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ABSTRACT
ESSAYS ON MARKET DYNAMICS IN THE PRESENCE OF LEARNING
Xi Weng

George Mailath

I investigate how the presence of learning affects the market dynamics in three different
market settings. The first chapter studies how the interplay of individual and social learning
affects price dynamics. I consider a monopolist selling a new experience good over time to
many buyers. Buyers learn from their own private experiences (individual learning) as well
as by observing other buyers’ experiences (social learning). Individual learning generates
ex post heterogeneity, which affects the buyers’ purchasing decisions and the firm’s pricing
strategy. When learning is through good news signals, the monopolist’s incentive to exploit
the known buyers causes experimentation to be terminated too early. After the arrival of a
good news signal, the price could instantaneously go down in order to induce the remaining
unknown buyer to experiment. When learning is through bad news signals, experimentation
is efficient, since only the homogeneous unknown buyers purchase the experience good. The
second chapter is based on the observation that workers learn at different rates about their
productivity and therefore expect different wage paths across firms. We show that under
strict supermodularity there is always positive assortative matching: differential learning is
always dominated by the impact of productivity. Surprisingly, this holds even if learning is
faster in the low type firm. The key assumption driving this result is that this is a pure
Bayesian learning model.We also derive a new equilibrium condition in this class of continu-
ous time models in addition to the common smooth-pasting and value-matching conditions.
This no-deviation condition captures sequential rationality and results in a restriction on the
second derivative of the value function. The third chapter develops a continuous-time war
of attrition model with learning to investigate whether learning is possible to make it easier

to reach an agreement. I show that with exogenous private learning, it may be easier to



reach an agreement initially but it becomes more and more difficult over time. The expected
delay will always be higher than the expected delay without learning. I also show that when

allowing only one player to learn leads to a shorter delay than allowing both to learn.
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Chapter 1

Dynamic Pricing in the Presence of
Social Learning

1.1 Introduction

In many markets for new experience goods, the buyers are facing both common and id-
iosyncratic uncertainty. Take the market for new drugs, for example. The effectiveness of a
new drug first depends on the unknown common quality. However, a good quality does not
guarantee that the drug is effective for everybody. Each patient’s idiosyncratic uncertainty
also matters.! Patients learn from others’ experiences (social learning) as well as their own
(individual learning). The success of the new drug for one patient is good news about prod-
uct quality, but it does not necessarily mean that the drug would also be effective for other
patients.

Consider a monopolist selling a new experience good to many buyers in such a market.
The monopolist and the buyers initially are equally unsure about the effectiveness of the
product. How will this monopolist price strategically if she observes each buyer’s past actions

and outcomes? Without success of the product, everyone becomes increasingly pessimistic.

! Although the F.D.A. conducts an extensive period of pre-launch testing in the pharmaceutical industry,
some drugs enter the market with substantial uncertainty about their product qualities. For example, dietary
supplements do not need to be pre-approved by the F.D.A. before entering the market. There is also a “hurry-
up mechanism,” which allows approval of a drug that has not yet been proved effective in thorough clinical
trials but has shown promise that it might benefit patients with life-threatening diseases. A recent example
is a cancer drug Avastin, which was approved by the F.D.A. based on one clinical trial (New York Times
(2010)).



In order to keep the buyers purchasing the product, the price has to be reduced. How will the
monopolist react when the product is revealed to be effective for one buyer? Will strategic
pricing achieve an efficient allocation?

In this paper, dynamic monopoly pricing is modelled as an infinite-horizon, continuous-
time process. The monopolist sells a perishable experience good. She cannot price-discriminate
across buyers. At each instant of time, the monopolist first posts a price, which is contingent
on the available public information about the experiences of the buyers. Each buyer then
decides to either buy one unit of the experience good or take an outside option (modelled as
another good of known characteristics). The experience good generates random lump-sum
payoffs according to a Poisson process. The arrival rate of the lump-sum payoffs depends
on an unknown product characteristic and an unknown individual attribute, both of which
are binary. For tractability, we assume the public arrival of lump-sum payoffs immediately
resolves both the common uncertainty and the idiosyncratic uncertainty of the receiver. As
a result, there is a simple dichotomy of the learning process: in the social learning phase,
the uncertainty about the product characteristic has not been resolved; in the individual
learning phase, there is common knowledge about the product characteristic. A key feature
of the model is that buyers become ex post heterogeneous in the individual learning phase:
some buyers have received lump-sum payoffs, while others have not.

The model setting consists of two different cases. In the good news case, the experience
good generates positive lump-sum payoffs; in the bad news case, it generates negative lump-
sum damages (e.g., side effects of new drugs). This paper gives full characterizations of the
symmetric Markov perfect equilibrium for both cases. In the good news case, because of the
ex post heterogeneity, the interplay of individual and social learning leads to implications
significantly different from the ones obtained when only social learning exists. In particular,
the buyers’ purchasing behavior, the equilibrium price path and efficiency all significantly

differ from the pure social learning model.



In the benchmark case where there is a single buyer in the market, that buyer’s purchasing
decision is purely myopic. The key reason is that in this one-buyer case, the equilibrium
price is set such that the buyer is indifferent between purchasing the experience good and
taking the outside option. The buyer’s continuation value is independent of the learning
outcomes. Since learning is not valuable, the buyer only compares the instantaneous cost
and benefit when making the purchasing decisions.? With many buyers, this property also
holds when the buyers’ payoffs are perfectly correlated, but it no longer applies when the
buyers’ payoffs are only partially correlated. Consider a situation where two ex ante identical
unknown buyers make different purchasing decisions (an “unknown” buyer refers to a buyer
whose value of the good has not been fully revealed). One buyer keeps purchasing the
experience good, while the other buyer deviates to take the outside option for a small amount
of time. If the experimenter does not receive any lump-sum payoffs during that period, she
becomes more pessimistic about her individual attribute. Without price discrimination, if the
monopolist sells to two different buyers, the optimal price is set to make the more pessimistic
buyer indifferent between the alternatives. The deviator, who is more optimistic about the
experience good, pays less than what she is willing to pay. This implies that with multiple
buyers and partial payoff correlations, there could be non-trivial intertemporal incentive
considerations in making the purchasing decisions.

We first characterize the symmetric Markov perfect equilibrium when there are two buy-
ers. In the social learning phase — when no lump-sum payoff has arrived yet — the critical
tradeoff for the monopolist is between selling to both buyers and exiting the market; in the
individual learning phase — after lump-sum payoffs have arrived to one buyer — the criti-
cal tradeoff is between selling to both buyers and selling only to the known buyer who has

received lump-sum payoffs. In both learning phases, the equilibrium purchasing behavior

2In a dynamic duopoly pricing model (e.g., Bergemann and Vilimiki (1996)), learning determines the
future competition positions of different sellers. The buyer generally is not making myopic decisions since
her continuation value varies with posterior beliefs. But if one seller’s price is fixed to a constant, the buyer’s
optimal decisions become purely myopic in the framework of Bergemann and Vélimaki (1996).



is determined by a cutoff in the posterior belief about the unknown buyer’s individual at-
tribute. Each unknown buyer purchases the experience good above this cutoff and takes the
outside option below this cutoff.

By comparing cutoffs in different learning phases, we distinguish a mass market from a
niche market. The cutoff in the social learning phase is higher than the cutoff in the indi-
vidual learning phase in a mass market, but lower in a niche market. Along the equilibrium
path, in a mass market, the monopolist always sells to both buyers after the arrival of the
first lump-sum payoff; in a niche market, if the first lump-sum payoff arrives too late, exper-
imentation by the unknown buyer will be immediately terminated. When experimentation
by the unknown buyer occurs in the individual learning phase, the equilibrium price is set
the same as in the one-buyer case. Although the unknown buyer is indifferent between the
alternatives, the known buyer receives a larger consumer surplus, since she is more optimistic
about the experience good than the unknown buyer.

The presence of idiosyncratic uncertainty has two important implications for the equilib-
rium price. First, in the social learning phase, since there is a future benefit by taking the
outside option for a small amount of time, each unknown buyer receives a value higher than
the outside option to deter deviation. This deterrence effect forces the monopolist to reduce
the price in order to provide the extra subsidy. Second, it also affects how price responds
to the arrival of lump-sum payoffs. In particular, when the first lump-sum payoff arrives,
there might be an instantaneous drop in price. This is driven by two opposing effects on the
unknown buyer’s reservation value. On the one hand, the arrival of a good news signal makes
the unknown buyer more optimistic. This informational effect raises the unknown buyer’s
reservation value. On the other hand, the unknown buyer loses the chance of becoming the
first known buyer. The resulting loss of rents lowers the unknown buyer’s reservation value.
This continuation value effect is driven by ex post heterogeneity. If the buyers’ payoffs are

perfectly correlated, there is no such effect, and the equilibrium price always goes up after



the arrival of the first lump-sum payoff.

