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ABSTRACT

ESSAYS ON MARKET DYNAMICS IN THE PRESENCE OF LEARNING

Xi Weng

George Mailath

I investigate how the presence of learning affects the market dynamics in three different

market settings. The first chapter studies how the interplay of individual and social learning

affects price dynamics. I consider a monopolist selling a new experience good over time to

many buyers. Buyers learn from their own private experiences (individual learning) as well

as by observing other buyers’ experiences (social learning). Individual learning generates

ex post heterogeneity, which affects the buyers’ purchasing decisions and the firm’s pricing

strategy. When learning is through good news signals, the monopolist’s incentive to exploit

the known buyers causes experimentation to be terminated too early. After the arrival of a

good news signal, the price could instantaneously go down in order to induce the remaining

unknown buyer to experiment. When learning is through bad news signals, experimentation

is efficient, since only the homogeneous unknown buyers purchase the experience good. The

second chapter is based on the observation that workers learn at different rates about their

productivity and therefore expect different wage paths across firms. We show that under

strict supermodularity there is always positive assortative matching: differential learning is

always dominated by the impact of productivity. Surprisingly, this holds even if learning is

faster in the low type firm. The key assumption driving this result is that this is a pure

Bayesian learning model.We also derive a new equilibrium condition in this class of continu-

ous time models in addition to the common smooth-pasting and value-matching conditions.

This no-deviation condition captures sequential rationality and results in a restriction on the

second derivative of the value function. The third chapter develops a continuous-time war

of attrition model with learning to investigate whether learning is possible to make it easier

to reach an agreement. I show that with exogenous private learning, it may be easier to
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reach an agreement initially but it becomes more and more difficult over time. The expected

delay will always be higher than the expected delay without learning. I also show that when

allowing only one player to learn leads to a shorter delay than allowing both to learn.
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2.8.1 Generalized Lévy Processes . . . . . . . . . . . . . . . . . . . . . . . 78

2.8.2 Non-Bayesian Updating . . . . . . . . . . . . . . . . . . . . . . . . . 81

2.9 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

3 Learning In War of Attrition Games 85

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

3.2 Model Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

3.3 Benchmark Case: No Learning . . . . . . . . . . . . . . . . . . . . . . . . . 90

3.4 Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

3.4.1 Two-Sided Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

3.4.2 One-Sided Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

3.5 Endogenous Information Acquisition . . . . . . . . . . . . . . . . . . . . . . 113

3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

A Appendices 116

A.1 Appendix to Chapter 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

A.2 Appendix to Chapter 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

viii



Bibliography 169

ix



List of Figures

1.1 Solutions to the Cooperative Problem with Two Players . . . . . . . . . . . 18

1.2 Equilibrium Price Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

1.3 Deterrence Effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

1.4 Instantaneous Price Response to the First Arrival of Good News . . . . . . . 33

2.1 Equilibrium Distribution of Posterior beliefs. . . . . . . . . . . . . . . . . . . 67

2.2 Equilibrium wage function and value function in terms of beliefs p; Stationary

wage distribution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

x



Chapter 1

Dynamic Pricing in the Presence of
Social Learning

1.1 Introduction

In many markets for new experience goods, the buyers are facing both common and id-

iosyncratic uncertainty. Take the market for new drugs, for example. The effectiveness of a

new drug first depends on the unknown common quality. However, a good quality does not

guarantee that the drug is effective for everybody. Each patient’s idiosyncratic uncertainty

also matters.1 Patients learn from others’ experiences (social learning) as well as their own

(individual learning). The success of the new drug for one patient is good news about prod-

uct quality, but it does not necessarily mean that the drug would also be effective for other

patients.

Consider a monopolist selling a new experience good to many buyers in such a market.

The monopolist and the buyers initially are equally unsure about the effectiveness of the

product. How will this monopolist price strategically if she observes each buyer’s past actions

and outcomes? Without success of the product, everyone becomes increasingly pessimistic.

1Although the F.D.A. conducts an extensive period of pre-launch testing in the pharmaceutical industry,
some drugs enter the market with substantial uncertainty about their product qualities. For example, dietary
supplements do not need to be pre-approved by the F.D.A. before entering the market. There is also a “hurry-
up mechanism,” which allows approval of a drug that has not yet been proved effective in thorough clinical
trials but has shown promise that it might benefit patients with life-threatening diseases. A recent example
is a cancer drug Avastin, which was approved by the F.D.A. based on one clinical trial (New York Times
(2010)).
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In order to keep the buyers purchasing the product, the price has to be reduced. How will the

monopolist react when the product is revealed to be effective for one buyer? Will strategic

pricing achieve an efficient allocation?

In this paper, dynamic monopoly pricing is modelled as an infinite-horizon, continuous-

time process. The monopolist sells a perishable experience good. She cannot price-discriminate

across buyers. At each instant of time, the monopolist first posts a price, which is contingent

on the available public information about the experiences of the buyers. Each buyer then

decides to either buy one unit of the experience good or take an outside option (modelled as

another good of known characteristics). The experience good generates random lump-sum

payoffs according to a Poisson process. The arrival rate of the lump-sum payoffs depends

on an unknown product characteristic and an unknown individual attribute, both of which

are binary. For tractability, we assume the public arrival of lump-sum payoffs immediately

resolves both the common uncertainty and the idiosyncratic uncertainty of the receiver. As

a result, there is a simple dichotomy of the learning process: in the social learning phase,

the uncertainty about the product characteristic has not been resolved; in the individual

learning phase, there is common knowledge about the product characteristic. A key feature

of the model is that buyers become ex post heterogeneous in the individual learning phase:

some buyers have received lump-sum payoffs, while others have not.

The model setting consists of two different cases. In the good news case, the experience

good generates positive lump-sum payoffs; in the bad news case, it generates negative lump-

sum damages (e.g., side effects of new drugs). This paper gives full characterizations of the

symmetric Markov perfect equilibrium for both cases. In the good news case, because of the

ex post heterogeneity, the interplay of individual and social learning leads to implications

significantly different from the ones obtained when only social learning exists. In particular,

the buyers’ purchasing behavior, the equilibrium price path and efficiency all significantly

differ from the pure social learning model.
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In the benchmark case where there is a single buyer in the market, that buyer’s purchasing

decision is purely myopic. The key reason is that in this one-buyer case, the equilibrium

price is set such that the buyer is indifferent between purchasing the experience good and

taking the outside option. The buyer’s continuation value is independent of the learning

outcomes. Since learning is not valuable, the buyer only compares the instantaneous cost

and benefit when making the purchasing decisions.2 With many buyers, this property also

holds when the buyers’ payoffs are perfectly correlated, but it no longer applies when the

buyers’ payoffs are only partially correlated. Consider a situation where two ex ante identical

unknown buyers make different purchasing decisions (an “unknown” buyer refers to a buyer

whose value of the good has not been fully revealed). One buyer keeps purchasing the

experience good, while the other buyer deviates to take the outside option for a small amount

of time. If the experimenter does not receive any lump-sum payoffs during that period, she

becomes more pessimistic about her individual attribute. Without price discrimination, if the

monopolist sells to two different buyers, the optimal price is set to make the more pessimistic

buyer indifferent between the alternatives. The deviator, who is more optimistic about the

experience good, pays less than what she is willing to pay. This implies that with multiple

buyers and partial payoff correlations, there could be non-trivial intertemporal incentive

considerations in making the purchasing decisions.

We first characterize the symmetric Markov perfect equilibrium when there are two buy-

ers. In the social learning phase – when no lump-sum payoff has arrived yet – the critical

tradeoff for the monopolist is between selling to both buyers and exiting the market; in the

individual learning phase – after lump-sum payoffs have arrived to one buyer – the criti-

cal tradeoff is between selling to both buyers and selling only to the known buyer who has

received lump-sum payoffs. In both learning phases, the equilibrium purchasing behavior

2In a dynamic duopoly pricing model (e.g., Bergemann and Välimäki (1996)), learning determines the
future competition positions of different sellers. The buyer generally is not making myopic decisions since
her continuation value varies with posterior beliefs. But if one seller’s price is fixed to a constant, the buyer’s
optimal decisions become purely myopic in the framework of Bergemann and Välimäki (1996).
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is determined by a cutoff in the posterior belief about the unknown buyer’s individual at-

tribute. Each unknown buyer purchases the experience good above this cutoff and takes the

outside option below this cutoff.

By comparing cutoffs in different learning phases, we distinguish a mass market from a

niche market. The cutoff in the social learning phase is higher than the cutoff in the indi-

vidual learning phase in a mass market, but lower in a niche market. Along the equilibrium

path, in a mass market, the monopolist always sells to both buyers after the arrival of the

first lump-sum payoff; in a niche market, if the first lump-sum payoff arrives too late, exper-

imentation by the unknown buyer will be immediately terminated. When experimentation

by the unknown buyer occurs in the individual learning phase, the equilibrium price is set

the same as in the one-buyer case. Although the unknown buyer is indifferent between the

alternatives, the known buyer receives a larger consumer surplus, since she is more optimistic

about the experience good than the unknown buyer.

The presence of idiosyncratic uncertainty has two important implications for the equilib-

rium price. First, in the social learning phase, since there is a future benefit by taking the

outside option for a small amount of time, each unknown buyer receives a value higher than

the outside option to deter deviation. This deterrence effect forces the monopolist to reduce

the price in order to provide the extra subsidy. Second, it also affects how price responds

to the arrival of lump-sum payoffs. In particular, when the first lump-sum payoff arrives,

there might be an instantaneous drop in price. This is driven by two opposing effects on the

unknown buyer’s reservation value. On the one hand, the arrival of a good news signal makes

the unknown buyer more optimistic. This informational effect raises the unknown buyer’s

reservation value. On the other hand, the unknown buyer loses the chance of becoming the

first known buyer. The resulting loss of rents lowers the unknown buyer’s reservation value.

This continuation value effect is driven by ex post heterogeneity. If the buyers’ payoffs are

perfectly correlated, there is no such effect, and the equilibrium price always goes up after

4



the arrival of the first lump-sum payoff.

If the buyers’ payoffs are perfectly correlated, efficiency is achieved for any number of

buyers since the monopolist is able to fully internalize the social surplus by subsidizing ex-

perimentation. However, if the buyers’ payoffs are only partially correlated, the equilibrium

experimentation level is always lower than the socially efficient one. This is due to the exis-

tence of ex post heterogeneity: the known buyers are willing to pay more than the unknown

buyers in the individual learning phase. Without price discrimination, the monopolist faces a

tradeoff between exploitation of the known buyers and exploration for a higher future value.

The exploitation incentive always causes experimentation to be terminated too early. The

inefficiency in the individual learning phase reduces the monopolist’s incentives to subsidize

experimentation in the social learning phase. As a result, the equilibrium experimentation

is inefficiently low in the social learning phase as well.

We then characterize the symmetric Markov perfect equilibrium in the bad news case.

It is shown that the equilibrium is always efficient as is the case when the buyers’ payoffs

are perfectly correlated. The key insight is that although buyers become heterogeneous in

the individual learning phase, the buyers who have received lump-sum damages will never

purchase the experience good. The potential buyers are only the unknown ones, who are ex

post homogeneous in a symmetric equilibrium. Another important difference between the

good and bade news cases is that no extra subsidy is needed in the bad news case since

deviations of an unknown buyer make the deviator more pessimistic. As a result, there is no

deterrence effect and no continuation value effect. The instantaneous price reaction to the

arrival of the first lump-sum damage is always to go down.

The presence of multi-dimensional beliefs complicates the analysis significantly: the pos-

terior belief about the product characteristic and the posterior beliefs about the individual

attributes are all relevant for decision-making. The dimension of the state space is reduced

by the fact that given the priors, the posterior about the product characteristic is a function
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of the posteriors about the individual attributes. When considering the symmetric Markov

perfect equilibrium, on the equilibrium path, one posterior is sufficient to represent all the

posteriors. But off the equilibrium path, the deviations lead to heterogeneous posterior be-

liefs about the individual attributes. Even in that case, the problem is transformed in a

way such that all value functions can be explicitly derived by solving ordinary differential

equations. The benefit of this approach is to ensure that the traditional value matching and

smooth pasting conditions can still be applied to characterize the optimal stopping decisions.

Related Literature

Bergemann and Välimäki (1996) and Felli and Harris (1996) are two early papers analyzing

the impact of price competition on experimentation. They show that if there is only in-

dividual learning, the dynamic duopoly competition with vertically differentiated products

can achieve efficiency. However, Bergemann and Välimäki (2000) show that in the presence

of social learning, the dynamic duopoly competition cannot achieve efficiency. Bergemann

and Välimäki (2002) and Bonatti (2009) allow ex ante heterogeneity in the sense that buyers

are different in their willingness to pay.3 Both papers assume a continuum of buyers. At

each instant of time, an individual buyer only makes a myopic optimal choice and strategic

interactions between the buyers don’t exist.

Bergemann and Välimäki (2006) also consider a dynamic monopoly pricing problem, but

with a continuum of buyers and independent valuations. The difference in crucial modelling

assumptions leads them to investigate different properties of equilibrium price path. The

framework of a continuum of buyers makes it impossible to discuss the impact of a single

good news signal on price. Instead, Bergemann and Välimäki (2006) are more concerned

about whether price would always go down or eventually go up in equilibrium. Bose, Orosel,

Ottaviani, and Versterlund (2006) and Bose, Orosel, Ottaviani, and Versterlund (2008) de-

3Villas-Boas (2004) also investigates a duopoly model with ex ante heterogeneity along a location. He
considers a two-period model and is mainly concerned about consumer loyalty, i.e., whether in the second
period, buyers return to the seller they bought from in the first period.
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velop another way of modelling dynamic monopoly pricing under social learning. Their

model is closer to the herding literature: each short-lived buyer makes a purchasing decision

in a pre-determined sequence. In contrast, in our model, all buyers are long-lived and are

making purchasing decisions repeatedly.

This paper is also closely connected to the continuous-time strategic experimentation

literature. A nonexhaustive list of related papers includes Bolton and Harris (1999), Keller

and Rady (1999), Keller and Rady (2010) and Keller, Rady, and Cripps (2005).4 The

analysis of our model setting is greatly simplified by the use of exponential bandits, building

on Keller, Rady, and Cripps (2005). Most of the papers in the strategic experimentation

literature assume a common value environment, where the players’ payoffs are perfectly

correlated. This enables us to use a uni-dimensional posterior belief as the unique state

variable to characterize the value functions. By considering a partial payoff correlation,

we introduce multi-dimensional posterior beliefs and show that the dimensionality of the

problem can be reduced by expressing one posterior as a function of other posteriors.

In addition to the theoretical body of work, there are a few empirical studies attempting

to quantify the importance of learning considerations on consumers’ dynamic purchasing

behavior. However, most of the existing works have exclusively focused on modelling indi-

vidual consumer behavior and analyzing the impact of idiosyncratic uncertainty (see, e.g.,

Ackerberg (2003), Crawford and Shum (2005), Erdem and Keane (1996) and so on). Several

recent works, including Ching (2010), Chintagunta, Jiang, and Jin (2009), Kim (2010), use

both individual learning and social learning to investigate the diffusion of new drugs. In par-

ticular, Ching’s paper is based on the passage of the Hatch-Waxman Act in 1984. This act

eliminates the clinical trial study requirements for approving generic drugs and encourages

more entries of generic drugs that have uncertain product qualities. Ching shows that both

4The strategic experimentation framework is also used as a building block to investigate broader issues.
For example, Strulovici (2010) investigates voting in a strategic experimentation environment; Bergemann
and Hege (2005), Hörner and Samuelson (2009) and Bonatti and Hörner (2009) consider moral hazard
problems when effort affects speed of learning.
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individual learning and social learning are needed to explain the slow diffusion of generic

drugs into the market.

The remainder of this paper is organized as follows. Section 1.2 introduces the model and

defines the solution concept. Section 1.3 and Section 1.4 solve a symmetric Markov perfect

equilibrium and discuss the efficiency of the equilibrium for the good news case and the bad

news case, respectively. Section 1.5 concludes the paper.

1.2 Model Setting

Time t ∈ [0,+∞) is continuous. The market consists of n ≥ 2 buyers indexed by i =

1, 2, · · · , n and one monopolist, who are all risk-neutral with the common discount rate

r > 0. The monopolist with a zero cost of production sells a risky product with unknown

value. At each point in time, a buyer can either buy one unit of the risky product or take a

safe outside option/product.

If a buyer purchases the safe product, she receives a known deterministic flow payoff s >

0.5 The value of the risky product to a buyer i consists of two components: a deterministic

flow payoff ξf ≥ 0 and a random lump-sum payoff ξl. The arrival of lump-sum payoffs

depends on both an intrinsic characteristic of the product (common uncertainty) and the

quality of the match between the product and that buyer (idiosyncratic uncertainty). The

product characteristic is either high (λ = λH ) or low (λ = λL = 0), and the match between

buyer i and the risky product is either relevant (κi = 1) or irrelevant(κi = 0). The arrival

of random lump-sum payoffs ξl is independent across buyers and modelled as a Poisson

process with intensity λκi. Therefore, a buyer i is able to receive random lump-sum payoffs

if and only if both the product characteristic is high and the individual match quality is

relevant. Before the game starts, nature chooses randomly and independently the product

characteristic and the individual match quality for each buyer. The common priors are such

5Alternatively, we can assume the flow payoff is random but drawn from a commonly known distribution
with expectation s > 0.
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that: q0 = Pr(λ = λH), and for each buyer i, ρ0 = Pr(κi = 1). The product characteristic

and the match qualities are initially unobservable to all players (seller and buyers), but the

parameters λH , ξf , ξl, ρ0 and q0 are common knowledge.

We consider two cases in the above setting. In the good news case, ξl > 0 and the arrival

of lump-sum payoffs makes the risky product more attractive than the safe one. We assume

the risky product is superior to the safe one only when the buyers can receive lump-sum

payoffs:

Assumption 1.1. (Good News Case) In the good news case, ξl > 0 and ξf < s < ξf +λHξl.

In the bad news case, ξl < 0 and the arrival of lump-sum payoffs makes the risky product

less attractive than the safe one. We impose the requirement that the risky product is

superior to the safe one only when the buyers cannot receive lump-sum payoffs:

Assumption 1.2. (Bad News Case) In the bad news case, ξl < 0 and ξf > s > ξf + λHξl.

All players observe each buyer’s past actions and outcomes. As a result, both the seller

and the buyers hold common posterior beliefs about the common characteristic and any

given buyer’s match quality. In both cases, if one buyer receives a lump-sum payoff from the

risky product, every player immediately knows that that buyer’s match is relevant and the

product characteristic is high. The non-arrival of lump-sum payoffs may be due to either a

low characteristic or an irrelevant match. Social learning is important because it provides

additional information about the product characteristic even if the buyers’ match qualities

are drawn independently. Although the assumption λL = 0 seems a little restrictive, the

current model is rich enough to include the extreme cases of common value (ρ0 = 1, q0 < 1)

and independent values (q0 = 1, ρ0 < 1).

At each instant of time t, the monopolist first announces a price based on the previous

history and then each buyer decides which product to purchase conditional on the previous

history and the announced price. It is assumed that the monopolist cannot price-discriminate

and so charges the same price to all buyers.
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1.2.1 Belief Updating

Denote by Nit the total number of lump-sum payoffs received by buyer i before time t. Let

Pt be the price charged by the monopolist at time t. Set ait = 1 if buyer i purchases the

risky product at time t; ait = 0 if buyer i purchases the safe product at time t. A public

history before time t is defined as:

ht , ({aiτ , Niτ}ni=1, Pτ )0≤τ<t .

Posterior beliefs are defined as:

qt , Pr[λH | ht] and ρit , Pr[κi = 1 | λH , ht]

such that the posterior belief of receiving lump-sum payoffs is given by

Pr[λκi = λH | ht] = ρitqt.

Given a pair of priors (ρ0, q0), the posteriors (ρ1t, · · · , ρnt, qt) evolve according to Bayes’

rule. A buyer i who has not received any lump-sum payoff before time t expects an arrival

of lump-sum payoffs from the risky product with rate λHaitρitqt. If a lump-sum payoff is

received, ρit immediately jumps to 1; otherwise, ρit obeys the following differential equation

at those times t when ait is right continuous:6

ρ̇it = −λHaitρit(1− ρit). (1.1)

If no buyer has received a lump-sum payoff, then with an expected arrival rate λHqt
∑n

i=1 aitρit,

some buyer receives a lump-sum payoff and qt jumps to 1. Otherwise, qt obeys the following

6If buyer i has not received good news within time t and t+ h, then the posterior belief ρi,t+h could be
written as:

ρi,t+h =
ρite

−λH
∫ h
0
ai,t+τdτ

ρite
−λH

∫ h
0
ai,t+τdτ + 1− ρit

.

Since aiτ is right continuous with respect to time at time t, there exists some h̄ > 0 such that ai,t+τ = ai,t
for all τ ≤ h̄. Hence by definition,

ρ̇it = lim
h→0

ρi,t+h − ρi,t
h

= −λHaitρit(1− ρit).

q̇t is derived similarly.
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differential equation at those times when ait is right continuous for ∀i:

q̇t = −λHqt(1− qt)
n∑
i=1

aitρit. (1.2)

The posterior belief q can be expressed as a function of ρi’s. When no buyer has received a

lump-sum payoff for a length of time t, let xit , ρ0e
−λH

∫ t
0 aiτdτ +1−ρ0 denote the probability

of the event that unknown buyer i has not received lump-sum payoffs for a length of time t

conditional on λH . By Bayes’ rule

qt =
q0

∏n
i=1 xit

q0

∏n
i=1 xit + 1− q0

. (1.3)

From equation (1.1),

ρit =
ρ0e
−λH

∫ t
0 aiτdτ

xit
=⇒ 1− ρit =

1− ρ0

xit
. (1.4)

Substituting (1.4) into (1.3) yields:

qt =
q0(1− ρ0)n

q0(1− ρ0)n + (1− q0)
∏n

i=1(1− ρit)
. (1.5)

Notice that equation (1.5) also holds when at least one buyer has received lump-sum payoffs.

In that situation, at least one of the ρit’s is one and qt is also one. After long history of

no realization of lump-sum payoffs, the posteriors ρit would converge to zero while qt would

not. This reflects the fact that ρit is a conditional probability and qt is bounded below by

q0(1− ρ0)n.

A nice property about equation (1.5) is that it only depends on ρit’s and does not explicitly

depend on previous purchasing decisions or time t. Differential equations (1.1) and (1.2)

imply: given a particular history of purchasing decisions, both ρit and qt can be written as a

function of time. In the critical history when nobody has received lump-sum payoffs, ρit is

sufficient to encode time t and the relevant information about previous purchasing decisions,

which are needed for the the updating of qt. Therefore, we are able to express qt as a function

of ρt , (ρ1t, · · · , ρnt) for a given pair of priors (ρ0, q0).
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1.2.2 Strategies and Payoffs

Throughout the paper, we focus on symmetric Markov perfect equilibria. The natural state

variables include a posterior about common uncertainty q and posteriors about idiosyncratic

uncertainty ρ. Given a pair of priors (ρ0, q0), it suffices to use posterior beliefs ρt as state

variables since q can be expressed as a function of ρ. This enables us to reduce the dimen-

sionality of the state space by one. The state variable ρt is required to be feasible in the

sense that

ρt ∈ Σ = {ρ ∈ [0, 1]n : either ρi = 1 or ρi ≤ ρ0 all for i}.

Purchasing Decision Given a pair of priors (ρ0, q0), buyer i’s acceptance policy is a function

of states ρ and price P

αi : Σ× R→ {0, 1}.7

Since lump-sum payoffs arrive with rate ρitqtλH , the expected flow of utility associated

with purchasing decision ait is

aitρitqtλHξl + ait(ξf − Pt) + (1− ait)s.

The choice of ait affects not only flow utility but also how beliefs ρt and qt are updated.

Given beliefs ρ ∈ Σ, monopolist’s strategy P and other buyers’ strategies α−i, buyer i’s

value (sum of normalized expected discounted utility) from purchasing strategy αi is

Ui(αi, P, α−i;ρ) = E
∫
re−rt {αi(ρt, Pt) (ρitq(ρt)λHξl + ξf − Pt) + (1− αi(ρt, Pt))s} dt

where the expectation is taken over {ρt : t ∈ [0,∞)} with ρ0 = ρ and q(ρt) is given by

equation (1.5).

7More accurately, the strategy should be written as αi(ρ, P ; ρ0, q0). Throughout the paper, (ρ0, q0) will
be dropped since no confusion is caused.
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Pricing Decision Given a pair of priors (ρ0, q0), the monopolist’s price is a function of states

ρ

P : Σ→ R.

Given buyers’ strategies {αi}ni=1, the flow profits associated with price Pt are

n∑
i=1

αi(ρt, Pt)Pt.

The choice of Pt affects not only flow profits but also the purchasing decisions and so how

beliefs are updated. Given beliefs ρ and buyers’ strategies {αi}ni=1, the monopolist’s value

(sum of normalized expected discounted profits) from the pricing policy P is

J(P, α;ρ) = E
∫
re−rt

n∑
i=1

αi(ρt, P (ρt))P (ρt)dt

where the expectation is taken over {ρt : t ∈ [0,∞)} with ρ0 = ρ.

Admissible Strategies A critical issue associated with continuous time model setting is that

a well-defined strategy profile need not yield a well-defined outcome. Some restrictions on

strategies have to be imposed to overcome this issue. In particular, we require the Markovian

strategy profile (P, α) to be admissible. The formal definition can be found in the appendix.

If a strategy profile satisfies this requirement, the induced outcome is well behaved in the

sense that the purchasing decisions ait and pricing decisions Pt are right continuous functions

when there is no arrival of lump-sum payoffs.

1.2.3 Symmetric Markov Perfect Equilibrium

We consider a Markov perfect equilibrium in symmetric strategies. The formal definition of

our solution concept is the following:

Definition 1.1. Given a pair of priors (ρ0, q0), an admissible Markov strategies profile

{P ∗, α∗} is a Markov perfect equilibrium if for all i, feasible beliefs ρ and all admissible
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strategies P̃ and α̃i:
8

J(P ∗, α∗;ρ) ≥ J(P̃ , α∗;ρ) and Ui(α
∗
i , P

∗, α∗−i;ρ) ≥ Ui(α̃i, P
∗, α∗−i;ρ).

Moreover, {P ∗, α∗} is symmetric if for all permutations π : {1, · · · , n} → {1, · · · , n},

P (ρ̃) = P (ρ) where ρ̃i = ρπ−1(i) and αi(ρ, P ) = απ(i)(ρ̃, P ).

1.3 Equilibrium in the Good News Case

In the good news case, ξl > 0 and the arrival of a lump-sum payoff makes the risky product

more favorable to the receiver of this payoff. In this section, we normalize ξf = 0 and

ξl = v > 0. Assumption 1.1 implies g , λHv > s > 0.

Since the arrival of one lump-sum payoff immediately resolves common uncertainty, there

are only two situations to consider: a social learning phase, where the common uncertainty

has not been resolved, and an individual learning phase, where the common uncertainty has

been resolved. In the individual learning phase, an unknown buyer just needs to learn her

individual match quality and for such a buyer i, without the arrival of a lump-sum payoff,

posterior belief ρi is updated according to equation (1.1).

In the social learning phase, both individual learning and social learning exist. If unknown

buyers behave symmetrically, they share the same posterior belief ρ, and belief q about λH

is given by equation (1.5):

q =
(1− ρ0)nq0

(1− ρ0)nq0 + (1− ρ)n(1− q0)
. (1.6)

Therefore, in a symmetric Markov perfect equilibrium, it suffices to use the common posterior

belief ρ as the unique state variable.

8Strategies P̃ and α̃i need not be Markovian. The definition of admissible non-Markovian strategies can
also be found in the appendix.
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1.3.1 Socially Efficient Allocation

Before solving for a symmetric Markov perfect equilibrium, we first solve for the socially

efficient allocation. The linear utility function enables us to obtain the efficient allocation

policy by solving a specific multi-armed bandit problem where payoffs are given by the

aggregate surplus.

Given the priors ρ0 and q0, the socially efficient allocation is characterized by a cutoff

strategy in posterior belief ρ. There are two cutoffs ρeI and ρeS for the individual learning

phase and the social learning phase, respectively. In the individual (social) learning phase, it

is optimal for the social planner to keep the unknown buyers experimenting until belief drops

to ρeI (ρeS) and no lump-sum payoff has been received before that. A backward procedure is

used to solve for the socially efficient allocation. We first characterize the socially efficient

allocation in the individual learning phase and then use the optimal social surplus function

in the individual learning phase to solve the cooperative problem in the social learning phase.

Socially Efficient Allocation in the Individual Learning Phase In the individual learning

phase, suppose k buyers have received good news; then it is socially optimal for them to

keep purchasing the risky product by assumption 1.2 and the social surplus function is

Ωk(ρ) = kg + (n− k)W (ρ)

where

W (ρ) = sup
α∈{0,1}

E
∫ ∞
t=0

re−rt[αρtg + (1− α)s]dt

is the optimal value for an unknown buyer with posterior belief ρ.

Since the unknown buyers are facing a standard independent two-armed bandit problem,

previous research (see Keller, Rady, and Cripps (2005)) has characterized the optimal cutoff

and value function W . It is efficient for the remaining n − k unknown buyers to stop
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purchasing the risky product once the posterior belief ρ reaches

ρeI =
rs

(r + λH)g − λHs

and still no lump-sum payoff has been received. Since in the individual learning phase, the

common uncertainty has been resolved (q = 1), the efficient cutoff ρeI does not depend on

the priors ρ0 and q0. The value function for a buyer with posterior belief ρ is

W (ρ) = max

{
s, gρ+

λHs

r + λH
(

rs

(r + λH)(g − s)
)r/λH (1− ρ)(

1− ρ
ρ

)r/λH
}
. (1.7)

Efficiency in the Social Learning Phase In the social learning phase, the socially efficient

allocation solves the symmetric cooperative problem (see claim A.1 in the appendix):

ΩS(ρ) = sup
α(·)∈{0,1}

E
{∫ h

t=0

re−rtn[α(ρt)ρtq(ρt)g + (1− α(ρt))s]dt+ e−rhΩ(ρh | α)

}
where

EΩ(ρh | α) = q
n∑
k=1

(
n

k

)
ρk
(

1− e−λH
∫ h
0 αtdt

)k (
ρe−λH

∫ h
0 αtdt + 1− ρ

)n−k
Ωk(ρh)

+
[
q
(
ρe−λH

∫ h
0 αtdt + 1− ρ

)n
+ 1− q

]
ΩS(ρh)

and

ρh =
ρe−λH

∫ h
0 αtdt

ρe−λH
∫ h
0 αtdt + 1− ρ

.

In the continuous time framework, the probability that more than two buyers receive

lump-sum payoffs at the same time is zero. The Hamilton-Jacobi-Bellman equation (HJB

equation hereafter) for the above problem hence is simplified as:

rΩS(ρ) = max
{
rns, rnρq(ρ)g + nρq(ρ)λH(Ω1(ρ)− ΩS(ρ))− λHρ(1− ρ)Ω

′

S(ρ)
}
, (1.8)

where Ω1(ρ) = g + (n − 1)W (ρ) is the social surplus when one buyer receives a lump-sum

payoff.
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The first part of the maximand corresponds to using the safe product, the second to the

risky product. The effect of using the risky product for the social planner can be decomposed

into three elements: i) the (normalized) expected payoff rate rnρq(ρ)g, ii) the jump of the

value function to Ω1(·) if one buyer receives a lump-sum payoff, which occurs at rate nλH

with probability pq(ρ), and iii) the effect of Bayesian updating on the value function when

no lump-sum payoff is received. When no lump-sum payoff is received, both ρ and q are

updated. The updating of q is implicitly incorporated as a function of ρ.

The optimal cutoff ρeS is pinned down by solving the following differential equation:

rΩS(ρ) = rnρq(ρ)g + nρq(ρ)λH(Ω1(ρ)− ΩS(ρ))− λHρ(1− ρ)Ω′S(ρ), (1.9)

with boundary conditions:

ΩS(ρeS) = ns (value matching condition) and Ω′S(ρeS) = 0 (smooth pasting condition).

Substitute the two boundary conditions into differential equation (1.9) and we immedi-

ately show that the cutoff ρeS should satisfy

rnρq(ρ)g + nρq(ρ)λHΩ1(ρ) = (r + nρq(ρ)λH)ns. (1.10)

In the appendix, we show that equation (1.10) implies a unique solution ρeS for a given

pair of priors (ρ0, q0). The socially efficient allocation in the social learning phase can be

characterized as follows:

Proposition 1.1. (Characterize socially efficient allocation) For any posteriors (ρ, q), it is

socially efficient to purchase the risky product in the social learning phase if and only if

ρq >
rs

(r + λH)g + (n− 1)λHW (ρ)− nλHs
.

When the common uncertainty is resolved, it is always socially efficient for the unknown

buyers to continue experimentation until the posterior reaches ρeI .

Proof. In the appendix.
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Figure 1.1: Solutions to the Cooperative Problem with Two Players

Given the priors, the unique pair of efficient cutoffs (ρeS(ρ0, q0), qeS(ρ0, q0)) is determined

by equations

qeS =
(1− ρ0)nq0

(1− ρ0)nq0 + (1− ρeS)n(1− q0)
(1.11)

and

qeS =
rs

ρeS[(r + λH)g + (n− 1)λHW (ρeS)− nλHs]
, (1.12)

where W (·) is given by equation (1.7). Figure 1.1 is an illustration of how we can use

equations (1.11) and (1.12) to determine the efficient cutoffs in the social learning phase.

Equation (1.12) describes a stationary stopping curve because it consists of all pairs of

stopping cutoffs (ρeS, q
e
S) and this equation is independent of priors (ρ0, q0). Equation (1.11)

describes how ρ and q evolve jointly over time starting from ρ0 and q0. This equation indeed

depends on priors.

Unlike the individual learning phase, the cutoff ρeS does depend on the priors (ρ0, q0).
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We formulate the problem so that ρ is the unique state variable in order to avoid solving

partial differential equations. But the actual optimal stopping decision depends not only

on belief ρ but also on q. For a fixed ρ0, a higher q0 means that the society can afford to

experiment more and thus the efficient cutoff ρeS should be lower. For a fixed pair of priors

(ρ0, q0), a two-dimensional optimal stopping problem is transformed into a one-dimensional

one by expressing q as a function of ρ. As a result, we are able to apply traditional value

matching and smooth pasting conditions to solve our optimal stopping problems.

1.3.2 Characterizing Equilibrium for n = 2

In the two-buyer case, there are three situations to consider. When the common uncertainty

is not resolved, denote US as the value function for each unknown buyer; and JS as the value

function for the monopolist. When one buyer has received lump-sum payoffs, denote UI as

the value function for the unknown buyer; VI as the value function for the known buyer;

and JI as the value function for the monopolist. When both buyers have received lump-sum

payoffs, denote V2 as the value function for the known buyers; and J2 as the value function

for the monopolist.

For ζ = S, I, denote α0
ζ (α1

ζ) as the strategy for the known (unknown) buyers. Let Pζ be

the price charged by the monopolist. Then definition 1.1 implies that a triple of (Pζ , α
0
ζ , α

1
ζ)

is a symmetric Markov perfect equilibrium if the following conditions are satisfied:

• for ζ = I, α0
ζ = 1 if P ≤ g − s and = 0 otherwise;

• for ζ = S, the unknown buyers choose acceptance policy α1
ζ to maximize:

Uζ(ρ) = sup
α1
ζ

E
{∫ τ

t=0

re−rt
[
α1
ζ(ρtqζ(ρt)g − Pζ(ρt)) + (1− α1

ζ)s
]
dt

+e−rτ (
1

2
VI(ρτ ) +

1

2
UI(ρτ ))

}
and given α1

ζ , the monopolist chooses price Pζ(ρt) to maximize

Jζ(ρ) = sup
Pζ(·)

E
{∫ τ

t=0

2re−rtα0
ζ(Pζ(ρt))dt+ e−rτJI(ρτ )

}
,
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where τ is the first (possibly infinite) time at which a new unknown buyer receives

good news;

• for ζ = I, the unknown buyer chooses acceptance policy α1
ζ to maximize:

Uζ(ρ) = sup
α1
ζ

E
{∫ τ

t=0

re−rt
[
α1
ζ(ρtqζ(ρt)g − Pζ(ρt)) + (1− α1

ζ)s
]
dt+ e−rτV2(ρτ )

}
and given (α0

ζ , α
1
ζ), the monopolist chooses price Pζ(ρt) to maximize

Jζ(ρ) = sup
Pζ

E
{∫ τ

t=0

re−rt
[
α0
ζ(Pζ(ρt)) + α1

ζ(ρt, Pζ(ρt))
]
dt+ e−rτJ2(ρτ )

}
;

• beliefs update according to Bayes’ rule: ρt satisfies the law of motion, i.e., equation

(1.1); qζ(ρt) = 1 for ζ = I and qζ(ρt) is given by equation (1.6) for ζ = S;

• when both buyers have received received lump-sum payoffs, the price is g−s such that

J2 = 2(g − s) and V2 = s.

