the domain of some ιj , we

have

|x− x1| < δ2 ⇒ |ιj(x)− ιj(x1)| < δ1.

Putting this together, for t < δ := min {εj , δ1, δ2} we have

arg (G(ιj(γj(t)))−G(ιj(x0))) ∈
(

sin−1

(−m/2
m

)

, sin−1

(

m/2

m

))

=
(

−π
6
,
π

6

)

,

and hence

arg (c ·G(ιj(γj(t)))) ∈
(

−π
6
− π

4
,
π

6
+
π

4

)

,

by the manner in which the direction c of the x-step is chosen. Thus c ·G(ιj(γj(t))) is not

purely imaginary for such values of t. In other words, the derivative of the height function

is bounded away from 0 on an initial segment of the x-step.

If we can show that the set of all εj is bounded away from 0, i.e. that there is a nonzero

lower bound on the length of any x-step, then the preceding will imply that there is a

nonzero lower bound on the height ascended by any such x-step. This will prove that there

can be at most finitely many x-steps, lest the path itself be unbounded in height.

118

But by inspection of the functions paramNbd, isoRoot and ascentNbd, we see that as

long as |x| and |y| are bounded away from 0 and ∞, and as long as |Qy| and |ŝxQx− r̂yQy|

are bounded away from 0, then the length of each ascent step will be bounded away from

0. Hence there can be only finitely many x-steps.

But by analogous reasoning, there can be only finitely many y-steps. And so the algo-

rithm does terminate after finitely many steps.

Note that the preceding proof hints at the factors that drive up the runtime of main().

Specifically, if calls to pathStep() are made in neighborhoods where |ŝxQx− r̂yQy| is small,

the lower bound on the height ascended by such a step is likewise small. This can occur, for

instance, if the ascent neighborhoods around the saddle points are particularly small. Thus

if the direction (r̂, ŝ) is near a direction in which the saddle points of h on VQ coalesce –

thus forcing the ascent neighborhoods of such points to be small – we would expect a rise

in the number of steps before main() terminates.

119

Future Research

The next step in this line of research is to implement the algorithm described in the previous

chapter. This project is slated to begin in the coming months, in collaboration with Joris

van der Hoeven. The case of bicolored supertrees, meeting the assumptions of Chapter 3

and being well-understood, will serve as a perfect test case for the algorithm.

Beyond implementation, there are many avenues along which future research may con-

tinue. Below we list just two; a short-term and long-term goal of algorithmic singularity

analysis.

Extending the bivariate algorithm

One immediate goal is to further relax the assumptions introduced in Chapter 3, thus

extending the current bivariate algorithm to handle a wider class of rational functions. The

assumption most suitable for attack is likely Assumption 3.2.4, which requires that the

height function be unbounded on any portion of VQ along which x or y approaches ∞. One

of the reasons for which we would like to drop this assumption is hinted at in [RW08].

In [RW08], Raichev and Wilson attempt to use bivariate singularity analysis to produce

asymptotics for the function x/
√
1− x. By Safonov’s algorithm, they produced a bivariate

120

rational function

F (x, y) =
P (x, y)

Q(x, y)
=
xy(−3y + 3xy2 − 2 + 2xy + x− 2y2 + 2xy3)

−y + xy2 − 2 + 2xy + x
=
∑

r,s≥0

ar,sx
rys

such that local to the origin,

x√
1− x

=
∞
∑

n=0

an,nx
n.

The variety VQ is smooth, but in analyzing the height function h along VQ in the direction

(r̂, ŝ) = (1, 1) it was found that h has no critical points. A quick analysis of the Newton

Diagram of Q reveals a branch along which y ∼ x−1 as x → 0, and thus h(x, y) ∼ 0 as

x→ 0 and y → ∞ here. Hence F (x, y) fails Assumption 3.2.4.

It turns out that by properly compactifying this branch – adding a point (x, y) = (0,∞)

to VQ and suitably extending the height function – it can be shown that h has a critical

point at the compactification point. Applying a generalization of the ascent path algorithm

indicates how to obtain an asymptotic analysis of the an,n by integrating over an appropriate

cycle local to the point at infinity. The relevant details will appear in a forthcoming work.

One would like to generalize this technique, adding a point at infinity for each branch

of VQ that leads to the failure of Assumption 3.2.4. How best to do this remains an open

question. One possibility (suitable for the example described above) is to rotate in the

relevant point at infinity. Specifically, we view VQ ⊆ C2 ⊆ CP 2. Representing the points

of CP 2 by homogeneous coordinates in C3, we can then rotate in points at infinity by

performing a linear transformation on C3. Note that after this transformation, however,

the variety VQ may not be smooth at the relevant point.