If the buyers’ payoffs are perfectly correlated, efficiency is achieved for any number of
buyers since the monopolist is able to fully internalize the social surplus by subsidizing ex-
perimentation. However, if the buyers’ payoffs are only partially correlated, the equilibrium
experimentation level is always lower than the socially efficient one. This is due to the exis-
tence of ex post heterogeneity: the known buyers are willing to pay more than the unknown
buyers in the individual learning phase. Without price discrimination, the monopolist faces a
tradeoff between exploitation of the known buyers and exploration for a higher future value.
The exploitation incentive always causes experimentation to be terminated too early. The
inefficiency in the individual learning phase reduces the monopolist’s incentives to subsidize
experimentation in the social learning phase. As a result, the equilibrium experimentation
is inefficiently low in the social learning phase as well.

We then characterize the symmetric Markov perfect equilibrium in the bad news case.
It is shown that the equilibrium is always efficient as is the case when the buyers’ payoffs
are perfectly correlated. The key insight is that although buyers become heterogeneous in
the individual learning phase, the buyers who have received lump-sum damages will never
purchase the experience good. The potential buyers are only the unknown ones, who are ex
post homogeneous in a symmetric equilibrium. Another important difference between the
good and bade news cases is that no extra subsidy is needed in the bad news case since
deviations of an unknown buyer make the deviator more pessimistic. As a result, there is no
deterrence effect and no continuation value effect. The instantaneous price reaction to the
arrival of the first lump-sum damage is always to go down.

The presence of multi-dimensional beliefs complicates the analysis significantly: the pos-
terior belief about the product characteristic and the posterior beliefs about the individual
attributes are all relevant for decision-making. The dimension of the state space is reduced

by the fact that given the priors, the posterior about the product characteristic is a function



of the posteriors about the individual attributes. When considering the symmetric Markov
perfect equilibrium, on the equilibrium path, one posterior is sufficient to represent all the
posteriors. But off the equilibrium path, the deviations lead to heterogeneous posterior be-
liefs about the individual attributes. Even in that case, the problem is transformed in a
way such that all value functions can be explicitly derived by solving ordinary differential
equations. The benefit of this approach is to ensure that the traditional value matching and

smooth pasting conditions can still be applied to characterize the optimal stopping decisions.

Related Literature

Bergemann and Valiméki (1996) and Felli and Harris (1996) are two early papers analyzing
the impact of price competition on experimentation. They show that if there is only in-
dividual learning, the dynamic duopoly competition with vertically differentiated products
can achieve efficiency. However, Bergemann and Véliméki (2000) show that in the presence
of social learning, the dynamic duopoly competition cannot achieve efficiency. Bergemann
and Véliméaki (2002) and Bonatti (2009) allow ex ante heterogeneity in the sense that buyers
are different in their willingness to pay.®> Both papers assume a continuum of buyers. At
each instant of time, an individual buyer only makes a myopic optimal choice and strategic
interactions between the buyers don’t exist.

Bergemann and Véliméki (2006) also consider a dynamic monopoly pricing problem, but
with a continuum of buyers and independent valuations. The difference in crucial modelling
assumptions leads them to investigate different properties of equilibrium price path. The
framework of a continuum of buyers makes it impossible to discuss the impact of a single
good news signal on price. Instead, Bergemann and Véliméki (2006) are more concerned
about whether price would always go down or eventually go up in equilibrium. Bose, Orosel,

Ottaviani, and Versterlund (2006) and Bose, Orosel, Ottaviani, and Versterlund (2008) de-

3Villas-Boas (2004) also investigates a duopoly model with ez ante heterogeneity along a location. He
considers a two-period model and is mainly concerned about consumer loyalty, i.e., whether in the second
period, buyers return to the seller they bought from in the first period.



velop another way of modelling dynamic monopoly pricing under social learning. Their
model is closer to the herding literature: each short-lived buyer makes a purchasing decision
in a pre-determined sequence. In contrast, in our model, all buyers are long-lived and are
making purchasing decisions repeatedly.

This paper is also closely connected to the continuous-time strategic experimentation
literature. A nonexhaustive list of related papers includes Bolton and Harris (1999), Keller
and Rady (1999), Keller and Rady (2010) and Keller, Rady, and Cripps (2005).* The
analysis of our model setting is greatly simplified by the use of exponential bandits, building
on Keller, Rady, and Cripps (2005). Most of the papers in the strategic experimentation
literature assume a common value environment, where the players’ payoffs are perfectly
correlated. This enables us to use a uni-dimensional posterior belief as the unique state
variable to characterize the value functions. By considering a partial payoff correlation,
we introduce multi-dimensional posterior beliefs and show that the dimensionality of the
problem can be reduced by expressing one posterior as a function of other posteriors.

In addition to the theoretical body of work, there are a few empirical studies attempting
to quantify the importance of learning considerations on consumers’ dynamic purchasing
behavior. However, most of the existing works have exclusively focused on modelling indi-
vidual consumer behavior and analyzing the impact of idiosyncratic uncertainty (see, e.g.,
Ackerberg (2003), Crawford and Shum (2005), Erdem and Keane (1996) and so on). Several
recent works, including Ching (2010), Chintagunta, Jiang, and Jin (2009), Kim (2010), use
both individual learning and social learning to investigate the diffusion of new drugs. In par-
ticular, Ching’s paper is based on the passage of the Hatch-Waxman Act in 1984. This act
eliminates the clinical trial study requirements for approving generic drugs and encourages

more entries of generic drugs that have uncertain product qualities. Ching shows that both

4The strategic experimentation framework is also used as a building block to investigate broader issues.
For example, Strulovici (2010) investigates voting in a strategic experimentation environment; Bergemann
and Hege (2005), Horner and Samuelson (2009) and Bonatti and Hoérner (2009) consider moral hazard
problems when effort affects speed of learning.



individual learning and social learning are needed to explain the slow diffusion of generic
drugs into the market.

The remainder of this paper is organized as follows. Section 1.2 introduces the model and
defines the solution concept. Section 1.3 and Section 1.4 solve a symmetric Markov perfect
equilibrium and discuss the efficiency of the equilibrium for the good news case and the bad

news case, respectively. Section 1.5 concludes the paper.

1.2 Model Setting

Time ¢t € [0,400) is continuous. The market consists of n > 2 buyers indexed by i =
1,2,--- . n and one monopolist, who are all risk-neutral with the common discount rate
r > 0. The monopolist with a zero cost of production sells a risky product with unknown
value. At each point in time, a buyer can either buy one unit of the risky product or take a
safe outside option/product.

If a buyer purchases the safe product, she receives a known deterministic flow payoff s >
0.5 The value of the risky product to a buyer i consists of two components: a deterministic
flow payoff {4 > 0 and a random lump-sum payoff §. The arrival of lump-sum payofts
depends on both an intrinsic characteristic of the product (common uncertainty) and the
quality of the match between the product and that buyer (idiosyncratic uncertainty). The
product characteristic is either high (A = Ay ) or low (A = AL = 0), and the match between
buyer i and the risky product is either relevant (k; = 1) or irrelevant(r; = 0). The arrival
of random lump-sum payoffs & is independent across buyers and modelled as a Poisson
process with intensity Ax;. Therefore, a buyer 7 is able to receive random lump-sum payoffs
if and only if both the product characteristic is high and the individual match quality is
relevant. Before the game starts, nature chooses randomly and independently the product

characteristic and the individual match quality for each buyer. The common priors are such

5 Alternatively, we can assume the flow payoff is random but drawn from a commonly known distribution
with expectation s > 0.



that: go = Pr(A = Ag), and for each buyer i, py = Pr(k; = 1). The product characteristic
and the match qualities are initially unobservable to all players (seller and buyers), but the
parameters g, ¢, &, po and gy are common knowledge.

We consider two cases in the above setting. In the good news case, & > 0 and the arrival
of lump-sum payoffs makes the risky product more attractive than the safe one. We assume
the risky product is superior to the safe one only when the buyers can receive lump-sum

payoffs:
Assumption 1.1. (Good News Case) In the good news case, & > 0 and £ < s < £+ Ap&;.

In the bad news case, § < 0 and the arrival of lump-sum payoffs makes the risky product
less attractive than the safe one. We impose the requirement that the risky product is

superior to the safe one only when the buyers cannot receive lump-sum payoffs:
Assumption 1.2. (Bad News Case) In the bad news case, § < 0 and & > s > &5 + Ayé.

All players observe each buyer’s past actions and outcomes. As a result, both the seller
and the buyers hold common posterior beliefs about the common characteristic and any
given buyer’s match quality. In both cases, if one buyer receives a lump-sum payoff from the
risky product, every player immediately knows that that buyer’s match is relevant and the
product characteristic is high. The non-arrival of lump-sum payoffs may be due to either a
low characteristic or an irrelevant match. Social learning is important because it provides
additional information about the product characteristic even if the buyers’ match qualities
are drawn independently. Although the assumption A\, = 0 seems a little restrictive, the
current model is rich enough to include the extreme cases of common value (pg = 1,q9 < 1)
and independent values (¢go = 1, pg < 1).