First, it is straightforward to see that the known buyers always buy the risky product if the

price is lower than g−s and not buy otherwise. Second, when both unknown buyers purchase

the risky product, the conditional probability that any given unknown buyer becomes good

is simply 1/2, since the two unknown buyers’ payoff distributions are identical. Finally, if

both buyers turn out to be good, it is optimal for the monopolist charging price g − s to

extract all of the surplus.

Niche Market vs. Mass Market

As in the social planner’s problem, the equilibrium purchasing behavior can be characterized

by two cutoffs ρ?S and ρ?I . If no buyer has received lump-sum payoffs, the price is falling

over time to keep both unknown buyers experimenting until posterior ρ reaches ρ?S. After

that, both buyers purchase the safe product. If one buyer has received lump-sum payoffs,

the monopolist stops selling to the unknown buyer and only serves the known buyer when

posterior belief about the unknown buyer is below ρ?I .
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The efficient cutoff in the individual learning phase ρeI is always smaller than the efficient

cutoff in the social learning phase ρeS for any pair of priors (ρ0, q0). Under strategic interac-

tions, it turns out that ρ?I could be either smaller or larger than ρ?S. We can distinguish a

mass market from a niche market by comparing these two cutoffs.

Definition 1.2. (Niche market and mass market)

1. The market is niche if the cutoffs determined by (ρ0, q0) satisfy: ρ?S ≤ ρ?I , and

2. The market is mass if the cutoffs determined by (ρ0, q0) satisfy: ρ?S > ρ?I .

In a mass market, the arrival of good news never terminates experimentation while in a

niche market, experimentation is shut down by the arrival of the first lump-sum payoff at

ρ ≤ ρ?I . Obviously, whether a mass or niche market appears in equilibrium depends on the

priors, which in turn determines the relative importance of social learning and individual

learning. We expect that experimentation would continue after the first arrival of lump-sum

payoffs if the individual learning component is quite important and vice versa.

Equilibrium in the Individual Learning Phase

A backward procedure is used to characterize ρ?I and ρ?S. In the individual learning phase,

the equilibrium cutoff ρ?I and the various value functions are provided by the following

proposition.

Proposition 1.2. Fix a symmetric Markov perfect equilibrium. In the history such that the

common uncertainty is resolved, the unknown buyer purchases the risky product if and only

if the posterior belief ρ is larger than

ρ?I ,
r(g + s)

2rg + λH(g − s)
.

The equilibrium price is PI(ρ) = gρ− s and the unknown buyer receives value UI(ρ) = s; the

known buyer receives value
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VI(ρ) = max

{
s, s+ g(1− ρ)(1− [

(1− ρ)ρ?I
ρ(1− ρ?I)

]r/λH )

}
; (1.13)

and the monopolist receives value

JI(ρ) =

{
2(gρ− s) + (g + s− 2gρ?I)

1−ρ
1−ρ?I

[
(1−ρ)ρ?I
(1−ρ?I )ρ

]r/λH if ρ > ρ?I

g − s otherwise.

Proof. In the appendix.

It is straightforward to see that the equilibrium cutoff ρ?I is strictly larger than the efficient

cutoff ρeI . This is because ex post heterogeneity means the known buyer is willing to pay

more than the unknown buyer. In the absence of price discrimination, the monopolist faces a

tradeoff between exploitation of the known buyers and exploration for a higher future value.

The incentive to charge a high price and extract the full surplus from the known buyer

causes an early termination of experimentation. Another remark is that the unknown buyer

is making a myopic choice in the individual learning phase since there is no learning value

attached to the purchasing behavior (the unknown buyer always receives value s regardless

of whether she receives the lump-sum payoffs).

Equilibrium in the Social Learning Phase

Now consider the situation where none of the buyers have received lump-sum payoffs yet.

Assume that the posterior belief ρ is large enough that both buyers purchase the risky

product in equilibrium. To characterize the equilibrium price and cutoff, we proceed as

follows. First, we use the incentive compatibility constraint to derive the value function

of the experimenting buyers. Second, we derive expressions of equilibrium price and the

monopolist’s value function based on the experimenting buyers’ value function derived in

the first step. Finally, we apply value matching and smooth pasting conditions (see, e.g.,

Dixit (1993)) to pin down the equilibrium cutoff.

22



To keep both unknown buyers experimenting, the unknown buyers’ value should be

such that i) each buyer has an incentive to participate (i.e., the value is larger than the

outside option s); ii) each buyer should not benefit from the following deviations: stopping

experimentation for a very small amount of time and then switching back to the specified

equilibrium behavior.

The deviations described in constraint ii) are similar to one-shot deviations in discrete

time models. Formally, it implies that for any ρ > ρ?S, there exists h̄ such that for all h ≤ h̄,

US(ρ) ≥ Û(ρ;h) =

∫ h

t=0

re−rtsdt+ρq(1− e−λHh)e−rhUI(ρ) + [1−ρq(1− e−λHh)]e−rhUD(ρ, ρh)

(1.14)

where Û(ρ;h) denotes the value for a deviator who deviates for h length of time. The de-

viator receives a deterministic payoff s within the h length of time. After the deviation,

with probability ρq(1 − e−λHh), the non-deviator has received lump-sum payoffs and the

continuation value for the deviator is UI(ρ) = s; with the complementary probability, the

non-deviator has not received lump-sum payoffs and the two unknown buyers become asym-

metric. In the latter situation, the deviator receives a continuation value UD(ρ, ρh) where

superscript D stands for “deviator.” The non-deviator ρh is more pessimistic than the devi-

ator ρ since ρh = ρe−λHh

ρe−λHh+(1−ρ)
< ρ. Obviously, equation (1.14) is a tighter constraint than

the participation constraint since UI(ρ) = s and UD(ρ, ρh) ≥ s.

The most important technical result in this paper is to evaluate limh→0
US(ρ)−Û(ρ;h)

h
. The

result is given by lemma A.1 in the appendix. Here we just provide a sketch of the proof.

Sketch of the proof for lemma A.1. The main difficulty of the proof is to evaluate

the off-equilibrium-path value function UD(ρ, ρh). First notice that ρ > ρ?S means that it is

optimal for the monopolist to sell to both unknown buyers on the equilibrium path. Then,

for h sufficiently small, it is still optimal for the monopolist to sell to both unknown buyers

after an h-deviation.
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In other words, given a sufficiently small h, there exists some h̄′ such that for all h′ ≤ h̄′,

we have:

UD(ρ, ρh) = E
∫ h′

t=0

re−rt(ρtqtg − P̃t)dt

+ ρq̃h(1− e−λHh
′
)e−rh

′
VI(ρh+h′) + ρhq̃h(1− e−λHh

′
)e−rh

′
s

+ [1− ρq̃h(1− e−λHh
′
)− ρhq̃h(1− e−λHh

′
)]e−rh

′
U(ρh′ , ρh+h′). (1.15)

In the above expression, ρt is the posterior about the deviator and starts from ρ0 = ρ;

q̃h is the posterior about the product characteristic after an h-deviation such that: q̃h =

q0(1−ρ0)2

q0(1−ρ0)2+(1−q0)(1−ρ)(1−ρh)
; and P̃t is the off-equilibrium-path price set by the monopolist after

an h-deviation. Obviously, the value function UD(ρ, ρh) depends on the off-equilibrium-path

price and cannot be evaluated directly.

Meanwhile, notice the non-deviator’s value can be expressed as:

UND(ρ, ρh) = E
∫ h′

t=0

re−rt(ρ′tqtg − P̃t)dt

+ ρq̃h(1− e−λHh
′
)e−rh

′
s+ ρhq̃h(1− e−λHh

′
)e−rh

′
VI(ρh′)

+ [1− ρq̃h(1− e−λHh
′
)− ρhq̃h(1− e−λHh

′
)]e−rh

′
U(ρh+h′ , ρh′), (1.16)

where ρ′t is the posterior about the non-deviator and starts from ρ′0 = ρh.

The key step is to decompose UD(ρ, ρh) as:

UD(ρ, ρh) = UND(ρ, ρh) + (UD(ρ, ρh)− UND(ρ, ρh)).

The reason for doing this decomposition is that the off-equilibrium-path price is cancelled

when we subtract UND(ρ, ρh) from UD(ρ, ρh), Hence, Z(ρ, ρh) , UD(ρ, ρh) − UND(ρ, ρh) is

independent of the off-equilibrium-path price P̃ and can be evaluated directly.

Buyer ρh’s value UND(ρ, ρh) can be computed without using the off-equilibrium-path

price. If the non-deviator has not received lump-sum payoffs during an h-deviation, she
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becomes more pessimistic than the deviator. If the monopolist wants to make a sale to

both buyers, the optimal price is set according to the reservation value of the more pes-

simistic buyer. An expression of UND(ρ, ρh) can be derived from the ρh buyer’s incentive

compatibility constraint. In the appendix, we show that this implies a first-order ordinary

differential equation for UND(ρ, ρh), which can be solved by imposing the boundary condition

that U(ρh, ρh) = US(ρh).

Second, given any t < h′, notice equations (1.15) and (1.16) also hold for posteriors

(ρ(t), ρh(t)) where

ρ(t) =
ρe−λH t

ρe−λH t + (1− ρ)
, and ρh(t) =

ρhe
−λH t

ρhe−λH t + (1− ρh)
.

Redefine

Z(t) = Z(ρ(t), ρh(t)) = U(ρ(t), ρh(t))− U(ρh(t), ρ(t))

to be a function of time t . A first-order ordinary differential equation about Z(t) can

be obtained by subtracting equation (1.16) from equation (1.15) and letting the length of

time interval converge to zero. Solving the ordinary differential equation, the expression for

Z(ρ, ρh) can be recovered by substituting time t as functions of ρ(t) and ρh(t). The boundary

condition is such that Z = 0 once ρh reaches ρ?S.

After UD(ρ, ρh) is evaluated, limh→0
US(ρ)−Û(ρ;h)

h
can be computed directly. �

Lemma A.2 in the appendix implies that in equilibrium, a profit-maximizing monopolist

should always make the incentive constraints to be “binding” in the sense that

lim
h→0

US(ρ)− Û(ρ;h)

h
= 0.

Lemma A.1 and lemma A.2 together gives an important characterization of the on-equilibrium-

path value function US:

Proposition 1.3. Fix the monopolist’s strategy such that ρ?S is the equilibrium cutoff in

the social learning phase. In a mass market, given any ρ > ρ?S, a necessary and sufficient
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condition for the unknown buyers to keep experimenting is that the value US(ρ) satisfies

differential equation

0 = 2(r + λHρq)(US(ρ)− s) + λHρ(1− ρ)U ′S(ρ) + (r + λHρ)g(1− ρ)q(
(1− ρ)ρ?I
ρ(1− ρ?I)

)r/λH

− λHgρ(1− ρ)q −
[
r + λHρ

?
S

1− ρ?S
(

ρ?I
1− ρ?I

)r/λH − λH(
ρ?S

1− ρ?S
)1+r/λH

]
g(1− ρ)2q(

1− ρ
ρ

)r/λH .

(1.17)

In a niche market, given any ρ > ρ?S, a necessary and sufficient condition for the unknown

buyers to keep experimenting is that the value US(ρ) satisfies differential equation

0 = 2(r + λHρq)(US(ρ)− s) + λHρ(1− ρ)U ′S(ρ)

+
rλHg

r + λH

(1− ρ)2qρ?S
1− ρ?S

(
(1− ρ)ρ?S
ρ(1− ρ?S)

)r/λH − rg

r + λH
λHρ(1− ρ)q (1.18)

for ρ ≤ ρ?I ; and differential equation

0 = 2(r+λHρq)(US(ρ)−s)+λHρ(1−ρ)U ′S(ρ)+(r+λHρ)g(1−ρ)q(
(1− ρ)ρ?I
ρ(1− ρ?I)

)r/λH−λHgρ(1−ρ)q

− r
[
r + λH + λHρ

?
I

(r + λH)(1− ρ?I)
(

ρ?I
1− ρ?I

)r/λH − λH
r + λH

(
ρ?S

1− ρ?S
)1+r/λH

]
g(1− ρ)2q(

1− ρ
ρ

)r/λH (1.19)

for ρ > ρ?I .

The necessity of proposition 1.3 just comes from combining lemma A.1 and lemma A.2.

In the appendix, we prove the sufficiency of this result as well: given the on-equilibrium-path

value function US(ρ) and off-equilibrium-path value function UD(ρ, ρh), it is not optimal for

an experimenting buyer to deviate.

The ordinary differential equations in proposition 1.3 can be solved by using observation

A.1 in the appendix. In a mass market, for any ρ > ρ?S, the value function US(ρ) is given by

US(ρ) = s+
λH

2r + λH
gρ(1− ρ)q − g(1− ρ)q[

(1− ρ)ρ?I
ρ(1− ρ?I)

]r/λH

+

[
r + λHρ

?
S

r(1− ρ?S)
(

ρ?I
1− ρ?I

)r/λH − λH
r

(
ρ?S

1− ρ?S
)1+r/λH

]
g(1− ρ)2q(

1− ρ
ρ

)r/λH

+ C(1− ρ)2q(
1− ρ
ρ

)2r/λH . (1.20)
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In a niche market, for any ρ?S < ρ ≤ ρ?I , the value function US(ρ) is given by

US(ρ) = s+
rλH

(2r + λH)(r + λH)
gρ(1− ρ)q − λHg

r + λH

ρ?S(1− ρ)2q

1− ρ?S
(
(1− ρ)ρ?S
ρ(1− ρ?S)

)r/λH

+ D(1− ρ)2q(
1− ρ
ρ

)2r/λH ; (1.21)

and for ρ > ρ?I , the value function US(ρ) is given by9

US(ρ) = s+
λH

2r + λH
gρ(1− ρ)q − g(1− ρ)q[

(1− ρ)ρ?I
ρ(1− ρ?I)

]r/λH

+

[
r + λH + λHρ

?
I

(r + λH)(1− ρ?I)
(

ρ?I
1− ρ?I

)r/λH − λH
r + λH

(
ρ?S

1− ρ?S
)1+r/λH

]
g(1− ρ)2q(

1− ρ
ρ

)r/λH

+ (D − 2λHg

2r + λH
(

ρ?I
1− ρ?I

)1+2r/λH )(1− ρ)2q(
1− ρ
ρ

)2r/λH . (1.22)

Since there is learning value attached to purchasing behavior, the unknown buyer is not

making a myopic choice. The monopolist has to provide extra subsidy to deter deviations

because the deviator gains rents by becoming more optimistic: US(ρ) > s.

Denote the equilibrium price in the social learning phase to be PS(ρ). Then, the value

for a buyer from purchasing the risky product can be characterized by the following HJB

equation:

rUS(ρ) = r(ρq(ρ)g − PS(ρ)) + λHρq(ρ)(UI(ρ)− US(ρ)) + λHρq(ρ)(VI(ρ)− US(ρ))

− λHρ(1− ρ)U ′S(ρ) (1.23)

where q(ρ) = q0(1−ρ0)2

q0(1−ρ0)2+(1−q0)(1−ρ)2
, UI(ρ) = s, and VI(ρ) is given by equation (1.13).

Meanwhile, by selling the products, the monopolist’s value can be characterized as follows:

rJS(ρ) = 2rPS(ρ) + 2λHρq(ρ)(JI(ρ)− JS(ρ))− λHρ(1− ρ)J ′S(ρ). (1.24)

where JI(ρ) is given by proposition 1.2.

9The undetermined coefficient in the differential equation is chosen such that US(ρ) is continuous at ρ?I .
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Equations (1.23) and (1.24) are value functions if both unknown buyers purchase the

risky product. The RHS of equation (1.23) can be decomposed into four elements: i) the

expected payoff rate from purchasing the risky product r(ρq(ρ)g − PS(ρ)); ii) the jump of

the value function to VI if a given buyer receives a lump-sum payoff; iii) the drop of the

value function to UI = s if the other buyer receives a lump-sum payoff; and iv) the effect

of Bayesian updating on the value function when no lump-sum is received. Equation (1.24)

could be interpreted similarly.

The on-equilibrium-path price PS(ρ) can be derived from the on-equilibrium-path value

function US(ρ). It is straightforward to show: in a mass market,

PS(ρ) = ρq(ρ)g − s+
λH

2r + λH
gρ(1− ρ)q(ρ) + Cq(ρ)(1− ρ)2(

1− ρ
ρ

)2r/λH (1.25)

for ρ > ρ?S; while in a niche market,

PS(ρ) = ρq(ρ)g − s− λH
2r + λH

gρ(1− ρ)q(ρ) +Dq(ρ)(1− ρ)2(
1− ρ
ρ

)2r/λH (1.26)

for ρ?S < ρ ≤ ρ?I , and

PS(ρ) = ρq(ρ)g − s+
λH

2r + λH
gρ(1− ρ)q(ρ)

+ (D − 2λHg

2r + λH
(

ρ?I
1− ρ?I

)1+2r/λH )q(ρ)(1− ρ)2(
1− ρ
ρ

)2r/λH (1.27)

for ρ > ρ?I . In the above equations, C and D are constants in equations (1.20) to (1.22). No-

tice in equations (1.26) and (1.27), the signs in front of term λH
2r+λH

gρ(1−ρ)q(ρ) are different.

This reflects the change in continuation value when ρ drops below ρ?I . By proposition 1.2,

for ρ ≤ ρ?I , upon the arrival of the first lump-sum payoff, the monopolist immediately shuts

down experimentation and charges price g − s. This greatly reduces the unknown buyers’

incentives to experiment. However, it is easy to check that in a niche market, the price PS(ρ)

is still continuous at ρ?I .

We substitute the price expression PS(ρ) into equation (1.24) and characterize the equi-

librium cutoff ρ?S by applying value matching and smooth pasting conditions:
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US(ρ?S) = s, JS(ρ?S) = 0, J ′S(ρ?S) = 0.

Proposition 1.4. (Characterize the symmetric Markov perfect equilibrium) In the social

learning phase, the unknown buyers purchase the risky product under posterior beliefs (ρ, q)

if and only if

ρq >
rs

rg + λH(VI(ρ) + JI(ρ))− λHs
.

A mass market appears if and only if

1− q0

q0(1− ρ0)2
>

g

(1− ρ?I)s
. (1.28)

Moreover, for all ρ0 < 1 and q0 < 1, the symmetric Markov perfect equilibrium is inefficient

so that experimentation is terminated too early.

Proof. In the appendix.

The unique equilibrium cutoff ρ?S is characterized by equation

ρq(ρ) =
rs

rg + λH(VI(ρ) + JI(ρ))− λHs
. (1.29)

It is straightforward to show the equilibrium is inefficient by comparing the efficient stopping

curve with the equilibrium stopping curve. The inefficiency in the individual learning phase

causes a leakage of the social surplus for the monopolist, which reduces the monopolist’s in-

centives to subsidize experimentation in the social learning phase. Therefore, the equilibrium

experimentation is terminated too early in the social learning phase as well.

There are two remarks about proposition 1.4. First, it is straightforward to check that

at ρ?S, the smooth pasting condition for US(·) is also satisfied: U ′S(ρ?S) = 0. Explicitly,

the monopolist is solving an optimal stopping problem given the price she has to charge in

order to keep the unknown buyers experimenting. Implicitly, given the equilibrium pricing

strategy PS(·), the unknown buyers are facing an optimal stopping problem as well. At the

equilibrium cutoff, the smooth pasting condition for US(·) should also be satisfied. This fact
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Figure 1.2: Equilibrium Price Dynamics

is useful when we discuss efficiency for any n ≥ 2 buyers because it enables us to characterize

the equilibrium cutoff without solving for the value functions. Second, the appearance of a

mass market depends on the relative importance of social learning and individual learning.

Given q0, when ρ0 goes up, the monopolist has higher incentives to keep the remaining

unknown buyer experimenting. A mass market is more likely to appear as a result.

Equilibrium Price Path

After solving for the equilibrium cutoff ρ?S, the constants C and D in equations (1.20) and

(1.21) can be pinned down from the value matching condition and then the expression for the

equilibrium prices can be derived. Figure 1.2 depicts different price paths in the symmetric

Markov perfect equilibrium depending on how many buyers have received lump-sum payoffs.

The presence of idiosyncratic uncertainty has two important implications for the equilib-

rium price.
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Figure 1.3: Deterrence Effect

First, in the social learning phase, assume instead that the equilibrium value for each

unknown buyer is exactly s. Then the equilibrium price should be:

P̃S(ρ) = ρq(ρ)g − s+
λH
r
ρq(ρ)(VI(ρ)− s).

To deter the buyers from taking the outside option, the equilibrium value for each un-

known buyer must be strictly larger than s. The actual equilibrium price price PS(ρ) is

strictly less than P̃S(ρ) because of this deterrence effect. Figure 1.3 compares the equilib-

rium price path with and without the deterrence effect. It shows that the price reduction

caused by the deterrence effect is quite significant.

Second, the instantaneous price reaction to the arrival of the first lump-sum payoff might

be ambiguous. In particular, when the first lump-sum payoff arrives, there could be an in-

stantaneous drop in price in order to encourage the buyer who remains unsure to experiment
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as shown by figure 1.2. To understand the negative response of the price to the arrival of

a good news signal, we first compare the equilibrium price in the individual learning phase

PI(ρ) and the price without the deterrence effect P̃S(ρ). Equation

PI(ρ)− P̃S(ρ) = ρ(1− q(ρ))g − λH
r
ρq(ρ)(VI(ρ)− s)

shows that the arrival of good news brings two opposite effects on the reservation value of the

buyer who remains unsure. There is a positive informational effect captured by ρ(1− q(ρ))g:

the arrival of good news reveals that the product characteristic is high and hence makes the

unknown buyer more optimistic about the unconditional probability of receiving lump-sum

payoffs. However, there is another negative continuation value effect: the buyer who remains

unsure loses the chance of becoming the first known buyer to extract rents. The price has

to be lower to compensate for the loss of rents if the monopolist wishes to make a sale to

the unknown buyer.

The comparison of the informational effect and the continuation value effect depends on

the comparison of 1− q(ρ) and q(ρ)(VI(ρ)− s).

Corollary 1.1. For ρ0 < 1 and q0 < 1, q(ρ)(VI(ρ)−s)
1−q(ρ)

is strictly increasing in ρ.

Proof. Plug the formula of q(ρ) and VI(ρ) into q(ρ)(VI(ρ)−s)
1−q(ρ)

and we can get q(ρ)(VI(ρ)−s)
1−q(ρ)

is

proportional to

1− [
(1−ρ)ρ?I
ρ(1−ρ?I )

]r/λH

1− ρ
,

which is strictly increasing in ρ.

The above corollary implies: in the early days of the market, ρ is higher and it is more

likely to have P̃S(ρ) > PI(ρ); in the late days of the market, ρ is lower and it is more likely

to have P̃S(ρ) < PI(ρ). Since the equilibrium price PS(ρ) is strictly below P̃S(ρ) due to

the deterrence effect, the above statement also holds if we replace P̃S(ρ) with PS(ρ). Figure

1.4 describes a situation where with the same priors, the price might either drop or jump

depending on the arrival time of the first lump-sum payoff.
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Figure 1.4: Instantaneous Price Response to the First Arrival of Good News

1.3.3 Efficiency

This section discusses the efficiency property of the symmetric Markov perfect equilibrium

for an arbitrary number of buyers. We first investigate the extreme case of the perfect payoff

correlation (ρ = 1) and then compare that result to the one in the partial payoff correlation

case.

Perfect Payoff Correlation Under this special case, buyers are ex post homogeneous. In

other words, immediately after one buyer receives a lump-sum payoff, it becomes common

knowledge that all buyers are able to receive lump-sum payoffs, and the monopolist should

immediately raise the price to g − s to extract all of the surplus.

In the social learning phase, similarly the monopolist should set a price such that i) each

experimenting buyer has an incentive to participate (i.e., each buyer’s value is larger than

the outside option); ii) it is not optimal for each experimenting buyer to have “one-shot”
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deviations. The common value assumption simplifies the analysis of the “one-shot deviation”

problem since the deviator always has the same posterior belief as the buyers who have not

deviated. It turns out that under the common value case, restrictions i) and ii) coincide and

the strategic equilibrium is always efficient.

Proposition 1.5. When the buyers’ payoffs are perfectly correlated (ρ = 1), the unknown

buyers will always receive value s in equilibrium and the symmetric Markov perfect equilib-

rium is efficient.

Proof. In the appendix.

The intuitive explanation for the above efficiency result is that the ex post homogeneity

means the monopolist does not need to face the tradeoff between exploitation and explo-

ration. This enables the monopolis to completely internalize the social surplus and overcome

the free riding problem by subsidizing experimentation.

Partial Payoff Correlation Since ex post heterogeneity exists in the partial payoff correlation

case, it is natural to conjecture that the inefficiency result in proposition 1.4 can be extended

to a general n case. The induction argument is used to avoid solving for every value function

explicitly.

Theorem 1.1. Consider a market with any n ≥ 2 buyers. The symmetric Markov perfect

equilibrium is inefficient in both the social learning and individual learning phases if ρ0 < 1

and q0 < 1. Moreover, the equilibrium experimentation is always terminated too early.

Proof. In the appendix.

We are in a position to summarize the roles played by ex post heterogeneity. First, in the

social learning phase, ex post heterogeneity means there is a future benefit for the deviator

by becoming more optimistic than the non-deviators. The monopolist has to provide extra

subsidy to deter deviations. In the common value case, such a future benefit does not exist

34



and there is no need to provide extra subsidy. Second, in the individual learning phase,

ex post heterogeneity implies that the receivers of lump-sum payoffs are more optimistic

than the unknown buyers. If the monopolist wishes to serve all buyers, the known buyers

extract rents. This generates a loss of rents for the buyers who stay unsure upon the arrival

of the first lump-sum payoff. The reduction in continuation values leads to an ambiguous

instantaneous price reaction to the arrival of the first lump-sum payoff. On the contrary,

in the common value case, the equilibrium value for the buyers is always the same as the

outside option and there is no continuation value effect. Hence, upon the arrival of the first

lump-sum payoff, the instantaneous reaction of the equilibrium price is always to go up.

Finally, ex post heterogeneity generates a tradeoff between exploitation and exploration for

the monopolist. The equilibrium experimentation level is lower than the socially efficient

level as we have seen in the two-buyer case. On the other hand, in the common value case,

there is no ex post heterogeneity and the monopolist is able to fully internalize the social

surplus.

1.4 Equilibrium in the Bad News Case

In the bad news case, the arrival of lump-sum payoffs (we call them lump-sum damages

hereafter) would immediately reveal that the risky product is unsuitable for the buyer.

Denote ξf = A and λHξl = −B < 0. Condition A − B < s < A is imposed such that

the risky product is superior to the safe one only when the buyers cannot receive lump-sum

damages.

1.4.1 Socially Efficient Allocation

Different from the good news case, large priors (ρ0, q0) mean that the probability of receiv-

ing lump-sum damages is high and this discourages the social planner from taking the risky

product. Therefore, instead of solving an optimal stopping problem (i.e., terminating exper-

imentation when belief reaches a certain cutoff), in the bad news case, we solve an optimal
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starting problem, i.e., beginning experimentation when belief is lower than a certain cutoff.

As in the good news case, we discuss socially efficient allocation separately in the indi-

vidual learning and social learning phases.

Socially Efficient Allocation in the Individual Learning Phase In the individual learning

phase, suppose k buyers have received lump-sum damages. The social surplus function

could be written as (the known buyers will take the safe product and receive s for sure)

Ωk(ρ) = ks+ (n− k)W (ρ)

where

W (ρ) = sup
α∈{0,1}

E
∫ ∞
t=0

re−rt[α(A− ρtB) + (1− α)s]dt

defines the optimal control problem for the unknown buyer. The corresponding HJB equation

is

W (ρ) = max

{
s, A− ρB +

1

r
[λHρ(s−W (ρ))− λHρ(1− ρ)W ′(ρ)]

}
. (1.30)

Solve the optimal starting problem defined by equation (1.30) and we get the following

result:

Proposition 1.6. In the individual learning phase, if k ≥ 1 buyers are known to receive

lump-sum damages, it is socially efficient for those k buyers to always purchase the safe

product. For the remaining n− k unknown buyers, it is socially efficient to start experimen-

tation if and only if

ρ ≤ ρeI =
(r + λH)(A− s)
λHA+ rB − λHs

.

The value functions for a typical buyer with posterior belief ρ is given by:

W (ρ) = max

{
s, A− λHA+ rB − λHs

r + λH
ρ

}
.
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Socially Efficient Allocation in the Social Learning Phase In the social learning phase, we

similarly write down the HJB equation as:

ΩS(ρ) = max

{
ns, n(A− ρq(ρ)B) +

1

r
[λHnρq(ρ)(Ω1(ρ)− ΩS(ρ))− λHρ(1− ρ)Ω′S(ρ)]

}
.

(1.31)

The optimal starting problem (1.31) is solved by solving differential equation

(r + λHnρq)ΩS(ρ) = rn(A− ρqB) + λHnρq[(n− 1)W (ρ) + s]− λHρ(1− ρ)Ω′S(ρ), (1.32)

with boundary condition ΩS(ρeS) = ns.10

The socially efficient allocation in the social learning phase is characterized by the fol-

lowing proposition:

Proposition 1.7. Given any q0 < 1, there exists a unique ρeS(q0) > ρeI (ρeS(q0) could be one)

such that it is socially efficient to start experimentation in the social learning phase if and

only if ρ ≤ ρeS(q0).

Proof. In the appendix.

1.4.2 Equilibrium

In any symmetric equilibrium, buyers can be divided into two groups: known buyers and

unknown buyers. Let α0
k (α1

k) be the strategy for the known (unknown) buyers where sub-

script k indicates the number of buyers who have received lump-sum damages. Let Vk, Uk

and Jk be value functions for the known buyers, the unknown buyers and the monopolist,

respectively, when k buyers have received lump-sum damages. Finally, let Pk denote the

price charged by the monopolist. Definition 1.1 implies that the triple of (Pk, α
0
k, α

1
k) is a

symmetric Markov perfect equilibrium if:

10Notice that W (ρ) is not continuously differentiable at ρeI (smoothing pasting condition is no longer
satisfied). But it is Lipschitz continuous and hence the solution to the above boundary value problem is still
unique.
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• α0
k = 1 if P ≤ A−B − s and = 0 otherwise;

• for any k < n, given Pk, the unknown buyers choose acceptance policy α1
k to maximize:

Uk(ρ) = sup
α1
k

E
∫ τ

t=0

re−rt[α1
k(A− ρtqk(ρt)B − Pk(ρt)) + (1− α1

k)s]dt

+ e−rτ
(

1

n− k
Vk+1(ρτ ) +

n− k − 1

n− k
Uk+1(ρτ )

)
where τ is the first (possibly infinite) time at which a new unknown buyer receives

good news;

• given (α0
k, α

1
k), the monopolist chooses price Pk(ρt) to maximize

Jk(ρ) = sup
Pk

E
{∫ τ

t=0

re−rt
[
kα0

k(Pk(ρt)) + (n− k)α1
k(ρt, Pk(ρt))

]
dt+ e−rτJk+1(ρτ )

}
• beliefs update according to Bayes’ rule: ρt satisfies the law of motion, i.e., equation

(1.1); qk(ρt) = 1 for k ≥ 1 and qk(ρt) is given by equation (1.6) for k = 0;

• for k = n, the monopolist will not serve any buyer such that Jn = 0 and Vn = s.

First, it is straightforward to see that the known buyers will buy the risky product if the

price is lower than A−B− s and not buy otherwise. Second, the assumption A−B− s < 0

implies that selling to the known buyers is purely losing money. Hence, a profit-maximizing

monopolist should never set the price lower than A − B − s in order to sell to the known

buyers. This also implies that Vk is always s. Third, when n− k unknown buyers purchase

the risky product, the conditional probability that any given unknown buyer receives lump-

sum damages is simply 1/(n− k), since the n− k unknown buyers’ payoff distributions are

identical. Finally, the cutoff strategy for the monopolist means that she will start selling to

the unknown buyers if the belief ρ is lower than a certain cutoff. Once the monopolist starts

to sell to the unknown buyers, she will continue to sell as long as no lump-sum damage is

received.
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In a symmetric Markov perfect equilibrium, when experimentation takes place on the

equilibrium path, the monopolist also has to charge a price such that both the participation

constraint and the no profitable one-shot deviation constraint are satisfied. In the bad news

case, it turns out that the “one-shot” deviations don’t impose more restrictions than the

participation constraint.

Claim 1.1. In equilibrium, the most pessimistic unknown buyer’s value is always s.

Claim 1.1 implies that the on-equilibrium-path value for each unknown buyer is always

s since they are equally pessimistic. This is different from proposition 1.3 in the good news

case. In the good news case, a one-shot deviation makes the non-deviators more pessimistic

if they haven’t received any lump-sum payoffs during the deviation period. In that situation,

the price charged by the monopolist is lower than what the deviator is willing to pay. The

deviator can benefit from a deviation and thus the equilibrium value for the experimenting

buyers has to be larger than s to deter deviations. However, in the bad news case, a one-shot

deviation makes the deviator more pessimistic. After the deviation, if the monopolist wishes

to serve all unknown buyers, the optimal price is determined by what the deviator is willing

to pay; if the monopolist does not wish to serve all unknown buyers, the deviator is the first

buyer to be excluded. In both cases, the deviator cannot gain more than the outside option

after a deviation. Therefore, setting the on-equilibrium-path value to be s is enough to deter

deviations.

The equilibrium price path could be derived from claim 1.1: in the individual learning

phase, the monopolist would charge PI(ρ) = A − ρB − s and in the social learning phase,

the monopolist would charge PS(ρ) = A − ρq(ρ)B − s. The arrival of the first lump-sum

damage will unanimously lead to a drop in price if q0 < 1 but the subsequent arrival of

lump-sum damages will not have any impact on price. The negative response in price to

the arrival of the first lump-sum damage reflects the fact that there is no continuation value

effect from claim 1.1. The informational effect always discourages the unknown buyers from
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experimenting and reduces the price. But the subsequent arrival of bad news reveals no

more information to the remaining unknown buyers and hence has no effect on the price at

all. Solve the monopolist’s optimal starting problem and we get the following theorem:

Theorem 1.2. Consider a market with n ≥ 2 buyers. The symmetric Markov perfect

equilibrium is efficient in both the social learning and the individual learning phases.

Proof. In the appendix.

The above theorem is very intuitive: different from the good news model, there is no

tradeoff between exploitation and exploration in the individual learning phase because the

buyers who have received lump-sum damages will never purchase the risky product. As

a result, although buyers become ex post heterogeneous, the potential buyers of the risky

product are always the unknown ones, who are ex post homogeneous in a symmetric equi-

librium. Hence, the equilibrium is always efficient in the individual learning phase. The

efficiency in the social learning phase is a little surprising. It seems that the monopolist can-

not fully internalize social surplus since the unknown buyers can benefit from social learning

by switching to the safe product. The intuition turns out to be incorrect. In the good news

case, society benefits from the arrival of good news but the receivers of the lump-sum payoffs

pay less than what they are willing to pay. In other words, the known buyers “steal” some

of the social surplus from the monopolist and this causes inefficiency. On the contrary, in

the bad news case, society benefits from the non-arrival of the bad news. The unknown

buyers cannot “steal” social surplus from the monopolist when no lump-sum damages have

been received.

1.5 Conclusion

By combining common and idiosyncratic uncertainty, this paper relaxes the usual common

value assumption made in the social learning literature (see, e.g., Banerjee (1992), Bikhchan-
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dani, Hirshleifer, and Welch (1992) and Rosenberg, Solan, and Vieille (2007)).11 We consider

a dynamic monopoly pricing environment where the monopolist cannot price-discriminate

among the buyers. The partial payoff correlation among the buyers generates ex post het-

erogeneity. If the monopolist wishes to make a sale to several buyers, the optimal price is set

to make the most pessimistic buyer indifferent between the alternatives. In the good news

case, this has significant implications both on the equilibrium path and off the equilibrium

path. On the equilibrium path, the receivers of lump-sum payoffs become more optimistic

than the non-receivers. This implies: i) the arrival of the first good news signal generates

a reduction in the continuation value for the buyers who stay unsure, and this effect might

lead to an instantaneous drop in price; and ii) the monopolist faces different buyers after the

arrival of lump-sum payoffs and the absence of price discrimination leads to an inefficient

level of experimentation. On the contrary, if there is a perfect payoff correlation among the

buyers, the arrival of the first good news signal always leads to a jump in price and the

equilibrium is efficient.

There is another subtle off-equilibrium-path implication. By taking the outside option,

each buyer can extract rents if she becomes more optimistic than other buyers after the

deviation. This generates a future benefit from deviation. If the monopolist wishes to make

a sale to several unknown buyers, each unknown buyer receives a value higher than the

outside option to deter deviations. Such a deterrence effect leads to a significant reduction

in the equilibrium price. If there is perfect payoff correlation among the buyers, there is no

need to provide such an extra subsidy.

However, in the bad news case, the above implications do not exist for two reasons. On

the equilibrium path, the receivers of lump-sum damages immediately take the outside option

and the buyers who stay in the experience good market are still ex post homogeneous. Off

the equilibrium path, a buyer cannot benefit from deviations because the deviator becomes

11An exception is Murto and Välimäki (2009), who consider partial payoff correlation in an observational
learning setting.
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more pessimistic after a deviation.