121

Algorithms for trivariate singularity analysis

As mentioned previously, Safonov’s algorithm reduces the asymptotic analysis of n-variate

algebraic generating functions to the analysis of (n + 1)-variate rational generating func-

tions. As such, the bivariate asymptotics algorithm of Chapter 4 can be used to analyze

certain univariate algebraic generating functions (such as the generating function for bivari-

ate supertrees discussed in Chapter 2). There are perhaps simpler techniques for analyzing

univariate algebraic functions, but the coefficients of bivariate algebraic functions are less

well understood. Thus an algorithm for trivariate rational singularity analysis would be a

breakthrough.

Unfortunately, the Morse-theoretic decomposition is more difficult to understand in

this case. Specifically, when the singular variety is a two (or more) complex-dimensional

object, we can no longer guarantee that the critical points of the height function have

a saddle structure amenable to a local Morse decomposition. Still, it is hoped that the

characterization theorems in the bivariate case will lead to similar theorems for three (and

more) variables. This should be a main goal of any future research.

122

Bibliography

[AY83] Lev A. Aı̆zenberg and Aleksandr P. Yuzhakov, Integral representations and

residues in multidimensional complex analysis, Translations of Mathematical

Monographs, vol. 58, American Mathematical Society, Providence, RI, 1983,

Translated from the Russian by H. H. McFaden, Translation edited by Lev J.

Leifman.

[BK86] Egbert Brieskorn and Horst Knörrer, Plane algebraic curves, Birkhäuser Verlag,

Basel, 1986, Translated from the German by John Stillwell.

[BPR06] Saugata Basu, Richard Pollack, and Marie-Françoise Roy, Algorithms in real

algebraic geometry, second ed., Algorithms and Computation in Mathematics,

vol. 10, Springer-Verlag, Berlin, 2006.

[Bre93] Glen E. Bredon, Topology and geometry, Graduate Texts in Mathematics, vol.

139, Springer-Verlag, New York, 1993.

[CLO05] David A. Cox, John Little, and Donal O’Shea, Using algebraic geometry, second

ed., Graduate Texts in Mathematics, vol. 185, Springer, New York, 2005.

123

[DPvdH11] Timothy DeVries, Robin Pemantle, and Joris van der Hoeven, Automatic

asymptotics for coefficients of smooth, bivariate rational functions, preprint,

2011.

[FS09] Philippe Flajolet and Robert Sedgewick, Analytic combinatorics, Cambridge

University Press, Cambridge, 2009.

[Hen91] Peter Henrici, Applied and computational complex analysis. Vol. 2, Wiley Clas-

sics Library, John Wiley & Sons Inc., New York, 1991, Special functions—

integral transforms—asymptotics—continued fractions, Reprint of the 1977

original, A Wiley-Interscience Publication.

[Mil63] John Milnor, Morse theory, Based on lecture notes by M. Spivak and R. Wells.

Annals of Mathematics Studies, No. 51, Princeton University Press, Princeton,

N.J., 1963.

[Pem09] Robin Pemantle, Analytic combinatorics in more than one variable: Chapter 5,

2009, http://www.math.upenn.edu/~pemantle/581-html/chapter05.pdf.

[PW02] Robin Pemantle and Mark C. Wilson, Asymptotics of multivariate sequences.

I. Smooth points of the singular variety, J. Combin. Theory Ser. A 97 (2002),

no. 1, 129–161.

[PW08] , Twenty combinatorial examples of asymptotics derived from multivari-

ate generating functions, SIAM Rev. 50 (2008), no. 2, 199–272.

[RW08] Alexander Raichev and Mark C. Wilson, A new approach to asymptotics of

Maclaurin coefficients of algebraic functions, Report CDMTCS-322, Centre for

124

Discrete Mathematics and Theoretical Computer Science, University of Auck-

land, New Zealand, April 2008, http://www.cs.auckland.ac.nz/CDMTCS/

researchreports/322alexmcw.pdf.

[Saf00] Konstantin V. Safonov, On power series of algebraic and rational functions in

Cn, J. Math. Anal. Appl. 243 (2000), no. 2, 261–277.

[Sha92] Boris V. Shabat, Introduction to complex analysis. Part II, Translations of

Mathematical Monographs, vol. 110, American Mathematical Society, Provi-

dence, RI, 1992, Functions of several variables, Translated from the third (1985)

Russian edition by J. S. Joel.

[Slo09] Neil J. A. Sloane, The on-line encyclopedia of integer sequences, no. A168506,

2009, http://www.research.att.com/~njas/sequences/A168506.

[vdH08] Joris van der Hoeven, Mathemagix, version 0.4, Paris, France, 2008.

[Wat08] Waterloo Maple Inc., Maple, version 12, Waterloo, Ontario, 2008.

125

	University of Pennsylvania
	ScholarlyCommons
	Spring 5-16-2011

	Algorithms for Bivariate Singularity Analysis
	Timothy DeVries
	Recommended Citation

	Algorithms for Bivariate Singularity Analysis
	Abstract
	Degree Type
	Degree Name
	Graduate Group
	First Advisor
	Keywords
	Subject Categories