At each instant of time ¢, the monopolist first announces a price based on the previous
history and then each buyer decides which product to purchase conditional on the previous
history and the announced price. It is assumed that the monopolist cannot price-discriminate

and so charges the same price to all buyers.



1.2.1 Belief Updating

Denote by N;; the total number of lump-sum payoffs received by buyer ¢ before time t. Let
P, be the price charged by the monopolist at time ¢. Set a;; = 1 if buyer ¢ purchases the
risky product at time ¢; a; = 0 if buyer ¢ purchases the safe product at time t. A public

history before time t is defined as:
he = ({@ir, Nir }iey, PT)O§T<t .
Posterior beliefs are defined as:
g = PrAg [ h] and  piy 2 Prle; = 1| A, b
such that the posterior belief of receiving lump-sum payoffs is given by
PrA\s; = Ay | b = puray-

Given a pair of priors (pg,qo), the posteriors (pis,- - , put, @) €volve according to Bayes’
rule. A buyer 7 who has not received any lump-sum payoff before time ¢t expects an arrival
of lump-sum payoffs from the risky product with rate Aga;piq;. If a lump-sum payoff is
received, p; immediately jumps to 1; otherwise, p; obeys the following differential equation

at those times t when a;; is right continuous:®

Pit = _)\Haitpit(l - pit)- (1-1)

If no buyer has received a lump-sum payoff, then with an expected arrival rate Agq > ;| @itpit,

some buyer receives a lump-sum payoff and ¢; jumps to 1. Otherwise, ¢; obeys the following

SIf buyer ¢ has not received good news within time ¢ and ¢ 4 h, then the posterior belief pit+n could be

written as: )
3
Pitei)\H fO ai,t+7-d7'

Pit+h = = .
pie Nt Jo" aitrdT L] — g,

Since a;, isﬁright continuous with respect to time at time t, there exists some h > 0 such that Qi trr = it
for all 7 < h. Hence by definition,

. . Pitth — Pi,
pir = lim PR — a0 (1 — pr).-
h—0 h

Gt is derived similarly.

10



differential equation at those times when a;; is right continuous for Vi:
n
G = =g (1 — q) Z it Pit - (1.2)
i=1
The posterior belief ¢ can be expressed as a function of p;’s. When no buyer has received a
lump-sum payoff for a length of time ¢, let x;; £ pge Joairdr 41 — po denote the probability
of the event that unknown buyer ¢ has not received lump-sum payoffs for a length of time ¢

conditional on A\y. By Bayes’ rule

o= —pdl= (13)
Qo lim wie +1—qo
From equation (1.1),
67)\H fot airdr 1 —
pit = e - pit = P, (1.4)
Lit Lit
Substituting (1.4) into (1.3) yields:
1 . n
0" qo(1 — po) ‘ (1.5)

~qo(1 = po)" + (1= qo) [Ti=, (1 — pir)
Notice that equation (1.5) also holds when at least one buyer has received lump-sum payoffs.
In that situation, at least one of the p;’s is one and ¢ is also one. After long history of
no realization of lump-sum payoffs, the posteriors p;; would converge to zero while ¢; would
not. This reflects the fact that p; is a conditional probability and ¢; is bounded below by
qo(1 = po)™.

A nice property about equation (1.5) is that it only depends on p;’s and does not explicitly
depend on previous purchasing decisions or time t. Differential equations (1.1) and (1.2)
imply: given a particular history of purchasing decisions, both p; and ¢; can be written as a
function of time. In the critical history when nobody has received lump-sum payoffs, p;; is
sufficient to encode time ¢ and the relevant information about previous purchasing decisions,
which are needed for the the updating of ¢;. Therefore, we are able to express ¢; as a function

of p, £ (p1s,- -, pne) for a given pair of priors (pg, qo).

11



1.2.2 Strategies and Payoffs

Throughout the paper, we focus on symmetric Markov perfect equilibria. The natural state
variables include a posterior about common uncertainty ¢ and posteriors about idiosyncratic
uncertainty p. Given a pair of priors (po, qo), it suffices to use posterior beliefs p, as state
variables since ¢ can be expressed as a function of p. This enables us to reduce the dimen-
sionality of the state space by one. The state variable p, is required to be feasible in the
sense that

p, € X ={pe0,1]": either p; =1 or p; < pg all for i}.

Purchasing Decision Given a pair of priors (po, qo), buyer i’s acceptance policy is a function
of states p and price P
OéiIEXR—){O,l}.7

Since lump-sum payoffs arrive with rate p;;q;\py, the expected flow of utility associated

with purchasing decision a;; is

i Pt & + ain(Er — Pr) + (1 — ag)s.

The choice of a;; affects not only flow utility but also how beliefs p, and ¢; are updated.
Given beliefs p € ¥, monopolist’s strategy P and other buyers’ strategies a_;, buyer 7’s

value (sum of normalized expected discounted utility) from purchasing strategy «; is

Ui(oi, Pa_s; p) = E/T’e_rt {ai(py P) (pia(p ) Au& + & — Br) + (1 — au(py, ) s} dt

where the expectation is taken over {p, : ¢t € [0,00)} with p, = p and ¢(p,) is given by

equation (1.5).

"More accurately, the strategy should be written as o;(p, P; po, qo). Throughout the paper, (pg, o) will
be dropped since no confusion is caused.

12



Pricing Decision Given a pair of priors (pg, qo), the monopolist’s price is a function of states

P
P:¥—R.

Given buyers’ strategies {a;}! ;, the flow profits associated with price P, are

Z ai<pt7 Pt)Pt
i=1

The choice of P, affects not only flow profits but also the purchasing decisions and so how
beliefs are updated. Given beliefs p and buyers’ strategies {«;}" ;, the monopolist’s value

(sum of normalized expected discounted profits) from the pricing policy P is

J P Oé,p /7”6 TtZOéZ ptu pt P<pt)dt

where the expectation is taken over {p, : t € [O, o0)} with p, = p.

Admissible Strategies A critical issue associated with continuous time model setting is that
a well-defined strategy profile need not yield a well-defined outcome. Some restrictions on
strategies have to be imposed to overcome this issue. In particular, we require the Markovian
strategy profile (P, «) to be admissible. The formal definition can be found in the appendix.
If a strategy profile satisfies this requirement, the induced outcome is well behaved in the
sense that the purchasing decisions a;; and pricing decisions P, are right continuous functions

when there is no arrival of lump-sum payoffs.

1.2.3 Symmetric Markov Perfect Equilibrium

We consider a Markov perfect equilibrium in symmetric strategies. The formal definition of

our solution concept is the following:

Definition 1.1. Given a pair of priors (po,qo), an admissible Markov strategies profile

{P*,a*} is a Markov perfect equilibrium if for all i, feasible beliefs p and all admissible
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strategies P and &;2

J(P*,a";p) > J(P,a"p) and U(oj, P*,a;p) > U(ay, P*, 0% ;5 p).

Moreover, {P*, a*} is symmetric if for all permutations = : {1,--- ,n} — {1,--- n},

P(p) = P(p) where p; = pr—13;) and a;(p, P) = ax)(p, P)-
1.3 Equilibrium in the Good News Case

In the good news case, & > 0 and the arrival of a lump-sum payoff makes the risky product
more favorable to the receiver of this payoff. In this section, we normalize £ = 0 and
& =v > 0. Assumption 1.1 implies g = Agv > s > 0.

Since the arrival of one lump-sum payoff immediately resolves common uncertainty, there
are only two situations to consider: a social learning phase, where the common uncertainty
has not been resolved, and an individual learning phase, where the common uncertainty has
been resolved. In the individual learning phase, an unknown buyer just needs to learn her
individual match quality and for such a buyer i, without the arrival of a lump-sum payoff,
posterior belief p; is updated according to equation (1.1).

In the social learning phase, both individual learning and social learning exist. If unknown
buyers behave symmetrically, they share the same posterior belief p, and belief ¢ about Ay

is given by equation (1.5):

(1 —po)"qo
1—po)"q+ (1—p)"(1—q)

=1 (1.6)

Therefore, in a symmetric Markov perfect equilibrium, it suffices to use the common posterior

belief p as the unique state variable.

8Strategies P and &; need not be Markovian. The definition of admissible non-Markovian strategies can
also be found in the appendix.
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1.3.1 Socially Efficient Allocation

Before solving for a symmetric Markov perfect equilibrium, we first solve for the socially
efficient allocation. The linear utility function enables us to obtain the efficient allocation
policy by solving a specific multi-armed bandit problem where payoffs are given by the
aggregate surplus.