There are several extensions to consider in the future. For tractability, we have assumed

that the arrival of lump-sum payoffs immediately resolves the common uncertainty and the

idiosyncratic uncertainty of the receiver. It is possible to consider a model where the arrival

of lump-sum payoffs cannot immediately resolve the common uncertainty or the idiosyncratic

uncertainty of the receiver. For example, we may assume lump-sum payoffs arrive at another

Poisson rate when the product characteristic is low. As long as ex post heterogeneity exists,

the resulting equilibrium would be inefficient as well.

Another natural extension of the current model is to consider a dynamic duopoly pricing

environment. This issue is partially investigated by Bergemann and Välimäki (2002), who

consider a model with a continuum of buyers such that buyers are choosing according to their

myopic preferences at each instant in time. It would be interesting to consider a model with

a finite number of buyers such that each buyer’s choice has non-trivial effects on learning

and future prices.
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Chapter 2

Assortative Learning (Joint with Jan
Eeckhout)

2.1 Introduction

High ability workers sort into more productive jobs. Due to complementarities in production,

their higher marginal product allows them to command higher wages. The Beckerian model

of assortative matching is very well suited to explain those patterns of sorting. Unfortunately,

it is mute on the issue of turnover of workers between different jobs. Instead, the Jovanovic

(1979) learning model has long been the canonical framework for analyzing turnover in the

labor market1 over the life cycle. Workers and firms learn about match-specific human capital

and will tend to stay in a match if learning reveals the match is good. Experimentation occurs

early on which leads to decreasing turnover over the life cycle. Because in Jovanovic (1979)

learning is about the match and not about the worker, there is neither worker heterogeneity

nor sorting. In this paper, we offer a unified approach of learning and sorting. We establish

a solution method for a market equilibrium in a continuous time economy with multiple

learning opportunities (multi-armed bandit) and derive a no-deviation condition, a condition

hitherto unknown. We show that under supermodularity, positive assortative matching

obtains in equilibrium, even if learning rates differ across firms.

1Of course, also the search model inherently exhibits turnover, but with observable types turnover is
constant over the life cycle. Moscarini (2005) brings together search and learning in the Jovanovic framework.
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In the labor market, the learning experiences of workers are most likely to differ across

different firms. Starting in a top law firm or a multinational will induce different paths of

information revelation than working in a local family business. The worker now faces a trade-

off between different experimentation experiences: take a lower wage at a high productivity

firm where information may be revealed at a different rate or accept higher wage and learn

more slowly. It is intuitive that sorting and learning are intimately connected.

Modelling the labor market as a multi-armed bandit problem and solving it is challenging.

Most existing learning models and continuous time games are tractable because they are

essentially one-armed bandit problems with a fixed outside option that acts as an absorbing

state. One-armed bandit problems typically have attractive properties, including reservation

strategies. Instead, multi-armed bandits in general do not have reservation strategies when

arms are correlated, even if the learning rate is the same across firms. But our labor market

is not exactly identical to the canonical bandit problem. First, there are a continuum of

experimenters. Second, because of competitive wage determination à la Jovanovic (1979),

the payoffs are endogenous. Finally, because workers learn about general human capital

instead of match-specific human capital, the arms are positively correlated.

We find that it is the combination of competitive wage determination (endogenous pay-

offs)and the incentives needed to avoid a deviation that give rise to a new condition which we

call the no-deviation condition. This condition must be satisfied in addition to the common

equilibrium conditions of value-matching and smooth-pasting. The no-deviation condition

can be interpreted as the continuous time version of the one-shot deviation principle.2 We

prove that the no-deviation condition implies that the second derivative of worker’s value

function at the cut-off belief is the same in the high type as well as in the low type firms.

2The idea of sequential rationality is of course not new and has also been employed in continuous time
games by Sannikov (2007) who uses the concept of self generation. And Cohen and Solan (2009) use
dependence of strategies on a small interval dt to restrict the set of Markovian strategies, in the spirit of our
dt-shot deviation. It is precisely the one-shot deviation in conjunction with endogenous payoffs that leads
to the equalization of the second derivative of the value functions.
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Recall that value matching requires that at the cut-off the worker’s value functions take the

same value in both firms, the smooth-pasting condition requires that the first derivative is

the same, and now the no-deviation requires equal second derivatives as well.

We show that supermodularity of the production technology is a necessary and sufficient

condition for positive assortative matching, and that the equilibrium allocation is unique.

Those workers with the highest beliefs about their ability will in equilibrium sort into those

firms that are most productive. Moreover, we can analytically solve for the equilibrium allo-

cation in terms of the cut-off belief, and we derive in closed form the stationary distribution

of beliefs.

While in most of the analysis we consider common variance across firms, it turns out

that the sorting result holds for different learning rates (noise) across firms, even if the rate

of learning is slower in the high type firm. It is conceivable that with supermodularity and

a learning rate no smaller in high types firms there will be positive sorting. The high type

firm is both superior in the learning rate and in productive efficiency. But if high type firms

learn at a sufficiently slower rate (the noise is sufficiently high), then the signal-to-noise

ratio in the high type firm may well be lower. The reason why this nonetheless does not

affect the learning is that the value of learning also depends on the degree of convexity of

the value function (from Ito’s Lemma), in addition to the signal-to-noise ratio. But by the

no-deviation condition, at the cut-off belief, the degree of convexity is the same in both

firms and therefore the equilibrium value of learning is the same, no matter the difference in

signal-to-noise ratios. Key here is that wages are endogenous and determined competitively.

That is why this property does not necessarily hold in the canonical multi-armed bandit

problem.

We analyze the planner’s problem and show that a planner’s stationary allocation coin-

cides with the decentralized equilibrium allocation, even if learning rates differ across different

firms. This is surprising since there is a market incompleteness: wages are spot market prices
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only and cannot be made contingent on future realizations. It turns out that the efficiency

result and proof crucially hinges on the martingale property inherent in Bayesian learning.

The martingale property implies that no matter how fast workers learn, the expected beliefs

about their ability will stay the same. Since under strict supermodularity, the differential

in expected output between working in high and low productivity firms is monotonically in-

creasing in the likelihood that the worker has high ability, reallocating a group of low belief

workers to a better match will decrease expected outputs no matter how fast they learn.

We extend our analysis of Bayesian learning to allow for observable human capital accu-

mulation. This adds realism in the sense that workers learn on the job and increase their

productivity with tenure, yet we do not resort to non-Bayesian updating. Now cut-off types

that characterize the equilibrium allocation depend on the degree of observable experience,

and beliefs continue to follow a martingale process. The properties of our equilibrium extend

to this more general human capital accumulation case.

The motivation of our analysis and the results are obviously closest related to the labor

market learning literature (Jovanovic (1979), Harris and Holmström (1982), Moscarini (2005)

and Papageorgiou (2009)).3 Yet, there is a close relation to both the experimentation litera-

ture (Bolton and Harris (1999), Keller, Rady, and Cripps (2005), Strulovici (2010)) and the

literature on continuous time games (Sannikov (2007), Faingold and Sannikov (2007)). Most

models of learning have a finite set of players and have an absorbing state. Ours has a con-

tinuum of agents and there is learning in all states. Moreover, it is essentially a competitive

model with equilibrium prices and therefore payoffs from learning are endogenous.

The idea of analyzing a matching model where the current allocation determines the

future type is first explored in Anderson and Smith (2000). They find the opposite result of

3Papageorgiou (2009) analyzes a learning model with heterogeneity. He estimates the version of
Moscarini’s search model with two-sided heterogeneity. With search frictions, wage setting is non-competitive
and as a result, the no-deviation condition is not imposed in addition to value matching and smooth pasting.
Nonetheless, his findings provide us with realistic estimates of the labor market characteristics of our model.
See also Groes, Kircher, and Manovskii (2009) for estimates of a different learning model.
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ours: positive assortative matching fails even under supermodularity. They analyze a two-

sided matching model of reputations with imperfect information about both matched types.4

Our setup differs substantially, but the main difference is in the information extraction. Their

agents infer the type of each of the matched partners from the realization of a joint signal.5

Another key characteristic of our model is that it is a pure Bayesian learning model

where beliefs follow a martingale. In Section 2.8 we show that our result holds for Bayesian

updating processes other than the Brownian motion (we extend our result to a generalized

Lévy process), and we also establish that positive assortative matching can fail if the updating

process is not Bayesian (this can be interpreted for example as a technology of unobserved

human capital accumulation in addition to the information extraction).

2.2 The Model Economy

Population of Firms and Workers. The economy is populated by a unit measure of workers

and a unit measure of firms. Both firms and workers are ex ante heterogeneous. The

firm’s type y ∈ {H,L} represents its productivity. The type y is observable to all agents

in the economy. The fraction of H type firms is π and all firms are infinitely lived. The

worker ability x ∈ {H,L} is not observable, both to firms and workers, i.e., information is

symmetric.6 Nonetheless, both hold a common belief about the worker type, denoted by

p ∈ [0, 1]. Upon entry, a newly born worker is of type H with probability p0 and of type L

with probability 1− p0. Workers die with exogenous probability δ. New workers are born at

4Our model is more closely related to the standard firm-worker model to which they compare their two-
sided model in the discussion. There is only a one-sided inference problem in that model and they find that
positive assortative matching arises for extreme beliefs p = 0 and 1, but conjecture it does not in the interior.

5The difficulty is to account for agents switching partners. Anderson and Smith (2000) resolve this by
assuming symmetric learning in discrete time. Both sides of the market update in an identical fashion and
under PAM their new matched partner coincides exactly with the updated type of their old partner. As a
result, in a candidate PAM equilibrium there is never any switching.

6This substantially simplifies the problem at hand. With private signals Cripps, Ely, Mailath, and
Samuelson (2008) show that with a finite signal space there will be common learning, but not necessarily
with an infinite signal space as is the case in our model here.
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the same rate.7

Preferences and Production. Workers and firms are risk-neutral and discount future payoffs

at rate r > 0. Utility is perfectly transferable. Output is produced in pairs of one worker

and one firm (x, y). Time is continuous. Positive output produced consists of a divisible

consumption good and is denoted by µxy. We assume that more able workers are more

productive in any firm, µHy ≥ µLy,∀y and refer to it as worker monotonicity. While it is

often useful, we do not in general assume firm monotonicity, which would be µxH ≥ µxL, ∀x.

Strict supermodularity is defined in the usual way:

µHH − µLH > µHL − µLL, (2.1)

and with the opposite sign for strict submodularity. In the entire paper, we will refer to

strict supermodularity when we just mention supermodularity, likewise for submodularity.

Information. Because worker ability is not observable to both the worker and the firm, parties

face an information extraction problem. They observe a noisy measure of productivity,

denoted by Xt. Cumulative output is assumed to be a Brownian motion with drift µxy and

common variance σ2

Xt = µxyt+ σZt (2.2)

where Zt is a standard Wiener process and as a result, Xt is normally distributed with mean

µxyt and variance σ2t. By Girsanov’s Theorem the probability measures over the paths of

two diffusion processes with the same volatility but different bounded drifts are equivalent,

that is, they have the same zero-probability events. Since the volatility of a continuous-time

diffusion process is effectively observable, the worker’s type could be learned directly from

the observed volatility if σ depends on workers’ types.8

7Without death, we know the posterior belief will converge with probability one to p = 1 or p = 0. Death
here actually acts as a shuffling device to guarantee a non-trivial stationary distribution of posterior beliefs.

8However, we can allow σ to be firm-specific. In section 2.8 we analyze the general case of firm-dependent
σy.

48



Equilibrium. We consider a stationary competitive equilibrium in this economy. With two

types of firms and a continuum of p’s in this market, take a competitive wage schedule wy(p)

as given which specifies wage for every possible type p worker working in firm y.9 Denote

by Vy the stationary discounted present value of the competitive profits for firm y. The

flow profit can be written as rVy.
10 Now we are ready to define the notion of competitive

equilibrium:

Definition 2.1. A stationary competitive equilibrium consists of a competitive wage schedule

wy(p) = µy(p)−rVy, where µy(p) = pµHy+(1−p)µLy denotes worker p’s expected productivity

in firm y = H,L and worker p chooses the firm y with the highest discounted present value.

The market clears such that the measure of workers in L firms is 1− π and the measure of

workers in H firms is π.

2.3 Preliminaries

2.3.1 Benchmark: No Learning

Workers differ in the common beliefs p of being a high type. We shut down learning so that

beliefs are invariant. This can be viewed as a special case of the learning model with the

variance σ2 going to infinity. We assume that there is no birth or death so we essentially

have a static problem. Suppose without loss of generality that p is uniformly distributed

on [0, 1]. We continue to maintain the assumption that the worker does not know her true

type or that she has no private information about it. Denote µy(p) = pµHy + (1− p)µLy for

y = H,L and r as the discount rate.

9Bergemann and Välimäki (1996) and Felli and Harris (1996) consider a two-firm, one-worker/buyer
model with strategic price setting in a world with independent arms. With ex ante heterogeneous firms and
workers and correlated arms, we instead focus on competitive price setting which is closest in spirit to the
Beckerian benchmark.

10Notice since there is no free entry, Vy need not to be zero. We could model free entry as long as in
equilibrium there is a non-degenerate distribution of firm types in the economy. We consider this does not
add to the insights of our model.
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Under the above notion of competitive equilibrium, it is easy to verify the following claim

(All of the results in this paper are in the sense of “almost surely” because we allow a zero

measure of agents to behave differently):

Claim 2.1. Under strict supermodularity, PAM is the unique (stationary) competitive equi-

librium allocation: H firms match with workers p ∈ [1 − π, 1], L firms match with workers

p ∈ [0, 1 − π). The opposite (NAM) holds under strict submodularity: H firms match with

workers in [0, π).

Since there is no learning, essentially this result is identical to Becker’s (1973) result,

but with uncertainty. Noteworthy about this version of Becker is that even though for

PAM there is supermodularity of the ex-post payoffs (µHH + µLL > µHL + µLH), there need

not be monotonicity in expected payoffs, i.e., µH(1 − π) may be smaller than µL(1 − π).

In fact, that will be reflected in the firm’s equilibrium payoffs: VH ≥ VL if and only if

µH(1− π) ≥ µL(1− π).

As in Becker, the equilibrium allocation is unique, but there may be multiple splits

of the surplus. In the case of PAM, we only require at the cutoff type p = 1 − π that

wH(p) = wL(p). There are multiple equilibrium payoffs if the surplus of a match between L

and p = 0 is positive. Instead, if µL(0) = 0,11 there is a unique equilibrium payoff.

2.3.2 Belief Updating

In the presence of learning we can now derive the beliefs and subsequently the value functions.

The posterior belief pt that the worker has a high productivity is a sufficient statistic for

the output history. Now, we can use the following well-known result: conditional on the

output process (Xt)t≥0, (pt)t≥0 is a martingale diffusion process. Moreover, this process

can be represented as a Brownian motion. Based on the framework of our model, denote

sy = (µHy − µLy)/σ, y = H,L, Σy(p) = 1
2
p2(1− p)2s2

y and then we get:

11And there is limited liability, i.e., workers and firms cannot receive negative payoffs.
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Lemma 2.1. (Belief Consistency) Consider any worker who works for firm y between t0

and t1. Given a prior pt0 ∈ (0, 1), the posterior belief (pt)t0<t≤t1 is consistent with the output

process (Xy,t)t0<t≤t1 if and only if it satisfies

dpt = pt(1− pt)sydZ̄y,t

where

dZ̄y,t =
1

σ
[dXy,t − (ptµHy + (1− pt)µLy)dt].

The proof of this Lemma is in Faingold and Sannikov (2007) or Daley and Green (2008).

The basic idea behind the proof is a combination of Bayes’ rule and Ito’s lemma. Given the

period t posterior belief pt and dXt, we know the posterior belief at period t+ dt is:

pt+dt =
pt exp{− [dXt−µHydt]2

2σ2dt
}

pt exp{− [dXt−µHydt]2
2σ2dt

}+ (1− pt) exp{− [dXt−µLydt]2
2σ2dt

}
.

Hence,

dpt = pt+dt − pt = pt(1− pt)
exp{− [dXt−µHydt]2

2σ2dt
} − exp{− [dXt−µLydt]2

2σ2dt
}

pt exp{− [dXt−µHydt]2
2σ2dt

}+ (1− pt) exp{− [dXt−µLydt]2
2σ2dt

}
.

Apply Ito’s Lemma and we obtain the above result.

Lemma 2.1 establishes that dp depends on three elements: p(1− p), which peaks at 1/2;

the signal-to-noise ratio of output, sy = (µHy − µLy)/σ and dZ̄y, the normalized difference

between realized and unconditionally expected flow output, which is a standard Wiener pro-

cess with respect to the filtration {Xy,t}. Obviously, beliefs move faster the more uncertainty

about worker’s quality (p close to 1/2); the less variation in the output process (smaller σ)

and the larger the productivity difference (higher µHy − µLy).

Learning considerations will change the benchmark results. Moreover, supermodularity

not only affects the value of the static output created as in the standard Beckerian model,

but it also has dynamic effect by changing the speed of learning. For example, under super-

modularity (µHH − µHL > µLH − µLL), the learning speed is faster in the high type firm,
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which is especially significant for p close to 1/2. Intuitively speaking, learning makes it more

attractive to match with a high type firm even though statically it is better for her to match

with a low type firm without learning.

2.3.3 Value Functions

Given the wage schedule, each worker is facing a two-armed bandit problem. We restrict the

workers’ strategies to be Markovian:

a : [0, 1]→ {H,L}.

The value function of a type p worker can be written as:

W (p) = sup
a:[0,1]→{H,L}

{
E
∫ ∞
t=0

e−(r+δ)twat(pt)dt

}
s.t.dpt = pt(1− pt)satdZ̄at,t and at , a(pt).

Denote Wy(p) to be the value function of a worker with posterior in a neighborhood of p

optimally choosing firm y.

The value function Wy(p) is given by12:

rWy(p) = µy(p)− Vy + Σy(p)W
′′

y (p)− δWy(p), (2.3)

from Ito’s Lemma. The term µy(p)− Vy is equal to the flow wage payoff and corresponds to

the deterministic component of the diffusion Xy,t, and the term Σy(p)W
′′
y (p) is the second-

order term from the transformation W of the diffusion process Xy,t. First-order and all

higher-order terms vanish as the time interval shrinks to zero. The general solution to this

differential equation is:

Wy(p) =
µy(p)− Vy
r + δ

+ ky1p
1−αy(1− p)αy + ky2p

αy(1− p)1−αy , (2.4)

12Note that we critically need the assumption that the worker does not have any private information about
his type. If this assumption is violated, the worker’s value functions could not be written like this.
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where

αy =
1

2
+

√
1

4
+

2(r + δ)

s2
y

≥ 1.

First notice that the boundedness of the value function implies that if 0 is included in the

domain, then ky1 = 0 and if 1 is included in the domain, then ky2 = 0. If not, with αy > 1

the value of W shoots off to infinity. Second, Σy(p)Wy
′′(p) is the value of learning and this is

an option value in the sense that the worker has the choice to change his job as he learns his

type p. It is easy to verify that this value is zero if the worker never changes his job.13 From

the Martingale property of the Brownian motion, at any p the expected value of p in the next

time interval is equal to p. There is as much good news as bad news to be expected in the

next period. It is the option value of switching to a more suitable match that generates the

value of learning. Equation (2.4) implies that this option value can be decomposed into two

parts: ky1p
1−αy(1− p)αy (ky2p

αy(1− p)1−αy) denotes the option value of switching to a more

suitable match when p goes down (up). The option value ky1p
1−αy(1−p)αy (ky2p

αy(1−p)1−αy)

must be zero if 0 (1) is included since no switch happens as p goes down (up).

2.4 Analysis and Results

2.4.1 Characterization of the Equilibrium Allocation

Now consider any candidate stationary equilibrium where a type p worker switches from firm

y to y′. Since the worker is essentially facing a two-armed bandit problem given the wage

schedule, optimality in stopping time requires the value-matching condition (the worker gets

the same value at the cutoff) and the smooth-pasting condition (the marginal of both value

functions is identical) (see Dixit (1993)). For example, if for p ∈ [p1, p2), the worker works

in the low type firm and for p ∈ [p2, p3), the worker works in the high type firm, then we

13In that case, p can take both the values 0 and 1. So the boundedness of the value function requires that
both ky1 and ky2 are zero and hence Wy

′′(p) = 0 for every p.
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must have:14

WL(p2) = WH(p2) and WL
′(p2) = WH

′(p2). (2.5)

Notice that workers are price takers. As a result, there is no strategic interaction between

players where equilibrium solves for the fixed point of individual strategies. It is also impor-

tant to point out that both the value-matching condition and the smooth-pasting condition

are on-equilibrium path conditions. They have nothing to do with the off-equilibrium path

(i.e., instead of accepting offers from low type firms, workers with p ∈ [p1, p2) are tempted

to accept offers from high type firms). In the following lemmas we characterize the value

functions establishing convexity and monotonicty:

Lemma 2.2. The equilibrium value functions Wy are strictly convex for p ∈ (0, 1).

Proof. In Appendix.

The intuition for this Lemma is the following. Preferences and output are linear in p,

and the option value of learning is strictly positive, hence the value function with the option

of learning is convex. To see this, observe that since the measure of both types of firms

are strictly positive, market clearing requires that workers with some p’s will be employed

by high type firms while workers with other p’s will be employed by low type firms. This

implies that some worker has to change jobs at some point and the option value of learning

Σy(p)Wy
′′(p) is strictly positive. Hence we have W ′′

y (p) > 0, for all p ∈ (0, 1) since Σy(p) > 0.

On the other hand, when p = 0 or 1, the posterior belief will always stay at 0 or 1 by Bayes’

rule such that learning never happens. It is easy to verify that W ′′
y (p) = 0 for p = 0 or 1.

Given the strict convexity of equilibrium value functions and the smooth pasting condi-

tion, we can immediately derive the following Lemma:

14We slightly abuse notation hers since WL is not defined on p2. A more precise way of writing the
equations is WL(p2+) = WH(p2) and WL

′(p2+) = WH
′(p2). In what follows, we will continue to use the

expression in the text in order to economize on notation.

54



Lemma 2.3. The equilibrium value functions Wy are strictly increasing.

Proof. In Appendix.

One important implication is that if we define W(p) as the envelope of all equilibrium

value functions Wy(p), then this envelope function W(p) is continuous, strictly increasing

and strictly convex for p ∈ (0, 1). Suppose workers with p ∈ [0, p) are employed by type

y firm and workers with p ∈ (p̄, 1] are employed by type −y firm. Then we should have:

W ′
y(0) =

µHy−µLy
r+δ

< W ′
−y(1) = µH,−y−µL,−y

r+δ
. This gives us another result:

Lemma 2.4. Under supermodularity, in any equilibrium p = 0 workers match with L firms;

p = 1 workers match with H firms. The opposite under strict submodularity. Moreover,

min(∆H ,∆L)

r + δ
< W ′(p) <

max(∆H ,∆L)

r + δ
,

where ∆H = µHH − µLH and ∆L = µHL − µLL.

Intuitively this result is best understood by using the standard sorting argument from

Becker (1973). At p = 0 and p = 1 there is no value of learning. As a result, there the value

function can be interpreted as being determined by the no-learning allocation.

The properties derived above are mainly concerned with on-equilibrium path behavior.

We also need to specify what happens in the event of deviations and consider behavior off-

equilibrium path. We contemplate the equivalence of a one-shot deviation in continuous

time because we think of the continuum as an idealization of discrete time. This amounts

to a worker playing the deviant action over an interval [t, t+ dt) according to the belief p at

time t, and considering the limit as dt → 0.15 This is very important because it allows us

to derive the value function for deviation. On the contrary, if the deviation only takes place

at a single point in time t, then the value function for deviation is essentially the same as

15This notion is also implicitly used in Proposition 2 of Sannikov (2007), and also in Cohen and Solan
(2009) who consider deviations from Markovian strategies in bandit problems.
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the one without deviation because no information will be extracted from just a single time

point.

The next Lemma establishes that if we consider off-the-equilibrium path deviations, we

actually derive one additional condition, which we call the no-deviation condition.

Lemma 2.5. To deter possible deviations, a necessary condition is:

W ′′
H(p) = W ′′

L(p) (No-deviation condition) (2.6)

for any possible cutoff p.

Proof. Without loss of generality, we assume that on the equilibrium path, a worker in a

neighborhood right of p accepts offers from H firms (say, p ∈ (p, p̄)) and a worker in a

neighborhood left of p accepts offers from L firms. Consider one possible one-shot deviation:

at time t, a p > p worker chooses a low type firm for dt length of time and then switches

back. On the equilibrium path, the value function is defined as before (from Hamilton-

Jacobi-Bellman equation):

(r + δ)W (p) = (r + δ)WH(p) = wH(p) + ΣH(p)W ′′
H(p).

The deviator’s new value could be written as:

W̃L(p) = E
{∫ t+dt

t

e−(r+δ)(s−t)wL(ps)ds+ e−(r+δ)dtW (pt+dt)

}
. (2.7)

Potentially, pt+dt can take any value between 0 and 1. We have to show that as dt

becomes very small, almost surely, pt+dt will be close to p such that it is in the region where

the worker will still accept offers from high type firms: Pr(pt+dt /∈ (p, p̄)) = o(dt).16

16Since the deviator’s belief updating follows a Brownian motion: dpt = sLp(1− p)dZ̄L,t, the probability

that a worker p > p will have belief pt+dt ≤ p is given by Φ
(

p−p
sLp(1−p)

√
dt

)
, where Φ(·) is the cumulative

distribution function for a standard normal distribution. Apply L’Hopital’s rule and it is straightforward to
see that

lim
dt→0

Φ
(

p−p
sLp(1−p)

√
dt

)
dt

= 0.

Use the same logic and it is easy to see that Pr(pt+dt > p̄) = o(dt).
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Notice that for any dt > 0,

WH(p) > W̃L(p) > E
{∫ t+dt

t

e−(r+δ)(s−t)wL(ps)ds

}
+ Ee−(r+δ)dt

[
WH(pt+dt)(1− Pr(pt+dt /∈ (p, p̄))) + Pr(pt+dt /∈ (p, p̄))W (0)

]
.(2.8)

The first inequality comes from the fact that there should be no profitable deviation. The

second inequality is true because we replace the value for pt+dt /∈ (p, p̄) with the lowest value

W (0) (W (·) is an increasing function by Lemma 2.3). From Ito’s Lemma, we can get for the

deviator:

EWH(pt+dt) = WH(p) + ΣL(p)W ′′
H(p)dt+ o(dt).

For any dt > 0, the no deviation condition implicit in equation (2.8) implies:

E{
∫ t+dt
t

e−(r+δ)(s−t)wL(ps)ds}
dt

+
E
{
e−(r+δ)dt[WH(pt+dt)(1− Pr(pt+dt /∈ (p, p̄))) + Pr(pt+dt /∈ (p, p̄))W (0)]

}
−WH(p)

dt
< 0.

Let dt→ 0 and first, it follows immediately that:

lim
dt→0

E
{∫ t+dt

t
e−(r+δ)(s−t)wL(ps)ds

}
dt

= wL(p).

Second, as proved earlier,

lim
dt→0

Pr(pt+dt /∈ (p, p̄))

dt
= 0.

Finally,

lim
dt→0

E
{
e−(r+δ)dtWH(pt+dt)(1− Pr(pt+dt /∈ (p, p̄)))

}
−WH(p)

dt

= lim
dt→0

(e−(r+δ)dt − 1)WH(p) + ΣL(p)W ′′
H(p)dt+ o(dt)

dt
= ΣL(p)W ′′

H(p)− (r + δ)WH(p).

Therefore, the necessary condition such that a p > p worker has no incentive to deviate can

be written as:

wL(p) + ΣL(p)W ′′
H(p)− (r + δ)WH(p) = wL(p) + ΣL(p)W ′′

H(p)− wH(p)− ΣH(p)W ′′
H(p) < 0.

(2.9)
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The above inequality must hold for any p ∈ (p, p̄). Let p→ p and we have:17

wL(p)− wH(p) + [ΣL(p)− ΣH(p)]W ′′
H(p) ≤ 0

⇒ wL(p) + ΣL(p)W ′′
L(p)− (wH(p) + ΣH(p)W ′′

H(p)) + (W ′′
H(p)−W ′′

L(p))ΣL(p) ≤ 0

⇒ W ′′
H(p) ≤ W ′′

L(p). (2.10)

Similarly, we can consider another possible one-shot deviation: a p < p worker matches

with a high type firm for dt and then switches back. The same logic establishes that to deter

such deviation, it must be the case that:

wH(p)− wL(p) + [ΣH(p)− ΣL(p)]W ′′
L(p) < 0 (2.11)

for any p < p. As p goes to p, we should have:

wH(p)− wL(p) + [ΣH(p)− ΣL(p)]W ′′
L(p) ≤ 0⇒ W ′′

H(p) ≥ W ′′
L(p). (2.12)

(2.10) and (2.12) imply that W ′′
H(p) = W ′′

L(p).

This no-deviation condition is quite unique for the two-armed bandit problem. This

condition is absent in an one-armed bandit problem. Most of the models in the literature on

continuous time learning models (Jovanovic (1979) and Moscarini (2005)) and continuous

time games (see amongst others, Sannikov (2008)) are essentially investigating a one-armed

bandit problem. There, we can directly look at equilibria in cutoff strategies. In the one-

armed bandit problems, the safe arm essentially is an absorbing state so we only need

to worry about the potential deviation from the risky arm to the safe arm.18 Then the

no-deviation condition becomes W ′′
H(p) ≥ W ′′

L(p) = 0 but this is already implied by the

17As p goes to p+, notice that wL(p−) = wL(p+),ΣL(p−) = ΣL(p+). Hence, we will have: wL(p−) +
ΣL(p−)W ′′L(p−)− (wH(p+) + ΣH(p+)W ′′H(p+)) + (W ′′H(p+)−W ′′L(p−))ΣL(p−) ≤ 0.

18For example, in our model assume µHL = µLL and the return in the low type firm is deterministic.
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convexity property.19

We provide some intuition for the no-deviation condition. By assuming Sequential Ra-

tionality, i.e., the equilibrium is robust to a one-shot deviation, we basically impose that the

equilibrium wage is self-enforcing. There is no commitment to future realizations of Xt and

therefore of future beliefs p. Now we can interpret W ′′ as the marginal value of learning: W ′

is the marginal change of W with respect to the posterior p, and learning changes p and is

therefore quantified by the change in W ′ which is W ′′. The condition states that there is no

deviation if the marginal value of learning at p is the same in both firms.

Now in our two-armed bandit problem, we first need to answer the question whether

there exist non-cutoff stationary equilibria, i.e., a worker with p ∈ [p1, p2) accepts the offer

from a high type firm, with p ∈ [p2, p3) accepts the offer from a low type firm and with

p ∈ [p3, p4) accepts the offer from a high type firm again. Surprisingly, Lemmas 2.2–2.5

imply that all possible stationary competitive equilibria must be in cutoff strategies. The

next theorem therefore establishes uniqueness and sorting under supermodularity. It does

not shown existence yet, which we do in Theorem 2.3 below.

Theorem 2.1. If an equilibrium exists, PAM is the unique stationary competitive equilibrium

allocation under strict supermodularity. Likewise for NAM under strict submodularity.

To prove this theorem, we only need to prove the following Claim:

Claim 2.2. Under strict supermodularity, it is impossible to have p1 < p2 and equilibrium

value functions WH (for p ∈ [p1, p2]), WL1 (for p < p1), WL2 (for p > p2) such that:

WH(p1) = WL1(p1) and W ′′
H(p1) = W ′′

L1(p1)

WH(p2) = WL2(p2) and W ′′
H(p2) = W ′′

L2(p2)

19In a model of option pricing by Dumas (1991), there does exist a condition on the second derivative
called the “super contact” condition, which is of a very different nature. It arises as the optimal solution to
the option pricing problem with proportional cost. More discussions about this no-deviation condition can
be found in Eeckhout and Weng (2010)
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are satisfied simultaneously.

Under strict submodularity, it is impossible to have p1 < p2 and equilibrium value func-

tions WL (for p ∈ [p1, p2]), WH1 (for p < p1), WH2 (for p > p2) such that:

WL(p1) = WH1(p1) and W ′′
L(p1) = W ′′

H1(p1)

WL(p1) = WH2(p2) and W ′′
L(p2) = W ′′

H2(p2)

are satisfied simultaneously.

Proof. In Appendix.

This result states that it is not benefial for a worker of type p to learn in the high type

firm H in the middle as long as there there are still types p on both sides who work in the

low type firms. Given the above claim, it is easy to prove the theorem:

Proof. Under supermodularity, by Lemma 2.5, workers with sufficiently low p’s will accept

a low type firm’s wage offer and workers with sufficiently high p’s will accept a high type

firm’s offer. But Claim 2.2 implies it is impossible to have worker first accept low type

firm’s offer, then accept high type firm’s offer and finally accept low type firm’s offer again.

Hence, we must have some cutoff p such that p < p will accept low type firm’s offer and

p > p will accept high type firm’s offer. This is exactly a PAM allocation. Use the same

logic, NAM is the only possible stationary competitive equilibrium allocation under strict

submodularity.

Before we turn to the equilibrium distribution, we show that the no-deviation condition

in Lemma 2.5 is not just necessary but also sufficient under strict supermodularity:

Lemma 2.6. Under strict supermodularity, W ′′
H(p) = W ′′

L(p) implies that no deviation will

happen for the PAM equilibrium allocation.

Proof. In Appendix.
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2.4.2 The Equilibrium Distribution

The previous section shows that under strict supermodularity (submodularity), PAM (NAM)

is the unique candidate stationary competitive equilibrium allocation. Note that this doesn’t

necessarily mean the equilibrium exists. We still need to construct such an equilibrium. To

do that, we assume strict supermodularity and worker and firm monotonicity: (µHH > µHL

and µLH > µLL).20 Now consider a strictly positive assortative matching equilibrium such

that workers with beliefs less than p will choose L firms and workers with beliefs higher than

p will choose H firms. From equation (2.4) we hence have kL1 = 0 and kL2 > 0 for y = L

and kH2 = 0 and kH1 > 0 for y = H. Let kL = kL2, kH = kH1 and worker’s value functions

become:

WL(p) =
wL(p)

r + δ
+ kLp

αL(1− p)1−αL (2.13)

and

WH(p) =
wH(p)

r + δ
+ kHp

1−αH (1− p)αH , (2.14)

where

αy =
1

2
+

√
1

4
+

2(r + δ)

s2
y

≥ 1.

To discuss market clearing conditions, we need to consider the ergodic distribution of p’s.

From the Fokker-Planck (Kolmogorov forward) equation, the stationary and ergodic density

fy should satisfy the following differential equation:

0 =
dfy(p)

dt
=

d2

dp2
[Σy(p)fy(p)]− δfy(p). (2.15)

20Monotonicity is just to help us find one particular way to divide the surplus. The whole construction of
equilibrium also goes through if we do not make this assumption.
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The general solution to this differential equation is (see also Moscarini (2005)):21

fy(p) = [fy0p
γy1(1− p)γy2 + fy1(1− p)γy1pγy2 ] (2.16)

where

γy1 = −3

2
+

√
1

4
+

2δ

s2
y

> −1

and

γy2 = −3

2
−

√
1

4
+

2δ

s2
y

< −2.

First, the integrability of fy requires that fy1 = 0 if 0 is included in the domain and

fy0 = 0 if 1 is included in the domain. Second, the Fokker-Planck (Kolmogorov forward)

equation is only valid for p 6= p0. Since there is a flow in of new workers, for p = p0 we

should have a kink in the density function. This also raises the issue of the relative position

between p0 and p. We first consider the case where p < p0. We then derive in abbreviated

format the result when p > p0.

Given any p0 ∈ (0, 1), if p < p0, then the density functions are:

fH(p) = [fH0p
γH1(1− p)γH2 + fH1(1− p)γH1pγH2 ]I(p < p ≤ p0) + fH2(1− p)γH1pγH2I(p > p0)

(2.17)

and

fL(p) = fL0p
γL1(1− p)γL2 . (2.18)

The density functions are subject to the following boundary conditions. The derivations

of these boundary conditions are shown in the appendix. First, once the posterior belief

reaches the equilibrium separation point p, we should have the cutoff condition:

ΣH(p+)fH(p+) = ΣL(p−)fL(p−). (2.19)

21Here the assumption that there is no heterogeneity in the prior p0 substantially simplifies the solution
to this differential equation. While there is no solution for a general distribution of priors, we have been able
to solve the stationary distribution if the priors are drawn from a beta distribution. See also Papageorgiou
(2009).
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This condition guarantees that the flow speed of agents who cross p from below is equal to

the flow speed of agents who cross from above. The implication is that since the speed from

above ΣH is larger than ΣL, the densities are not continuous: fH(p+) < fL(p−). It is worth

comparing this condition to the standard condition when there is an absorbing state (Cox

and Miller (1965), Dixit (1993), and Moscarini (2005)). In the case with only one Brownian

motion and an absorbing state, what is required is Σ(p+)f(p+) = 0 because the probability

of absorption in a time interval dt must equal the flow-in speed of the Brownian motion

which is proportional to
√
dt (see Cox and Miller (1965, p.220)).

