Range of dialect in the formal speech of African-American elementary school children

Anne Harper Charity
Range of dialect in the formal speech of African-American elementary school children
Range of Dialect Use in Low Socioeconomic Status, African-American Elementary School Children

Anne Harper Charity

1 Eliciting Formal Speech in the Pre-Literate

Labov (1972a) writes that a major goal of the sociolinguist is to locate “the most consistent and reliable data for describing the grammar of the speech community.” The sociolinguistic interview is designed, therefore, to elicit the most vernacular speech possible in order to describe the dialect that is native to the speaker. Research on African-American Vernacular English (AAVE) has used speech produced in the sociolinguistic interview to show that AAVE is a coherent language system. When AAVE-speaking African-American children start school, they enter a linguistic environment where they are expected to read and write Standard American English (SAE), yet little is known about the wide-scale linguistic and communicative competence with respect to SAE of inner city African-American children.

Research on variation and style-shifting in African-American adolescents and adults (e.g. Baugh 1979, Rickford and McNair-Knox 1995) has demonstrated that variation in the use of AAVE features within a speaker occurs with respect to differences in the race of the interviewer, the interviewer’s style and register, and the topic of the interview. Speakers in these situations have acquired communicative competence in SAE in addition to AAVE, and use the two varieties of English as they deem socially appropriate. Linguistic and communicative competences in a second language (bilingualism) are widely studied, but acquisition of a second dialect is different than the acquisition of a second language. In the acquisition of SAE by AAVE speakers, there are two factors at work that may drastically change the acquisition typology of SAE: inherent variation and mutual intelligibility.

Speakers learn some new features as they acquire a new dialect, but they

1This research was supported by program project grant HD01994 from NICHD to Haskins Laboratories and by grant R215U990010 from the U.S. Department of Education/OERJ to the American Federation of Teachers. I would like to thank Darion Griffin and Maasha Berger, directors of the AFT Project; Sharon Hughes, Adrienne Dowden, Doris Taylor, Susan O’Donnell, Marie Hotard, Leslie Garibaldi, Joan Dorsey, Lisa Ratstatter, and Benita Nicholson, data collectors; and Brook Swainson, assistant scorer. I am extremely grateful to Hollis Scarborough and William Labov.

such as double negation, the unmarked possessive, and the unmarked plural occur at higher rates in AAVE than features such as copula deletion and consonant cluster reduction. The success of the acquisition of these different types of features may vary widely from individual to individual as differences become more apparent and speakers attempt to master their use. Mutual intelligibility may impede the speaker's acquisition of variable features because the speaker thinks (on some level) that the language s/he is producing is the same as the standard. Socially marked features, which are often stable linguistic variables, may be used nearly all of the time in a speaker's vernacular. But in a contact situation, use of constant features may approach zero as the speaker acquires communicative competence and realizes that use of these features is greatly stigmatized in the contact situation.

Labov (1972a) canonized four basic contextual styles for eliciting speech: A. Group Interview, B. Individual Interview, C. Reading Passages, and D. Word Lists and Minimal Pairs. These four styles have been used to elicit much of the speech that has been used for sociolinguistic analysis. Baugh (2001) describes problems in assessing stylistic variation due to the difficulty that some adult speakers have with contexts C and D because of limited reading ability. Beginning readers and pre-readers may have the same problem. Sentence imitation and story retell are methods that elicit more formal speech without the prerequisite of literacy.

2 The Present Study

In conjunction with an early reading intervention project sponsored by the AFT, a sentence imitation task and reading tests were given to 217 African-American children in kindergarten through second grade in low-income communities in three cities: Cleveland, Ohio; Washington D.C.; and New Orleans, Louisiana (Table 1). Four testers administered the sentence repetition and the story retell. All examiners were female. All were veteran elementary school teachers with years of experience teaching African-American children. One tester in Cleveland and one tester in New Orleans were white. All testers in the District of Columbia were African-American. One African-American tester from Cleveland also administered tests in New Orleans.

<table>
<thead>
<tr>
<th></th>
<th>Cleveland</th>
<th>New Orleans</th>
<th>Washington D.C.</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>K</td>
<td>36</td>
<td>25</td>
<td>17</td>
<td>78</td>
</tr>
<tr>
<td>Grade 1</td>
<td>29</td>
<td>20</td>
<td>23</td>
<td>72</td>
</tr>
<tr>
<td>Grade 2</td>
<td>29</td>
<td>16</td>
<td>22</td>
<td>67</td>
</tr>
<tr>
<td>Total</td>
<td>94</td>
<td>61</td>
<td>62</td>
<td>217</td>
</tr>
</tbody>
</table>

Table 1. The distribution by grade and city for the 217 children
3 Sentence Imitation as a Measure of Range of Dialect

Sentence imitation has been used both as a test of use of dialect and as a predictor of reading ability. Sentence imitation is also commonly used to assess speech disabilities. Labov (1968) used sentence repetition in his study of African-American adolescent boys in Harlem to measure the asymmetry in speakers' understanding of SAE forms and their ability to reproduce them. He explains that speakers filter SAE through their own morphosyntactic systems during language processing. Great individual variation was found in the Harlem boys' ability to imitate the SAE sentences. Baratz (1969) used sentence imitation to show that while African-American children had trouble repeating and reproducing SAE, SAE-speaking children also had difficulty comprehending and reproducing sentences in AAVE. Thus, children perform better in their respective dialects. Baratz then used this evidence to separate poor cognitive ability from poor language performance due to problems with cross-dialectal comprehension.