Given the priors py and gy, the socially efficient allocation is characterized by a cutoff
strategy in posterior belief p. There are two cutoffs p¢ and p§ for the individual learning
phase and the social learning phase, respectively. In the individual (social) learning phase, it
is optimal for the social planner to keep the unknown buyers experimenting until belief drops
to p5 (p%) and no lump-sum payoff has been received before that. A backward procedure is
used to solve for the socially efficient allocation. We first characterize the socially efficient
allocation in the individual learning phase and then use the optimal social surplus function
in the individual learning phase to solve the cooperative problem in the social learning phase.
Socially Efficient Allocation in the Individual Learning Phase In the individual learning
phase, suppose k buyers have received good news; then it is socially optimal for them to

keep purchasing the risky product by assumption 1.2 and the social surplus function is

Qu(p) = kg + (n — k)W (p)

where

W(p) = sup E/ re " apg + (1 — a)s]dt
t

aef{0,1} =0

is the optimal value for an unknown buyer with posterior belief p.
Since the unknown buyers are facing a standard independent two-armed bandit problem,
previous research (see Keller, Rady, and Cripps (2005)) has characterized the optimal cutoff

and value function W. It is efficient for the remaining n — k unknown buyers to stop
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purchasing the risky product once the posterior belief p reaches

rs
(r+Ag)g — Ags

P =

and still no lump-sum payoff has been received. Since in the individual learning phase, the
common uncertainty has been resolved (¢ = 1), the efficient cutoff p§ does not depend on

the priors pg and gg. The value function for a buyer with posterior belief p is

S ( rs
r+ Ay

(1 - p)(g)w} S

W(p) :max{s,gp+ (r+Xg)(g—s) p

Efficiency in the Social Learning Phase In the social learning phase, the socially efficient

allocation solves the symmetric cooperative problem (see claim A.1 in the appendix):

h
= su re " 'nlap) peq(py —apy))s e h o
Osto) = swp B{ [ v nlalpopatpn + (1= atp)slit + e 0o | o)

where
" /n h k h n—k
EQ(ph | a) —q ( >pk: <1 . e—AHfo Oétdt) <p6—>\Hf0 o dt +1— p) Qk(ph)
* [q (pe‘“f Jorendt 1y P) +1- Q] Qs(pn)

and
67)\]1 foh adt

1%
p = .
pefx\H foh adt + 1 — p

In the continuous time framework, the probability that more than two buyers receive
lump-sum payoffs at the same time is zero. The Hamilton-Jacobi-Bellman equation (HJB

equation hereafter) for the above problem hence is simplified as:

rQ2s(p) = max {ms, rnpq(p)g + npa(p)Aa(Qi(p) — QLs(p)) — Aup(l — p)Q's(p)} ,  (1.8)

where Q;(p) = g + (n — 1)W(p) is the social surplus when one buyer receives a lump-sum

payoft.
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The first part of the maximand corresponds to using the safe product, the second to the
risky product. The effect of using the risky product for the social planner can be decomposed
into three elements: i) the (normalized) expected payoff rate rnpq(p)g, ii) the jump of the
value function to €2;(-) if one buyer receives a lump-sum payoff, which occurs at rate nAy
with probability pg(p), and iii) the effect of Bayesian updating on the value function when
no lump-sum payoff is received. When no lump-sum payoff is received, both p and ¢ are
updated. The updating of ¢ is implicitly incorporated as a function of p.

The optimal cutoff p§ is pinned down by solving the following differential equation:

rQs(p) = rnpq(p)g + npg(p) e (i (p) — Qs(p)) — Aup(l — p)Qs(p), (1.9)

with boundary conditions:
Qs(p%) =ns  (value matching condition) and Qg(p%) =0 (smooth pasting condition).

Substitute the two boundary conditions into differential equation (1.9) and we immedi-

ately show that the cutoft pg should satisty

rnpq(p)g + npg(p)Aush(p) = (r + npg(p)Am)ns. (1.10)

In the appendix, we show that equation (1.10) implies a unique solution pg for a given
pair of priors (pg,qo). The socially efficient allocation in the social learning phase can be

characterized as follows:

Proposition 1.1. (Characterize socially efficient allocation) For any posteriors (p,q), it is

socially efficient to purchase the risky product in the social learning phase if and only if

rs
(r+Au)g+ (n—DAXgW(p) —nigs

pq >

When the common uncertainty is resolved, it is always socially efficient for the unknown

buyers to continue experimentation until the posterior reaches pf.

Proof. In the appendix. O
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Stopping Curve
09 = = =p,=0.8,0,=09
08k p=0-9,q,=0.8

Figure 1.1: Solutions to the Cooperative Problem with Two Players

Given the priors, the unique pair of efficient cutoffs (p%(po, o), 95(po, q0)) is determined

by equations

(1—po)™qo
¢ = 111
ST 0= s a0+ (L—p5) (L= g0) (L11)
and
s
¢ = (1.12)

Pl A9 + (0 — DA W (05) — mdas]
where W (-) is given by equation (1.7). Figure 1.1 is an illustration of how we can use
equations (1.11) and (1.12) to determine the efficient cutoffs in the social learning phase.
Equation (1.12) describes a stationary stopping curve because it consists of all pairs of
stopping cutoffs (p§, ¢%) and this equation is independent of priors (pg, qo). Equation (1.11)
describes how p and ¢ evolve jointly over time starting from pg and qqg. This equation indeed
depends on priors.

Unlike the individual learning phase, the cutoff p§ does depend on the priors (po, qo)-
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We formulate the problem so that p is the unique state variable in order to avoid solving
partial differential equations. But the actual optimal stopping decision depends not only
on belief p but also on ¢. For a fixed pg, a higher gy means that the society can afford to
experiment more and thus the efficient cutoft p§ should be lower. For a fixed pair of priors
(po, qo), a two-dimensional optimal stopping problem is transformed into a one-dimensional
one by expressing ¢ as a function of p. As a result, we are able to apply traditional value

matching and smooth pasting conditions to solve our optimal stopping problems.

1.3.2 Characterizing Equilibrium for n = 2

In the two-buyer case, there are three situations to consider. When the common uncertainty
is not resolved, denote Ug as the value function for each unknown buyer; and Jg as the value
function for the monopolist. When one buyer has received lump-sum payoffs, denote U; as
the value function for the unknown buyer; V; as the value function for the known buyer;
and Jy as the value function for the monopolist. When both buyers have received lump-sum
payoffs, denote V5 as the value function for the known buyers; and J; as the value function
for the monopolist.

For ¢ = S, 1, denote af (a}) as the strategy for the known (unknown) buyers. Let P be
the price charged by the monopolist. Then definition 1.1 implies that a triple of (P, ozg, ozé)

is a symmetric Markov perfect equilibrium if the following conditions are satisfied:
o for ( =1, agz 1if P < g— s and = 0 otherwise;

e for ( = S, the unknown buyers choose acceptance policy aé to maximize:

Uc(p) = supE {[ re”"" [l (prac(pe)g — Pe(p)) + (1 — af)s] dt

FeT (i) + 5Tl

and given ozé, the monopolist chooses price Pr(p;) to maximize

(o) =swp{ [ are o plaar + (o)},
Fe() t=0
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where 7 is the first (possibly infinite) time at which a new unknown buyer receives

good news;

e for ( = I, the unknown buyer chooses acceptance policy aé to maximize:
cmm=m¢E{/ m”ﬂﬁwﬂwmrJﬂm»+a—abﬂﬁ+€wwwa}
ag t=0

and given (042, 04%), the monopolist chooses price Pr(p;) to maximize

Jeto) =swpE{ [ remr [P + bl Pelp)] e+ e (o) |

PC =0

e beliefs update according to Bayes’ rule: p; satisfies the law of motion, i.e., equation

(1.1); ge(pe) = 1 for ¢ = I and ¢¢(py) is given by equation (1.6) for ¢ = S;

e when both buyers have received received lump-sum payoffs, the price is g — s such that

Jo=2(g—s) and V5 = s.

First, it is straightforward to see that the known buyers always buy the risky product if the
price is lower than g—s and not buy otherwise. Second, when both unknown buyers purchase
the risky product, the conditional probability that any given unknown buyer becomes good
is simply 1/2, since the two unknown buyers’ payoff distributions are identical. Finally, if
both buyers turn out to be good, it is optimal for the monopolist charging price g — s to

extract all of the surplus.

Niche Market vs. Mass Market

As in the social planner’s problem, the equilibrium purchasing behavior can be characterized
by two cutoffs p5 and pj. If no buyer has received lump-sum payoffs, the price is falling
over time to keep both unknown buyers experimenting until posterior p reaches pg. After
that, both buyers purchase the safe product. If one buyer has received lump-sum payoffs,
the monopolist stops selling to the unknown buyer and only serves the known buyer when

posterior belief about the unknown buyer is below p7.

20



The efficient cutoff in the individual learning phase p¢ is always smaller than the efficient
cutoff in the social learning phase pS for any pair of priors (po, ¢o). Under strategic interac-
tions, it turns out that pj could be either smaller or larger than p5. We can distinguish a

mass market from a niche market by comparing these two cutoffs.