Second, total flows in and out of the high type firms must balance:

ΣH(p0)[f ′H(p0−)− f ′H(p0+)] = δπ +
d

dp
[ΣH(p)fH(p)]|p+.

The left-hand side of the above equation is the total inflow into high type firms, which are

new workers who enter into this economy. The right-hand side of the above equation is the

total outflows from the high type firms, which include workers who reach p and transfer to

low type firms and workers who are hit by the death shock. We manage to show that this

equation will further imply:

d

dp
[ΣL(p)fL(p)]|p− =

d

dp
[ΣH(p)fH(p)]|p+

Third, the density function has to be continuous at p0:

fH(p0−) = fH(p0+).

It is customary to impose this condition as it approximates entry from a non-degenerate

distribution instead of entry of identical types p0.

Finally, usual market clearing conditions apply:

∫ 1

p

fH(p)dp = π and

∫ p

0

fL(p)dp = 1− π.
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In summary, when p < p0, the equilibrium is characterized by a system of eight equations

with nine unknowns (VL, VH , kL, kH , p, fH0, fH1, fH2, fL0):22

WH(p) = WL(p) (Value-matching condition) (2.20)

W ′
H(p) = W ′

L(p) (Smooth-pasting condition) (2.21)

W
′′

H(p) = W
′′

L(p) (No-deviation condition) (2.22)

ΣH(p+)fH(p+) = ΣL(p−)fL(p−) (Boundary condition) (2.23)∫ 1

p

fH(p)dp = π (Market clearing H) (2.24)∫ p

0

fL(p)dp = 1− π (Market clearing L) (2.25)

d

dp
[ΣL(p)fL(p)]|p− =

d

dp
[ΣH(p)fH(p)]|p+ (Flow equation at p) (2.26)

fH(p0−) = fH(p0+) (Continuous density at p0) (2.27)

Fortunately, Equations (2.23)–(2.27) can be solved separately from Equations (2.20)–

(2.22). In other words, the procedure of solving this system of equation could be: first we

solve p jointly with fH0, fH1, fH2, fL0 from Equations (2.23)–(2.27) and then we plug p into

Equations (2.20)–(2.22) to pin down other unknowns.

Proposition 2.1. Equations (2.23)-(2.27) imply p < p0 if and only if:

(
p0

1− p0

)γH1−γL2 δ/s2
H

δ/s2
L

∫ 1

p0
pγH2(1− p)γH1dp∫ p0

0
pγL1(1− p)γL2dp

<
π

1− π
. (2.28)

Moreover, if such p exists, it must be unique.

Proof. In Appendix.

22Observe that with more unknowns than variables, the solution to our system is indeterminate. In fact,
there are potentially a continuum of wages that can be supported in equilibrium, though the allocation will
be unique. This indeterminacy is as in Becker: the allocation is unique, but there may be multiple ways
to split the surplus. In all that follows, when we use the term uniqueness of equilibrium, we refer to the
allocation, not to the wages.
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The proof of Proposition 2.1 is quite straightforward. The idea of the proof is the follow-

ing: since we have 5 equations with five unknowns, we can first express fH0, fH1, fH2, fL0 as

functions of p and then use the last equation to pin down p.

The existence and uniqueness of the solution to the system require that fH0, fH1, fH2, fL0

change monotonically with p. Fortunately, this is the case as shown in the appendix. The

monotonicity guarantees that if a solution exists, it must be unique. Furthermore, it enables

us to only check the boundaries when determining whether a solution exists. Equation (2.28)

given in the Proposition is thus derived.

In the second case, p ≥ p0. Given any p0 ∈ (0, 1), if p ≥ p0, then the density functions

are:

fL(p) = fL0p
γL1(1−p)γL2I(p < p0)+[fL1p

γL1(1−p)γL2+fL2(1−p)γL1pγL2 ]I(p0 ≤ p ≤ p) (2.29)

and

fH(p) = fH0(1− p)γH1pγH2 . (2.30)

Then the system of equations to determine the equilibrium is:

WH(p) = WL(p) (Value-matching) (2.31)

W ′
H(p) = W ′

L(p) (Smooth-pasting) (2.32)

W
′′

H(p) = W
′′

L(p) (No-deviation) (2.33)

ΣH(p+)fH(p+) = ΣL(p−)fL(p−) (Boundary condition) (2.34)∫ 1

p

fH(p)dp = π (Market clearing H) (2.35)∫ p

0

fL(p)dp = 1− π (Market clearing L) (2.36)

d

dp
[ΣL(p)fL(p)]|p− =

d

dp
[ΣH(p)fH(p)]|p+ (Flow equation at p) (2.37)

fL(p0−) = fL(p0+) (Continuous density at p0) (2.38)

Based on the above equations, we can prove the following Proposition, the counterpart

to Proposition 2.1, in a similar fashion:
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Proposition 2.2. Equations (2.34)-(2.38) imply p ≥ p0 if and only if:

(
p0

1− p0

)γH1−γL2
δ/s2

H

δ/s2
L

∫ 1

p0
pγH2(1− p)γH1dp∫ p0

0
pγL1(1− p)γL2dp

≥ π

1− π
. (2.39)

Moreover, if such p exists, it must be unique.

The idea for the proof of Proposition 2 is exactly the same as that for the proof of

Proposition 1 and the proof is also shown in the appendix. Propositions 2.1 and 2.2 together

provide the following existence and uniqueness result:

Theorem 2.2. Under strict supermodularity, for any pair (p0, π) ∈ (0, 1)2, there exists a

unique PAM cutoff p. Moreover, p < p0 if and only if:

(
p0

1− p0

)γH1−γL2
δ/s2

H

δ/s2
L

∫ 1

p0
pγH2(1− p)γH1dp∫ p0

0
pγL1(1− p)γL2dp

<
π

1− π
. (2.40)

One of the nice properties about Equation (2.40) is that the whole equation only depends

on p0, π, δ/s2
H and δ/s2

L. This provides a feasible way to compute p. Given p0, π, δ/s2
H and

δ/s2
L, we first need to decide the sign of

(
p0

1− p0

)γH1−γL2
δ/s2

H

δ/s2
L

∫ 1

p0
pγH2(1− p)γH1dp∫ p0

0
pγL1(1− p)γL2dp

− π

1− π
.

If this sign is negative, then we know that p is smaller than p0 and we can use the system of

equations in the first case to figure out p. On the contrary, if this sign is not negative, then

we know that p is larger than p0 and we can use the system of equations in the second case

to compute p. This turns out to be a convenient way to determine the equilibrium cutoff

numerically.

Before presenting the numerical results, we have a simple theoretical comparative static

result:

Corollary 2.1. p is strictly increasing in p0 and decreasing in π.

This corollary is proved in the appendix. But the intuition is quite straightforward:

decreasing in π means there are more low type firms in the economy and hence p has to
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Figure 2: Equilibrium Distribution of Posterior Beliefs
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Figure 2.1: Equilibrium Distribution of Posterior beliefs.

become larger such that more workers are matched with low type firms; increasing in p0

means the overall quality of the workers is becoming better in the economy and p has to go

up to make sure that low type firms are also matched with better workers.

Mathematically, it is not easy to derive comparative statics between p and δ/s2
H or δ/s2

L.

But intuitively speaking, as sL increases, the degree of supermodularity will be reduced while

the speed of learning in low type firms will increase. Both of these factors make the low type

firms more attractive and hence p should increase in sL. On the other hand, as sH becomes

higher, both the degree of supermodularity and the speed of learning in high type firms will

go up, which will lead to a reduction in p.

Figure 2.1 plots the stationary distribution of beliefs p, for the case of PAM and with

parameter values: sH = 0.15, sL = 0.05, p0 = 0.5, π = 0.5, δ = 0.01.
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2.4.3 Equilibrium Analysis: Value Functions

Theorem 2.2 implies that under strict supermodularity, the PAM cutoff p can be uniquely

determined. But given this p, we still have the following conditions to satisfy:

WH(p) = WL(p) (Value-matching condition) (2.41)

W
′

H(p) = W
′

L(p) (Smooth-pasting condition) (2.42)

W ′′
H(p) = W ′′

L(p) (No-deviation condition) (2.43)

Equations (2.41)-(2.43) are three equations for four unknowns. The equilibrium is inde-

terminate in the sense that although the allocation p is unique, there could be multiple ways

to divide the surplus. To make the system determinate, we assume firm monotonicity and

set µLL = 0. Then limited liability requires that wL(0) has to be zero and hence VL = 0.

Equations (2.41)-(2.43) thus could be written as:

µL(p)

r + δ
+ kLp

αL(1− p)1−αL =
µH(p)− rVH

r + δ
+ kHp

1−αH (1− p)αH

µHL − µLL
r + δ

+ kLp
αL(1− p)1−αL(

αL − p
p(1− p)

) =
µHH − µLH

r + δ
+ kHp

1−αH (1− p)αH (
1− αH − p
p(1− p)

)

kLp
αL−2(1− p)−1−αLαL(αL − 1) = kHp

−1−αH (1− p)αH−2αH(αH − 1)

This system of equations will give us a unique formula for VH :

rVH = (µLH − µLL) +
αH(αL − 1)(∆H −∆L)p

αH(αL − 1)− (1− p)(αL − αH)
. (2.44)

As usual, ∆H = µHH − µLH and ∆L = µHL − µLL. Furthermore, it is easy to check that

both kH and kL are strictly larger than zero such that the option value of learning is strictly

positive.

Therefore, we finally reach our main result:

Theorem 2.3. Under strict supermodularity, the stationary competitive equilibrium is unique

in the sense that all equilibria are PAM and the allocation is uniquely determined by Theo-

rem 2.2. Moreover, assume firm monotonicity and normalize VL = 0, we can get a unique

formula for VH given by equation (2.44).
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2.4.4 Wage Gap at the Cutoff

The analysis of the value functions allows us to determine equilibrium wages. We start with

an interesting observation:

wH(p) = µH(p)− rVH = ∆Hp+ µLL −
αH(αL − 1)(∆H −∆L)p

αH(αL − 1)− (1− p)(αL − αH)

< ∆Lp+ µLL = wL(p).

This implies that the worker with posterior belief slightly higher than p will accept the high

firm’s offer even though the wage provided is lower than the wage at the low firm. This

obviously comes from the fact that the learning speed in the high firm is higher and this

would compensate the loss in the flow wages.

On the other hand, we can see that the difference in expected productivity at p is

µH(p)− µL(p) = (µHL − µLL) + (∆H −∆L)p < rVH .

This implies the high firm can enjoy a strictly positive rent from a higher learning speed. This

above result actually does not depend on the assumption VL = 0 and it can be generalized

for any possible division of surplus.23 This is illustrated by Figure 2.2:

Lemma 2.7. Under strict supermodularity, we have: wH(p) < wL(p) and rVH − rVL >

µH(p)− µL(p).

2.5 Firm-dependent Volatility: σy

A valid criticism of our approach is that we give the H firms too much of an edge under

supermodularity (likewise for the L firms under submodularity). Not only are they superior

23Generally, value matching and no-deviation conditions imply that

(r + δ)WH(p) = wH(p) + ΣH(p)W ′′H(p) = (r + δ)WL(p) = wL(p) + ΣL(p)W ′′L(p)

and
W ′′H(p) = W ′′L(p).

These immediately mean that wH(p) < wL(p) and rVH − rVL > µH(p)− µL(p).
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in the production of output, by assuming that the volatility σ is common to both types of

firms, effectively the signal-to-noise ratio is higher in H firms:

sH =
µHH − µLH

σ
>
µHL − µLL

σ
= sL,

from supermodularity. With firm-dependent volatility, that need not be the case. In partic-

ular, for σH sufficiently high, it may well be the case that sH < sL.

Mere observation of the value function in Equation (2.3), rWy(p) = µy(p) − Vy +

Σy(p)W
′′
y (p) − δWy(p), reveals that firm-dependent volatility will play a crucial role here.

Since Σy = 1
2
p2(1− p)2s2

y, for sufficiently high σH and therefore low sH , it appears intuitive

that the value WH can be smaller than the value of WL for high p. It turns out that this

intuition is wrong. First, in this competitive equilibrium, wages are endogenous and there-

fore as the value of learning changes, so does µy(p)−Vy. Second, the no-deviation condition

requires that at the marginal type p, W ′′
H = W ′′

L. It turns out that as a result these two

features, in equilibrium the learning effect is the same in both firms, no matter what the

volatility σy is.

To make this argument formal, when σH 6= σL, we generally define sy = (µHy −

µLy)/σy, y = H,L. It is trivial to show that belief updating also satisfies the formula:

dpt = pt(1− pt)sydZ̄y,t.

Furthermore, Lemmas 2.2–2.5 still hold because none of these results depend explicitly on

σy. As shown in the appendix, the statement in Claim 2.2 is generalized to any combination

of (σH , σL).24

With the proof of Claim 2.2 in hand, the result of Theorem 2.1 immediately extends: PAM

(NAM) is the unique candidate stationary competitive equilibrium allocation under strict

supermodularity (submodularity) thus holds for any combination of (σH , σL). Surprisingly,

24The sufficiency of the no-deviation condition is also extended to include all of the combinations of
(σH , σL) by proving a generalized version of Claim 2.2 and Lemma 2.6 in the appendix.
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this implies that under strict supermodularity, even if we have an extremely high σH such

that the learning rate in high type firms is smaller than that in low type firms, we still have

PAM. It is equivalent to assert that the direct productivity consideration dominates the

learning in our model. The reason comes from the fact that the equilibrium wage schedules

adjust to offset the impact of change in learning rate. The key insight here is the no-deviation

condition. At p, the no-deviation condition requires that the second-order effect on the value

function is the same in both firms. This second-order effect W ′′
y exactly captures the effect of

learning through Σy(p)W
′′
y (p) where Σy = 1

2
p2(1− p)2s2

y. Because equilibrium wages adjust

to satisfy the no-deviation condition at the cutoff, the impact of differential learning rates

is completely offset by the change of wage schedule, and the equilibrium allocation is solely

determined by the productivity consideration.

2.6 The Planner’s Problem

A priori, we might expect the competitive equilibrium not to decentralize the planner’s prob-

lem. Wage contracts cannot condition on future realizations or actions and are assumed to

be self-enforcing. As a result of this lack of commitment, there is a missing market. With

incomplete markets, the competitive equilibrium in general does not necessarily decentralize

the planner’s problem. It turns out however as we show below that this market incom-

pleteness does not preclude the efficiency of the decentralized equilibrium. As will become

apparent, this efficiency result is driven by the martingale property present in all models of

learning.

We consider a planner’s problem under stationarity, i.e., in the presence of an ergodic

distribution. The planner chooses an allocation rule and as a consequence of the Kolmogorov

forward equation, the ergodic distribution associated with this allocation rule. The objective

is to maximize the aggregate flow of output. Given stationarity of the problem, the focus on

output maximization yields the same outcome as maximization of aggregate values.
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Before we state and prove the efficiency result, we need to derive the stationary distri-

bution under multiple cutoffs. Consider any allocation with multiple cutoffs:

0 < p
N
< · · · < p

1
< 1, N odd.

Without loss of generality, we assume workers with p ∈ (p1, 1] are allocated to the high type

firms while workers with p ∈ [0, pN) are allocated to the low type firms since for workers

with p = 0 or 1, there is no need for learning and it is optimal to allocate them according

to instantaneous production efficiency (PAM).25 This also implies that generically N is odd.

Denote by Ωy the set of p’s that match with firms of type y.

Formally, the planner will choose Ωy to solve the problem:

max
Ωy

S =

∫
ΩH

µH(p)fH(p)dp+

∫
ΩL

µL(p)fL(p)dp

s.t.
d2

dp2
[Σy(p)fy(p)]− δfy(p) =

dfy(p)

dt
=0 Kolmogorov forward equation∫

ΩH

pfH(p)dp+

∫
ΩL

pfL(p)dp =p0 Martingale property∫
ΩL

fL(p)dp = 1− π,
∫

ΩH

fH(p)dp =π. Market clearing

It turns out that the martingale property enables an easier way to compare different alloca-

tions, hence the following Lemma:

Lemma 2.8. Consider two possible allocations with ergodic density functions fH(p), fL(p)

(allocation 1) and f̃H(p), f̃L(p) (allocation 2) respectively. Then allocation 1 generates higher

aggregate output than the allocation 2 if and only if
∫

ΩH
pfH(p)dp >

∫
Ω̃H

pf̃H(p)dp or alter-

natively,
∫

ΩL
pfL(p)dp <

∫
Ω̃L
pf̃L(p)dp.

Proof. In Appendix.

25This property is also established in the one-sided model of Anderson and Smith (2010). Our results
shows that not only at the extremes but also at the interior the planner’s (and the equilibrium) allocation
exhibit PAM.
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To prove that the competitive equilibrium decentralizes the planner’s stationary solution

under supermodularity, it suffices to show that the PAM allocation is better than any al-

location with multiple cutoffs because from Theorem 2.2, we know that PAM allocation is

unique and will be the same as the competitive equilibrium allocation for any combination

of (sH , sL). The key technical issue is that the ergodic distribution is endogenously deter-

mined by the allocation rule. It is infeasible to compute the ergodic density functions for

each possible allocation. Our strategy of proof is therefore to use a variational argument to

circumvent this difficulty.

The proof heavily uses the martingale property and works as follows. First we consider a

candidate allocation with 3 cutoffs. Under this candidate allocation, there will be an interior

interval of p’s that are matched to L type firms associated with some ergodic distribution.

We move the bounds of that interval slightly to the left, thus generating a new density in

this interval while keeping all other cutoffs and distributions unchanged. The new interval

is chosen by imposing market clearing conditions. Lemma 2.8 then shows that under su-

permodularity this experiment strictly increases aggregate output. This holds until cutoffs

coincide such that the interior rang of p’s matched with L firms disappears, thus reducing the

number of cutoffs to N = 1. We use a similar argument to establish that output increases

when moving from N to N − 2 cutoffs. The result then follows by induction. We derive the

result under supermodularity. The same logic applies under submodularity.

Theorem 2.4. The competitive equilibrium decentralizes the planner’s stationary solution

that maximizes the aggregate flow of output.

Proof. In Appendix.

2.7 On-the-job Human Capital Accumulation

On the job, workers and firms not only learn about their unknown innate skills, they also

accumulate human capital. In reality, human capital accumulation is an ongoing, continuous
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process. The longer the tenure of a worker, the higher her productivity. This monotonically

increasing relation between tenure and human capital experience is likely also to be concave.

For modeling purposes, here we consider a very simple form that captures this relation. With

probability λ, a worker transitions from being unexperienced to being experienced.26 Once

a worker is experienced, her productivity increases to µxy + ξx and the status of experience

is complete information.27 Now there are the same value functions for experienced workers

as before W e
y .

rW e
y (p) = µy(p) + ξ(p)− rVy + Σe

y(p)W
e′′

y (p)− δW e
y (p)

where ξ(p) = pξH + (1 − p)ξL is the expected experience.28 For the unexperienced worker

there is now one additional value function. As before, there are unexperienced workers who

are matched with L firms, and who continue to match with an L firms; and there are those

who match with H firms both when unexperienced as well as when experienced. We denote

those values by W u
LL,W

u
HH . There are now also some types p who match with an L firm when

unexperienced and who switch to an H firm when they become experienced, the value of

which is denoted by W u
LH . This requires that the reservation type of an experienced worker

(pe) is lower than that of the unexperienced worker (pu). We start from this premise and

later verify that this is indeed the case. The value functions then are:

rW u
yy(p) = µy(p)− rVy + Σu

y(p)W
u′′

yy (p) + λW e
y (p)− (δ + λ)W u

yy(p)

rW u
LH(p) = µL(p)− rVL + Σu

L(p)W
u′′

LH(p) + λW e
H(p)− (δ + λ)W u

LH(p)

Observe that even though experience is completely observable, it does affect the inference

from learning in the sense that the signal-to-noise ratio changes to [(µHy+ξH−µLy−ξL)]/σ2.

26Having a continuous relation between tenure and human capital renders the system of differential equa-
tions into a system of partial differential equations. Typically there is no solution. In the current setup,
there is an additional state (experienced versus unexperienced) and the model remains tractable.

27Observe that experience is worker dependent, but not firm dependent. While it is likely a realistic feature
to have experience dependent on the job type, the reason is that we would have a different level of experience
for different histories which makes the problem non-tractible.

28In this section we maintain the earlier assumption that σH = σL = σ.
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As a result, Σy depends on experience u, e.

W u
yy(p) =

µy(p)− rVy
r + δ + λ

+ kuy1p
1−αuy (1− p)αuy + kuy2p

αuy (1− p)1−αuy

+
λ

(r + δ)(r + δ + λ)
[µy(p) + ξ(p)− rVy]

+
λ

(λ+ δ + r)− (suy )2

(sey)2
(r + δ)

[key1p
1−αey(1− p)αey + key2p

αey(1− p)1−αey ]

W u
LH(p) =

µL(p)− rVL
r + δ + λ

+ kuL1p
1−αuL(1− p)αuL + kuL2p

αuL(1− p)1−αuL

+
λ

(r + δ)(r + δ + λ)
[µH(p) + ξ(p)− rVH ]

+
λ

(λ+ δ + r)− (suL)2

(seH)2
(r + δ)

[keH1p
1−αeH (1− p)αeH + keH2p

αeH (1− p)1−αeH ]

W e
y (p) =

µy(p) + ξ(p)− rVy
r + δ

+ key1p
1−αey(1− p)αey + key2p

αey(1− p)1−αey

where

αuy =
1

2
+

√
1

4
+

2(r + δ + λ)

(suy)
2

≥ 1

αey =
1

2
+

√
1

4
+

2(r + δ)

(sey)
2
≥ 1

There are now two cut-offs pu, pe. Since we just want to compare pu and pe, we can

consider the following thought experiment. First, we assume that pu = pe = p. Then we

can get two systems of equations: one system is the set of value-matching, smooth-pasting

and no-deviation conditions for the unexperienced workers and the other one is for the

experienced workers. Second, we can solve ∆V = VH − VL the way we did previously but

now we can get two possible values for ∆V . Denote them to be ∆V e and ∆V u. Notice that

∆V e and ∆V u are both increasing in the cutoff p. Finally, we compare ∆V e and ∆V u under

the assumption that pu = pe = p. If ∆V e > ∆V u, this means that we should decrease pe or

increase pu and hence pu > pe; on the contrary, if ∆V e < ∆V u, this means that we should

decrease pu or increase pe and hence pu < pe. We derive this in the Appendix and can show

this to hold when human capital accumulation is not too different for H and L types.
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Proposition 2.3. Assume supermodularity and ξH ' ξL. Then pe < pu.

Proof. In Appendix.

With human capital accumulation, we can now characterize the entire equilibrium, in-

cluding wage schedules and the ergodic distribution of types. Even though there are types

who gradually learn they are of low productivity, wages need not decrease over the life cycle

as they accumulate human capital.

Turnover and Tenure. We express the expected future duration of a match by tenure

τy(p). Tenure relates inversely to turnover. For p < pe and p > pu, τy(p) satisfies the

following differential equation (see also Moscarini 2005):

Σy(p)τ
′′
y (p)− δτy(p) = −1,

with solutions:

τuH(p) =
1

δ

{
1−

(
p

pu

)1/2−
√

1/4+2δ/(suH)2 (
1− p
1− pu

)1/2−
√

1/4−2δ/(suH)2
}

;

τuL(p) =
1

δ

{
1−

(
p

pu

)1/2−
√

1/4−2δ/(suL)2 (
1− p
1− pu

)1/2−
√

1/4+2δ/(suL)2
}

;

τ eH(p) =
1

δ

{
1−

(
p

pe

)1/2−
√

1/4+2δ/(seH)2 (
1− p
1− pe

)1/2−
√

1/4−2δ/(seH)2
}

;

τ eL(p) =
1

δ

{
1−

(
p

pe

)1/2−
√

1/4−2δ/(seL)2 (
1− p
1− pe

)1/2−
√

1/4+2δ/(seL)2
}
.

If p ∈ (pe, pu), the only difference is that

Σy(p)τ
u′′
L (p)− (δ + λ)τuL(p) = −1,

since unexperienced workers will switch jobs once they become experienced. An immediate

implication of the Proposition above is the following:
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Proposition 2.4. (Tenure) Assume supermodularity and ξH ' ξL. Then, τuL(p) > τ eL(p)

for p < pe and τuH(p) < τ eH(p) for p > pu. For p ∈ (pe, pu), there is a cutoff such that

τuL(p) < τ eH(p) for p higher than this cutoff and τuL(p) > τ eH(p) for p smaller than this cutoff.

For the lowest types p, tenure for the unexperienced worker is longer as the experienced

workers are more likely to be hired by an H firm given positive information revelation. The

opposite is true for the highest p: the unexperienced types face a higher cut-off type and will

therefore upon bad information be more likely to switch to an L firm. In the intermediate

range, tenure depends on how close p is to either of the cut-offs.

2.8 Robustness

2.8.1 Generalized Lévy Processes

One may suspect that our results are exclusively driven by the specific assumptions of the

Brownian motion. In the section, we illustrate that this is not the case by considering a

generalized Lévy process, i.e., a compound Poisson process. Let λxy denote the expected

arrival rate of jumps for a type x worker in a type y firm. Following Cohen and Solan (2009),

the worker’s value function can be written as:

Wy(p) = wy(p)dt+ (1− rdt− δdt){[pλHy + (1− p)λLy]dtWy′(ph)

+ (1− [pλHy + (1− p)λLy]dt)Wy(p+ dp)

where ph =
pλHy

pλHy+(1−p)λLy
and y′ is the firm type which matches with worker ph. If no jump

occurs, the updating of the posterior belief in firm y follows:

dp = −p(1− p)(λHy − λLy)dt+ p(1− p)sydZ̄.

As usual, the value function could be rewritten as a differential equation:

(r + δ + [pλHy + (1− p)λLy])Wy(p)

= wy(p) + [pλHy + (1− p)λLy]Wy′(ph)− p(1− p)(λHy − λLy)W ′
y(p) + Σy(p)W

′′
y (p).
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The no-deviation condition derived earlier still holds in this situation. The proof is similar

and is omitted here.

Lemma 2.9. To deter possible deviations, a necessary condition is:

W ′′
H(p) = W ′′

L(p) (No-deviation condition-Lévy) (2.45)

for any possible cutoff p.

Consider the simplifying assumption that λLy = 0 and denote λHy by λy. Then ph is

always 1 and the value function becomes:

(r + δ + pλy)Wy(p) = wy(p) + pλyWy′(1) − p(1 − p)λyW
′
y(p) + Σy(p)W

′′
y (p).

The differential equation could be solved explicitly by guess and verify:

Wy(p) = Ay +Byp+ ky1p
αy1(1− p)1−αy1 + ky2p

αy2(1− p)1−αy2

where Ay =
µLy−rVy
r+δ

, By =
∆y+λy(Wy′ (1)−Ay)

r+δ+λy
and

αy1 =
1

2
+
λy
s2
y

+

√
(
1

2
+
λy
s2
y

)2 +
2(r + δ)

s2
y

> 1 + 2
λy
s2
y

αy2 =
1

2
+
λy
s2
y

−

√
(
1

2
+
λy
s2
y

)2 +
2(r + δ)

s2
y

< 0.

Obviously, the envelope of Wy is a strictly increasing and strictly convex function for

p ∈ (0, 1). First, we would like to argue that for p = 1, y′ = H. Since the function is strictly

convex, it must be the case that 0 and 1 workers are matched with different types of firms.

Now suppose y′ = L. Then since 0 workers are matched with H firms, AH > AL and hence

WL(1) = ∆L

r+δ
+ AL <

∆H

r+δ
+ AH = WH(1). A contradiction.

Therefore, the value function could be rewritten as:

(r + δ + pλy)Wy(p) = wy(p) + pλyW1(1)− p(1− p)λyW ′
y(p) + Σy(p)W

′′
y (p). (2.46)
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with general solution:

Wy(p) = Ay +Byp+ ky1p
αy1(1− p)1−αy1 + ky2p

αy2(1− p)1−αy2 . (2.47)

Notice that the equilibrium payoffs are such that AL > AH , BL < BH and AL + BL <

AH +BH . At any cutoff p, the following three equations should hold simultaneously:

WH(p) = WL(p) (Value-matching condition) (2.48)

W
′

H(p) = W
′

L(p) (Smooth-pasting condition) (2.49)

W ′′
H(p) = W ′′

L(p) (No-deviation condition) (2.50)

Then from Equation (2.46), it is immediate to get at p,

(λH − λL)pWH(p)

= wH(p)−wL(p)+(λH−λL)pWH(1)− (λH−λL)p(1−p)W ′
H(p)+(ΣH(p)−ΣL(p))W ′′

H(p).

Apply Equation (2.47) and the above equation could be simplified as:

0 = wH(p)− wL(p) + (r + δ + λL)[AL − AH + (BL −BH)p].

The RHS of the above equation is linear in p. Therefore, if we can prove the slope is not zero

then there cannot exist two p’s satisfying the equation simultaneously. Fortunately, this is

the case. The slope is

∆H −∆L + (r + δ + λL)(BL −BH).

Notice that BH = ∆H

r+δ
and (r + δ + λL)BL = ∆L + λL(WH(1)− AL). Hence,

∆H −∆L + (r + δ + λL)(BL −BH) = λL(AL − AH) > 0.

The following result summarizes the findings above and corresponds to Theorem 2.1 in the

Brownian motion case:
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Proposition 2.5. Given the Lévy process and provided an equilibrium exists, PAM is the

unique stationary competitive equilibrium allocation under strict supermodularity.

Under PAM, kL1 > 0, kL2 = 0 and kH1 = 0, kH2 > 0. We can use the procedure

introduced in the previous sections to pin down the equilibrium cutoff p and derive value

functions based on p.

Notice also that under the Lévy process, beliefs are formed through Bayesian updating.

We conjecture that PAM will always be the competitive equilibrium allocation under strict

supermodularity for any stochastic process as long as there is Bayesian updating. This

is because under Bayesian learning, the belief updating process is always a martingale.

Of course, establishing this result for general information processes is impossible because

it requires the explicit solution of the differential equations for the value function, which

generally does not exist.

2.8.2 Non-Bayesian Updating

Suppose instead that the belief updating is not a martingale. Then it must be generated by

some non-Bayesian learning process. We will now show for an example that the competitive

equilibrium can be non-PAM even if there is supermodularity.

Suppose the belief updating process in firm y is given by: dp = λypdt for p < 1, with λy

a constant, and once p reaches 1, dp = 0. We may think p as a special human capital with

1 as an upper bound on the accumulation. The value function of a worker is given by:29

(r + δ)Wy(p) = wy(p) + λypW
′
y(p)

with solution:

Wy(p) = Cyp
r+δ
λy +

∆y

r + δ − λy
p+

µLy − rVy
r + δ

.

29We can write the value of a worker of type p in firm y as Wy(p) = wy(p)dt+ (1− (r + δ)dt)Wy(p+ dp).
Using a Taylor expansion Wy(p + dp) = Wy(p) + W ′y(p)dp + o(dt) and the fact that dp = λypdt, we obtain
the expression for Wy(p).
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Suppose PAM is the equilibrium allocation, then

lim
p→1

WH(p) = WH(1) =
∆H

r + δ
p+

µLH − rVH
r + δ

,

which implies that:

CH = − λH∆H

(r + δ)(r + δ − λH)
.

At the cutoff p we have:

WH(p) = WL(p) (Value-matching condition) (2.51)

W
′

H(p) = W
′

L(p), (Smooth-pasting & No-deviation condition) (2.52)

where it turns out that for this belief-updating process, the no-deviation condition coincides

with the smooth-pasting condition. We derive the no-deviation condition in the Appendix.

This is a system of equations in CL and p. Substitute CL and p could be expressed as:

∆L

r + δ
p+

µLL − rVL
r + δ

=
λL − λH
r + δ

∆H

r + δ − λH
(p)

r+δ
λH + (1− λL

r + δ
)

∆H

r + δ − λH
p+

µLH − rVH
r + δ

or

∆L −∆H

r + δ
p+

µLL − rVL
r + δ

=
λH − λL
r + δ

∆H

r + δ − λH
[p− (p)

r+δ
λH ] +

µLH − rVH
r + δ

. (2.53)

Notice that PAM requires that the p = 0 worker has incentive to be matched with L firms.

Hence,

µLL − rVL
r + δ

>
µLH − rVH
r + δ

Also notice that

λH − λL
r + δ

∆H

r + δ − λH
[p− (p)

r+δ
λH ] < 0

if λL > λH and r + δ > λH .

If we can show that

∆H −∆L

r + δ
p <

λL − λH
r + δ

∆H

r + δ − λH
[p− (p)

r+δ
λH ],
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then Equation (2.53) cannot hold as equality, which is the result we are looking for. First

notice that the LHS of the inequality goes to zero as ∆H−∆L decreases to zero. Meanwhile,

the belief updating process implies the ergodic distribution only depends on λ’s and will not

depend on ∆’s. From previous sections, if PAM is indeed the equilibrium allocation, then p

should not depend on ∆’s. Therefore, fix any λL > λH and r + δ > λH and we can derive

some corresponding p ∈ (0, 1). Then, let ∆H −∆L decreases to zero and it is immediate to

see that eventually we will have:

∆H −∆L

r + δ
p <

λL − λH
r + δ

∆H

r + δ − λH
[p− (p)

r+δ
λH ].

This implies that PAM cannot be an equilibrium if λL > λH and the degree of supermodu-

larity is sufficiently small.

2.9 Concluding Remarks

In this paper, we have proposed a competitive equilibrium model of the labor market that

unifies frictionless sorting and a learning-based theory of turnover. In equilibrium under

supermodularity, workers with better posteriors about their ability tend to sort into more

productive jobs. The main technical contribution of this paper is that we find a new con-

straint on the worker’s value function as a result of sequential rationality in the presence

of competitively determined payoffs. At the cutoff type, the second derivative of the work-

ers’ value function must equate. In addition to the standard conditions of value-matching

(zero-th derivative) and smooth-pasting (first derivative), we now also have the no-deviation

condition (second derivative).

What is possibly most surprising is that the result of positive sorting under supermodu-

larity is not determined by the speed of learning. In the trade-off between the learning speed

and instantaneous productive efficiency, productive efficiency always takes the upper hand.

As such, the equilibrium allocation does not depend on the signal-to-noise ratio (the ratio of

the average payoff gain, which measures the efficiency, over the noise term). This seems to
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indicate in this competitive environment the sorting aspect dominates the learning. Quite

surprisingly, this sorting result does not hinge on the particular information structure and

is robust to general Bayesian learning processes.

Our analysis has certain limitations and several issues remain unanswered. First, like

most experimentation models, payoffs are linear and agents are risk neutral. Non-linearity is

desirable for the economic interpretation. However, it renders the solution to the differential

equation of the value function much harder to solve.

Second, ideally we would like to extend the analysis to general distributions of worker and

firm types. Like in much of the experimentation literature the realized type is either high or

low on a risky arm. Here, in addition we have two risky arms that are correlated, since there

is learning in both types of firms. The focus on the two firm-type case (two arms) keeps

down the dimensionality of the continuous time problem. With more than two firm types,

analyzing the Brownian motion process is mathematically substantially more demanding.

Finally, our result that PAM obtains under supermodularity and that the planner’s prob-

lem can be decentralized, is established for a stationary equilibrium. While a solution of a

general non-stationary equilibrium is too complex, one can easily construct a two-period

counterexample in which PAM will not necessarily obtain in a non-stationary environment.
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Chapter 3

Learning In War of Attrition Games

3.1 Introduction

Imagine a situation where two players are bargaining over a joint decision or two political

parties are voting for a bill. The two individuals disagree with one another because of

conflicting preferences. In particular, each of the two players must choose between sticking

to his own favorable choice or conceding to the other player’s favorable choice. The return to

conceding decreases with time, but, at any time, a player earns a higher return if the other

concedes first. War of attrition games are theoretical tools widely used to characterize how

each of the two players chooses a time path of conceding in the event that the other player

has not already conceded. Continuous-time war of attrition games have been investigated

under both complete information (Hendricks, Weiss, and Wilson (1988)) and incomplete

information (Abreu and Gul (2000)).

Delay is a key feature in war of attrition games. As shown by both Hendricks, Weiss,

and Wilson (1988) and Abreu and Gul (2000), there at least exists an equilibrium such that

rational players will randomize between conceding and staying.1 As a result, it takes time

to reach an agreement. However, in many realistic situations, each player is also receiving

private information about how favorable the alternatives are while he is bargaining with the

other player. Especially in the political environment, learning by political parties is a very

1Abreu and Gul (2000) show that this is the unique sequential equilibrium when information is incomplete.
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common phenomenon. If a player learns that his opponent’s alternative is quite favorable,

he becomes more willing to concede. In this sense, the learning process may exogenously

facilitate the players to reach an agreement. However, rational players will also respond to

such a process, which may cause a longer delay. The natural question to ask is: if there is an

exogenous information flow that facilitates an agreement, is it easier to reach an agreement

taking into account the response of the rational players?