The sentence imitation test uses a storybook format. The teacher and the child sit together sharing the book. The teacher says, "Here's how we do this. First I will read a bit, and then you try to say it exactly the way I said it. Sometimes it will be hard to remember everything, but even if you can't say it all, do the best you can, okay?" There are two practice items to ensure the child's understanding of the instructions and to gauge the degree of compliance. After each test item, the teacher points out any differences in her and the child's production of the sentence and asks the child to produce the corrected sentence. The test consists of 15 sentences of varying length and difficulty. There are 60 scored items: 21 phonological, 22 morphosyntactic, and 17 memory. The 43 linguistic differences are known variables of AAVE:

Phonological features
- Consonant Cluster Reduction
- Interdental Fricative Production
- St/sk alternation (as in 'skreet' for 'street')
- Ask/aks alternation

Morphosyntactic Features
- Possessive /-s/
- Plural /-s/
- Third Person singular /-s/
- Subject/verb disagreement
- There is/it is alternation
- Verb regularization

Each dialect differences score represents the percentage of times that a child produced a particular kind of response out of the total number of opportunities to do so. To compute the Phonological score, only the items on which the child actually recalled the item (word or morpheme) in some form (verbatim or altered) were included. The number of phonological dialect differ-
ences that the child produced was divided by the number of eligible items (maximum 21), and this ratio was multiplied by 100. For the Morphosyntactic score, the computation was analogous except that non-recalled items were included in the eligible set if: (a) the omission represented a known feature of AAVE, e.g., omission of a copula or reflexive; and (b) the surrounding portion of the sentence was imitated. Memory scores were also calculated to be certain that memory ability did not interfere with the calculation of dialect production. Memory ability was not found to be a confounding factor in either the sentence imitation task or the story retell.

All children in the sample are low-socioeconomic status, African-Americans from low-performing inner-city schools. Yet, as shown in Table 1, the children displayed a wide range of use of AAVE features in the sentence imitation task.

Figure 1. Range of Phonological and Morphosyntactic Differences in Sentence Imitation (Charity, Scarborough, and Griffin 2002)

The discovery of this range prompted us to ask if wide variability would also characterize the speech of the children in a more open-ended speech variety. Story retell (with picture support) was used as a way to gauge differences among the speech forms a child may produce:

A. on a TEST (sentence imitation)
B. in the CLASSROOM (story retell)
C. on the PLAYGROUND (spontaneous speech)
4 Story Retell as a Measure of Range of Dialect

At the end of the sentence repetition task, the teacher turns back to the start of the story. She then tells the child “Now tell the story back to me. Tell me everything you remember about what happened. Do the best you can.” The testing instructions directed the teachers not to ask specific questions about the story and to prompt the child only with the words “anything else?” and with positive reinforcement.

In this paper, a subset of children from New Orleans and Cleveland are studied. Figures 2-5 show the range of dialect difference scores in the sentence imitations and story retells for this sub-sample. Variability is as great overall in the retells as in the sentence imitations.

Figure 2. Range of Dialect in the Phonological Score in Sentence Imitation

Figure 3. Range of Dialect in the Phonological Score in Story Retell
Figure 4. Range of Dialect, Morphosyntactic Score, Sentence Imitation

Figure 5. Range of Dialect in the Morphosyntactic Score in Story Retell

5 Individual Variation in Range of Dialect

There are four scenarios that could result when speech produced in the sentence imitation task is compared to speech produced in the story retell. Each scenario has its own set of possible explanations. The four scenarios are listed in order of the greatest frequency with which I hypothesized that they would occur in the sample:

1. Lower dialect in imitation, higher dialect in retell
 a. Child presents typical style variation and shifts to a less formal speech style on a more open-ended speech task.

2. High dialect in imitation, high dialect in retell
 a. Child may have little familiarity with School English.
b. Child may have familiarity with AAVE and SAE, but the knowledge of SAE may be mainly receptive so that the child produces AAVE features more uniformly.
c. Child may opt to produce more AAVE features in school.

3. Low dialect in imitation, low dialect in retell
 a. Child may have little familiarity with AAVE, and therefore produce fewer AAVE features.
 b. Child may have familiarity with SAE and AAVE, but may produce SAE more uniformly in the school setting. Additionally, the child may associate SAE with the school setting.