Definition 1.2. (Niche market and mass market)

1. The market is niche if the cutoffs determined by (po, qo) satisfy: p& < p}, and

2. The market is mass if the cutoffs determined by (po, qo) satisfy: pg > pj}.

In a mass market, the arrival of good news never terminates experimentation while in a
niche market, experimentation is shut down by the arrival of the first lump-sum payoff at
p < pj. Obviously, whether a mass or niche market appears in equilibrium depends on the
priors, which in turn determines the relative importance of social learning and individual
learning. We expect that experimentation would continue after the first arrival of lump-sum

payoffs if the individual learning component is quite important and vice versa.
Equilibrium in the Individual Learning Phase

A backward procedure is used to characterize pj and pg. In the individual learning phase,
the equilibrium cutoff p7 and the various value functions are provided by the following

proposition.

Proposition 1.2. Fiz a symmetric Markov perfect equilibrium. In the history such that the
common uncertainty is resolved, the unknown buyer purchases the risky product if and only

if the posterior belief p is larger than

a (g +s)
2rg + Ag(g —s)

Py

The equilibrium price is Pr(p) = gp — s and the unknown buyer receives value Ur(p) = s; the

known buyer receives value
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Vilp) = max{s,s+g<1 - [%Wﬂ}; (1.13)

and the monopolist receives value

_ 1—p)p* 1y )
Ji(p) = 1 2op=s)Flg+s— 2907) 122 (4811w if p > gy
g—s otherwise.
Proof. In the appendix. -

It is straightforward to see that the equilibrium cutoff pj is strictly larger than the efficient
cutoff p7. This is because ex post heterogeneity means the known buyer is willing to pay
more than the unknown buyer. In the absence of price discrimination, the monopolist faces a
tradeoff between exploitation of the known buyers and exploration for a higher future value.
The incentive to charge a high price and extract the full surplus from the known buyer
causes an early termination of experimentation. Another remark is that the unknown buyer
is making a myopic choice in the individual learning phase since there is no learning value
attached to the purchasing behavior (the unknown buyer always receives value s regardless

of whether she receives the lump-sum payoffs).
Equilibrium in the Social Learning Phase

Now consider the situation where none of the buyers have received lump-sum payoffs yet.
Assume that the posterior belief p is large enough that both buyers purchase the risky
product in equilibrium. To characterize the equilibrium price and cutoff, we proceed as
follows. First, we use the incentive compatibility constraint to derive the value function
of the experimenting buyers. Second, we derive expressions of equilibrium price and the
monopolist’s value function based on the experimenting buyers’ value function derived in
the first step. Finally, we apply value matching and smooth pasting conditions (see, e.g.,

Dixit (1993)) to pin down the equilibrium cutoff.
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To keep both unknown buyers experimenting, the unknown buyers’ value should be
such that i) each buyer has an incentive to participate (i.e., the value is larger than the
outside option s); ii) each buyer should not benefit from the following deviations: stopping
experimentation for a very small amount of time and then switching back to the specified
equilibrium behavior.

The deviations described in constraint ii) are similar to one-shot deviations in discrete

time models. Formally, it implies that for any p > p%, there exists h such that for all h < h,

Us(p) > U(p;h) = /h re " sdt+ pg(1—e ") e ™ Ur(p) + [1 = pg(1 — M) UP (p, pr)

- (1.14)
where U (p; h) denotes the value for a deviator who deviates for h length of time. The de-
viator receives a deterministic payoff s within the h length of time. After the deviation,
with probability pg(1 — e #"), the non-deviator has received lump-sum payoffs and the
continuation value for the deviator is U;(p) = s; with the complementary probability, the
non-deviator has not received lump-sum payoffs and the two unknown buyers become asym-
metric. In the latter situation, the deviator receives a continuation value U (p, pj) where

superscript D stands for “deviator.” The non-deviator pj, is more pessimistic than the devi-

pe=Eh

Ty < P Obviously, equation (1.14) is a tighter constraint than

ator p since pp =

the participation constraint since U;(p) = s and U (p, ps) > s.

The most important technical result in this paper is to evaluate limy,_, w. The

result is given by lemma A.1 in the appendix. Here we just provide a sketch of the proof.

Sketch of the proof for lemma A.1. The main difficulty of the proof is to evaluate
the off-equilibrium-path value function UP(p, p,). First notice that p > p% means that it is
optimal for the monopolist to sell to both unknown buyers on the equilibrium path. Then,
for h sufficiently small, it is still optimal for the monopolist to sell to both unknown buyers

after an h-deviation.
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In other words, given a sufficiently small h, there exists some A’ such that for all b’ < A/,

we have:
n ~
UP(p, pn) = E /t:o re " (pugg — Pr)dt
+ p@n(1 = e )™ Vi (pran) + pun(l — e M e s
+ (1= pgn(1 = e ) — ppgn(1 = e M) e ™™ Ulpw, puyw). (1.15)
In the above expression, p; is the posterior about the deviator and starts from py = p;

Gn is the posterior about the product characteristic after an h-deviation such that: ¢, =

- (lfpo)Qf(zgl:qg ‘))()ip) =k and P, is the off-equilibrium-path price set by the monopolist after

an h-deviation. Obviously, the value function UP(p, p;,) depends on the off-equilibrium-path
price and cannot be evaluated directly.

Meanwhile, notice the non-deviator’s value can be expressed as:

h/
UNP(p,pr) =E / re”"(piqg — Py)dt
t=0
+ pgn(1l — eiAHh/)efrhIS + prgn(1 — ekah/)efTh/VI(Ph')

+ 1= p@n(1— e ) = ppgn(1 — e ™)™ Ulpnin, p),  (1.16)

where p} is the posterior about the non-deviator and starts from pf, = pp,.

The key step is to decompose U (p, pp,) as:

UP(p, pn) = U (p, pn) + (UP(p, pn) = UV (p, pn)).-

The reason for doing this decomposition is that the off-equilibrium-path price is cancelled
when we subtract UNP(p, py) from UP(p, pi), Hence, Z(p, pn) = UP(p, pn) — UNP(p, pp,) is
independent of the off-equilibrium-path price P and can be evaluated directly.

Buyer p’s value UNP(p, p) can be computed without using the off-equilibrium-path

price. If the non-deviator has not received lump-sum payoffs during an h-deviation, she
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becomes more pessimistic than the deviator. If the monopolist wants to make a sale to
both buyers, the optimal price is set according to the reservation value of the more pes-
simistic buyer. An expression of UNP(p, p,) can be derived from the p, buyer’s incentive
compatibility constraint. In the appendix, we show that this implies a first-order ordinary
differential equation for UNP(p, py,), which can be solved by imposing the boundary condition
that U(pn, pr) = Us(pn)-

Second, given any ¢ < h’, notice equations (1.15) and (1.16) also hold for posteriors

((t), pu(1)) where

—Agt At

Pre
pre= 1t + (1 = pp)

p(t) ~

- pe—)\Ht + (1 - p)7 and ph(t) =

Redefine
Z(t) = Z(p(t), pn(t)) = U(p(t), pu(t)) — Ulpn(t), p(t))

to be a function of time ¢ . A first-order ordinary differential equation about Z(t) can
be obtained by subtracting equation (1.16) from equation (1.15) and letting the length of
time interval converge to zero. Solving the ordinary differential equation, the expression for
Z(p, pr) can be recovered by substituting time ¢ as functions of p(t) and pp(t). The boundary

condition is such that Z = 0 once pj, reaches p%s.

Us(p)—U(psh)

After UP(p, pp) is evaluated, limy, o -

can be computed directly. B
Lemma A.2 in the appendix implies that in equilibrium, a profit-maximizing monopolist

should always make the incentive constraints to be “binding” in the sense that

i Us(p) = Ulpi h)

h—0 h =0

Lemma A.1 and lemma A.2 together gives an important characterization of the on-equilibrium-

path value function Usg:

Proposition 1.3. Fiz the monopolist’s strategy such that pg is the equilibrium cutoff in

the social learning phase. In a mass market, given any p > pg, a necessary and sufficient
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condition for the unknown buyers to keep experimenting is that the value Ug(p) satisfies
differential equation

(1- p)p?)r/AH

p(1 = p7)

r+ Agpe i r B r 1— r
IS (P g (S | (1 — p)g(——E)
— Ps —Pr ~ Ps P

0=2(r + Aupq)(Us(p) — 5) + Aup(l — p)Ug(p) + (r + Aup)g(1 — p)g(

— Argp(l —p)g —
(1.17)

In a niche market, given any p > pg, a necessary and sufficient condition for the unknown

buyers to keep experimenting is that the value Ug(p) satisfies differential equation

0=2(r+ Aapq)(Us(p) — s) + Aup(l — p)Us(p)

rAng (1= p)*qps , (1= p)Ps\r/ap, rg
RV L NG 1.18

for p < p3; and differential equation

1 —p)pi\»
0= 2(fr+AHpq)(Us(p)—S)+AH/)(1—p)Ué(p)+(THHp)g(l—p)q((pu%p*g) P —Xugp(1—p)g
I
T+ APl P i Arr PS5 \14r/7u 2 L =Py
—r A _ r 1— = Dyre (119
(7’+AH)(1—07)(1—p§) r+AH(1—p§) 61 = o)l p ) (1.19)
for p > pj.