This paper develops a dynamic war of attrition model with learning to answer the above

question. Learning is modelled in the following way: I assume at each point in time, each

player may receive a private Poisson signal that reveals the payoff for conceding. Receiving

the signal makes the player more willing to concede. This captures the idea that the flow

of information exogenously facilitates an agreement. The main result of the paper is the

following: compared to the model without learning, learning makes it more difficult to reach

an agreement. Especially when the learning rate is low, the expected concession rate in the

unique sequential equilibrium is always smaller than the expected concession rate without

learning. When the learning rate is high, there also exist periods in which the expected

concession rate is higher than the expected concession rate without learning. However, the

paper shows that there will also be some periods in which it is harder to reach an agreement

compared to the model without learning. In equilibrium, it may be easier to reach an

agreement initially but it becomes more and more difficult over time. The later decrease in

the concession rate will always offset the former increase and hence the expected expected

delay becomes longer instead of shorter. I also consider a one-sided learning model where

only one of the two players is able to learn. Interestingly, that model shows that to make

the delay shorter, it is better to allow only one player to learn than to allow both to learn.

Due to private learning, each player may have two possible rational types at each point

in time. The player could be either sure about his private payoff or still unsure. The

sure player is more willing to concede than the unsure player. I show that in the equilibrium
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when concession still takes place, only one of the following three cases is possible: 1) the sure

player is randomizing while the unsure player strictly prefers staying; 2) the unsure player is

randomizing while the sure player strictly prefers conceding; and 3) the sure player strictly

prefers conceding and the unsure player strictly prefers staying. The expected concession

rate in the first (second) scenario is strictly higher (lower) than the expected concession rate

without learning.

A player’s strategy and the learning rate determine the expected concession rate of this

player, which affects his opponent’s equilibrium play. When the learning rate is sufficiently

high, the first scenario will happen initially but eventually the second scenario will happen.

Since the sure player always concedes (weakly) before the unsure player, the posterior belief

that a player is unsure is (weakly) increasing as no concession happens. This increases

delay since more weight has to be put on the second scenario, which has a lower expected

concession rate. Interestingly, my paper shows that learning might decrease delay if learning

did not change the weight because the expected concession rate is convex in posterior beliefs.

However, delay is always increasing if I take into account the increasing in posterior beliefs.

Although it is difficult to the derive the explicit expression of the expected equilibrium delay,

a lower bound can be derived assuming the players choose the highest concession rate in all of

the three scenarios. The paper shows that even this lower bound is higher than the expected

delay without learning.

This paper is closely related to literature on bargaining and delay. The classical complete

information bargaining game developed by Rubinstein (1982) has the feature that agreement

is reached immediately. Although delay is possible in some variations of the Rubinstein bar-

gaining framework (see e.g., Baron and Ferejohn (1989) and Merlo and Wilson (1995)), many

authors have focused on incomplete information as the prime cause of delay (Kennan and

Wilson (1993)). A non-exclusive list of sequential bargaining models with incomplete infor-

mation includes Abreu and Gul (2000), Admati and Perry (1987), Chatterjee and Samuelson
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(1987) and Damiano, Li, and Suen (2010a,b). In many of the above papers, the concession

game structure is derived from a bargaining or political environment. In this paper, I as-

sume a concession game theoretical framework by writing down the payoff matrix directly.

Private learning generates multiple rational types on the equilibrium path. Compared to

the standard incomplete information war of attrition model with only one rational type, this

increases the difficulty of characterizing the equilibrium. Still, I am able to fully characterize

the unique sequential equilibrium under some parameter values.

There are also several papers considering how public learning affects delay in the com-

plete information Rubinstein bargaining framework. For example, Avery and Zemsky (1994)

consider a situation where the players are allowed to wait for new public information about

the size of the pie before accepting or rejecting an offer. In such an environment, the players

may exercise their option value of waiting, yielding long delays with positive probability.

In my model, learning is about player’s private payoff state. For each player, there is no

option value of waiting associated with learning since learning is a martingale process. The

key driving force is that private learning generates more asymmetric information. The in-

teraction between different private types leads to a longer delay. Yildiz (2004) considers a

model where learning might increase delay in a complete information sequential bargaining

model. However, to generate this result, the players have to be excessively optimistic about

their bargaining power. Also, in that model, learning may not increase delay under some

parameter values whereas in my model, learning always increases delay.

Recently, Kim and Xu (2011) also consider learning in war of attrition games. In their

paper, learning is about the common payoff state, while, in this paper, learning is about the

private payoff state. Both papers discuss the incentive of information acquisition. In Kim

and Xu (2011), information acquisition is modelled as revealing the common payoff state

immediately after paying a sunk cost. However, in this paper, information acquisition is

modelled as choosing the learning rate by paying a flow cost. I show that if the maximum
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achievable learning rate is sufficiently low, then nobody has an incentive to acquire any

information in the unique sequential equilibrium.

The remainder of this paper organizes as follows. Section 3.2 presents the concession game

theoretical framework. Then Section 3.3 analyzes the benchmark model without learning

about private payoff states. Section 3.4 characterizes the equilibrium where there is learning

about private payoff states and compares the expected concessions with and without learning.

Section 3.5 extends the model to investigate endogenous information acquisition. Finally,

Section 3.6 concludes.

3.2 Model Setting

Two risk-neutral players (i = 1, 2) are playing a continuous-time war of attrition game.

There is no discounting. At each point in time, both players have to choose simultaneously

between one of two actions: to stay (S) or to quit (Q). Each player is either a commitment

type or a normal type. The commitment type player will always choose to stay. For the

normal type players, if neither of the two players chooses to quit, the game continues and

each player has to incur a flow cost of c, which reflects the cost of delay. If at least one of

the players chooses to quit, the payoff matrix is specified as the following (player 1 is the

row player and player 2 is the column player):

S Q
S (-,-) (vH , v2)
Q (v1, vH) (M,M)

If player i stays while −i quits, then player i is the winner of the game and gets a winning

payoff of vH . If player i quits first, then he is the loser and gets a losing payoff vi. The payoff

when both players quit simultaneously is M . There is common knowledge about vH and

M < vH but there is incomplete information about losing payoffs v1 and v2.

In particular, I assume that v1 and v2 follow independent and identical binary distribu-

tions. vi can be either a positive number vL < vH or zero. Throughout the paper, I will
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maintain the assumption that vL ≤ 1
2
vH . The reason for making this technical assumption is

to guarantee the equilibrium expected concession rate is monotonic over time. Each player i

initially does not know the exact value of vi. It is common knowledge that vi = vL happens

with prior p0. It is also common knowledge that a player is normal with probability γ0.

Remark 3.1. In the current model, the flow cost of delay is fixed. An alternative way

of modelling the cost of delay is to introduce discounting. However, discounting has an

undesirable feature if I maintain the same assumption on the losing payoff vi. In particular,

if the player i knows for sure that vi = 0, there will be no cost of delay and hence the

expected delay is infinity. To avoid this issue, I have to assume that vi can be either v̄L or

vL, where 0 < vL < v̄L < vH . Under that hypothesis, I conjecture that there is a unique

sequential equilibrium, and the equilibrium has the same qualitative feature as characterized

by Theorem 3.4.

3.3 Benchmark Case: No Learning

I will first discuss the case without learning as a benchmark. Without learning, each normal

player’s belief that v = vL will stay at p0. But there is incomplete information for each player

i, since he is unsure whether his opponent is a normal player. The key is to characterize how

a normal type player chooses a time path of conceding in the event that the other player has

not already conceded. In the future, I will refer to a normal type player whenever I use the

term “player.”

A strategy for normal player 1 (2) is denoted as X1(t) (X2(t)) where X i(t) denotes the

probability that player i concedes to player −i by time t (inclusive). X i(0) is allowed to be

strictly positive such that player i concedes to player −i immediately. I use F i(t) to denote

player −i’s expected probability that player i concedes to player −i by time t. Obviously,

F i(t) = γ0X
i(t). Therefore, I can use either F i(t) or X i(t) to denote player i’s strategy.

Given player 2’s strategy F 2, player 1’s expected payoff by conceding at time t is given by:
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U1(t, F 2) =

∫
s<t

(vH − cs)dF 2(s) + (M − ct)(F 2(t)− F 2(t−)) + (p0vL − ct)(1− F 2(t)).

Here F 2(t−) = limτ↗t F
2(τ). The expected payoff from never conceding is given by:

U1(∞, F 2) =

∫
s<∞

(vH − cs)dF 2(s).

Finally, define U1(F 1, F 2) to be player 1’s expected discounted value by playing the profile

(F 1, F 2). Formally, U1(F 1, F 2) can be written as:

U1(F 1, F 2) =

∫
t∈[0,∞]

U1(t, F 2)dX1(t) =
1

γ0

∫
t∈[0,∞]

U1(t, F 2)dF 1(t).

U2(F 1, F 2) can be defined similarly. A Nash equilibrium is defined as a profile of F =

(F 1, F 2) such that F i ∈ argmaxU i(·, F−i).

The set of sequential equilibria is characterized by the following proposition:

Proposition 3.1. Without learning, there exists a unique sequential equilibrium such that:

(1) each normal type player concedes at a positive rate between time 0 and T where

T = −(vH − p0vL) log(1− γ0)

c
.

After time T , only the commitment type player stays;

(2) for each player at time t ∈ [0, T ], the expected concession rate ft = dF (t)/dt
1−F (t)

is a

constant c
(vH−p0vL)

; the normal type player’s concession rate xt = dX(t)/dt
1−X(t)

satisfies:

xt[1− (1− γ0)e
ct

vH−p0vL ] =
c

(vH − p0vL)
.

Sketch of the proof. The proof of the above proposition is similar to the proof of proposition

1 in Abreu and Gul (2000). In particular, the key features of the candidate equilibrium are

the same as those in Abreu and Gul (2000):

(1) A normal type player will not delay conceding once he knows that his opponent will

never concede.
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(2) F i is continuous and strictly increasing.

(3) At time 0, neither of the two players concedes with a positive probability.

(4) After time 0, each player is indifferent between conceding and staying for any t before

T .

The last property implies that the expected utility of a normal type player −i who

concedes at time t is the same as p0vL for all t ∈ [0, T ]:

p0vL =

∫ t

0

(vH − cs)dF i(s) + (p0vL − ct)(1− F i(t)).

As a result, F i(·) is differentiable and f it ,
dF i(t)/dt
1−F i(t) satisfies:

(vH − p0vL)f it = c.

It is straightforward to see the expected concession rate f it = c
(vH−p0vL)

for i = 1, 2.

On the other hand, since F i(t) = γ0X
i(t), f it can be shown to be xitγ

i
t, where xit ,

dXi(t)/dt
1−Xi(t)

is normal type player i’s concession rate at time t and γit denotes the posterior belief that

player i is normal given that player i does not concede until time t.

Obviously, the rate xit is chosen such that player i’s normal opponent is indifferent between

staying and quitting and hence

γitx
i
t =

c

vH − p0vL
.

γit is updated by Bayes rule:

γit =
γ0 − F i(t)

1− F i(t)

and the law of motion for γit satisfies: γ̇it = −xitγit(1−γit), which implies that beginning from

γ0, γ1
t = γ2

t = γt for all t such that

γ̇t = − c

vH − p0vL
(1− γt).

The solution to the above differential equation is given by γt = 1 − (1 − γ0)e
ct

vH−p0vL . The

normal type players will concede for sure if γt reaches zero. Therefore, for the normal type

92



players, the game will last for at most T = − (vH−p0vL) log(1−γ0)
c

length of time.2 �

The expected delay is infinity since the commitment type players will always choose to

stay. However, the expected delay Ω conditional on at least one of the two players being

normal is finite.Conditional on at least one of the two players being normal, with probability

2γ0−2γ20
2γ0−γ20

, the conceding times follow a truncated exponential distribution

F (t) =
1− e−

ct
vH−p0vL

γ0

;

with probability
γ20

2γ0−γ20
, the conceding times follow the distribution

F̃ (t) = 1− (1− F (t))2.

Therefore, the expected delay Ω is given by:

Ω =
2γ0 − 2γ2

0

2γ0 − γ2
0

∫ T

0

tdF (t) +
γ2

0

2γ0 − γ2
0

∫ T

0

td[1− (1− F (t))2]

=
1

2γ0 − γ2
0

∫ T

0

td(1− e−
2ct

vH−p0vL ) =
vH − p0vL
c(2γ0 − γ2

0)
[
1

2
(1− (1− γ0)2) + log(1− γ0)(1− γ0)2].

As γ0 goes to one, the limiting equilibrium is the following equilibrium in the complete

information game: each player concedes with rate c
vH−p0vL

, the maximum delay time is

infinity and the expected delay is vH−p0vL
2c

.

3.4 Learning

I introduce learning by assuming that after the game starts, as long as no player concedes,

each player receives an exogenous private signal that arrives according to a Poisson process.

The Poisson processes are independent across players. The arrival rate is λ if v = vL and

zero otherwise. Therefore, after receiving this signal, player i immediately believes with

2Compared to a complete information war of attrition game, the incomplete information setting sub-
stantially reduces the set of equilibria. In a complete information war of attrition, there always exists a
degenerate equilibrium where player i concedes immediately while player −i never concedes.
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probability one that v = vL. Absence of the signal will make the player more and more

pessimistic about the probability that v = vL. In this section, I will first solve a two-sided

learning model where both players have access to the above learning technology and then

solve a one-sided model where one of the two players is able to learn.

3.4.1 Two-Sided Learning

Compared to a model without learning, learning adds more uncertainty about each player’s

type. In particular, at any time t > 0, each normal type player may have different private

beliefs about his payoff state depending on the learning outcomes. If the player has received

at least one Poisson signal, he believes v = vL for sure. I call him a sure type player. If

the player has not received any Poisson signal, his posterior belief about v = vL becomes

pt = p0e−λt

p0e−λt+1−p0 . I call him a learning type player. I will use γit (βit) to denote the posterior

belief that player i is a learning (sure) type at time t given he has not conceded by time t.

Obviously, γi0 = γ0 and βi0 = 0.

A strategy for the learning type player 1 (2) is denoted as X1(t) (X2(t)) where X i(t)

denotes the probability that player i concedes to player −i by time t (inclusive). A strategy

for the sure type player 1 (2) is denoted asX1(t; τ) (X2(t; τ)) where τ ≤ t is the time when the

first Poisson signal is received.3 Both X i(0) and X i(τ ; τ) are allowed to be strictly positive

such that player i concedes to player −i immediately. I use Y i to denote the combination of

sure players’ strategies: Y i(t) = (X i(t; τ))τ≤t; and Zi to denote the overall strategy of player

i: Zi = (X i(·), Y i(·)). Zi determines F i(t), which is player −i’s expected probability that

player i concedes to player −i by time t. Given player 2’s strategy Z2 and F 2 induced by

Z2, a normal player 1’s expected payoff by conceding at time t (if player 1 is still learning

at time t) is given by:

3There is a continuum of sure type players that is indexed by the arrival time of the first Poisson signal.
The sure type players are not required to use the same strategy at any time t. There might be a continuum
of equilibria by assigning different sure type players different concession rates. However, all of the equilibria
are outcome equivalent in terms of the expected concession rate.
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U1(t, Z1, Z2) =

∫
s<t

(vH − cs)(p0e
−λs + 1− p0)dF 2(s)

+

∫
s<t

p0λe
−λs(1− F 2(s))(W 1(Z1, Z2; s)− cs)ds

+ (M − ct)(F 2(t)− F 2(t−)) + (ptvL − ct)(p0e
−λt + 1− p0)(1− F 2(t)).

Here F 2(t−) = limτ↗t F
2(τ) and W 1(Z1, Z2; s) denote the expected discounted value for

player 1 who becomes sure at time s under the strategy profile (Z1, Z2).

Given F i and player i has not conceded by time t, I can use F i(s|t) to denote the truncated

probability of conceding after time t. The expected payoff for player 1 who is sure at time

τ and concedes at time t is given by:

W 1(t, Z2; τ) =

∫
τ≤s<t

(vH − c(s− τ))dF 2(s|τ) + (M − c(t− τ))(F 2(t|τ)− F 2(t− |τ))

+ (vL − c(t− τ))(1− F 2(t|τ)).

Similarly, the expected payoff for player 1 who is still learning at time τ and concedes at

time t (if player 1 is still learning at time t) is given by:

U1(t, Z1, Z2; τ) =

∫
τ≤s<t

(vH − c(s− τ))(pτe
−λ(s−τ) + 1− pτ )dF 2(s|τ)

+

∫
τ≤s<t

pτλe
−λ(s−τ)(1− F 2(s|τ))(W 1(Z1, Z2; s)− c(s− τ))ds

+ (M − c(t− τ))(F 2(t|τ)−F 2(t−|τ)) + (ptvL− c(t− τ))(pτe
−λ(t−τ) + 1− pτ )(1−F 2(t|τ)).

Finally, define U1(Z1, Z2; τ) (W 1(Z1, Z2; τ)) to be the learning (sure) type player 1’s

expected discounted value by playing the profile (Z1, Z2) after τ . Formally, U1(Z1, Z2; τ)

and W 1(Z1, Z2; τ) can be written as:

U1(Z1, Z2; τ) =

∫
t∈[τ,∞]

U1(t, Z1, Z2; τ)dX1(t|τ)
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and

W 1(Z1, Z2; τ) =

∫
t∈[τ,∞]

W 1(t, Z2; τ)dX1(t; τ).

U2(Z1, Z2; τ) and W 2(Z1, Z2; τ) can be defined similarly. A strategy profile (Z1, Z2) is a

sequential equilibrium if both U i(·, Z−i; τ) and W i(·, Z−i; τ) are maximized at any time τ

when nobody has conceded yet.

Any candidate sequential equilibrium shares the following key features of the equilibrium

without learning:

(1) A rational player will not delay conceding once he knows that his opponent will never

concede.

(2) F i (the expected distribution by i’s opponent) is continuous and strictly increasing

for 0 < t ≤ T i, where T i is the terminal time at which a normal type player i will concede

for sure.

(3) At time 0, at most one of the two players will concede with a positive probability.

The first property means that a normal player will not delay conceding once he knows

that his opponent will never concede. The most important property is the second one, which

means that F i(t) cannot have jumps or be constant in a time interval. Also the second

property implies that expected values U1(t, F 2; τ) and W 1(t, F 2; τ) are continuous.

The proofs of the above properties are similar to the proofs provided in Abreu and Gul

(2000) and hence are omitted. For both the sure and learning type players, there are three

possibilities: strictly prefer conceding, strictly prefer staying, or indifference. There are nine

different combinations in total. The next lemma shows that only three of them can happen

in any equilibrium.

Lemma 3.1. In any sequential equilibrium, at any time t such that a normal player is still

possible to concede, only one of the following three cases is possible:

(1) the learning type is indifferent between conceding and staying and the sure type strictly

prefers conceding;

96



(2) the sure type is indifferent between conceding and staying and the learning type strictly

prefers staying;

(3) the sure type strictly prefers conceding but the learning type strictly prefers staying.

Proof. First, I will show that the sure type player can never strictly prefer staying in any

candidate equilibrium. Suppose on the contrary that there exists a time interval (t1, t2)

such that the sure type player 1 strictly prefers staying for any t ∈ (t1, t2). Define t? to be

the supremum of t such that player 1 strictly prefers staying for (t1, t). t? must be finite

since there is a strictly positive probability for player 2 to stay forever. This implies that

there exists η̄ > 0 such that for all η < η̄, W 1(t, F 2; τ) > vL for any t ∈ (t?, t? + η) and

τ ∈ (t? − η, t?). From the expression of W 1(t, Z2; τ), it must be:

W 1(t, Z2; τ) =

∫
τ≤s<t

(vH − c(s− τ))dF 2(s|τ) + (vL − c(t− τ))(1− F 2(t|τ)) > vL.

For the learning type player, if he chooses to concede at time t regardless of whether he

receives a signal, the expected payoff can be written as:

U1(t, Z2; τ) =

∫
τ≤s<t

(vH − c(s− τ))dF 2(s|τ) + (vL − c(t− τ))(1− F 2(t|τ))

= pτW
1(t, Z2; τ) + (1− pτ )(

∫
τ≤s<t

(vH − c(s− τ))dF 2(s|τ)− c(t− τ)(1− F 2(t|τ))). (3.1)

The second term is strictly positive since W 1(t, Z2; τ) > vL. Therefore, it must be the case

that U1(t, Z2; τ) > pτW
1(t, Z2; τ) > pτvL. This implies that the learning type player also

prefers staying in a neighborhood left of t?. Then F 1 must be flat in a neighborhood left of

t?, which contradicts the second property.

Also, the learning type player cannot strictly prefer conceding at any time τ . Suppose

not and the learning type player strictly prefers conceding for t ∈ (τ, t̄). Then the sure type

player has to randomize for t ∈ (τ, t̄). The expected payoff for a learning type player who

concedes at t hence is given by:
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U1(t, Z2; τ) =

∫
τ≤s<t

(vH − c(s − τ))dF 2(s|τ) + (pτvL − c(t − τ))(1 − F 2(t|τ)).

Equation (3.1) immediately implies that if U1(t, Z2; τ) < pτvL, then W 1(t, Z2; τ) < vL,

which contradicts the fact that the sure type is indifferent at time t.

The above analysis leaves only three possibilities on the equilibrium path, which are listed

in the lemma.

The above lemma has very intuitive interpretations. Since the sure type player is more

optimistic about the private payoff state than the learning type, the sure type has a higher

incentive to concede. As a result, if the learning type is indifferent between conceding and

staying, the sure type must strictly prefer conceding; if the sure type is indifferent between

conceding and staying, the learning type must strictly prefer staying. In the benchmark

model without learning, the normal type must always be indifferent between conceding and

staying. Here, it is possible that neither the learning type nor the sure type is indifferent.

If the sure or learning type player −i is indifferent between conceding and staying at

time t, then F i must be differentiable at time t. In particular, the expected concession rate

f it = dF i(t)/dt
1−F i(t) must be c

vH−vL
if the sure type player −i is indifferent and be c

vH−ptvL
if the

learning type player −i is indifferent. If the expected concession rate is between those two

numbers, then the sure type player −i strictly prefers conceding while the learning type

player −i strictly prefers staying. Therefore, the expected equilibrium concession rate must

be between c
vH−ptvL

and c
vH−vL

. Finally, if the normal type player −i does the above, then

F−i is also differentiable such that the expected concession rate is λγtpt.

Slow Learning Case

Based on the previous lemma, I am able to show that in any sequential equilibrium with

learning, there will be some periods of time such that the equilibrium concession rate in

those periods is lower than the equilibrium concession rate without learning.
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Lemma 3.2. Fix any sequential equilibrium with learning. There exists T < ∞ such that

normal players concede with probability one by time T . Also there exists ε > 0 such that for

all t ∈ (T − ε, T ], the expected equilibrium concession rate ft = dF (t)/dt
1−F (t)

is

c(1− p0 + p0e
−λt)

vH(1− p0 + p0e−λt)− p0e−λtvL
.

.

Proof. Suppose T is infinite. Then, with a positive probability, the normal type player has

to stay forever and get a payoff of −∞. This cannot be optimal. Therefore, T must be finite.

Also T cannot be zero. If not, then both normal type players concede with probability one.

This contradicts the third property of the sequential equilibrium. For T > 0, suppose the

statement is not true and there exists t1 < T such that the expected equilibrium concession

rate is strictly larger than

c(1− p0 + p0e
−λt)

vH(1− p0 + p0e−λt)− p0e−λtvL

for all t ∈ (t1, T ]. Notice that it is impossible for the learning type to concede with probability

one by time t1. This implies that the posterior belief γt1 must be strictly positive. However,

if the expected equilibrium concession rate is strictly larger than

c(1− p0 + p0e
−λt)

vH(1− p0 + p0e−λt)− p0e−λtvL

for all t ∈ (t1, T ], the learning type strictly prefers to stay. As a result, γT > 0 as well. But

since the normal type players stop waiting at T , there must be a jump in F at time T , which

leads to a contradiction.

The above lemma implies that with exogenous learning, there always exist some periods

such that the expected equilibrium concession rate is c
vH−ptvL

. When the learning rate is low,

the following theorem shows that this is always the case for the unique sequential equilibrium.

Theorem 3.1. If λγ0p0 ≤ c
vH−p0vL

, there exists a unique sequential equilibrium such that:
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(1) each learning type player concedes with probability zero at time 0 and at a positive

rate between time 0 and T . The sure type player concedes with probability one upon receiving

the first Poisson signal;

(2) T satisfies:

γ0 = 1− e−
cT
vH

[
vH − p0vL

(vH − vL)p0e−λT + (1− p0)vH

]− cvL
λvH (vH−vL)

.

After time T , only the commitment type player stays;

(3) for each player at time t ∈ [0, T ] , the expected concession rate ft = dF (t)/dt
1−F (t)

is

c(1− p0 + p0e
−λt)

vH(1− p0 + p0e−λt)− p0e−λtvL
.

Proof. First, notice that at the beginning of the game, if only the sure type concedes with

probability one, the expected concession rate is no more than λγ0p0.4 The assumption

that λγ0p0 ≤ c
vH−p0vL

implies that if only the sure type concedes, the expected concession

rate is lower than the minimum requirement of the equilibrium concession rate, which is

c
vH−p0vL

. Therefore, in any candidate sequential equilibrium, it must be the case that the

sure type concedes immediately and the learning type randomizes at the beginning of the

game. Suppose the sure type continues to concede with probability one until time τ . Then

at time τ , the posterior beliefs are such that βτ = 0 and γτ < γ0.

If the learning type player stops randomizing at time τ , it must be case that at time τ ,

λγτpτ ≥ c
vH−pτvL

. However, for any t < τ , the law of motion for γtpt(vH − ptvL) satisfies:

dγtpt(vH − ptvL)

dt
= γ̇tpt(vH − ptvL)− γtλpt(1− pt)(vH − 2ptvL).

The first term is negative since γ̇t < 0 and the second term is negative because vH ≥ 2vL.

As a result, γtpt(vH − ptvL) is strictly decreasing over time. There cannot exist any τ such

4If the learning type player concedes with probability zero at time zero, λγ0p0 is exactly the expected
concession rate. But if the learning type player concedes with a strictly positive probability at time zero,
the expected concession rate is less than λγ0p0 since the posterior is less than γ0.
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that λγτpτ ≥ c
vH−pτvL

. Therefore, on the equilibrium path, the learning type is always

randomizing between time 0 and T .

Denote xt to be the equilibrium concession rate of the learning type. The indifference

condition implies that:

(γtxt + γtλpt + λpt)ptvL = −c+ γtxtvH + γtλptvH + λptvL − λpt(1− pt)vL.

Also γt is updated by Bayes rule:

γ̇t = −(λpt + xt)γt(1− γt).

As a result, it is straightforward to derive an ODE about γt and solve γt as:

1− γ0

1− γt
= e

− ct
vH

[
vH − p0vL

(vH − vL)p0e−λt + (1− p0)vH

]− cvL
λvH (vH−vL)

.

T is chosen such that γT = 0 and hence T satisfies:

γ0 = 1− e−
cT
vH

[
vH − p0vL

(vH − vL)p0e−λT + (1− p0)vH

]− cvL
λvH (vH−vL)

.

The above calculation also suggests that it is impossible to have a learning type player

conceding with strictly positive probability at time zero. If player i does that, then to

guarantee that both normal players stop conceding at the same T , it must be the case that

the learning type player −i also concedes with a strictly positive probability at time zero.

This contradicts the third property of the candidate equilibrium.

The expected equilibrium concession rate is changing over time, which is different from

the model without learning. In particular, it is relatively easier to reach an agreement

initially but it becomes more and more difficult over time. Since pt < p0 for all t > 0, it is

trivial to observe:

Corollary 3.1. If λγ0p0 ≤ c
vH−p0vL

, compared to a model without learning, the exogenous

learning increases the expected time of delay.
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The result is quite surprising in the sense that on the equilibrium path, the sure player

who receives a Poisson signal will concede immediately. Then it seems that the exogenous

learning should facilitate agreement. However, this intuitive thinking ignores the strategic

response of the rational players. Learning as a martingale process can make the rational

player both more and less optimistic about his private payoff state. The more optimistic

player is more willing to concede, while the less optimistic player becomes less willing to

concede. If the learning rate is low, the expected equilibrium concession rate is to make the

less optimistic rational player indifferent. This implies that the rational players will overreact

to this exogenous learning process and cause a longer delay.

Intermediate Learning Case

Exogenous learning increases delay when the learning rate is low. However, if λ is sufficiently

large, the strategy profile described above is no longer an equilibrium. This is because if it is

still an equilibrium for the sure player to concede immediately, then the expected concession

rate is very high when λ is large. As a result, the learning type player can never be indifferent.

In this section, I will construct an equilibrium when the learning rate is intermediate.

Theorem 3.2. Suppose λγ0p0 ∈ ( c
vH−p0vL

, c
vH−vL

), and the unique sequential equilibrium has

the following feature: there exists T1 < T2 such that for t ∈ (0, T1), each learning type player

concedes with probability zero and the sure type player concedes with probability one upon

receiving the first Poisson signal; for t ∈ (T1, T2), the sure type player still concedes with

probability one upon receiving the first Poisson signal and the learning type player concedes

at a positive rate.

Proof. If no player concedes with strictly positive probability at time 0, it must be the case

that the learning type player strictly prefers staying while the sure type player strictly prefers

conceding since λγ0p0 ∈ ( c
vH−p0vL

, c
vH−vL

). As shown in the proof of the previous theorem,

γtpt(vH − ptvL) is strictly decreasing over time under the assumption vH ≥ 2vL. It is trivial
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to notice that γtpt is also strictly decreasing over time. Therefore, there exists T1 such that

λγT1pT1 = c
vH−pT1vL

. For t < T1, λγtpt ∈ ( c
vH−ptvL

, c
vH−vL

) and hence the learning type player

strictly prefers staying while the sure type player strictly prefers conceding. For t > T1,

λγtpt <
c

vH−ptvL
and the equilibrium is characterized by the previous theorem.

The final thing to prove is that it cannot be the case that a normal player concedes with

a strictly positive probability at time 0. Suppose on the contrary that is the case. Player 1

concedes with a positive probability at time 0. Then this implies that player 2’s strategy is

such that the learning type of player is indifferent. This can only happen if the sure type of

player 2 is randomizing at time 0 since λγ0p0 >
c

vH−p0vL
. However, it is impossible for player

1 to find a strategy such that the sure type of player 2 is indifferent since λγ0p0 <
c

vH−vL
.

This leads to a contradiction.

When the learning rate is in the intermediate region, the sure type players will concede

for sure once they receive the Poisson signal. The learning type players will strictly prefer

staying initially and begin to concede after some period. It is hard to tell directly whether

delay increases compared to a model without learning. For t ∈ (0, T1), it is possible that the

expected concession rate is strictly larger than c
vH−p0vL

if λ is sufficiently large. However, for

t > T1, the expected concession rate is strictly lower than c
vH−p0vL

.

Also in the intermediate learning case, the impact of the learning rate on delay is ambigu-

ous. When the sure player strictly prefers conceding and the learning type player strictly

prefers staying, a larger λ increases the expected concession rate λγtpt. However, when the

learning type player is randomizing, a larger λ leads to a lower expected concession rate.

Fast Learning Case

If λγ0p0 >
c

vH−p0vL
, then the learning type players randomize at the beginning of the game.

The unique sequential equilibrium in this fast learning case may have two different possibil-

ities. In the first possible equilibrium, there exists T1 < T2 < T3 such that for t ∈ (0, T1),

each learning type player concedes with probability zero while the sure type player concedes
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with a strictly positive probability upon receiving the first Poisson signal and with a positive

rate afterwards; for t ∈ (T1, T2), each learning type player concedes with probability zero

while the sure type player concedes with probability one upon receiving the first Poisson

signal; for t ∈ (T2, T3), each learning type player concedes with a positive rate while the

sure type player still concedes with probability one upon receiving the first Poisson signal.

In the second possible equilibrium,there exists T1 < T2 such that for t ∈ (0, T1), each learn-

ing type player concedes with probability zero while the sure type player concedes with a

strictly positive probability upon receiving the first Poisson signal and with a positive rate

afterwards; for t ∈ (T1, T2), the learning type player concedes at a positive rate while the

sure type player concedes with probability one upon receiving the first Poisson signal.

Notice that at time t such that λγtpt = c
vH−ptvL

, the sure type players cannot switch

to strictly prefer conceding immediately. This is because there is a positive probability to

be a sure type player at time t and the distribution F i cannot have jumps. The sure type

players will continue to randomize until the posterior belief to be a sure type player reaches

zero. There are two possibilities at this point in time t′. In particular, it might be the case

that λγt′pt′ <
c

vH−pt′vL
and hence the equilibrium immediately jumps to the phase where the

learning type player is randomizing.

In both types of equilibria, the expected concession rate initially is c
vH−vL

, which is higher

than the expected concession rate c
vH−p0vL

without learning. But eventually, the expected

concession rate will drop to c
vH−ptvL

. The explicit expression for expected delay is hard

to derive since the expected concession rate is changing over time. However, I can fully

characterize the expected delay in the limiting case where λ = ∞. λ = ∞ corresponds

to the immediate revelation case, where the normal type player i starts with two possible

private types: either vi = vL or vi = 0. Each player i knows exactly what vi is but his

opponent does not know. The initial beliefs are such that vi = vL with probability γ0p0 and

vi = 0 with probability γ0(1 − p0). The next result shows that in this limiting case, the
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expected delay is longer than in the case without learning.

Theorem 3.3. Fix any pair (γ0, p0) ∈ (0, 1)2, if λ = ∞, conditional on at least one of the

two players being normal, the longest delay is higher than the longest delay without learning

and the expected delay is longer than the expected delay without learning.

Proof. The prior beliefs are such that vi = vL with probability γ0p0 and vi = 0 with prob-

ability γ0(1− p0). The unique sequential equilibrium has the following feature: the normal

type players with vi = vL will randomize first and the vi = 0 players will strictly prefer to

stay. After some time T1, the vi = vL players concede with probability one and then the

vi = 0 players begin to randomize for T2 length of time. The expected concession rate is

c
vH−vL

before T1and c
vH

after T1.

Notice that if no concession takes place before T1, the posterior beliefs are such that with

probability γ0(1−p0)
1−γ0p0 > γ0(1− p0), each player is normal. The longest delay is:

T∞ = T1 + T2 = −(vH − vL) log(1− γ0p0)

c
−
vH log 1−γ0

1−γ0p0
c

.

The longest delay without learning is T = − (vH−p0vL) log(1−γ0)
c

. Obviously, T∞ > T since

log(1− γ0p0) > p0 log(1− γ0).

For the expected delay, I have to consider two different cases. Conditional on one of

the two players being normal, with probability (2−γ0p0)p0
2−γ0 , at least one of the two players has

vi = vL; with probability
2γ0(1−γ0)(1−p0)+γ20(1−p0)2

2γ0−γ20
, neither of the two players have vi = vL but

at least one has vi = 0.

The expected delay is given by:
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Ω∞ =
2(1− γ0p0)γ0p0

2γ0 − γ2
0

∫ T1

0

td
1− e−

ct
vH−vL

γ0p0

+
γ2

0p
2
0

2γ0 − γ2
0

∫ T1

0

td

[
1− (1− 1− e−

ct
vH−vL

γ0p0

)2

]

+
2γ0(1− γ0)(1− p0) + γ2

0(1− p0)2

2γ0 − γ2
0

T1 +
2γ0(1− γ0)(1− p0)

2γ0 − γ2
0

∫ T2

0

td
(1− γ0p0)(1− e−

ct
vH )

γ0(1− p0)

+
γ2

0(1− p0)2

2γ0 − γ2
0

∫ T2

0

td

[
1− (1− (1− γ0p0)(1− e−

ct
vH )

γ0(1− p0)
)2

]
.

The above expression can be simplified as:

Ω∞ =
vH − vL

c(2γ0 − γ2
0)

[
1

2
(1− (1− γ0p0)2) + log(1− γ0p0)(1− γ0)2]

+
vH

c(2γ0 − γ2
0)

[
1

2
((1− γ0p0)2 − (1− γ0)2) + log

1− γ0

1− γ0p0

(1− γ0p0)2]. (3.2)

The expected delay without learning is:

Ω =
vH − p0vL
c(2γ0 − γ2

0)
[
1

2
(1− (1− γ0)2) + log(1− γ0)(1− γ0)2]. (3.3)

It is straightforward to observe that for any fixed γ0 > 0, Ω is linear in p0 while Ω∞ is

concave in p0. Ω and Ω∞ coincide when p0 is either 0 or 1. Therefore, Ω∞ > Ω for any pair

(γ0, p0) ∈ (0, 1)2.

Since c
vH−pvL

is convex in p: p c
vH−vL

+ (1 − p) c
vH

> c
vH−pvL

, it seems that the expected

concession rate is higher if we can fully separate the vi = vL and vi = 0 players. Then

intuitively, letting λ = ∞ will increase the expected concession rate and hence decrease

delay. The intuition is wrong because it ignores another channel affecting delay. Since in

equilibrium, the more optimistic player always concedes first, at the time when the vi = vL

players concede with probability one, the posterior belief that vi = 0 increases from γ0(1−p0)

to γ0(1−p0)
1−γ0p0 . This increase in the posterior also leads to a longer delay. If the players think

naively and do not update beliefs at time T1 (i.e., at t = T1, γt = γ0(1 − p0)), the longest

delay

T̃∞ = T1 + T2 = −(vH − vL) log(1− γ0p0)

c
− vH log(1− γ0(1− p0))

c
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is lower than the longest delay without learning.