4. Higher dialect in imitation, lower dialect in retell
 a. Child may opt to leave out the more difficult items that the sentence imitation task forced them to attempt and thus may produce fewer AAVE features when telling the story.

Figures 6-9 show the relationship between children’s scores on the sentence imitation task and the story retell. Each point on the graph represents an individual speaker. Boys are marked by circles, girls by squares. Darker shades represent older children. The X-axis represents the percent of use of AAVE features on the sentence imitation task, and the Y-axis represents the percent of use of AAVE features on the story retell. The final numbers of the samples for phonological and morphosyntactic scores are different because if a child produced less than 10 items in a category, the score was omitted. Overall, however, there was a strong correlation (R=.68) between the phonological and morphosyntactic scores across the sample.

![Figure 6. Phonological Score Comparison for Cleveland, OH](image-url)
Figure 7. Phonological Score Comparison for New Orleans, LA

Figure 8. Morphosyntactic Score Comparison for Cleveland, OH
I hypothesized that children would use more SAE forms as a result of the direct stimuli produced by the tester, and use more AAVE features when left to tell the story in their own words (scenario 1). However, children used AAVE to the same degree on each task (scenarios 2, 3). There is a strong correlation between the use of AAVE features on the sentence imitation and the story retell. The results suggest that children in this sample who are consistently higher users of AAVE lack linguistic competence in SAE or lack communicative competence in the school setting. Children who are consistently lower users of dialect features have a higher degree of linguistic competence in SAE and produce it consistently in the school setting. In Cleveland, there is a wide range in the use of AAVE phonological features across the sample. AAVE morphosyntactic features are produced somewhat less. There is consistent age grading, but there are many individual exceptions. In contrast, most children in New Orleans produced phonological features of AAVE more than 50% of the time. Production of AAVE morphosyntactic features varies more across the New Orleans sample.

Information about specific families and the speech community on the neighborhood block level in is not known, but the academic information available for each child is abundant, and is discussed in greater detail in Charity, Scarborough, and Griffin (2003). The dialect difference results are shown to correlate with reading ability. In the total sample, phonological correlation with the Rasch-Scaled (equal interval) “W” scores for the Word Identification sub-test of the Woodcock Reading Mastery Test-Revised 1987 \(r = .46 \) for Phonology and \(r = .61 \) for the morphosyntactic score.
This study is not meant to replace the analysis of spontaneous speech. The children in this study may produce AAVE features with much greater frequencies in a different setting, such as in their own neighborhoods or on the playground. But information about their range of dialect and their ability to produce SAE may correlate more with their academic performance and language in the classroom than their proficiency in the vernacular.

8 Future Analysis and Goals

More children will be added from New Orleans and Cleveland to see if trends found in these preliminary observations hold true. Speakers from Washington D.C. will also be added. Differences in the results from the three cities will then be analyzed with respect to known differences in the linguistic and educational situations in each city. Results will be compared to the results of the sentence repetition tests as a whole and by individual linguistic variables. Analysis will be done to discover what SAE dialect features AAVE-speaking children acquire in the first three years of school, and when the major changes in dialect features take place.

In order to implement change in teacher attitudes and school policy, linguists must emphasize what can we learn in the school setting about African-American children. In the classroom, there are a variety of students from different backgrounds and social networks, but they are taught in the same way. Many sociolinguistic studies rely on long samples of spontaneous speech, but a measure for use in education research must be practical and replicable. In a memory test, the priming sentences cannot be too long, and the overall testing measure cannot be too complex or developmental issues may interfere with the linguistic results.

There is a need for practical testing measures that can screen for dialect use in struggling students in order to help with appropriate academic intervention. What children do in the classroom predicts much about their future successes. Early work on AAVE shows that the speech of African-American children is not unsystematic and deprived. Many teachers do not accept this because of the mismatch between the richness of the AAVE system that linguists observe and the academic performance of the children who speak it. Our next goal is to explain why this divide persists and then work to close it.

Appendix: Text of the Sentence Imitation Task

1. This is Joe.
2. The girl behind him is call-ed Lisa.
3. She is Joe's best friend.
4. Joe ride-s his bike down the street really fast.
5. Lisa pushes hard because she is trying to keep up with Joe.
6. Both of the kid-s are very hungry, they are going to make them-selves a snack.
7. First, they must wash their hand-s in the bathroom.
8. In the kitchen, Lisa spread-s peanut butter on two slice-s of bread.
11. Then Joe ask-ed, “Isn't there any jelly?”
12. Lisa answer-ed, “We don't have any jelly so let's have raisins instead.
13. Lisa used raisin-s to draw a flower on her peanut butter.
14. Joe decide-d to make an elephant with an open mouth and strong leg-s.
15. Joe think-s that the snack-s are now ready to eat.

References

Program in Linguistics and Cognitive Science
Hinman Box 6220
Dartmouth College
Hanover, NH 03755-3506

anne.h.charity@dartmouth.edu