The necessity of proposition 1.3 just comes from combining lemma A.1 and lemma A.2.
In the appendix, we prove the sufficiency of this result as well: given the on-equilibrium-path
value function Ug(p) and off-equilibrium-path value function U (p, py,), it is not optimal for
an experimenting buyer to deviate.

The ordinary differential equations in proposition 1.3 can be solved by using observation

A.1 in the appendix. In a mass market, for any p > p§, the value function Ug(p) is given by

A (1= P)PTa
- _TH (1 — p)g — g(1 — p)g| L/ Au
Us(p) st+g Ang( p)g — g(1 = p)q| ]

p(1— pj)
T4+ Agpe P \r AH,  pPe , 1—p.,
b (A Pyt (IS i (1 — p)g(r Ly
r(1—p§) 1 —p; rol—pf p
1—p.o
+ C(l—P)QQ(T)Q s (1.20)
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In a niche market, for any p§ < p < pj, the value function Ug(p) is given by

rAH Aug p5(L—=p)%q, (1= p)p& ., /n
— 1_ - " "
Usto) = st G o P T T T G )
1 _
+ D(l . p)Qq( ; p)2r/>\H; (121)

and for p > p%, the value function Ug(p) is given by

(L= p)PT
U = s+ —2  45(1—p)g— g(1 — p)g|—LLEL)r/An
s(p) 2r+)\HQP( p)q — g( p)q[p(l_p;)]
THAE T ABPT PT epag AH PS  \ltr/rn 2 L= P
T . T 1_ r H
i (TWL)\H)(l_P?)(l—P}) T+ An 1—p§) gl =)l p )
2Xnyg PI 1 L—p
D — /A (1 — p)Pq(—L)2r P 1.22
+ 2r+AH<1—p;) )(1 = p)a( p ) (1.22)

Since there is learning value attached to purchasing behavior, the unknown buyer is not
making a myopic choice. The monopolist has to provide extra subsidy to deter deviations
because the deviator gains rents by becoming more optimistic: Ug(p) > s.

Denote the equilibrium price in the social learning phase to be Pg(p). Then, the value
for a buyer from purchasing the risky product can be characterized by the following HJB

equation:

rUs(p) = r(pa(p)g — Ps(p)) + Aapq(p)(Ur(p) — Us(p)) + Aapa(p)(Vi(p) — Us(p))

—Anp(l— p)Us(p) (1.23)

where q(p) _ q0(1—po)?

= ST P T Ur(p) = s, and Vi(p) is given by equation (1.13).

Meanwhile, by selling the products, the monopolist’s value can be characterized as follows:

rJs(p) = 2rPs(p) + 2Xupq(p)(J1(p) — Js(p)) — Aup(1 — p)Js(p). (1.24)

where Jr(p) is given by proposition 1.2.

9The undetermined coefficient in the differential equation is chosen such that Ug(p) is continuous at p¥.
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Equations (1.23) and (1.24) are value functions if both unknown buyers purchase the
risky product. The RHS of equation (1.23) can be decomposed into four elements: i) the
expected payoff rate from purchasing the risky product r(pg(p)g — Ps(p)); ii) the jump of
the value function to V7 if a given buyer receives a lump-sum payoff; iii) the drop of the
value function to U; = s if the other buyer receives a lump-sum payoff; and iv) the effect
of Bayesian updating on the value function when no lump-sum is received. Equation (1.24)
could be interpreted similarly.

The on-equilibrium-path price Ps(p) can be derived from the on-equilibrium-path value

function Ug(p). It is straightforward to show: in a mass market,

Pe(p) = palp)a = s+ 572 500(1 = plalp) + Calp)(1 = pfF (LY (129

for p > pg; while in a niche market,

Pelp) = palp)a — s = 5-250(1 = plalp) + Dalp)(1 = pP (LY (120

for p5 < p < pj, and

(1 —=p)alp)

2Ang
2’/’+>\H

P — _ _H
s(p) = pa(p)g — s + o 9P

+(D—

(LB a(p) 1 = gL (1)

for p > p7. In the above equations, C' and D are constants in equations (1.20) to (1.22). No-

Ay
2r+Ag

tice in equations (1.26) and (1.27), the signs in front of term gp(1—p)q(p) are different.
This reflects the change in continuation value when p drops below pj. By proposition 1.2,
for p < p7, upon the arrival of the first lump-sum payoff, the monopolist immediately shuts
down experimentation and charges price g — s. This greatly reduces the unknown buyers’
incentives to experiment. However, it is easy to check that in a niche market, the price Ps(p)
is still continuous at pj.

We substitute the price expression Ps(p) into equation (1.24) and characterize the equi-

librium cutoft pg by applying value matching and smooth pasting conditions:
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Us(ps) = s, Js(ps) =0, Js(ps) = 0.

Proposition 1.4. (Characterize the symmetric Markov perfect equilibrium) In the social
learning phase, the unknown buyers purchase the risky product under posterior beliefs (p, q)

of and only iof
rs

rg +Ag(Vilp) + Ji(p)) — s

A mass market appears if and only if

pq >

1—qo - g
qo(1 —po)*> = (1 —pj)s

(1.28)

Moreover, for all po < 1 and qy < 1, the symmetric Markov perfect equilibrium is inefficient

so that experimentation is terminated too early.
Proof. In the appendix. O]

The unique equilibrium cutoff p§ is characterized by equation

rg +Aua(Vi(p) + Ji(p)) — Aus’

pa(p) = (1.29)

It is straightforward to show the equilibrium is inefficient by comparing the efficient stopping
curve with the equilibrium stopping curve. The inefficiency in the individual learning phase
causes a leakage of the social surplus for the monopolist, which reduces the monopolist’s in-
centives to subsidize experimentation in the social learning phase. Therefore, the equilibrium
experimentation is terminated too early in the social learning phase as well.

There are two remarks about proposition 1.4. First, it is straightforward to check that
at pg, the smooth pasting condition for Ug() is also satisfied: U§(pf) = 0. Explicitly,
the monopolist is solving an optimal stopping problem given the price she has to charge in
order to keep the unknown buyers experimenting. Implicitly, given the equilibrium pricing
strategy Ps(-), the unknown buyers are facing an optimal stopping problem as well. At the

equilibrium cutoff, the smooth pasting condition for Ug(+) should also be satisfied. This fact
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Figure 1.2: Equilibrium Price Dynamics

is useful when we discuss efficiency for any n > 2 buyers because it enables us to characterize
the equilibrium cutoff without solving for the value functions. Second, the appearance of a
mass market depends on the relative importance of social learning and individual learning.
Given ¢p, when py goes up, the monopolist has higher incentives to keep the remaining

unknown buyer experimenting. A mass market is more likely to appear as a result.
Equilibrium Price Path

After solving for the equilibrium cutoff pg, the constants C' and D in equations (1.20) and
(1.21) can be pinned down from the value matching condition and then the expression for the
equilibrium prices can be derived. Figure 1.2 depicts different price paths in the symmetric
Markov perfect equilibrium depending on how many buyers have received lump-sum payoffs.

The presence of idiosyncratic uncertainty has two important implications for the equilib-

rium price.
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Figure 1.3: Deterrence Effect

First, in the social learning phase, assume instead that the equilibrium value for each

unknown buyer is exactly s. Then the equilibrium price should be:

Ps(p) = pa(p)g — s + ATJLIpq(p)(Vz(p) —5).

To deter the buyers from taking the outside option, the equilibrium value for each un-
known buyer must be strictly larger than s. The actual equilibrium price price Ps(p) is
strictly less than ﬁg(p) because of this deterrence effect. Figure 1.3 compares the equilib-
rium price path with and without the deterrence effect. It shows that the price reduction
caused by the deterrence effect is quite significant.

Second, the instantaneous price reaction to the arrival of the first lump-sum payoff might
be ambiguous. In particular, when the first lump-sum payoff arrives, there could be an in-

stantaneous drop in price in order to encourage the buyer who remains unsure to experiment
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as shown by figure 1.2. To understand the negative response of the price to the arrival of
a good news signal, we first compare the equilibrium price in the individual learning phase
P;(p) and the price without the deterrence effect Pgs(p). Equation

Pi(p) — Ps(o) = (1~ a(p))g — 2 palp) (Vi(p) — 5)

shows that the arrival of good news brings two opposite effects on the reservation value of the
buyer who remains unsure. There is a positive informational effect captured by p(1—q(p))g:
the arrival of good news reveals that the product characteristic is high and hence makes the
unknown buyer more optimistic about the unconditional probability of receiving lump-sum
payoffs. However, there is another negative continuation value effect: the buyer who remains
unsure loses the chance of becoming the first known buyer to extract rents. The price has
to be lower to compensate for the loss of rents if the monopolist wishes to make a sale to
the unknown buyer.