In summary, compared to a model without learning, there are three factors affecting

delay in the limiting case of λ = ∞. First, the expected concession rate before T1 is higher

than the expected concession rate without learning, which leads to a shorter delay. Second,

the expected concession rate after T1 is lower than the expected concession rate without

learning, which leads to a longer delay. Third, since the more optimistic (vi = vL) players

concede first, the posterior belief that a player is less optimistic (vi = 0) is increasing over

time. The last effect implies that more weight has to be put on the lower expected concession

rate, which also increases delay. The above analysis shows that the first effect dominates the

second effect but is dominated by the combination of the second and third effects. Hence,

the change of posterior beliefs is an important driving force leading to a longer delay.

For an arbitrary learning rate, it is hard to get an explicit solution for the longest delay

and expected delay. But the idea of the above proof can be generalized to get a lower bound

on expected delay. The next result shows that even this lower bound is longer than the

expected delay without learning.

Theorem 3.4. Fix any pair (γ0, p0) ∈ (0, 1)2 and any learning rate λ, conditional on at least

one of the two players being normal, the longest delay with learning is higher than the longest

delay without learning and the expected delay with learning is longer than the expected delay

without learning.

Proof. Suppose the learning type players begin to concede at time t. Before time t, only

the sure type players concede. The probability of conceding before time t is x. Feasibility

requires that x ∈ [0, γ0p0]. This implies that at time t, the posterior beliefs are such that:

pt = γ0p0−x
γ0−x and γt = γ0−x

1−x . Before time t, an upper bound for the concession rate is c
vH−vL

;

after time t, an upper bound for the concession rate is c
vH−ptvL

. Therefore, a lower bound on

the longest delay is given by:
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T̂ = −(vH − vL) log(1− x)

c
−

(vH − γ0p0−x
γ0−x vL) log 1−γ0

1−x

c

=
−vH log(1− γ0)

c
+
vL log(1− x)

c
+

γ0p0−x
γ0−x vL log 1−γ0

1−x

c
. (3.4)

The longest delay when there is no learning is T = − (vH−p0vL) log(1−γ0)
c

. The difference

T̂ − T is proportional to ∆(x) = γ0 log(1 − x) − x log(1 − γ0). The first derivative of ∆(x)

is −γ0
1−x − log(1 − γ0), which is decreasing in x. It is trivial to observe that ∆′(0) > 0 but

∆′(x) could be negative if x is sufficiently large. ∆(x) possibly first increases in x and then

decreases in x. Since ∆(0) = 0 and ∆(γ0p0) > 0, it must be the case that ∆(x) ≥ 0 for all

x ∈ [0, γ0p0]. Therefore, T̂ ≥ T for sure.

Similarly, a lower bound on the expected delay is given by:

Ω̂(x) =
vH − vL

c(2γ0 − γ2
0)

[
1

2
(1− (1− x)2) + log(1− x)(1− γ0)2]

+
vH − γ0p0−x

γ0−x vL

c(2γ0 − γ2
0)

[
1

2
((1− x)2 − (1− γ0)2) + log

1− γ0

1− x
(1− x)2]. (3.5)

Notice that the first derivative of Ω̂ is given by:

Ω̂′(x) =
vH − vL

c(2γ0 − γ2
0)

[1− x− (1− γ0)2

1− x
]

+
γ0(1− p0)vL
c(2γ0 − γ2

0)
[
1

2
((1− x)2 − (1− γ0)2) + log

1− γ0

1− x
(1− x)2]

+
vH − γ0p0−x

γ0−x vL

c(2γ0 − γ2
0)

2(1− x) log
1− x
1− γ0

. (3.6)

On the RHS of the above equation, the second term is positive for sure. The first and third

terms are positive because x ≤ γ0p0. Therefore, Ω̂(x) is increasing in x. And the expected

delay when there is no learning is

Ω =
vH − p0vL
c(2γ0 − γ2

0)
[
1

2
(1− (1− γ0)2) + log(1− γ0)(1− γ0)2].

Obviously, Ω̂(0) = Ω. Then it must be the case that Ω̂(x) ≥ Ω for all x ∈ [0, γ0p0].
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The basic idea of the above proof is that in any equilibrium, it is possible to divide

the equilibrium into two phases. In the first phase, the learning type players strictly prefer

staying; in the second phase, the learning type players is randomizing. The concession rate

in the first phase may be as high as c
vH−vL

. But compared to a model without learning, it is

more difficult to reach an agreement in the second phase. Delay increases from two possible

channels. One is the Bayesian updating process which increases the posterior belief of being a

learning type; the other is the equilibrium concession rate becomes c
vH−ptvL

. The combination

of these two effects in the second phase will completely offset the possible decrease in delay

in the first phase.5 As a result, the expected delay will always be increasing instead of

decreasing.

3.4.2 One-Sided Learning

Another interesting situation is one which only player 1 is able to learn. Player 2 has no

access to the exogenous learning process. Then, at any time t, player 1 has three possible

types: a sure type who is sure that v = vL, a learning type who is still unsure and a

commitment type. I use γ1t to denote the posterior belief that player 1 is a learning type,

β1t to denote the posterior belief that player 1 is a rational type, pt to denote player 1’s

posterior belief that v = vL given he is a sure type at time t and finally γ2t to denote the

belief that player 2 is a normal type.

The next result shows that conditional on at least one of the two players being normal,

the one-sided learning model has the same longest delay as the model without learning.

Theorem 3.5. In the one-sided learning model, conditional on at least one of the two players

being normal, the longest delay is always T = − (vH−p0vL) log(1−γ0)
c

.

5The change in posterior beliefs also plays an important role here. If the players update beliefs naively,
then the lower bound on longest delay with learning is

T̃ = − (vH − vL) log(1− x)

c
−

(vH − γ0p0−x
γ0−x vL) log(1− γ0 + x)

c
,

which could be less than the longest delay without learning for x close to γ0p0.
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Proof. To prove the theorem, I need to consider two separate cases λγ0p0 ≤ c
vH−p0vL

and

λγ0p0 >
c

vH−p0vL
. The unique sequential equilibrium when λγ0p0 ≤ c

vH−p0vL
is characterized

by the following proposition.

Proposition 3.2. If λγ0p0 ≤ c
vH−p0vL

, there exists a unique sequential equilibrium in the

one-sided learning model satisfying:

(1) for player 1, the learning type concedes with probability zero at time 0 and at a positive

rate between time 0 and T ; the sure type player concedes with probability one upon receiving

the first Poisson signal;

(2) the normal type player 2 concedes with strictly positive probability at time 0 and at a

positive rate between time 0 and T ;

(3) T = − (vH−p0vL) log(1−γ0)
c

and after time T , only the commitment type player stays;

(4) at time t ∈ (0, T ] , player 1’s expected concession rate is c
vH−p0vL

and player 2’s

expected concession rate is

c(1− p0 + p0e
−λt)

vH(1− p0 + p0e−λt)− p0e−λtvL
.

Proof. The proof of the equilibrium properties is very similar to the proof in the two-sided

learning model and is omitted. The assumption that λγ0p0 ≤ c
vH−p0vL

guarantees that the

learning type player 1 must randomize and the sure type player 1 must concede immediately

in equilibrium. Therefore, denote x1t (x2t) to be the equilibrium concession rate of the

learning type player 1 (normal type player 2). The indifference conditions imply:

(γ2tx2t + λpt)ptvL = −c+ γ2tx2tvH + λptvL − λpt(1− pt)vL.

and

(γ1tx1t + γ1tλpt)p0vL = −c+ γ1tx1tvH + γ1tλptvH .

γ1t and γ2t evolve as:
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γ̇1t = −(λpt + x1t)γ1t(1− γ1t) and γ̇2t = −x2tγ2t(1− γ2t).

Therefore, we have:

γ̇1t = − c

vH − p0vL
(1− γ1t) and γ̇2t = − c

vH − ptvL
(1− γ2t).

Since pt = p0e−λt

p0e−λt+1−p0 < p0, the expected concession rate of player 2 is smaller than the

expected concession rate of player 1. Also the learning type of player 1 and the normal type

of player 2 have to stop conceding at the same time T . As a result, the normal type of player

2 has to concede with a strictly positive probability at time 0.

T is determined by the shortest time of concession T = − (vH−p0vL) log(1−γ0)
c

and γ2t satis-

fies:

1− γ′0
1− γ2t

= e
− ct
vH

[
vH − p0vL

(vH − vL)p0e−λt + (1− p0)vH

]− cvL
λvH (vH−vL)

.

At time 0, the probability of concession by the normal type of player 2 is chosen such that:

γ′0 = 1− e−
cT
vH

[
vH − p0vL

(vH − vL)p0e−λT + (1− p0)vH

]− cvL
λvH (vH−vL)

.

If λγ0p0 ≤ c
vH−p0vL

, then initially the sure type of player 1 will randomize such that the

expected concession rate is always c
vH−p0vL

. Then at time 0, it is impossible for player 1 to

concede with a positive probability. Next, I will show that there cannot exist two disjoint

time intervals (t0, t1) and (t2, t3) such that the sure type is indifferent on both intervals and

strictly prefers conceding for t ∈ (t1, t2). If there exists such an equilibrium, at t2, it must

be the case that: λγt2pt2 ≥ c
vH−p0vL

. Since γt1pt1 > γt2pt2 , λγt1pt1 >
c

vH−p0vL
. Therefore, if

a sure type player concedes with probability one at t1, his normal opponent must stay for

sure, which leads to a contradiction. Therefore, on the equilibrium path, the sure type will

first randomize until T1 and the learning type randomizes afterwards.
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At t < T1, denote γt to be the belief that player 1 is a learning type at time t and βt

to be the belief that a player is a sure type at time t. Suppose the existing sure type has a

concession rate of xt and a new sure type will concede with probability yt. The indifference

of player 2 means that:

(βtxt + γtλptyt)p0vL = −c+ (βtxt + γtλptyt)vH .

The laws of motion for βt and γt are such that:

β̇t = −xtβt(1− βt)− γtλptyt(1− βt) + γtλpt

and

γ̇t = −γtλpt + γt(βtxt + γtλptyt).

The above equations imply that:

β̇t + γ̇t = − c

vH − p0vL
(1− βt − γt)

and hence

βt + γt = 1− (1− γ0)e
c

vH−p0vL .

Notice for t ≥ T1, βt = 0 and the expected concession rate for the learning type of player

is also c
vH−p0vL

. Therefore, beginning from β0 + γ0 = γ0, βt + γt satisfies:

βt + γt = 1− (1− γ0)e
c

vH−p0vL

for all t ≥ 0. There is also no discontinuity in βt + γt for any t > 0. As a result, it must be

the case that T = − (vH−p0vL) log(1−γ0)
c

.

The above result implies that allowing only one player to learn is better than allowing both

players to learn in terms of delay regardless of what the initial parameters are. Compared to

a model without learning, one-sided learning does not increase the longest time of waiting if

either player 1 or player 2 is normal. In particular, the expected equilibrium concession rate

of player 1 is exactly the same as the case without learning.
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3.5 Endogenous Information Acquisition

This section briefly discusses the implications of the above results on endogenous information

acquisition. In particular, following the setup in Bonatti and Hörner (2009), I assume that

a player can achieve arrival rate λ with flow cost c(λ) with c(0) = 0 and c′(·) > 0. The

information acquisition decision is made at every instant of time given there is no concession

by time t. Formally, normal player i’s information acquisition decision is denoted as ci :

[0,∞) × {0, 1} → [0, λ̄]. 0 means player i has not yet received any Poisson signal, and 1

means player i has received at least one signal. Obviously, if player i has received one signal

at time τ , then cit = 0 for all t ≥ τ . λ̄ is the maximum achievable learning rate. Given the

information acquisition strategy, the total cost of information acquisition from time 0 to t is

given by Ci(t) =
∫ t

0
e−rscisdt. Also define Λi(t) =

∫ t
0
λisdt.

Given player 2’s strategy Z2, a normal player 1’s expected payoff by conceding at time t

is given by:

U1(t, Z1, Z2) =

∫
s<t

(vH − cs− C1(s))(p0e
−Λ1(s) + 1− p0)dF 2(s)

+

∫
s<t

(W 1(Z1, Z2; s)− cs− C1(s))p0λ
1
se
−Λ1(s)(1− F 2(s))ds

+ (M − ct− C1(t))(F 2(t)− F 2(t−))

+ (1− F 2(t))(ptvL − ct− C1(t))(p0e
−Λ1(t) + 1− p0).

Player 2’s expected payoff can be defined similarly.

The paper shows that when the maximum achievable learning rate is not high enough, the

unique sequential equilibrium is such that no player acquires information on the equilibrium

path. Then the unique sequential equilibrium is the same as the equilibrium in the no

learning case.
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Proposition 3.3. If the maximum achievable learning rate λ̄ satisfies:

λ̄ ≤ c

γ0p0(vH − p0vL)
,

then the unique sequential equilibrium is such that each player chooses λit = 0 almost every-

where.

Proof. Suppose the statement is not true. Then there exists a time interval [t1, t2] such that

at least of one the two normal type players begins to acquire information at time t1 and then

stops at t2: ∫ t2

t1

c(λs)ds > 0.

Since the player has not acquired any information before time t1, pt1 = p0. The assumption

λ̄ < c
γ0p0(vH−p0vL)

guarantees that for t ∈ [t1, t2], the learning type has to randomize between

conceding and staying. This implies that if the learning type player i concedes at t2, the

expected payoff at t1 can be written as:

p0vL −
∫
s<t2

Ci(s)(p0e
−Λi(s) + 1− p0)dF−i(s|t1)

−
∫
s<t2

Ci(s)p0λ
i
se
−Λi(s)(1− F−i(s|t1))ds− (1− F−i(t2|t1))(p0e

−Λi(t2) + 1− p0)Ci(t2).

Obviously, the expected value of playing the war of attrition game at t1 is always p0vL

regardless of whether this player acquires information or not. Therefore, the learning type has

no incentive to acquire information and the equilibrium arrival rate is zero almost everywhere

in the endogenous learning model.

3.6 Conclusion

Delay is a pervasive phenomenon in bargaining and voting environments. It is natural to

ask whether there is any way to reduce delay since delay is usually costly. This paper devel-

ops a continuous-time incomplete information war of attrition model with private learning
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investigate whether delay will become shorter if there is an exogenous information flow that

facilitates an agreement. It turns out that this exogenous private learning makes delay longer

instead of shorter. Also, to minimize delay, it is better to allow one player to learn than to

allow both to learn. The result that private learning may lead to a longer delay is quite ro-

bust to some changes in the model specifications. For example, similar results can be derived

if the Poisson signal is such that it reveals vi = 0 for sure, or exogenous learning is about the

winning payoff vH instead of the losing payoff. The key insight is that this private Bayesian

learning is a martingale process and generates multiple normal types. Due to learning, it

is always possible for a normal player to become less optimistic about the payoff state over

time. In equilibrium, there must exist some periods such that the less optimistic players are

randomizing. Compared to the benchmark model without learning, the concession rate in

these periods will be smaller and the expected delay will be longer.

115



Appendix A

Appendices

A.1 Appendix to Chapter 1

A Admissible Strategies

Before formally defining admissible Markovian strategies, we define admissibility for general

strategies. First denote an outcome h to be

h , ({ait, Nit}ni=1, Pt)0≤t<∞ ;

and H is the set of all possible outcomes. A sub-outcome h− ⊂ h only includes information

about purchasing decisions and lump-sum payoffs:

h− , ({ait, Nit}ni=1)0≤t<∞ ;

and H− is the set of all possible sub-outcomes.

In general, a strategy can be viewed as a map from the set of outcomes to actions.

We focus on strategies which are independent of previous prices since allowing pricing as

a function of previous prices may generate more complicated problems.1 The monopolist’s

pricing decision is given by the mapping:

P : H− × [0,∞)→ R;

1For example, any decreasing price path is consistent with the pricing function P (h, t) = infτ<t Pτ .
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and the buyers’ acceptance decision is given by the mapping:

αi : H × [0,∞)→ {0, 1}.

P (h−, t) is the price charged by the monopolist at time t, and αi(h, t) is the purchasing

decision made by buyer i at time t. Assumptions A1 and A2 stated below guarantee the

strategies are well defined.

Denote vector a = (a1, · · · , an) and vector N = (N1, · · · , Nn). A metric on the sets of

outcomes is defined as:

D−(ĥ−t , h̃
−
t ) =

∫ t

0

[
d(âτ , ãτ ) + d(N̂τ , Ñτ )

]
dτ

and

D(ĥt, h̃t) =

∫ t

0

[
d(âτ , ãτ ) + d(N̂τ , Ñτ )

]
dτ + |P̂t − P̃t|

where d is the Euclidean norm. In particular, the previous prices do not enter in the definition

of D(ĥt, h̃t); only the current price matters. The metric D (D−) determines a Borel σ-algebra

BH (BH−). The first restriction on strategies is that:

A1. P is a BH− × B[0,∞) measurable function and αi is a BH × B[0,∞) measurable function.

The second restriction requires the strategies take the same actions if two histories are

almost the same:

A2. For all t, and ĥ, h̃ ∈ H such that D(ĥt, h̃t) = 0, then P (ĥ−, t) = P (h̃−, t) and αi(ĥ, t) =

αi(h̃, t).

A1 and A2 are two natural restrictions on strategies. Additional conditions have to

be imposed to guarantee the induced outcome is unique. Before doing that, we define an

outcome h to be compatible with a given strategy profile {P, α} if h satisfies: P (h−, t) = Pt

and αi(h, t) = ait. A straightforward modification of the argument in Bergin and McLeod

(1993) shows the following:
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Proposition A.1. A strategy profile (P, α) generates a unique distribution over compatible

outcomes if it satisfies:

1. for any outcomes ĥ and h̃ and any time t such that D(ĥt, h̃t) = 0 and N̂t = Ñt,

lim
ε↘0

P (ĥ, t+ ε) = lim
ε↘0

P (h̃, t+ ε);

and

2. for any ĥ and h̃ and any t such that D(ĥt, h̃t) = 0, N̂t = Ñt and limε↘0 P̂t+ε =

limε↘0 P̃t+ε, then there exists ε > 0 and a ∈ {0, 1} such that αi(ĥ, t̃) = αi(h̃, t̃) = a for

any t̃ ∈ (t, t+ ε).

We say a strategy profile (P, α) is weakly admissible if it satisfies conditions 1 and 2

in proposition A.1. In proposition A.1, condition 2 is the key condition. This condition

is slightly different from the inertia condition proposed in Bergin and McLeod (1993). The

modification is needed to handle the possible situation when the arrival of a lump-sum payoff

at time t results in the purchasing decisions at to be not right continuous in time.

Any Markovian strategy profile (P, α) which induces a weakly admissible strategy profile

generates a unique distribution over compatible outcomes. But the notion of weak admis-

sibility does not guarantee that the induced outcome allows us to use equations (1.1) and

(1.2) to update beliefs.

Definition A.1. A Markovian strategy profile (P, α) is strongly admissible in the good news

case if it satisfies:2

1. P (ρ) is left continuous and non-decreasing when it is continuous: for each ρ ∈ Σ and

δ > 0, there exists some ε > 0 s.t. P (ρ′) ≤ P (ρ) and |P (ρ′)−P (ρ)| ≤ δ for all feasible

ρ′ ≤ ρ such that ||ρ′ − ρ|| ≤ ε;3

2For the bad news case, condition 1 should be changed to require that P is piecewise non-increasing.

3We write (x1, · · · , xn) ≤ (y1, · · · , yn) if xi ≤ yi for i = 1, · · · , n, and || · || is the Euclidean norm.
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2. αi(ρ, P ) is left continuous: for each ρ ∈ Σ and δ > 0, there exists some ε′ > 0 s.t.

αi(ρ
′, P ′) = αi(ρ, P ) for all feasible (ρ′, P ′) ≤ (ρ, P ) such that ||(ρ′, P ′)− (ρ, P )|| ≤ ε′;

and

3. if h is a history compatible with (P, α), C(t;h) < ∞ for t < ∞, where C(t;h) denotes

the number of times τ before t such that purchasing behavior aτ is discontinuous.

It is straightforward to check that conditions 1 and 2 in definition A.1 are sufficient to

guarantee that (P, α) induces a weakly admissible strategy profile. More than that, these

two conditions imply any outcome induced by the Markovian strategy profile (P, α) is well

behaved in the sense that the purchasing decisions ait and pricing decisions Pt are right

continuous functions when there is no arrival of lump-sum payoffs. This enables us to use

equations (1.1) and (1.2) to update beliefs. In the good news case, condition 1 implies Pt

is decreasing when it is continuous but it also allows jumps in the price path. Condition

3 requires that each buyer can change actions no more than a finite number of times in a

finite time interval, since condition 2 does not preclude the possibility of an infinite number

of changes on any time interval. This additional condition is needed to simplify the analysis

of the equilibrium.

Definition A.1 is too strong in the sense that even cutoff strategies may not be strongly

admissible.4 We use the completion argument in Bergin and McLeod (1993) to overcome

this issue. First define a metric on the space of strongly admissible strategies. A Markovian

strategy profile (P, α) is admissible if there exists strongly admissible Markovian strategy

profiles {(Pk, αk)}∞k=1 such that limk→∞(Pk, αk) = (P, α). An outcome h is consistent with

an admissible strategy profile (P, α) if there exists strongly admissible Markovian strategy

profiles {(Pk, αk)}∞k=1 and outcomes {hk}∞k=1 satisfying the following three conditions: i) for

4For example, consider a cutoff strategy such that the cutoff price for buyer i is strictly increasing in
beliefs and buyer i takes the risky product at the cutoff price. This strategy violates the condition that αi
is left continuous in beliefs.
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each k, hk is compatible with (Pk, αk), ii) limk→∞(Pk, αk) = (P, α) and iii) limk→∞ hk = h.

An admissible Markovian strategy profile (P, α) may not generate a unique distribution over

compatible outcomes. But the proof of theorem 2 in Bergin and McLeod (1993) applies here

as well to show that each admissible Markovian strategy profile (P, α) is identified with a

unique distribution over consistent outcomes. When referring to outcomes generated by an

admissible Markovian strategy profile (P, α), we restrict to the consistent outcomes.

In the definition of Markov perfect equilibrium, we allow the deviating strategies to be

non-Markovian. Additional conditions on the non-Markovian strategies are also needed to

make sure that the induced outcome is well behaved even off the equilibrium path. The

conditions imposed are counterparts of conditions 1-3 in definition A.1.

Definition A.2. Define time t as a regular time for outcome h if there is no arrival of lump-

sum payoffs at time t. A weakly admissible strategy profile (P, α) is strongly admissible in

the good news case if it satisfies:

1. P is right continuous and non-increasing when continuous at any regular time: for any

outcomes h and any regular time t,

lim
ε↘0

P (h, t+ ε) = P (h, t);

and there exists ε̄1 > 0 such that P (h, t+ ε) ≤ P (h, t) for all ε ≤ ε̄1;

2. for any h and any regular t such that Pt is right continuous and non-increasing at time

t, there exists ε̄2 > 0 and a ∈ {0, 1} such that αi(h, t̃) = αi(h, t) for any t̃ ∈ (t, t+ ε̄2);

and

3. if h is a history compatible with (P, α), C(t;h) <∞ for t <∞.

A non-Markovian strategy profile (P, α) is admissible if there exists strongly admissible

non-Markovian strategy profiles {(Pk, αk)}∞k=1 such that limk→∞(Pk, αk) = (P, α). For an

admissible non-Markovian strategy profile (P, α), we also restrict to the consistent outcomes

which can be similarly defined.
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B Proofs of Results from Section 3

B.0 General Solution to Linear First Order Ordinary Differential Equations

The following observation is widely used throughout the paper to solve linear first order

ordinary differential equations.

Observation A.1. Given that f and g are continuous functions on an interval I, the ordi-

nary differential equation y′ + f(x)y = g(x) has a general solution

y(x) =
H(x)

h(x)

where h(x) = eR(x), R(x) is an antiderivative of f(x) on I and H(x) is an antiderivative of

h(x)g(x) on I.5

Proof. Multiply both sides of differential equation y′ + f(x)y = g(x) by h(x). Then the

original differential equation becomes

d

dx
(h(x)y(x)) = h(x)g(x).

After integration, it is straightforward to see that the general solution is y(x) = H(x)
h(x)

.

B.1 Proof of Proposition 1.1

Proof. Before proving the proposition, we first show the socially optimal allocation is indeed

symmetric.

Claim A.1. The socially optimal allocation is symmetric when buyers are homogeneous.

Proof. For any posteriors ρ, denote the social surplus to be Ω(ρ). The social planner’s

problem can be written as:

Ω(ρ) = sup
α(·)∈{0,1}n

E

{∫ h

t=0

re−rt
n∑
i=1

[αi(ρt)ρitq(ρt)g + (1− αi(ρt))s]dt+ e−rhΩ(ρh | α)

}
.

5An antiderivative of a function f(x) is defined as any function F (x) whose derivative is f(x): F ′(x) =
f(x).
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Consider any ρ̃ which is a permutation of ρ. Naturally, the social surplus should be the

same: Ω(ρ) = Ω(ρ̃) since the strategies α can be permuted as well. Suppose buyers are

homogeneous with the same prior ρ0 and denote ρ0 = (ρ0, · · · , ρ0). From the HJB equation,

it is socially optimal for buyer i to purchase the risky product if and only if:

rρ0q0g + ρ0q0λH(Ω1(ρ0)− Ω(ρ0))− λHρ(1− ρ)
∂Ω(ρ0)

∂ρi
> rs.

Since Ω(ρ) = Ω(ρ̃), for any j 6= i, we can switch i and j without affecting the partial deriva-

tives. In other words, the partial derivatives are identical when buyers are homogeneous:

∂Ω(ρ0)
∂ρi

= ∂Ω(ρ0)
∂ρj

. Therefore, it is socially optimal for buyer i to purchase the risky product

if and only if it is also optimal for buyer j to purchase. This implies the socially optimal

allocation is symmetric.

Notice in equation

rnρq(ρ)g + nρq(ρ)λHΩ1(ρ) = (r + nρq(ρ)λH)ns, (A.1)

Ω1(·) is a piece-wise function since W (·) is a piece-wise function. The next result claims that

ρeS is always larger than ρeI such that Ω1(ρeS) > (n− 1)s+ g.

Claim A.2. Beginning from any combination of ρ0 < 1 and q0 < 1, the efficient cutoff in the

social learning phase will always be larger than the efficient cutoff in the individual learning

phase: ρeS > ρeI .

Proof. We first substitute the expression Ω1(ρ) = g + (n− 1)W (ρ) into equation (A.1) and

get

rnρq(ρ)g + nρq(ρ)λH [g + (n− 1)W (ρ)] = (r + nρq(ρ)λH)ns. (A.2)

By contradiction, assume ρeS ≤ ρeI and W (ρeS) = s by definition. Equation (A.2) then gives

us a cutoff ρ̃eS satisfying

ρ̃eSq(ρ̃
e
S) = ρeI =

rs

(r + λH)g − λHs
.
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As q(ρ̃eS) < 1, the above equation implies that: ρ̃eS > ρeI , which contradicts the assumption

ρeS ≤ ρeI . Therefore, it must be true that ρeS > ρeI and thus W (ρeS) > s.

From claim A.2, ρeS should satisfy equation (A.2) where q(ρeS) is given by equation (1.6).

Given the priors, the efficient cutoffs (ρeS(ρ0, q0), qeS(ρ0, q0)) can be solved jointly:

qeS =
rs

ρeS[(r + λH)g + (n− 1)λHW (ρeS)− nλHs]
. (A.3)

qeS =
(1− ρ0)nq0

(1− ρ0)nq0 + (1− ρeS)n(1− q0)
. (A.4)

Clearly, W (ρeS) is increasing in ρeS and thus qeS is decreasing in ρeS from equation (A.3).

Equation (A.4) describes how ρ and q evolve jointly over time: since both ρ and q decrease

over time, qeS is increasing in ρeS. Hence the intersection of equations (A.4) and (A.3) is

unique. Equation (A.3) describes the stopping curve such that it is socially efficient to keep

experimenting if

ρq >
rs

(r + λH)g + (n− 1)λHW (ρeS)− nλHs
.

Finally, we still have to check that it is indeed the case that ρeS > ρeI . Notice that ρeS is

decreasing in qeS on the stopping curve. If q = 1, it is easy to check the unique cutoff ρeS is

the same as ρeI = rs
(r+λH)g−λHs

. And for qeS < 1, we should have ρeS > ρeI .

B.2 Proof of Proposition 1.2

Proof. In the individual learning phase, denote ρ to be the common posterior belief about the

unknown buyer’s idiosyncratic uncertainty. Denote PI(ρ) as the price set by the monopolist

for ρ > ρ?I , where ρ?I is the equilibrium cutoff. Then, the value function for the unknown

buyer satisfies

rUI(ρ) = r(gρ− PI(ρ)) + ρλH(s− UI(ρ))− λHρ(1− ρ)U ′I(ρ).

Certainly, a profit-maximizing monopolist always sets prices PI(ρ) = gρ − s such that

UI(ρ) = s. The monopolist’s problem is to choose between charging a low price gρ − s to
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keep experimenting and charging a high price g−s to extract the full surplus from the known

buyer. Obviously, this is an optimal stopping problem with HJB equation

rJI(ρ) = max {r(g − s), 2r(gρ− s) + ρλH(2(g − s)− JI(ρ))− λHρ(1− ρ)J ′I(ρ)} . (A.5)

On the RHS of equation (A.5), g − s is the value if the monopolist only sells to the

good buyer by charging g − s; if the monopolist decides to continue experimentation, she

not only receives instantaneous revenue 2(gρ − s) by selling to both buyers but also may

receive a future value of 2(g − s) if the unknown buyer receives a lump-sum payoff. From

the value matching and smooth pasting conditions, it is straightforward to characterize the

equilibrium cutoff as

ρ?I =
r(g + s)

2rg + λH(g − s)
.

The equilibrium value function JI(ρ) could be solved as:

JI(ρ) =

{
2(gρ− s) + (g + s− 2gρ?I)

1−ρ
1−ρ?I

[
(1−ρ)ρ?I
(1−ρ?I )ρ

]r/λH if ρ > ρ?I

g − s otherwise.

The known buyer only needs to pay PI(ρ) = gρ− s < g − s before ρ reaches ρ?I , but has

to pay g − s afterwards. The value function for this buyer is given by differential equation

rVI(ρ) = r(g(1− ρ) + s) + ρλH(s− VI(ρ))− λHρ(1− ρ)V ′I (ρ) (A.6)

for ρ > ρ?I = r(g+s)
2rg+λH(g−s) and VI(ρ) = s for ρ ≤ ρ?I = r(g+s)

2rg+λH(g−s) . Equation (A.6) is

an ordinary differential equation with boundary condition: VI(ρ
?
I) = s. This gives us the

expression of VI(ρ) in the proposition.
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B.3 Characterize limh→0
US(ρ)−Û(ρ;h)

h

Lemma A.1. Fix a pair of priors (ρ0, q0) such that ρ?S is the equilibrium cutoff in the social

learning phase. In a mass market, for any ρ > ρ?S,

lim
h→0

US(ρ)− Û(ρ;h)

h
= 2(r + λHρq)(US(ρ)− s) + λHρ(1− ρ)U ′S(ρ)

+ (r + λHρ)g(1− ρ)q(
(1− ρ)ρ?I
ρ(1− ρ?I)

)r/λH − λHgρ(1− ρ)q

−
[
r + λHρ

?
S

1− ρ?S
(

ρ?I
1− ρ?I

)r/λH − λH(
ρ?S

1− ρ?S
)1+r/λH

]
g(1− ρ)2q(

1− ρ
ρ

)r/λH . (A.7)

In a niche market, for ρ?S < ρ ≤ ρ?I ,

lim
h→0

US(ρ)− Û(ρ;h)

h
= 2(r + λHρq)(US(ρ)− s) + λHρ(1− ρ)U ′S(ρ)

− rg

r + λH
λHρ(1− ρ)q +

rλHg

r + λH

ρ?S(1− ρ)2q

1− ρ?S
(
(1− ρ)ρ?S
ρ(1− ρ?S)

)r/λH ; (A.8)

and for ρ > ρ?I ,

lim
h→0

US(ρ)− Û(ρ;h)

h
= 2(r + λHρq)(US(ρ)− s) + λHρ(1− ρ)U ′S(ρ)

+ (r + λHρ)g(1− ρ)q(
(1− ρ)ρ?I
ρ(1− ρ?I)

)r/λH − λHgρ(1− ρ)q

− r
[
r + λH + λHρ

?
I

(r + λH)(1− ρ?I)
(

ρ?I
1− ρ?I

)r/λH − λH
r + λH

(
ρ?S

1− ρ?S
)1+r/λH

]
g(1− ρ)2q(

1− ρ
ρ

)r/λH . (A.9)

Proof. First notice that if limh→0
US(ρ)−UD(ρ,ρh)

h
exists, limh→0

US(ρ)−Û(ρ;h)
h

can be written as:

lim
h→0

US(ρ)− Û(ρ;h)

h
= (r + λHρq(ρ))(US(ρ)− s) + lim

h→0

US(ρ)− UD(ρ, ρh)

h
. (A.10)

The main issue is to evaluate UD(ρ, ρh) for ρ > ρh. We proceed in the following steps:

1. Decompose off-equilibrium-path value function
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Fix h > 0 to be sufficiently small and the monopolist will still sell to both buyers after

an h-deviation.6 Therefore, there exists h̄′ such that for all h′ ≤ h̄′, we have:

UD(ρ, ρh) = E
∫ h′

t=0

re−rt(ρtqtg − P̃t)dt

+ ρq̃h(1− e−λHh
′
)e−rh

′
VI(ρh+h′) + ρhq̃h(1− e−λHh

′
)e−rh

′
s

+ [1− ρq̃h(1− e−λHh
′
)− ρhq̃h(1− e−λHh

′
)]e−rh

′
U(ρh′ , ρh+h′). (A.11)

In the above expression, ρt is the posterior about the deviator and starts from ρ0 =

ρ; q̃h is the posterior about the product characteristic after an h-deviation: q̃h =

q0(1−ρ0)2

q0(1−ρ0)2+(1−q0)(1−ρ)(1−ρh)
; and P̃t is the off-equilibrium-path price set by the monopolist

after an h-deviation.

By purchasing the risky product, the non-deviator gets value

UND(ρ, ρh) = E
∫ h′

t=0

re−rt(ρ′tqtg − P̃t)dt

+ ρq̃h(1− e−λHh
′
)e−rh

′
s+ ρhq̃h(1− e−λHh

′
)e−rh

′
VI(ρh′)

+ [1− ρq̃h(1− e−λHh
′
)− ρhq̃h(1− e−λHh

′
)]e−rh

′
U(ρh+h′ , ρh′), (A.12)

where ρ′t is the posterior about the non-deviator and starts from ρh.

Obviously, the off-equilibrium-path value function UD(ρ, ρh) can be decomposed as

UD(ρ, ρh) = UND(ρ, ρh) + Z(ρ, ρh)

where Z(ρ, ρh) = UD(ρ, ρh)− UND(ρ, ρh).

The fact that the ρh buyer purchases the risky product means that it is not profitable

6If the monopolist only sells to the deviator, the loss from not selling to the non-deviator is proportional
to JS(ρh) where JS > 0 is the equilibrium value for the monopolist in the social learning phase but the gain
is proportional to ρ− ρh. As h goes to zero, the loss always dominates the gain.
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for her to have “one-shot” deviations:

UND(ρ, ρh) ≥ Ũ(h′) =

∫ h′

t=0

re−rtsdt+ ρq̃h(1− e−λHh
′
)e−rh

′
s

+ [1− ρq̃h(1− e−λHh
′
)]e−rh

′
U(ρh, ρh′). (A.13)

Since the ρh buyer is more pessimistic about the probability of receiving lump-sum

payoffs, the optimal off-equilibrium-path price P̃ is set such that the ρh buyer has

incentives to experiment.

Denote Ũ(ρ; ρh) as UND(ρ, ρh) for a fixed ρh since ρh does not change in the expression

of Ũ(h′). The fact that

lim
h′→0

UND(ρ, ρh)− Ũ(h′)

h′
= (r + λHρq̃h)Ũ(ρ; ρh)− (r + λHρq̃h)s+ λHρ(1− ρ)Ũ ′(ρ; ρh)

is left-continuous in ρ and ρh implies that in equilibrium, the following equation is

satisfied:7

lim
h′→0

UND(ρ, ρh)− Ũ(h′)

h′
= 0.

Thus we derive an ordinary differential equation for Ũ(ρ; ρh)

(r + λHρq̃h)Ũ(ρ; ρh) = (r + λHρq̃h)s− λHρ(1− ρ)Ũ ′(ρ; ρh) (A.14)

where the expression for q̃h is provided by equation (1.5)

q̃h(ρ) =
q0(1− ρ0)2

q0(1− ρ0)2 + (1− q0)(1− ρ)(1− ρh)
.

The off-equilibrium-path value function UD(ρ, ρh) can be further decomposed as:

UD(ρ, ρh) = Ũ(ρ; ρh) + Z(ρ, ρh).

7The proof is similar to the proof of lemma A.2. If it is strictly larger than zero, we can find a neighborhood
of beliefs to increase price P̃ (ρ, ρh) but the buyers will still purchase the risky product. This constitutes a
profitable deviation for the monopolist.
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2. Solve for the off-equilibrium-path value function Ũ(ρ; ρh).

Equation (A.14) is an ordinary differential equation with general solution:

Ũ(ρ; ρh) = s+ Ch × (1− ρ)q̃h(
1− ρ
ρ

)r/λH .

When ρ = ρh, the two buyers are identical and it goes back to the equilibrium path:

Ũ(ρh; ρh) = US(ρh). This boundary condition implies:

Ch =
US(ρh)− s

(1− ρh)qh(1−ρh
ρh

)r/λH
; (A.15)

where qh satisfies: qh = q0(1−ρ0)2

q0(1−ρ0)2+(1−q0)(1−ρh)2
.

Since on the equilibrium path, experimentation stops at ρ?S, the unknown buyer receives

a value less than the outside (US(ρ) < s) for ρ < ρ?S. Equation (A.15) implies that the

non-deviator’s posterior will never be lower than ρ∗S no matter how large h is. In other

words, the monopolist always stops selling to both buyers if (ρ, ρh) = (f(ρ?S;h), ρ?S),

where

f(ρ?S;h) =
ρ?S

ρ?S + e−λHh(1− ρ?S)

corresponds to the deviator’s posterior when the non-deviator’s posterior drops to ρ?S.

3. Solve for the off-equilibrium-path value function Z(ρ, ρh).

Denote

Z(t) = Z(ρ(t), ρh(t)) = U(ρ(t), ρh(t))− U(ρh(t), ρ(t))

where ρ(t) and ρh(t) are posterior beliefs after t length of time beginning from ρ and

ρh (given that no lump-sum payoff is received during this period). The posteriors can

be expressed as:

ρ(t) =
ρe−λH t

ρe−λH t + (1− ρ)
, ρh(t) =

ρhe
−λH t

ρhe−λH t + (1− ρh)
,
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and

q̃h(t) =
q0(1− ρ0)2

q0(1− ρ0)2 + (1− q0)(1− ρ(t))(1− ρh(t))
.

Given any t < h′, the monopolist would also make a sale to both buyers ρ(t) and ρh(t).

Subtract equation (A.12) from (A.11) yields:

Z(t) = E
∫ h′′

0

re−rτ (ρτqτg − ρ′τqτg)dτ

+ e−rh
′′
(1− e−λHh′′) {ρ(t)q̃h(t)[VI(ρh(t+ h′′))− s] + ρh(t)q̃h(t)[s− VI(ρ(t+ h′′))]}

+ e−rh
′′
[
1− ρ(t)q̃h(t)(1− e−λHh

′′
)− ρh(t)q̃h(t)(1− e−λHh

′′
)
]
Z(t+ h′′). (A.16)

Let h′′ go to 0 and we get an ordinary differential equation about Z(t):

(r + λHρ(t)q̃h(t) + λHρh(t)q̃h(t))Z(t)− Ż(t) = H(t) (A.17)

where

H(t) = r(ρ(t)− ρh(t))q̃h(t)g + λHρ(t)q̃h(t)(VI(ρh(t))− s)− λHρh(t)q̃h(t)(VI(ρ(t))− s).

Next, the explicit expression for Z can be derived for mass and niche markets, respec-

tively.

In a mass market, both ρ(t) and ρh(t) are larger than ρ?I . In that case,

VI(ρ) = s+ g(1− ρ)(1− [
(1− ρ)ρ?I
ρ(1− ρ?I)

]r/λH )

and

H(t) = r(ρ(t)− ρh(t))q̃h(t)g + λHρ(t)q̃h(t)g(1− ρh(t))(1− [
(1− ρh(t))ρ?I
ρh(t)(1− ρ?I)

]r/λH )

− λHρh(t)q̃h(t)g(1− ρ(t))(1− [
(1− ρ(t))ρ?I
ρ(t)(1− ρ?I)

]r/λH ).

The solution to differential equation (A.17) is
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Z(t) = (ρ(t)− ρh(t))q̃h(t)g

− [(1− ρh(t))(
1− ρh(t)
ρh(t)

)r/λH − (1− ρ(t))(
1− ρ(t)

ρ(t)
)r/λH ]q̃h(t)g(

ρ?I
1− ρ?I

)r/λH

+ Cert(1− ρ(t))(1− ρh(t))q̃h(t). (A.18)

From the expressions of ρ(t) and ρh(t), time t can be inversely expressed as either

− 1

λH
log[

(1− ρ)ρ(t)

ρ(1− ρ(t))
] or − 1

λH
log[

(1− ρh)ρh(t)
ρh(1− ρh(t))

].

As a result, Cert(1− ρ(t))(1− ρh(t))q̃h(t) can be written as:

D̃1(1−ρ(t))(1−ρh(t))q̃h(t)(
1− ρh(t)
ρh(t)

)r/λH + D̃2(1−ρ(t))(1−ρh(t))q̃h(t)(
1− ρ(t)

ρ(t)
)r/λH .

When the two buyers are identical, there should be no difference in the values:

Z(ρ(t), ρh(t)) = 0

for ρ(t) = ρh(t). This implies D̃1 = −D̃2 = Dh. Drop the time index t to transform

Z(t) back into Z(ρ, ρh):

Z(ρ, ρh) = (ρ− ρh)q̃hg − [(1− ρh)(
1− ρh
ρh

)r/λH − (1− ρ)(
1− ρ
ρ

)r/λH ]q̃hg(
ρ?I

1− ρ?I
)r/λH

+Dh(1− ρ)(1− ρh)q̃h[(
1− ρh
ρh

)r/λH − (
1− ρ
ρ

)r/λH ]. (A.19)

Observe that: after the non-deviator stops purchasing the risky product, the deviator

always receives the outside option. This implies a boundary condition for Z(ρ, ρh):

Z(f(ρ?S;h), ρ?S) = 0. The constant Dh can be pinned down by the boundary condition:

Dh = −(eλHh − 1)g

1− e−rh
(

ρ?S
1− ρ?S

)1+r/λH+

[
1 + (eλHh − 1)ρ?S − e−rh

]
g

(1− ρ?S)(1− e−rh)
(

ρ?I
1− ρ?I

)r/λH . (A.20)

Summing up UND and Z yields an expression for UD(ρ, ρh):
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UD(ρ, ρh) = s+ (ρ− ρh)q̃hg +
(1− ρ)q̃h(

1−ρ
ρ

)r/λH

(1− ρh)qh(1−ρh
ρh

)r/λH
(US(ρh)− s)

− [(1− ρh)(
1− ρh
ρh

)r/λH − (1− ρ)(
1− ρ
ρ

)r/λH ]q̃hg(
ρ?I

1− ρ?I
)r/λH

+Dh(1− ρ)(1− ρh)q̃h[(
1− ρh
ρh

)r/λH − (
1− ρ
ρ

)r/λH ], (A.21)

where Dh is given by equation (A.20).

In a niche market, the value function Z can be derived by a backward procedure.

First, if both ρ(t) and ρh(t) are smaller than ρ?I , then both VI(ρ(t)) and VI(ρh(t)) are

s and H(t) = r(ρ(t)− ρh(t))q̃h(t)g. It is straightforward to solve differential equation

(A.17):

Z(t) =
rg

r + λH
(ρ(t)− ρh(t))q̃h(t) + Cert(1− ρ(t))(1− ρh(t))q̃h(t). (A.22)

Repeating the above procedure yields

Z3(ρ, ρh) =
rg

r + λH
(ρ−ρh)q̃h+Dh3(1−ρ)(1−ρh)q̃h[(

1− ρh
ρh

)r/λH−(
1− ρ
ρ

)r/λH ], (A.23)

where

Dh3 = − rg

r + λH

eλHh − 1

1− e−rh
(

ρ?S
1− ρ?S

)1+r/λH .

Second, if ρ(t) > ρ?I and ρh(t) ≤ ρ?I , then

H(t) = r(ρ(t)− ρh(t))q̃h(t)g − λHρh(t)q̃h(t)g(1− ρ(t))(1− [
(1− ρ(t))ρ?I
ρ(t)(1− ρ?I)

]r/λH ).

Similarly, we solve Z as:

Z2(ρ, ρh) =
rg

r + λH
(ρ− ρh)q̃h −

λHg

r + λH
ρh(1− ρ)q̃h + ρh(1− ρ)q̃hg[

(1− ρ)ρ?I
ρ(1− ρ?I)

]r/λH

+Dh2(1− ρ)(1− ρh)q̃h(
1− ρ
ρ

)r/λH . (A.24)
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Dh2 is determined such that Z2 and Z3 coincide when ρ = ρ?I . This gives us

Dh2 = − rg

r + λH

[
(e(r+λH)h − erh)( ρ?S

1− ρ?S
)1+r/λH + e−λHh(

ρ?I
1− ρ?I

)1+r/λH

]
.

Finally, if both ρ(t) and ρh(t) are larger than ρ?I , then we have already solved

Z1(ρ, ρh) = (ρ− ρh)q̃hg− [(1− ρh)(
1− ρh
ρh

)r/λH − (1− ρ)(
1− ρ
ρ

)r/λH ]q̃hg(
ρ?I

1− ρ?I
)r/λH

+Dh1(1− ρ)(1− ρh)q̃h[(
1− ρh
ρh

)r/λH − (
1− ρ
ρ

)r/λH ]. (A.25)

Dh1 is determined such that Z1 and Z2 coincide when ρh = ρ?I :

Dh1 =

[
1

ρ?I
+

(r + λH)e−rh − λH − re−(r+λH)h

(r + λH)(1− e−rh)
+

r(eλHh − 1)

(r + λH)(1− e−rh)

]
(

ρ?I
1− ρ?I

)1+r/λH

+Dh3.

After solving for UD(ρ, ρh), limh→0
US(ρ)−UD(ρ,ρh)

h
can be evaluated directly. Substitute

the results into equation (A.10) and we get the equations stated in lemma A.1.

B.4 “Binding” Incentive Constraint

Lemma A.2. Fix a pair of priors (ρ0, q0) such that ρ?S is the equilibrium cutoff in the social

learning phase. For ρ > ρ?S, we must have:

lim
h→0

US(ρ)− Û(ρ;h)

h
= 0.

Proof. First, it is obvious that

lim
h→0

US(ρ)− Û(ρ;h)

h
≥ 0
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since US(ρ) ≥ Û(ρ;h) for h ≤ h̄. Suppose by contradiction that there exists ρ1 such that

F (ρ1) , lim
h→0

US(ρ1)− Û(ρ1;h)

h
= c > 0.

From lemma A.1, F (ρ) is left continuous in ρ, which implies that if F (ρ1) = c > 0, then

there exists h† and ε1 such that for all h < h† and ρ1 − ε1 < ρ′ < ρ1,

US(ρ′)− Û(ρ′;h) > hc/2.

Choose ε2 to satisfy

ρ1 − ε =
ρ1e
−λHh†

ρ1e−λHh
† + (1− ρ1)

and define ε̂ = min{ε1, ε2}. Now define a new pricing strategy such that

P̃S(ρ) =

{
PS(ρ) + c

2
if ρ1 − ε̂ < ρ ≤ ρ1

PS(ρ) otherwise.

Obviously, under this new pricing strategy, the unknown buyer will still purchase the risky

product since

US(ρ′)− Û(ρ′;h) > hc/2.

But the monopolist obtains a higher profit and hence this constitutes a profitable deviation

for the monopolist. Therefore, it is impossible to have

lim
h→0

US(ρ)− Û(ρ;h)

h
> 0

in equilibrium.

B.5 Proof of Proposition 1.3

Proof. The necessity part directly comes from lemma A.1 and lemma A.2. To prove the

sufficiency part, the first step is to show there does not exist profitable one-shot deviations.

Lemma A.3. The value functions derived are sufficient to deter one-shot deviations: it is

not profitable for an experimenting buyer to deviate for any h ≥ 0 length of time.
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Proof. After a buyer deviates h length of time, the monopolist can either make a sell to

both buyers or sell only to the deviator. If the latter is the continuation play, UD(ρ, ρh) = s

since the optimal price only needs to satisfy the deviator’s participation constraint. Since

US(ρ) > s, it is immediate to see that it is not profitable to deviate. Therefore, the interesting

case happens when the monopolist makes a sell to both buyers after an h-deviation.

In a mass market, the value associated with an h > 0 deviation is given by:

Û(ρ;h) =

∫ h

t=0

re−rtsdt+ ρq(1− e−λHh)e−rhs+ [1− ρq(1− e−λHh)]e−rhUD(ρ, ρh)

where UD(ρ, ρh) satisfies equation (A.21).

Rearranging terms yields

Û(ρ;h)− s = e−rh[1− ρq(1− e−λHh)](UD(ρ, ρh)− s). (A.26)

Using the expressions that

ρh =
ρe−λHh

1− ρ(1− e−λHh)
and q̃h =

q[1− ρ(1− e−λHh)]
1− ρq(1− e−λHh)

,

we can directly evaluate US(ρ)− Û(ρ;h) and get

US(ρ)− Û(ρ;h) =

[
λH(1− e−(2r+λH)h)

2r + λH
− e−rh(1− e−λHh)

]
gρ(1− ρ)q

+ (eλHh − 1− λH(1− e−rh)
r

)

[
(

ρ?S
1− ρ?S

)r/λH − (
ρ?I

1− ρ?I
)r/λH

]
gq(1− ρ)2 ρ?S

1− ρ?S
(
1− ρ
ρ

)r/λH .

A sufficient condition for US(ρ)− Û(ρ;h) ≥ 0 is that both

S(h) ,
λH(1− e−(2r+λH)h)

2r + λH
− e−rh(1− e−λHh)

and

T (h) , (eλHh − 1− λH(1− e−rh)
r

)

are larger than zero. Notice S(0) = 0, S ′(0) = 0 and S ′′(h) > 0. Therefore, S(h) is a convex

function which achieves its minimum at h = 0. As a result, S(h) ≥ 0 for all h ≥ 0. Similarly,
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it can be shown that T (0) = 0, T ′(0) = 0 and T ′′(h) > 0. Therefore, T (h) ≥ 0 as well.

Hence, for any h > 0, there is no profitable one-shot deviation.

In a niche market, we have to consider the following two cases.

Case 1. ρ ≤ ρ?I . In this case, it is straightforward to show

Û(ρ;h)− s =

[
rλHe

−(2r+λH)h

(2r + λH)(r + λH)
+
re−rh(1− e−λHh)

r + λH

]
gρ(1− ρ)q

−
[
e−rhλH + r(eλHh − 1)

]
g

r + λH

(1− ρ)2qρ?S
1− ρ?S

[
(1− ρ)ρ?S
ρ(1− ρ?S)

]r/λH +Dq(1− ρ)2(
1− ρ
ρ

)2r/λH

and

US(ρ)− s =
rλH

(2r + λH)(r + λH)
gρ(1− ρ)q − λHg

r + λH

(1− ρ)2qρ?S
1− ρ?S

[
(1− ρ)ρ?S
ρ(1− ρ?S)

]r/λH

+Dq(1− ρ)2(
1− ρ
ρ

)2r/λH .

In order to show Û(ρ;h) ≤ U(ρ), it suffices to prove for all h ≥ 0, S(h) ≥ 0 and T (h) ≥ 0,

which have been shown already.

Case 2. ρ > ρ?I . In this case, ρh > ρ?I for h sufficiently small and we have:

US(ρ)− Û(ρ;h) =

[
λH(1− e−(2r+λH)h)

2r + λH
− e−rh(1− e−λHh)

]
gρ(1− ρ)q

+

(
r(eλHh − 1)− λH(1− e−rh)

r + λH

)
[
(1− ρ)ρ?S
ρ(1− ρ?S)

]1+r/λHgρ(1− ρ)q

−
[

(r + 2λH)e−rh − 2λH + r(eλHh − e−(r+λH)h − 1)

r + λH

]
[
(1− ρ)ρ?I
ρ(1− ρ?I)

]1+r/λHgρ(1− ρ)q.

Notice ρh > ρ?I implies that [
(1−ρ)ρ?I
ρ(1−ρ?I

)]1+r/λH < (e−λHh)1+r/λH . Hence, US(ρ)− Û(ρ;h) ≥ 0 if

S(h)e(r+λH)h +
rT (h)

r + λH

(
[
(1− ρ?I)ρ?S
ρ?I(1− ρ?S)

]1+r/λH − 1

)
− (r + λH)e−rh − λH − re−(r+λH)h

(r + λH)
≥ 0.

We have shown that T (h) ≥ 0. It is straightforward to check that

X(h) , e(r+λH)hS(h)− rT (h)

r + λH
− (r + λH)e−rh − λH − re−(r+λH)h

r + λH
≥ 0.
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This implies that it is not profitable to deviate in a niche market as well.

The next step is to show after some deviations, both the deviator and the non-deviator

do not want to have another deviation.

Lemma A.4. Given the deviator has deviated h length of time in total such that the posterior

beliefs are ρ and ρh, respectively, it is not profitable for both buyers to have another deviation.

Proof. First, assume after the deviation, the monopolist is selling only to the deviator. Then

setting UD(ρ, ρh) = s is sufficient to deter deviations. If the monopolist is making a sell to

both buyers, then given the expressions of off the equilibrium path value function UD(ρ, ρh),

we are also able to show it is not profitable to deviate for h′ length of time. The proof is

similar to the tedious proof of lemma A.3 and is omitted.

Second, for the non-deviator, if the monopolist is only selling to the deviator, it is not

profitable for the non-deviator to purchase the risky product since she is more pessimistic.

We only need to show, if the monopolist is selling to both buyers, the ρh buyer will not

deviate for any h′ length of time. Notice that it suffices to consider h′ ≤ h because lemma

A.4 already implies that it is not optimal to deviate any longer once h′ exceeds h. The value

associated with an h′-deviation is provided by:

Ũ(h′) =

∫ h′

t=0

re−rtsdt+ ρq̃h(1− e−λHh
′
)e−rh

′
s+ [1− ρq̃h(1− e−λHh

′
)]e−rh

′
UND(ρh, ρh′).

Given

UND(ρ, ρh) = s+ Ch × (1− ρ)q̃h(
1− ρ
ρ

)r/λH ,

it is straightforward to show: UND(ρ, ρh) ≥ Ũ(h′) for all h′ ≤ h.

Finally, we are in a position to show any admissible deviation is not profitable. Suppose

on the contrary, there exists another admissible strategy α̃1 (could be Non-Markovian) for
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buyer 1 such that the value under this strategy is higher than the equilibrium value for some

ρ

U1(α̃1, P
∗, α∗2; ρ)− US(ρ) = ε > 0.

Notice by the definition of admissible strategies, α̃1 can be written as the limit of a sequence

of strongly admissible strategies α̃k1. Take T sufficiently large and define a new strategy α̂1

as:

α̂1 =

{
α̃1 if t < T ;
α∗1 if t ≥ T .

For T sufficiently large, this new strategy also generates a value higher than US(ρ).8 Similarly

define α̂k1 and obviously, α̂1 is the limit of α̂k1. For each α̂k1, there can be at most a finite

number of deviations in a finite time interval [0, T ). Lemma A.3 and lemma A.4 together

imply that any finite deviation is not profitable: U1(α̂k1, P
∗, α∗2; ρ)−US(ρ) ≤ 0 for all k. But

by the construction of admissible strategies,

U1(α̂1, P
∗, α∗2; ρ) = lim

k→∞
U1(α̂k1, P

∗, α∗2; ρ) ≤ US(ρ),

which leads to a contradiction.

B.6 Proof of Proposition 1.4

Proof. In a niche market, US(ρ?S) = s and equation (1.21) implies

D =
λH

2r + λH
(

ρ?S
1− ρ?S

)1+2r/λH .

Substituting this expression into equation (1.26) yields

PS(ρ?S) = ρ?Sq(ρ
?
S)g − s.

Then boundary conditions

JS(ρ?S) = 0 and J ′S(ρ?S) = 0

8Notice the value each buyer is able to get cannot exceed g. Therefore, we can choose T such that
e−rT g = ε/2.
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immediately imply that ρ?S should satisfy equation

ρq(ρ) =
rs

rg + λHg − λHs
=

rs

rg + λH(VI(ρ) + JI(ρ))− λHs
.

In a mass market, similarly we get ρ?S should also satisfy

ρq(ρ) =
rs

rg + λH(VI(ρ) + JI(ρ))− λHs
.

Thus, the equilibrium cutoff ρ?S is characterized by equation (1.29) regardless of whether it

is a mass or niche market. Since ρq(ρ), VI(ρ) and JI(ρ) are all increasing in ρ, the solution

to the above equation is unique given a pair of priors (ρ0, q0).

Furthermore, a mass market appears (ρ?S > ρ?I) if and only if

ρ?Iq(ρ
?
I) <

rs

rg + λH(VI(ρ?I) + JI(ρ?I))− λHs

or equivalently,

q0(1− ρ0)2

q0(1− ρ0)2 + (1− q0)(1− ρ?I)2
<
ρeI
ρ?I
.

Rearrange terms and we get the condition stated in the proposition.

From proposition 1.1, the efficient cutoff ρeS is characterized by equation

ρq(ρ) =
rs

(r + λH)g + λHW (ρ)− 2λHs
.

First, JI(ρ) +VI(ρ) + s represents the total equilibrium surplus in the individual learning

phase, and hence must be strictly less than the socially optimal surplus Ω1(ρ) = g + W (ρ)

for any ρ > ρeI since equilibrium is inefficient in the individual learning phase. Therefore,

rg + λH(VI(ρ) + JI(ρ))− λHs < (r + λH)g + λHW (ρ)− 2λHs. (A.27)

Second, it cannot be the case that ρ?S ≤ ρeI for q0 < 1. Otherwise, VI(ρ
?
S) = s, JI(ρ

?
S) =

g − s and VI(ρ
?
S) + JI(ρ

?
S) = g imply

ρ?S × q(ρ?S) = ρeI =
rs

rg + λH(g − s)
. (A.28)
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The above equation contradicts the assumption that ρ?S ≤ ρeI .

Since W (·) is a strictly increasing function for ρ > ρeI , inequality (A.27) implies that

ρ?S > ρeS.

B.7 Proof of Proposition 1.5

Proof. Given the monopoly price PS(q) (notice ρ = 1 and we should switch to use q as the

state variable), the value function for a representative unknown buyer can be written as

rUS(q) = r(gq − PS(q)) + nqλH(s− US(q))− nλHq(1− q)U ′S(q). (A.29)

Participation constraint implies that US(q) ≥ s and there is also an incentive compatibility

constraint which means “one-shot deviations” are not profitable:

US(q) ≥ Û(q;h) =

∫ h

t=0

re−rtsdt+ e−rhq(1− e−(n−1)λHh)s+ e−rh(1− q + qe−(n−1)λHh)US(qh)

for any h > 0 where qh = qe−(n−1)λHh

1−q+qe−(n−1)λHh
. Let h go to zero and the incentive constraint is

binding such that the following differential equation is satisfied:

US(q) = s+
n− 1

r
[qλH(s− US(q))− λHq(1− q)U ′S(q)]

for q ≥ q?S. The general solution is

US(q) = s+DS(1− q)(1− q
q

)r/((n−1)λH).

On the other hand, given price PS(ρ), the monopolist’s value function is given by:

rJS(q) = nrPS(q)dt+ nqλH(n(g − s)− JS(q))− nλHq(1− q)J ′S(q). (A.30)

At the optimal stopping cutoff q?S, value matching and smooth pasting conditions are

satisfied:

US(q?S) = s, JS(q?S) = 0 and J ′S(q?S) = 0. (A.31)
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Boundary conditions (A.31) imply that US(q?S) = s for some q?S < 1. As a consequence, it

must be the case that DS = 0 and US(q) is always s. From equation (A.29), the equilibrium

price is PS(q) = gq − s. Substituting the price expression into equation (A.30) yields

rJS(q) = nr(gq − s) + nqλH(n(g − s)− JS(q))− nλHq(1− q)J ′S(q).

This is an ordinary differential equation with boundary conditions

JS(q?S) = 0 and J ′S(q?S) = 0.

It is easy to solve q?S as:

q?S = qeS =
rs

nλH(g − s) + rg
.

Therefore, the Markov perfect equilibrium is efficient.

B.8 Proof of Theorem 1.1

Proof. In the individual learning phase, denote ρ?k to be the equilibrium cutoff such that at

this belief, the monopolist would stop selling to the unknown buyers when k ≥ 1 buyers

have received lump-sum payoffs. Let Vk, Uk and Jk be the equilibrium value functions for

the known buyers, the unknown buyers and the monopolist, respectively, when k ≥ 1 buyers

have received lump-sum payoffs. Finally, let Pk denote the price charged by the monopolist.

From a backward procedure, it could be shown that:

Lemma A.5. The equilibrium cutoffs satisfy

ρ?k =
nrs+ kr(g − s)

nrg + (n− k)λH(g − s)

and

ρeI < ρ?k < ρ?k+1

for all 1 ≤ k ≤ n− 2.
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Proof. If all of the buyers turn out to be good, then it is optimal for the monopolist to

charge g − s and fully extract the total surplus. If all but one buyers have already received

lump-sum payoffs, the monopolist faces the same tradeoff of exploitation and exploration

as in the two-buyer case. The monopolist has to charge gρ − s to keep the unknown buyer

experimenting and her value function from selling to the unknown buyer is written as:

(r + ρλH)Jn−1(ρ) = nr(gρ− s) + nρλH(g − s)− λHρ(1− ρ)J ′n−1(ρ);

with boundary conditions

Jn−1(ρ?n−1) = (n− 1)(g − s) and J ′n−1(ρ?n−1) = 0.

It is straightforward to see that:

ρ?n−1 =
rs+ (n− 1)rg

λH(g − s) + nrg

and

Jn−1(ρ) = max {(n− 1)(g − s),

n(gρ− s) +
[
(n− 1)g + s− ngρ?n−1

] 1− ρ
1− ρ?n−1

[
(1− ρ)ρ?n−1

(1− ρ?n−1)ρ

]r/λH}
.

Meanwhile, the value for the known buyers is given by:

Vn−1(ρ) = max

{
s, s+ g(1− ρ)(1− [

(1− ρ)ρ?n−1

ρ(1− ρ?n−1)
]r/λH )

}
.

If all but two buyers have received lump-sum payoffs, the value function for the monopolist

becomes:

Jn−2(ρ) = max

{
(n− 2)(g − s), nPn−2(ρ) +

2ρλH
r

[Jn−1(ρ)− Jn−2(ρ)]− λHρ(1− ρ)

r
J ′n−2(ρ)

}
.

If the monopolist sells to the unknown buyers, the price Pn−2 is set such that the unknown

buyers have an incentive to keep experimenting:

141



rPn−2(ρ) = r(ρg − Un−2(ρ)) + λHρ(s− Un−2(ρ))

+ λHρ(Vn−1(ρ)− Un−2(ρ))− λHρ(1− ρ)U ′n−2(ρ).

Value matching and smooth pasting conditions mean that at the equilibrium cutoff ρ?n−2,

Un−2(ρ?n−2) = s, U ′n−2(ρ?n−2) = 0, Jn−2(ρ?n−2) = (n− 2)(g − s) and J ′n−2(ρ?n−2) = 0.

The above equations imply that ρ?n−2 satisfies equation

(n− 2)(g − s) = n

{
ρ?n−2g − s+

ρ?n−2λH
r

[
Vn−1(ρ?n−2)− s

]}
+

2ρ?n−2λH
r

[
Jn−1(ρ?n−2)− (n− 2)(g − s)

]
.

If ρ?n−2 > ρ?n−1, then Vn−1(ρ?n−2) > s and Jn−1(ρ?n−2) > (n− 1)(g − s). But this implies

(n− 2)(g − s) > n(ρ?n−2g − s) +
2ρ?n−2λH

r
(g − s)

=⇒ ρ?n−2 <
2rs+ (n− 2)rg

2λH(g − s) + nrg
< ρ?n−1 =

rs+ (n− 1)rg

λH(g − s) + nrg
.

This contradicts the assumption that ρ?n−2 > ρ?n−1. Therefore, it must be the case that

ρ?n−2 ≤ ρ?n−1 such that Vn−1(ρ?n−2) = s and Jn−1(ρ?n−2) = (n− 1)(g− s). It is straightforward

to see

ρ?n−2 =
2rs+ (n− 2)rg

2λH(g − s) + nrg
.

For general 1 ≤ j ≤ n− 1, assume

ρ?k =
nrs+ kr(g − s)

nrg + (n− k)λH(g − s)

for k ≥ j + 1. At ρ?j ,

j(g − s) = n

[
(ρ?jg − s) +

λHρ
?
j

r
(Vj+1(ρ?j)− s)

]
+

(n− j)λHρ?j
r

[
Jj+1(ρ?j)− j(g − s)

]
.
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It is similar to show by contradiction that it is impossible to have ρ?j > ρ?j+1 and hence the

equilibrium cutoff can be solved as

ρ?j =
nrs+ jr(g − s)

nrg + (n− j)λH(g − s)
.

Standard induction argument then implies that for all 1 ≤ k ≤ n− 1, we would have

ρ?k =
nrs+ kr(g − s)

nrg + (n− k)λH(g − s)

and it is trivial to check that

ρeI < ρ?k < ρ?k+1

for all 1 ≤ k ≤ n− 2.

Lemma A.5 means the equilibrium is inefficient in the individual learning phase. From

the boundary conditions, the equilibrium cutoff ρ?S in the social learning phase should satisfy

ρ?Sq(ρ
?
S) =

rs

rg + λH [V1(ρ?S) + J1(ρ?S) + (n− 1)U1(ρ?S)]− nλHs
.

The inefficiency in the individual learning phase means

V1(ρ) + J1(ρ) + (n− 1)U1(ρ) < g + (n− 1)W (ρ) = Ω1(ρ)

for ρ > ρeI and hence

rg + λH [V1(ρ) + J1(ρ) + (n− 1)U1(ρ)]− nλHs < (r + λH)g + λH(n− 1)W (ρ)− nλHs.

This implies that the equilibrium is inefficient in the social learning phase as well: ρ?S >

ρeS.

C Proofs of Results from Section 4

C.1 Proof of Proposition 1.7

Proof. Notice the derivative of

r

λH
log(

ρ

1− ρ
) + log(

q0(1− ρ0)n + (1− q0)(1− ρ)n

(1− ρ)n
)
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is r+λHnρq
λHρ(1−ρ)

. From observation A.1, a general solution to differential equation (1.32) is

ΩS(ρ) =

∫
h(x) rn[A−xq(x)B]+λHnxq(x)[(n−1)W (x)+s]

λHx(1−x)
dx

h(ρ)

where

h(ρ) = (
ρ

1− ρ
)r/λH

q0(1− ρ0)n + (1− q0)(1− ρ)n

(1− ρ)n
.

First, we show ρeI is always smaller than ρeS.

Lemma A.6. Given any q0 < 1, the efficient cutoff for starting experimentation in the social

learning phase is larger than the efficient cutoff in the individual learning phase: ρeS > ρeI .

Proof. For ρ ≤ ρeI ,

W (ρ) = A− λHA+ rB − λHs
r + λH

ρ.

We solve for ΩS(ρ) using integration by parts:

ΩS(ρ) =

∫
h(x) rn[A−xq(x)B]+λHnxq(x)[(n−1)W (x)+s]

λHx(1−x)
dx

h(ρ)
= n

[
A− λH

r + λH
ρq(

rB

λH
+ A− s)

]
+

C

h(ρ)
.

Since 0 is included in the domain of ΩS(·), the constant term C must be 0 to guarantee

ΩS(·) is bounded away from infinity. Therefore,

ΩS(ρ) = n

[
A− λH

r + λH
ρq(

rB

λH
+ A− s)

]
.

Suppose on the contrary, we have ρeS ≤ ρeI , then ρeS should satisfy

n

[
A− λH

r + λH
ρeSq(ρ

e
S)(

rB

λH
+ A− s)

]
= ns =⇒ ρeSq(ρ

e
S) = ρeI .

This leads to a contradiction since q < 1.

For ρ > ρeI , W (ρ) = s and by observation A.1,

ΩS(ρ) =

∫ ρ
ρeI
h(x) rn[A−xq(x)B]+λHn

2xq(x)s
λHx(1−x)

dx+ C

h(ρ)
.
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The constant C is chosen such that ΩS(ρ) is continuous at ρeI :

C = h(ρeI)ΩS(ρeI) = h(ρeI)n

[
A− λH

r + λH
ρeIq(ρ

e
I)(
rB

λH
+ A− s)

]
> 0.

At the efficient starting cutoff ρeS(q0), ΩS(ρeS; q0) = ns. Substituting the expression of

ΩS(ρ) into the above equation yields:

C − h(ρeI)ns+

∫ ρeS

ρeI

h(x)
rn[A− xq(x)B − s]

λHx(1− x)
dx = 0.

Notice

C − h(ρeI)ns = h(ρeI)n

[
A− s− λH

r + λH
ρeIq(ρ

e
I)(
rB

λH
+ A− s)

]
> 0

doesn’t depend on ρeS. This implies: if an interior solution ρeS(q0) exists, it must be the case

that ∫ ρeS

ρeI

h(x)
rn[A− xq(x)B − s]

λHx(1− x)
dx < 0

and hence A− λHρeSq0B − s < 0. Suppose for a given q0, there exist two efficient cutoffs ρ1

and ρ2 > ρ1. Then we have∫ ρ1

ρeI

h(x)
rn[A− xq(x)B − s]

λHx(1− x)
dx =

∫ ρ2

ρeI

h(x)
rn[A− xq(x)B − s]

λHx(1− x)
dx,

which is impossible since

h(x)
rn[A− xq(x)B − s]

λHx(1− x)
< 0

for x ∈ (ρ1, ρ2). Therefore, if there exists some ρeS satisfying ΩS(ρeS; q0) = ns, such ρeS must

be unique. When there does not exist ρeS satisfying

C − h(ρeI)ns+

∫ ρeS

ρeI

h(x)
rn[A− xq(x)B − s]

λHx(1− x)
dx = 0,

just set ρeS = 1 since it is always beneficial to take the risky product. To summarize, for any

q0, there is a unique ρeS(q0) such that it is socially efficient to start experimentation if and

only if ρ ≤ ρeS(q0).
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C.2 Proof of Theorem 1.2

Proof. When k buyers have already received lump-sum damages, the monopolist chooses to

sell to the unknown buyers if:

Jk(ρ) = (n− k)(A− ρB − s) +
1

r
[(n− k)λHρ(Jk+1(ρ)− Jk(ρ))− λHρ(1− ρ)J ′k(ρ)] ≥ 0.

Induction argument is used to solve the equilibrium cutoffs. First,

Jn−1(ρ) = A− s−
λH(A− s+ rB

λH
)

r + λH
ρ ≥ 0

if and only if ρ ≤ ρ?n−1 = ρeI . We can guess that

Jk(ρ) = (n− k)

[
A− s−

λH(A− s+ rB
λH

)

r + λH
ρ

]
.

Suppose this is true for j = k + 1, · · · , n− 1, then solving differential equation

Jk(ρ) = (n− k)(A− ρB − s) +
1

r
[(n− k)λHρ(Jk+1(ρ)− Jk(ρ))− λHρ(1− ρ)J ′k(ρ)]

yields

Jk(ρ) = (n− k)

[
A− s−

λH(A− s+ rB
λH

)

r + λH
ρ

]
.

The conjecture about Jk(ρ) hence is justified by induction.

Obviously,

Jk(ρ) = (n− k)

[
A− s−

λH(A− s+ rB
λH

)

r + λH
ρ

]
≥ 0

if and only if ρ ≥ ρeI for all k ≥ 1. Therefore, the symmetric Markov perfect equilibrium

is efficient in the individual learning phase. In the social learning phase, for ρ ≤ ρeI , the

monopolist’s value function is

JS(ρ) = n (A− ρqB − s) +
1

r
[nλHρq(J1(ρ)− JS(ρ))− λHρ(1− ρ)J ′S(ρ)] .

The solution to the above differential equation is given by:

JS(ρ) = n(A− s)− nρq(ρ)
λH

r + λH
(A− s+

rB

λH
).
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It is easy to check that for any q < 1, JS(ρ) > 0 for all ρ ≤ ρeI and hence the equilibrium

cutoff in the social learning phase must be larger than ρeI . For ρ > ρeI ,

JS(ρ) = n [A− ρqB − s]− 1

r
[nλHρqJS(ρ) + λHρ(1− ρ)J ′S(ρ)] .

Solving the above differential equation yields

JS(ρ) =

∫ ρ
ρeI
h(x) rn(A−xq(x)B−s)

λHx(1−x)
dx+D

h(ρ)

where

h(ρ) = (
ρ

1− ρ
)r/λH

q0(1− ρ0)n + (1− q0)(1− ρ)n

(1− ρ)n
.