The comparison of the informational effect and the continuation value effect depends on

the comparison of 1 — ¢(p) and q(p)(Vi(p) — $).

Corollary 1.1. For pg <1 and gy < 1, %&%78) 1s strictly increasing in p.

a(p)(Vi(p)—s (©)(V1(p)—s) is

Proof. Plug the formula of ¢(p) and Vi(p) into ) and we can get 4

1—q(p) 1—q(p)
proportional to
1— [(1*p)p}]r/,\H
p(1—p7)
1—p ’
which is strictly increasing in p. [

The above corollary implies: in the early days of the market, p is higher and it is more
likely to have Pg(p) > P;(p); in the late days of the market, p is lower and it is more likely
to have Ps(p) < P;(p). Since the equilibrium price Pg(p) is strictly below Ps(p) due to
the deterrence effect, the above statement also holds if we replace Ps(p) with Ps(p). Figure
1.4 describes a situation where with the same priors, the price might either drop or jump

depending on the arrival time of the first lump-sum payoff.
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Figure 1.4: Instantaneous Price Response to the First Arrival of Good News

1.3.3 Efficiency

This section discusses the efficiency property of the symmetric Markov perfect equilibrium
for an arbitrary number of buyers. We first investigate the extreme case of the perfect payoft
correlation (p = 1) and then compare that result to the one in the partial payoff correlation
case.
Perfect Payoff Correlation Under this special case, buyers are exr post homogeneous. In
other words, immediately after one buyer receives a lump-sum payoff, it becomes common
knowledge that all buyers are able to receive lump-sum payoffs, and the monopolist should
immediately raise the price to g — s to extract all of the surplus.

In the social learning phase, similarly the monopolist should set a price such that i) each
experimenting buyer has an incentive to participate (i.e., each buyer’s value is larger than

the outside option); ii) it is not optimal for each experimenting buyer to have “one-shot”
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deviations. The common value assumption simplifies the analysis of the “one-shot deviation”
problem since the deviator always has the same posterior belief as the buyers who have not
deviated. It turns out that under the common value case, restrictions i) and ii) coincide and

the strategic equilibrium is always efficient.

Proposition 1.5. When the buyers’ payoffs are perfectly correlated (p = 1), the unknown
buyers will always receive value s in equilibrium and the symmetric Markov perfect equilib-

rium is efficient.
Proof. In the appendix. O]

The intuitive explanation for the above efficiency result is that the ex post homogeneity
means the monopolist does not need to face the tradeoff between exploitation and explo-
ration. This enables the monopolis to completely internalize the social surplus and overcome

the free riding problem by subsidizing experimentation.

Partial Payoff Correlation Since ex post heterogeneity exists in the partial payoff correlation
case, it is natural to conjecture that the inefficiency result in proposition 1.4 can be extended
to a general n case. The induction argument is used to avoid solving for every value function

explicitly.

Theorem 1.1. Consider a market with any n > 2 buyers. The symmetric Markov perfect
equilibrium is inefficient in both the social learning and individual learning phases if py < 1

and qy < 1. Moreover, the equilibrium experimentation is always terminated too early.
Proof. In the appendix. ]

We are in a position to summarize the roles played by ex post heterogeneity. First, in the
social learning phase, ex post heterogeneity means there is a future benefit for the deviator
by becoming more optimistic than the non-deviators. The monopolist has to provide extra

subsidy to deter deviations. In the common value case, such a future benefit does not exist
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and there is no need to provide extra subsidy. Second, in the individual learning phase,
ex post heterogeneity implies that the receivers of lump-sum payoffs are more optimistic
than the unknown buyers. If the monopolist wishes to serve all buyers, the known buyers
extract rents. This generates a loss of rents for the buyers who stay unsure upon the arrival
of the first lump-sum payoff. The reduction in continuation values leads to an ambiguous
instantaneous price reaction to the arrival of the first lump-sum payoff. On the contrary,
in the common value case, the equilibrium value for the buyers is always the same as the
outside option and there is no continuation value effect. Hence, upon the arrival of the first
lump-sum payoff, the instantaneous reaction of the equilibrium price is always to go up.
Finally, ex post heterogeneity generates a tradeoff between exploitation and exploration for
the monopolist. The equilibrium experimentation level is lower than the socially efficient
level as we have seen in the two-buyer case. On the other hand, in the common value case,
there is no ex post heterogeneity and the monopolist is able to fully internalize the social

surplus.

1.4 Equilibrium in the Bad News Case

In the bad news case, the arrival of lump-sum payoffs (we call them lump-sum damages
hereafter) would immediately reveal that the risky product is unsuitable for the buyer.
Denote {y = A and A\g§ = —B < 0. Condition A — B < s < A is imposed such that
the risky product is superior to the safe one only when the buyers cannot receive lump-sum

damages.

1.4.1 Socially Efficient Allocation

Different from the good news case, large priors (po, o) mean that the probability of receiv-
ing lump-sum damages is high and this discourages the social planner from taking the risky
product. Therefore, instead of solving an optimal stopping problem (i.e., terminating exper-

imentation when belief reaches a certain cutoff), in the bad news case, we solve an optimal
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starting problem, i.e., beginning experimentation when belief is lower than a certain cutoff.
As in the good news case, we discuss socially efficient allocation separately in the indi-

vidual learning and social learning phases.

Socially FEfficient Allocation in the Individual Learning Phase In the individual learning

phase, suppose k buyers have received lump-sum damages. The social surplus function

could be written as (the known buyers will take the safe product and receive s for sure)

Qu(p) = ks + (n— k)W (p)

where

W(p) = sup E/too re " a(A — pB) + (1 — «)s|dt

ae{0,1} =0

defines the optimal control problem for the unknown buyer. The corresponding HJB equation

is

1
W) = max {5, A= pB 4 L Dnpls = W(o) = uplL = W@} (130)
Solve the optimal starting problem defined by equation (1.30) and we get the following

result:

Proposition 1.6. In the individual learning phase, if k > 1 buyers are known to receive
lump-sum damages, it is socially efficient for those k buyers to always purchase the safe
product. For the remaining n — k unknown buyers, it is socially efficient to start experimen-

tation if and only if

oo (r+Aug)(A—ys)
P=rr )\HA—FTB—)\HS.

The value functions for a typical buyer with posterior belief p is given by:

W(p)zmaX{S,A—AHA—’_TB_/\HS }

r+ Ay
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Socially Efficient Allocation in the Social Learning Phase In the social learning phase, we

similarly write down the HJB equation as:

s(p) = msx {4 = pp)B) + gl 1 (6) — 2s(6) — o1~ )] |
(1.31)

The optimal starting problem (1.31) is solved by solving differential equation

(r + Aunpq)Qs(p) = rn(A — pgB) + Agnpgl(n — )W (p) + s] — Aup(1 — p)Q%s(p), (1.32)

with boundary condition Qg(p%) = ns.!°

The socially efficient allocation in the social learning phase is characterized by the fol-

lowing proposition:

Proposition 1.7. Given any qy < 1, there exists a unique p%(qo) > p5 (p%(qo) could be one)

such that it is socially efficient to start experimentation in the social learning phase if and

only if p < ps(qo)-
Proof. In the appendix. O]

1.4.2 Equilibrium

In any symmetric equilibrium, buyers can be divided into two groups: known buyers and
unknown buyers. Let o (ai) be the strategy for the known (unknown) buyers where sub-
script k indicates the number of buyers who have received lump-sum damages. Let Vj, Uy
and Jy be value functions for the known buyers, the unknown buyers and the monopolist,
respectively, when k£ buyers have received lump-sum damages. Finally, let P, denote the
price charged by the monopolist. Definition 1.1 implies that the triple of (P, af,a}) is a

symmetric Markov perfect equilibrium if:

19Notice that W (p) is not continuously differentiable at p$ (smoothing pasting condition is no longer
satisfied). But it is Lipschitz continuous and hence the solution to the above boundary value problem is still
unique.
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e o) =1if P<A— B—sand = 0 otherwise;

e for any k < n, given Py, the unknown buyers choose acceptance policy «;, to maximize:

Us(p) = supE / " e ab(A — pu(p) B — Pelp) + (1 — ab)sldt

1 _
ay, =0

- 1 n—k—1
+ e <n — ka+1(PT) + TUk—H(IOT))

where 7 is the first (possibly infinite) time at which a new unknown buyer receives

good news;

e given (a¥, a}), the monopolist chooses price Py(p;) to maximize

Ji(p) = supE { /t " et (ke (Pe(pe)) + (n = k)og(pr, Pe(pe))] dit + 6‘”Jk+1(m)}

Py =0

e beliefs update according to Bayes’ rule: p; satisfies the law of motion, i.e., equation

(1.1); qr(p:) = 1 for k > 1 and qx(p:) is given by equation (1.6) for k = 0;
e for £ = n, the monopolist will not serve any buyer such that J, =0 and V,, = s.