The constant D is chosen such that JS(·) is continuous at ρeI . This implies: D = C −

h(ρeI)ns, where C is the constant given in the proof of proposition 1.7. From integration by

parts,

∫ ρ

ρeI

h(x)
rn(A− xq(x)B − s)

λHx(1− x)
dx

=

∫ ρ

ρeI

h(x)
rn(A− xq(x)B) + λHn

2xq(x)s

λHx(1− x)
dx− ns(h(ρ)− h(ρeI)).

As a consequence, JS(ρ) = ΩS(ρ)− ns.

For a fixed q0, the monopolist starts selling her product as long as JS(ρ0; q0) ≥ 0, which

implies that the equilibrium cutoff ρ?S(q0) must be the same as ρeS(q0). Therefore, the sym-

metric Markov perfect equilibrium is efficient in the social learning phase as well.
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A.2 Appendix to Chapter 2

Proof of Lemma 2.2

Proof. The worker p ∈ (0, 1) always has the choice that stays in one firm y forever. Then

the value is µy(p)−rVy
r+δ

. But obviously, this is not an optimal choice (Suppose not, then all of

the workers will stay in one type of firms and the market is not cleared). So we have that

the equilibrium value function Wy(p) must satisfy: Wy(p) >
µy(p)−rVy

r+δ
. This immediately

implies:

Σy(p)Wy
′′(p) = (r + δ)Wy(p)− (µi(p)− rV i) > 0.

So the equilibrium value functions Wy convex for p ∈ (0, 1).

Proof of Lemma 2.3

Proof. Suppose workers with p ∈ [0, p) are employed by type y firm. This implies that

Wy(p) = µy(p)−rVy
r+δ

+ ky2p
αy(1 − p)1−αy since 0 is included in the domain. It is easy to see

that Wy
′(0) =

µHy−µLy
r+δ

> 0 and since Wy is strictly convex, W ′
y(p) > 0 for all p ∈ [0, p).

At p, worker will transfer to type −y firm but smooth pasting condition implies W ′
−y(p) =

W ′
y(p) > 0. Strict convexity implies W ′

y′(p) > 0 so on and so forth. Therefore, we must have

the equilibrium value functions Wy are strictly increasing.

Proof of Claim 2.2

Proof. We will actually prove a more general claim, i.e., that the result holds for any com-

bination (sH , sL), including sH < sL. This makes the proof also applicable to the case of

σH 6= σL. Under strict supermodularity, for any combination of (sH , sL), it is impossible to

have p1 < p2 and equilibrium value functions WH (for p ∈ [p1, p2]), WL1 (for p < p1), WL2

(for p > p2) such that:

WH(p1) = WL1(p1) and W ′′
H(p1) = W ′′

L1(p1)
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WH(p2) = WL2(p2) and W ′′
H(p2) = W ′′

L2(p2)

are satisfied simultaneously.

Suppose on the contrary the equations described above hold simultaneously. Then from

Equation (2.3), we should get:

wH(p1) + ΣH(p1)W ′′
H(p1) = wL(p1) + ΣL(p1)W ′′

L1(p1)

and

wH(p2) + ΣH(p2)W ′′
H(p2) = wL(p2) + ΣL(p2)W ′′

L2(p2)

since

WH(p2) = WL2(p2) and WH(p1) = WL1(p1).

Notice that

W ′′
H(p2) = W ′′

L2(p2) and W ′′
H(p1) = W ′′

L1(p1),

by Lemma 2.5 and hence:

ΣH(p1)− ΣL(p1)

ΣH(p1)
(r + δ)WH(p1) = wL(p1)− ΣL(p1)

ΣH(p1)
wH(p1) (A.32)

and

ΣH(p2)− ΣL(p2)

ΣH(p2)
(r + δ)WH(p2) = wL(p2)− ΣL(p2)

ΣH(p2)
wH(p2). (A.33)

By definition,

ΣH(p1)− ΣL(p1)

ΣH(p1)
=

ΣH(p2)− ΣL(p2)

ΣH(p2)
=
s2
H − s2

L

s2
H

.

First, if s2
H = s2

L, Equations (A.32) and (A.33) imply that: wH(p1)−wL(p1) = wH(p2)−

wL(p2) = 0 which cannot hold simultaneously for p1 6= p2 since wH(·) and wL(·) are linear

functions with different slopes ∆H and ∆L.

Second, if s2
H > s2

L, then Equations (A.32) and (A.33) could be simplified as:

s2
H − s2

L

s2
H

(r + δ)(WH(p2)−WH(p1)) = wL(p2)− wL(p1)− ΣL(p2)

ΣH(p2)
(wH(p2)− wH(p1)).
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Under strict supermodularity, the LHS of the above equation is strictly larger than

s2H−s
2
L

s2H
(r + δ)W ′

H(p1)(p2 − p1) by the convexity of the value function. And

s2
H − s2

L

s2
H

(r + δ)W ′
H(p1)(p2 − p1) ≥ s2

H − s2
L

s2
H

∆L(p2 − p1)

by Lemma 2.4. Meanwhile, the RHS of the above equation is strictly smaller than

∆L(p2 − p1)− ΣL(p2)

ΣH(p2)
∆H(p2 − p1)) =

s2
H − s2

L

s2
H

∆L(p2 − p1)

which contradicts the fact that LHS is the same as RHS. The impossibility in s2
H < s2

L case

could be proved similarly and is thus omitted. By contradiction, we immediately know the

claim at the beginning of the proof is correct.

For the strict submodularity case, it suffices to relabel ‘H’ by ‘L’ and ‘L’ by ‘H’. The

claim is obviously correct given we have already proved the strict supermodularity result.

Proof of Lemma 2.6

Proof. We will actually prove a more general Lemma, i.e., that the result holds for any

combination (sH , sL), including sH < sL. This makes the proof also applicable to the case

of σH 6= σL. First of all, we want to show all of the one-shot deviations are ruled out by our

no-deviation condition as dt→ 0.

Under strict supermodularity, PAM is the only candidate equilibrium allocation by The-

orem 2.1. The value functions thus are given by:

WL(p) =
wL(p)

r + δ
+ kLp

αL(1− p)1−αL

and

WH(p) =
wH(p)

r + δ
+ kHp

1−αH (1− p)αH .

Let

GL(p) = kLp
αL(1− p)1−αL(

αL − p
p(1− p)

) > 0
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and

GH(p) = kHp
1−αH (1− p)αH (

1− αH − p
p(1− p)

) < 0

be the first derivatives for the non-linear parts of the value functions. Smooth pasting at p

implies:

∆L

r + δ
+ GL(p) =

∆H

r + δ
+ GH(p).

From the proof of Lemma 2.5, it suffices to show that inequality (2.11) holds for p < p

and inequality (2.9) holds for p > p.

For p < p, define:

ZL(p) = wH(p)− wL(p) +
s2
H − s2

L

s2
L

((r + δ)WL(p)− wL(p)). (A.34)

Obviously, we have limp↗p ZL(p) = 0 from Lemma 2.5. If we can show that ZL(p) is

increasing in p as p increases from 0 to p, then we are done since ZL(p) < ZL(p) = 0. Notice

that

Z ′L(p) = ∆H −
s2
H

s2
L

∆L +
s2
H − s2

L

s2
L

(r + δ)W ′
L(p)

and W ′
L(p) lies between ∆L

r+δ
and ∆L

r+δ
+ GL(p) for p ∈ [0, p].9

If s2
H ≥ s2

L, then

Z ′L(p) ≥ ∆H −
s2
H

s2
L

∆L +
s2
H − s2

L

s2
L

(r + δ)
∆L

r + δ
= ∆H −∆L > 0;

if s2
H < s2

L, then

Z ′L(p) ≥ ∆H −
s2
H

s2
L

∆L +
s2
H − s2

L

s2
L

(r + δ)[
∆L

r + δ
+ GL(p)]

= ∆H −
s2
H

s2
L

∆L +
s2
H − s2

L

s2
L

(r + δ)[
∆H

r + δ
+ GH(p)]

=
s2
H

s2
L

(∆H −∆L) +
s2
H − s2

L

s2
L

(r + δ)GH(p) > 0.

9This comes from the fact that WL(·) is a strictly convex function.

151



Therefore, we conclude that Z ′L(p) > 0 for both sH ≥ sL and sH < sL cases, which

implies that ZL(p) < 0 for all p < p and hence there is no profitable one-shot deviation as

dt is sufficiently small.

For p > p, similarly define:

ZH(p) = wL(p)− wH(p) + [ΣL(p)− ΣH(p)]W ′′
H(p). (A.35)

Under PAM equilibrium, we have ZH(p+) = 0 from Lemma 2.5. Notice that

ZH(p) = wL(p)− wH(p) + [ΣL(p)− ΣH(p)]W ′′
H(p)

= wL(p)− wH(p) +
s2
L − s2

H

s2
H

((r + δ)WH(p)− wH(p)),

with W ′
H(p) lies between ∆H

r+δ
+GH(p) and ∆H

r+δ
for p ∈ [p, 1]. Similar to the proof for p < p

case, if s2
L > s2

H

Z ′H(p) ≤ ∆L −∆H < 0;

and if s2
L ≤ s2

H

Z ′H(p) ≤ ∆L −
s2
L

s2
H

∆H +
s2
L − s2

H

s2
H

(r + δ)(
∆L

r + δ
+ GL(p)) < 0.

Therefore, Z ′H(p) < 0 for both sH ≥ sL and sH < sL cases and hence ZH(p) < 0 for all

p > p.

Second, since there is no one-shot deviation for any p, obviously there will be no any other

deviation for any p. Consider any deviation starting at p. Then the above result says it is

better not to deviate for at least dt time. Suppose after dt, we achieve a new p′. Similarly,

there should be no profitable deviation for at least dt′ time. Keep using the same logic and

we can conclude that any deviation is not profitable.

Derivation of the Boundary Conditions

Here, we just investigate the boundary conditions for the first case: p < p0. The derivation

is similar for the second case.
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In a stationary equilibrium, both the total measure
∫ 1

0
fy(p, t)dp and the expectations∫ 1

0
pfy(p, t)dp are constant over time. Hence, it must be the case that

∫ 1

0

∂fy(p,t)

∂t
dp = 0 and∫ 1

0
p∂fy(p,t)

∂t
dp = 0

From

∂fy(p, t)

∂t
=

d2

dp2
[Σy(p)fy(p, t)]− δfy(p, t),

we should have:

∫ p

0

{ d
2

dp2
[ΣL(p)fL(p)]− δfL(p)}dp = 0

and ∫ p0

p

{ d
2

dp2
[ΣH(p)fH(p)]− δfH(p)}dp+

∫ 1

p0

{ d
2

dp2
[ΣH(p)fH(p)]− δfH(p)}dp = 0.

The above two equations give us:

d

dp
[ΣL(p)fL(p)]|p− = δ(1− π)

and

ΣH(p0)[f ′H(p0−)− f ′H(p0+)] =
d

dp
[ΣH(p)fH(p)]|p+ + δπ

since the market clearing conditions imply:∫ p

0

fL(p)dp = 1− π∫ 1

p

fH(p)dp = π

and there is continuity at p0:

fH(p0−) = fH(p0+).

Meanwhile, notice that inflow at p0 must be the same as δ, which implies that ΣH(p0)[f ′H(p0−)−

f ′H(p0+)] = δ. This immediately gives us the flow equation at p:

d

dp
[ΣL(p)fL(p)]|p− =

d

dp
[ΣH(p)fH(p)]|p+.
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Now apply similar logic and we can get:∫ p

0

{
p
d2

dp2
[ΣL(p)fL(p)]− pδfL(p)

}
dp+

∫ 1

p

{
p
d2

dp2
[ΣH(p)fH(p)]− pδfH(p)

}
dp = 0.

Notice that ∫ p

0

pδfL(p)dp+

∫ 1

p

pδfH(p)dp = δp0

by the martingale property. Meanwhile, we still have: ΣH(p0)[f ′H(p0−) − f ′H(p0+)] = δ.

Hence,after some tedious algebra, we can get:{
p
d

dp
[ΣL(p)fL(p)] + ΣL(p)fL(p)

}
|p− =

{
p
d

dp
[ΣH(p)fH(p)] + ΣH(p)fH(p)

}
|p+

which gives us the boundary condition at p:

ΣH(p+)fH(p+) = ΣL(p−)fL(p−).

Proof of Proposition 2.1

Proof. First, we can express fH0, fH1, fH2, fL0 as functions of p. Equations (2.25) and (2.27)

imply:

fL0 =
1− π∫ p

0
pγL1(1− p)γL2dp

.

and

fH2 = fH0(
p0

1− p0

)γH1−γH2 + fH1

From Equations (2.23) and (2.26), fH0 and fH1 as could be written as:

fH0 =
ηH + ηL

2ηH

s2
L

s2
H

(
p

1− p
)ηL−ηHfL0

and

fH1 = −ηL − ηH
2ηH

s2
L

s2
H

(
p

1− p
)ηL+ηHfL0.
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Here,

ηL =

√
1

4
+

2δ

s2
L

> ηH =

√
1

4
+

2δ

s2
H

> 1/2.

Next, we want to show that both fH0 and fH1 are decreasing in p.

Rewrite fH0 as:

fH0 =
ηH + ηL

2ηH

s2
L

s2
H

(
p

1− p
)ηL−ηH

1− π∫ p
0
pγL1(1− p)γL2dp

.

and it suffices to show that (
p

1−p)ηL−ηH 1−π∫ p
0 p

γL1 (1−p)γL2dp
is decreasing in p. Notice that

(
p

1− p
)ηL−ηH =

∫ p

0

[(
p

1− p
)ηL−ηH ]′dp =

∫ p

0

(ηL − ηH)(
p

1− p
)ηL−ηH−1(

1

1− p
)2dp.

Let G1(p) = pγL1(1− p)γL2 and G2(p) = ( p
1−p)ηL−ηH−1( 1

1−p)2 such that:

G1(p)

G2(p)
= p−

1
2

+ηH (1− p)−
1
2
−ηH

is increasing in p. Therefore, we could derive:

(
p

1− p
)ηL−ηH

1− π∫ p
0
pγL1(1− p)γL2dp

is decreasing in p10 and hence fH0 is decreasing in p as well.

Similarly, we can rewrite fH1 as:

fH1 = −ηL − ηH
2ηH

s2
L

s2
H

(
p

1− p
)ηL+ηH

1− π∫ p
0
pγL1(1− p)γL2dp

.

Similarly,

(
p

1− p
)ηL+ηH =

∫ p

0

(ηL + ηH)(
p

1− p
)ηL+ηH−1(

1

1− p
)2dp.

Let G3(p) = ( p
1−p)ηL+ηH−1( 1

1−p)2 and we have:

G1(p)

G3(p)
= p−

1
2
−ηH (1− p)−

1
2

+ηH

10Actually, we are using the result that if G2(p)
G1(p)

is decreasing in p, then
∫ p
0 G2(p)dp∫ p
0 G1(p)dp

will also be decreasing in

p. This is true because by the definition of Riemann integral,
∫ p
0 G1(p)dp and

∫ p
0 G2(p)dp could be written as

the limit of Riemann sum. The ratio of two Riemann sums is always decreasing in p since G2(p)
G1(p)

is decreasing
in p.
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is decreasing in p. Therefore, it must be the case that

−(
p

1− p
)ηL+ηH

1− π∫ p
0
pγL1(1− p)γL2dp

is decreasing in p and hence fH1 is also decreasing in p.

Finally, it is immediate that

fH2 = fH0(
p0

1− p0

)γH1−γH2 + fH1

is also decreasing in p. Therefore, we can expressing fH0, fH1 and fH2 as ξ0(p), ξ1(p) and

ξ2(p) respectively such that ξ0
′ < 0, ξ1

′ < 0 and ξ2
′ < 0.

Hence, the market clearing condition (2.24) implies:

H(p) =

∫ p0

p

[ξ0(p)pγH1(1− p)γH2 + ξ1(p)pγH2(1− p)γH1 ]dp+

∫ 1

p0

ξ2(p)pγH2(1− p)γH1dp = π.

It is easy to check that H ′ < 0 since ξ0
′ < 0, ξ1

′ < 0 and ξ2
′ < 0. There exists p ∈ (0, p0)

such that H(p) = π if and only if limp→0H(p) > π and limp→p0 H(p) < π.

As p→ 0, fH0 = ξ0(p)→∞ and fH1 = ξ1(p)→ 0, which imply:

lim
p→0

H(p)→∞ > π.

Meanwhile, when p→ p0, it is obvious that H(p)→
∫ 1

p0
fH2p

γH2(1− p)γH1dp. Notice that

fH2 = fH0(
p0

1− p0

)γH1−γH2 + fH1 →
s2
L

s2
H

(
p0

1− p0

)ηL+ηH
1− π∫ p0

0
pγL1(1− p)γL2dp

as p→ p0.

As a result, limp→p0 H(p) < π if and only if:

s2
L

s2
H

(
p0

1− p0

)ηL+ηH
1− π∫ p0

0
pγL1(1− p)γL2dp

∫ 1

p0

pγH2(1− p)γH1dp < π,

which establishes Equation 2.28 in the proposition. Moreover, since H(·) is strictly decreas-

ing, the solution to H(p) = π must be at most one. This completes our proof of Proposition

2.1.
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Proof of Corollary 2.1

Proof. To make the proof, we have to redefine the H(·) function in the proof of Proposition

2.1 as H(p; π, p0) with equilibrium cutoff p satisfying H(p; π, p0) = π. It is obviously to verify

that H is linear in (1− π). So as π increases, π/(1− π) increases and we have to decrease p

to balance the equation. On the other hand,

∂H

∂p0

= ξ0(p)p
γH1
0 (1− p0)γ

H
2 + ξ1(p)p

γH2
0 (1− p0)γ

H
1 − ξ2(p)p

γH2
0 (1− p0)γ

H
1

+

∫ 1

p0

∂ξ2(p)

∂p0

pγ
H
2 (1− p)γH1 dp.

It is easy to verify that the first line on the RHS is zero while the second line is strictly

positive. Hence H(p; π, p0) is increasing in p0 and we have to increase p to keep the equation

as p0 increases.

The proof for the comparative statics for p > p0 case is similar and hence is omitted.

Proof of Proposition 2.2

Proof. First, from equation (2.35), we have:

fH0 =
π∫ 1

p
pγH2(1− p)γH1dp

.

Second, Equations (2.34) and (2.37) imply:

fL1 =
ηL − ηH

2ηL

s2
H

s2
L

(
p

1− p
)−ηL−ηHfH0

and

fL2 =
ηL + ηH

2ηL

s2
H

s2
L

(
p

1− p
)ηL−ηHfH0.

Here,

ηL =

√
1

4
+

2δ

s2
L

> ηH =

√
1

4
+

2δ

s2
H

> 1/2.

157



It is easy to verify that fH0, fL1, fL2 are increasing in p and hence fL0 = fL1 + fL2( p0
1−p0 )−2ηL

is also increasing in p by Equation (2.38).

Hence, we can express fL0, fL1, fL2 as ξ0(p), ξ1(p) and ξ2(p) respectively such that ξ0
′ > 0,

ξ1
′ > 0 and ξ2

′ > 0.

Finally, the market clearing condition (2.36) implies:

H(p) =

∫ p0

0

ξ0(p)pγL1(1− p)γL2dp+

∫ p

p0

[ξ1(p)pγL1(1− p)γL2 + ξ2(p)pγL2(1− p)γL1 ]dp = 1−π.

Obviously, H(·) is strictly increasing, which guarantees the solution is unique if it exists

and limp→p0 H(p) ≤ 1− π will give us Equation (2.39) in Proposition 2.2.

Proof of Lemma 2.8

Proof. By substituting µH(p) and µL(p), the total expected surplus for allocation 1 could be

written as:

S1 =

∫
ΩH

(∆Hp+ µLH)fH(p)dp+

∫
ΩL

(∆Lp+ µLL)fL(p)dp.

From market clearing and martingale property conditions, we can furthermore rewrite

S1 as:

S1 = (∆H −∆L)

∫
ΩH

pfH(p)dp+ ∆Lp0 + πµLH + (1− π)µLL.

And similarly,

S2 = (∆H −∆L)

∫
Ω̃H

pfH(p)dp+ ∆Lp0 + πµLH + (1− π)µLL.

Therefore, S1 > S2 if and only if∫
ΩH

pfH(p)dp >

∫
Ω̃H

pf̃H(p)dp

or alternatively,
∫

ΩL
pfH(p)dp <

∫
Ω̃L
pf̃L(p)dp.

158



Proof of Theorem 2.4

Proof. We establish the proof of Theorem 2.4 under supermodularity. The same logic goes

through for submodularity. The proof is constructed in the following three steps: 1. for

N = 3 we show that the planner can increase output when changing the cutoffs; 2. for

N = 3 no allocation dominates PAM; 3. For any N , the allocation with N − 2 cutoffs

dominates that with N cutoffs.

1. For N = 3, output increases from changing the cutoffs

Consider any allocation with three cutoffs 0 < p
3
< p

2
< p

1
< 1 such that workers

with p ∈ (p
1
, 1] and p ∈ (p

3
, p

2
) are allocated to the high type firms while workers with

p ∈ [0, p
3
) and p ∈ (p

2
, p

1
) are allocated to the low type firms. Furthermore, denote the

ergodic density function for this allocation to be fy and for p close to 0, let the density

function be fL(p) = f̃L0p
γL(1 − p)1−γL while the ergodic density function for p close to 1 is

denoted by fH(p) = f̃H0p
1−γH (1 − p)γH where f̃L0 and f̃H0 are constants. Correspondingly,

denote the ergodic density under the PAM allocation to be f ∗y with the unique cutoff p.

1. Suppose the planner changes the allocation by moving the interval to the left: (p
2
, p

1
)→

(p′
2
, p′

1
) where (p′

2
, p′

1
) = (p

2
− ε2, p1

− ε1). Choose ε1, ε2 such that market clearing is

satisfied: ∫ p
1

p′
1

fH(p)dp =

∫ p
2

p′
2

fH(p)dp.

2. Given the new cutoffs, the Kolmogorov forward equation will pin down a new density f̂L

in the interval (p′
2
, p′

1
). Globally, we need to satisfy market clearing and the martingale

property conditions. The market clearing condition for the H types is satisfied by the

construction. For the L type firms it requires that:∫ p′
1

p′
2

f̂L(p)dp =

∫ p
1

p
2

fL(p)dp.
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The martingale property condition requires that EΩ′H
p+ EΩ′L

p = p0 or:∫ p3

0

pfL(p)dp+

∫ p′2

p3

pfH(p)dp+

∫ p′1

p′2

pf̂L(p)dp+

∫ 1

p′1

pfH(p)dp = p0.

Above are a system of two linear equations about the distributional parameters for f̂L

and f̂L could be solved as a result.11

3. Then comparing the original allocation to the new one, we get

EΩ′H
p− EΩHp =

∫ p
1

p′
1

pfH(p)dp−
∫ p

2

p′
2

pfH(p)dp > 0

since by construction ∫ p
1

p′
1

fH(p)dp =

∫ p
2

p′
2

fH(p)dp

and the interval [p′
2
, p′

1
] is strictly to the left of [p

2
, p

1
]. From Lemma 2.8, EΩ′H

p > EΩHp

implies the planner prefers allocation Ω′ over Ω.

4. Similarly, we can consider another transform which is to move the interval to the right:

(p
3
, p

2
) → (p′

3
, p′

2
) where (p′

3
, p′

2
) = (p

3
+ ε2, p2

+ ε1). This can also lead to output

increases. Keep on doing such transformations and eventually, we can have both the

distance and the measure between p′
3

and p′
1

arbitrarily small while the new (p′
1
, p′

2
, p′

3
)

allocation strictly dominates the original (p
1
, p

2
, p

3
) allocation.

2. For N = 3, no allocation dominates PAM

1. We now show by contradiction that no allocation dominates PAM for N = 3. Sup-

pose on the contrary that there exists an allocation with cutoffs p̃1, p̃2 and p̃3 which

dominates the PAM allocation. Then by Lemma 2.8, we should have:∫ 1

p̃1

pfH(p)dp+

∫ p̃2

p̃3

pfH(p)dp >

∫ 1

p

pf ∗H(p)dp (A.36)

11Things are slightly different if we have p0 ∈ (p′2, p
′
1). Then we have four new distribution coefficients but

we also have two more equations: f̂L(p0−) = f̂L(p0+) and ΣL(p0)(f̂ ′L(p0−)− f̂ ′L(p0+)) = δ. We can use this
system of four linear equations to pin down the four parameters.
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and ∫ p̃1

p̃2

pfL(p)dp+

∫ p̃3

0

pfL(p)dp <

∫ p

0

pf ∗L(p)dp. (A.37)

From Step 1, we can first fix p̃3 and make p̃′2 move towards p̃3, which is efficiency

improving. p̃1 could be extended to the left until it reaches p̂1:
∫ 1

p̂1
fH(p)dp = π. Since∫ 1

p̃′1
fH(p)dp < π, it must be the case that p̂1 < p̃′1. If p̃′2 is sufficiently close to p̃3, we

will have p̃′2 < p̂1. By hypothesis:∫ 1

p̂1

pfH(p)dp >

∫ 1

p̃′1

pfH(p)dp+

∫ p̃′2

p̃3

pfH(p)dp >

∫ 1

p

pf ∗H(p)dp.

On the other hand, it is also efficiency improving by fixing p̃1 and making p̃′2 move

towards p̃1. Similarly define p̂3 as:
∫ p̂3

0
fL(p)dp = (1 − π) such that p̂3 > p̃′3. By

hypothesis, ∫ p̂3

0

pfL(p)dp <

∫ p

0

pf ∗L(p)dp.

since we can make p̃′2 sufficiently close to p̃1.

2. The next step of the proof requires Lemma A.7 below. The Lemma implies that we

should have p̃′3 < p̂3 < p < p̂1 < p̃′1 to guarantee that∫ 1

p̂1

pfH(p)dp >

∫ 1

p

pf ∗H(p)dp and

∫ p̂3

0

pfL(p)dp <

∫ p

0

pf ∗L(p)dp.

Therefore, inequalities (A.36) and (A.37) only hold when p̃′1 − p̃′3 > p̂1 − p̂3 > 0 which

contradicts that fact that we can make the distance between p̃′1 and p̃′3 arbitrarily small

while still keeping the inequalities (A.36) and (A.37). Hence, no allocation with N = 3

cutoffs could be better than the PAM allocation in terms of aggregate surplus.

3. For N cutoffs, the allocation is dominated by any allocation with N−2 cutoffs.

Consider three adjacent cutoffs p
n−1

, > p
n
> p

n+1
such that workers with p ∈ (p

n−1
, p

n−2
)

and p ∈ (p
n+1

, p
n
) are allocated to high type firms; workers with p ∈ (p

n
, p

n−1
) and p ∈

(p
n+2

, p
n+1

) are allocated to low type firms. Suppose the density functions are such that the

market clears and the expectation of p’s is p0. Then we just need to choose κ such that
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∫ p
n−1

p
n−1
−κ
fH(p)dp =

∫ p
n

p
n+1

fH(p)dp.

Now p
n−1

, p
n

and p
n+1

converge to p
n−1
− κ but pn+2 is kept to be the same. The market

clearing condition requires that∫ p
n−1
−κ

p
n+2

f̃L(p)dp =

∫ p
n−1

p
n

fL(p)dp+

∫ p
n+1

p
n+2

fL(p)dp.

Meanwhile, the martingale property condition requires that:∫ 1

p
1

pfH(p)dp+ · · ·+
∫ p

n−2

p
n−1
−κ
pfH(p)dp+

∫ p
n−1
−κ

p
n+2

pf̃L(p)dp+ · · ·+
∫ p

N

0

pfL(p)dp = p0.

Similar to Step 1, we have a system of two linear equations about two distributional

coefficients and density f̃L could be solved. As before,

EΩHp =

∫
ΩH

pfH(p)dp

must become higher and this allocation with N − 2 cutoffs will generate a higher aggregate

payoff.

Finally, by the standard induction argument, we can conclude that the PAM allocation

with one cutoff dominates any allocation with N ≥ 3 cutoffs in aggregate surplus.

Lemma A.7

Lemma A.7. Let p̂1 be such that
∫ 1

p̂1
fH(p)dp = π, where fH(p) satisfies the Kolmogorov

forward equation, then
∫ 1

p̂1
pfH(p)dp is increasing in p̂1. Let p̂3 be such that

∫ p̂3
0
fL(p)dp =

(1 − π), where fL(p) satisfies the Kolmogorov forward equation, then
∫ p̂3

0
pfL(p)dp is also

increasing in p̂3.

Proof. We just prove the case that p̂1 > p0. The other cases are similar. Let fH(p) =

CH(1− p)γH1pγH2 where

γH1 = −3

2
+ ηH and γH2 = −3

2
− ηH .
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From Kolmogorov forward equation,∫ 1

p̂1

fH(p)dp =
1

δ

∫ 1

p̂1

d2

dp2
[ΣH(p)fH(p)] = π

or

ηH + p̂1 − 1
2

p̂1(1− p̂1)
ΣH(p̂1)fH(p̂1) = δπ.

Notice that ∫ 1

p̂1

pfH(p)dp =
1

δ

∫ 1

p̂1

p
d2

dp2
[ΣH(p)fH(p)]dp

and could be simplified as:

πp̂1 +
πp̂1(1− p̂1)

ηH + p̂1 − 1
2

=
πp̂1(ηH + 1

2
)

ηH + p̂1 − 1
2

which is increasing in p̂1 since

ηH =

√
1

4
+

2δ

s2
y

>
1

2
.

On the Job Human Capital Accumulation

Under the assumption of pu = pe = p, the value functions could be written as:

W u
y (p) =

µy(p)− rVy
r + δ + λ

+ kuy1p
1−αuy (1− p)αuy + kuy2p

αuy (1− p)1−αuy

−
λ

(suy )2

(sey)2

(r + δ + λ)[(λ+ δ + r)− (suy )2

(sey)2
(r + δ)]

[µy(p) + ξ(p)− rVy]

+
λ

(λ+ δ + r)− (suy )2

(sey)2
(r + δ)

W e
y (p)

and

W e
y (p) =

µy(p) + ξ(p)− rVy
r + δ

+ key1p
1−αey(1− p)αey + key2p

αey(1− p)1−αey
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where

αuy =
1

2
+

√
1

4
+

2(r + δ + λ)

(suy)
2

≥ 1

αey =
1

2
+

√
1

4
+

2(r + δ)

(sey)
2
≥ 1.

Boundary conditions

W e
L(p) = W e

H(p), W e′
L (p) = W e′

H (p), W e′′
L (p) = W e′′

H (p)

would imply (by normalizing VL = 0 as usual):

rṼ e
H = (µLH − µLL) +

αeH(αeL − 1)(∆H −∆L)p

αeH(αeL − 1)− (1− p)(αeL − αeH)
.

And from

W u
L(p) = W u

H(p), W u′
L (p) = W u′

H (p), W u′′
L (p) = W u′′

H (p),

another equilibrium payoff Ṽ u
H could be derived as:

rṼ u
H = (µLH −

AL
BL

BH

AH
µLL)− BH

AH

λξL
r + δ + λ

(
1− AH
BH

− 1− AL
BL

)

+
BH

AH

αuH(αuL − 1)(DH −DL)p

αuH(αuL − 1)− (1− p)(αuL − αuH)
,

where

DH =
AH
BH

∆H −
1− AH
BH

λ∆ξ

r + δ + λ

DL =
AL
BL

∆L −
1− AL
BL

λ∆ξ

r + δ + λ

AH = 1− (suH)2

(seH)2
BH = (λ+ δ + r)− (suH)2

(seH)2
(r + δ)

AL = 1− (suL)2

(seL)2
BL = (λ+ δ + r)− (suL)2

(seL)2
(r + δ).
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Proof of Proposition 2.3

Proof. Supermodularity is equivalent to ∆H > ∆L, and ξH ' ξL is equivalent to ∆ξ =

ξH − ξL → 0. The proof can be divided into three parts. As a sufficient condition,

1.

(µLH −
AL
BL

BH

AH
µLL)− BH

AH

λξL
r + δ + λ

(
1− AH
BH

− 1− AL
BL

) < (µLH − µLL)

2.

BH

AH
(DH −DL) < ∆H −∆L

and

3.

αuH(αuL − 1)p

αuH(αuL − 1)− (1− p)(αuL − αuH)
<

αeH(αeL − 1)p

αeH(αeL − 1)− (1− p)(αeL − αeH)

should be satisfied simultaneously.

First of all, notice that
(suH)2

(seH)2
>

(suL)2

(seL)2
since ∆H > ∆L. As a result, AH

BH
< AL

BL
and

1−AH
BH

> 1−AL
BL

. The first inequality holds since µLH− AL
BL

BH
AH
µLL < µLH−µLL and AL

BL

BH
AH
µLL)−

BH
AH

λξL
r+δ+λ

(1−AH
BH
− 1−AL

BL
) > 0. The second inequality could be proved similarly.

For the last inequality, we just need to compare:

αuH(αuL − 1)[αeH(αeL − 1)− (1− p)(αeL − αeH)]

and

αeH(αeL − 1)[αuH(αuL − 1)− (1− p)(αuL − αuH)].

To prove 3, it suffices to show

αuH(αuL − 1)(αeL − αeH) > alphaeH(αeL − 1)(αuL − αuH).

The direct proof is not easy. But notice from the expressions of α’s:
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(αeL − αeH)(αeL + αeH − 1) = 2(r + δ)[
σ2

(∆L + ∆ξ)2
− σ2

(∆H + ∆ξ)2
]

and

(αuL − αuH)(αuL + αuH − 1) = 2(r + δ + λ)[
σ2

∆2
L

− σ2

∆2
H

].

Hence, when ∆ξ = 0,

αeL − αeH
αuL − αuH

=
r + δ

r + δλ

αuL + αuH − 1

αeL + αeH − 1
.

The original inequality is transformed to compare:

(r + δ)αuH(αuL − 1)(αuL + αuH − 1)

and

(r + δ + λ)αeH(αeL − 1)(αeL + αeH − 1).

Meanwhile, we have:

(r + δ)αuH(αuL − 1)αuL = (r + δ)αuH
2(r + δ + λ)

∆2
L

> (r + δ + λ)αeH(αeL − 1)αeL = (r + δ + λ)αeH
2(r + δ)

∆2
L

and

(r + δ)αuH(αuL − 1)(αuH − 1) = (r + δ)(αuL − 1)
2(r + δ + λ)

∆2
H

> (r + δ + λ)αeH(αeL − 1)(αeH − 1) = (r + δ + λ)(αeL − 1)
2(r + δ)

∆2
H

since αuy > αey. This implies:

αuH(αuL − 1)(αeL − αeH) > αeH(αeL − 1)(αuL − αuH)

and therefore,

αuH(αuL − 1)p

αuH(αuL − 1)− (1− p)(αuL − αuH)
<

αeH(αeL − 1)p

αeH(αeL − 1)− (1− p)(αeL − αeH)
.
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Notice from the above proof, 3 holds only when ∆ξ is small and will not hold as ∆ξ becomes

sufficiently large.

Finally, we can conclude that Ṽ u
H < Ṽ e

H when ξH ' ξL, and as a result pe < pu.

No-deviation condition for the non-Bayesian learning example

Under the non-Bayesian learning case, suppose it is optimal for a p worker to choose firm

y, the value function for this worker should be such that (from Hamilton-Jacobi-Bellman

equation):

(r + δ)Wy(p) = wy(p) + λypW
′
y(p).

Suppose there is a cutoff p such that workers with p > p are matched with H firms and vice

versa.

Then the absence of deviation implies that a p > p worker has no incentive to deviate,

rematch with a L firm and switch back after dt time:

WH(p) > W̃L(p) = E
{∫ t+dt

t

e−(r+δ)(s−t)wL(ps)ds+ e−(r+δ)dtW (pt+dt)

}
.

For dt sufficiently small, pt+dt is still close to p such that it is optimal for a pt+dt worker

to choose firm H as well. It is immediate to see that:

lim
dt→0

WH(p)− W̃L(p)

dt
= wH(p)− wL(p) + (λH − λL)pW ′

H(p),

and hence no deviation implies that:

wH(p)− wL(p) + (λH − λL)pW ′
H(p) > 0

for all p > p. Let p→ p+ and we have by applying the value matching condition:

wH(p+)− wL(p−) + (λH − λL)pW ′
H(p+) = λLp(W

′
L(p−)−W ′

H(p+)) ≥ 0

or equivalently W ′
L(p−) ≥ W ′

H(p+). On the other hand, a p < p worker also has no incentive

to deviate, rematch with a H firm and switch back after dt time. Similarly, no deviation
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implies that:

wL(p)− wH(p) + (λL − λH)pW ′
L(p) > 0

for all p < p. Let p→ p− and it could be shown:

wL(p−)− wH(p+) + (λL − λH)pW ′
L(p−) = λHp(W

′
H(p+)−W ′

L(p−)) ≥ 0

or equivalentlyW ′
H(p+) ≥ W ′

L(p−). Therefore, at p, it must be the case thatW ′
H(p) = W ′

L(p)

and no-deviation condition coincides with the smooth-pasting condition.
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