First, it is straightforward to see that the known buyers will buy the risky product if the
price is lower than A — B — s and not buy otherwise. Second, the assumption A— B —s <0
implies that selling to the known buyers is purely losing money. Hence, a profit-maximizing
monopolist should never set the price lower than A — B — s in order to sell to the known
buyers. This also implies that V}, is always s. Third, when n — k£ unknown buyers purchase
the risky product, the conditional probability that any given unknown buyer receives lump-
sum damages is simply 1/(n — k), since the n — k unknown buyers’ payoff distributions are
identical. Finally, the cutoff strategy for the monopolist means that she will start selling to
the unknown buyers if the belief p is lower than a certain cutoff. Once the monopolist starts
to sell to the unknown buyers, she will continue to sell as long as no lump-sum damage is

received.
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In a symmetric Markov perfect equilibrium, when experimentation takes place on the
equilibrium path, the monopolist also has to charge a price such that both the participation
constraint and the no profitable one-shot deviation constraint are satisfied. In the bad news
case, it turns out that the “one-shot” deviations don’t impose more restrictions than the

participation constraint.
Claim 1.1. In equilibrium, the most pessimistic unknown buyer’s value is always s.

Claim 1.1 implies that the on-equilibrium-path value for each unknown buyer is always
s since they are equally pessimistic. This is different from proposition 1.3 in the good news
case. In the good news case, a one-shot deviation makes the non-deviators more pessimistic
if they haven’t received any lump-sum payoffs during the deviation period. In that situation,
the price charged by the monopolist is lower than what the deviator is willing to pay. The
deviator can benefit from a deviation and thus the equilibrium value for the experimenting
buyers has to be larger than s to deter deviations. However, in the bad news case, a one-shot
deviation makes the deviator more pessimistic. After the deviation, if the monopolist wishes
to serve all unknown buyers, the optimal price is determined by what the deviator is willing
to pay; if the monopolist does not wish to serve all unknown buyers, the deviator is the first
buyer to be excluded. In both cases, the deviator cannot gain more than the outside option
after a deviation. Therefore, setting the on-equilibrium-path value to be s is enough to deter
deviations.

The equilibrium price path could be derived from claim 1.1: in the individual learning
phase, the monopolist would charge P;(p) = A — pB — s and in the social learning phase,
the monopolist would charge Ps(p) = A — pg(p)B — s. The arrival of the first lump-sum
damage will unanimously lead to a drop in price if gy < 1 but the subsequent arrival of
lump-sum damages will not have any impact on price. The negative response in price to
the arrival of the first lump-sum damage reflects the fact that there is no continuation value

effect from claim 1.1. The informational effect always discourages the unknown buyers from
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experimenting and reduces the price. But the subsequent arrival of bad news reveals no
more information to the remaining unknown buyers and hence has no effect on the price at

all. Solve the monopolist’s optimal starting problem and we get the following theorem:

Theorem 1.2. Consider a market with n > 2 buyers. The symmetric Markov perfect

equilibrium is efficient in both the social learning and the individual learning phases.
Proof. In the appendix. O

The above theorem is very intuitive: different from the good news model, there is no
tradeoff between exploitation and exploration in the individual learning phase because the
buyers who have received lump-sum damages will never purchase the risky product. As
a result, although buyers become ex post heterogeneous, the potential buyers of the risky
product are always the unknown ones, who are ex post homogeneous in a symmetric equi-
librium. Hence, the equilibrium is always efficient in the individual learning phase. The
efficiency in the social learning phase is a little surprising. It seems that the monopolist can-
not fully internalize social surplus since the unknown buyers can benefit from social learning
by switching to the safe product. The intuition turns out to be incorrect. In the good news
case, society benefits from the arrival of good news but the receivers of the lump-sum payoffs
pay less than what they are willing to pay. In other words, the known buyers “steal” some
of the social surplus from the monopolist and this causes inefficiency. On the contrary, in
the bad news case, society benefits from the non-arrival of the bad news. The unknown
buyers cannot “steal” social surplus from the monopolist when no lump-sum damages have

been received.

1.5 Conclusion

By combining common and idiosyncratic uncertainty, this paper relaxes the usual common

value assumption made in the social learning literature (see, e.g., Banerjee (1992), Bikhchan-

40



dani, Hirshleifer, and Welch (1992) and Rosenberg, Solan, and Vieille (2007))."' We consider
a dynamic monopoly pricing environment where the monopolist cannot price-discriminate
among the buyers. The partial payoff correlation among the buyers generates ex post het-
erogeneity. If the monopolist wishes to make a sale to several buyers, the optimal price is set
to make the most pessimistic buyer indifferent between the alternatives. In the good news
case, this has significant implications both on the equilibrium path and off the equilibrium
path. On the equilibrium path, the receivers of lump-sum payoffs become more optimistic
than the non-receivers. This implies: i) the arrival of the first good news signal generates
a reduction in the continuation value for the buyers who stay unsure, and this effect might
lead to an instantaneous drop in price; and ii) the monopolist faces different buyers after the
arrival of lump-sum payoffs and the absence of price discrimination leads to an inefficient
level of experimentation. On the contrary, if there is a perfect payoff correlation among the
buyers, the arrival of the first good news signal always leads to a jump in price and the
equilibrium is efficient.

There is another subtle off-equilibrium-path implication. By taking the outside option,
each buyer can extract rents if she becomes more optimistic than other buyers after the
deviation. This generates a future benefit from deviation. If the monopolist wishes to make
a sale to several unknown buyers, each unknown buyer receives a value higher than the
outside option to deter deviations. Such a deterrence effect leads to a significant reduction
in the equilibrium price. If there is perfect payoff correlation among the buyers, there is no
need to provide such an extra subsidy.

However, in the bad news case, the above implications do not exist for two reasons. On
the equilibrium path, the receivers of lump-sum damages immediately take the outside option
and the buyers who stay in the experience good market are still ex post homogeneous. Off

the equilibrium path, a buyer cannot benefit from deviations because the deviator becomes

1 An exception is Murto and Vilimiki (2009), who consider partial payoff correlation in an observational
learning setting.
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more pessimistic after a deviation.

There are several extensions to consider in the future. For tractability, we have assumed
that the arrival of lump-sum payoffs immediately resolves the common uncertainty and the
idiosyncratic uncertainty of the receiver. It is possible to consider a model where the arrival
of lump-sum payoffs cannot immediately resolve the common uncertainty or the idiosyncratic
uncertainty of the receiver. For example, we may assume lump-sum payoffs arrive at another
Poisson rate when the product characteristic is low. As long as ex post heterogeneity exists,
the resulting equilibrium would be inefficient as well.

Another natural extension of the current model is to consider a dynamic duopoly pricing
environment. This issue is partially investigated by Bergemann and Vélimaki (2002), who
consider a model with a continuum of buyers such that buyers are choosing according to their
myopic preferences at each instant in time. It would be interesting to consider a model with
a finite number of buyers such that each buyer’s choice has non-trivial effects on learning

and future prices.
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Chapter 2

Assortative Learning (Joint with Jan
Eeckhout)

2.1 Introduction

High ability workers sort into more productive jobs. Due to complementarities in production,
their higher marginal product allows them to command higher wages. The Beckerian model
of assortative matching is very well suited to explain those patterns of sorting. Unfortunately,
it is mute on the issue of turnover of workers between different jobs. Instead, the Jovanovic
(1979) learning model has long been the canonical framework for analyzing turnover in the
labor market! over the life cycle. Workers and firms learn about match-specific human capital
and will tend to stay in a match if learning reveals the match is good. Experimentation occurs
early on which leads to decreasing turnover over the life cycle. Because in Jovanovic (1979)
learning is about the match and not about the worker, there is neither worker heterogeneity
nor sorting. In this paper, we offer a unified approach of learning and sorting. We establish
a solution method for a market equilibrium in a continuous time economy with multiple
learning opportunities (multi-armed bandit) and derive a no-deviation condition, a condition
hitherto unknown. We show that under supermodularity, positive assortative matching

obtains in equilibrium, even if learning rates differ across firms.

LOf course, also the search model inherently exhibits turnover, but with observable types turnover is
constant over the life cycle. Moscarini (2005) brings together search and learning in the Jovanovic framework.
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In the labor market, the learning experiences of workers are most likely to differ across
different firms. Starting in a top law firm or a multinational will induce different paths of
information revelation than working in a local family business. The worker now faces a trade-
off between different experimentation experiences: take a lower wage at a high productivity
firm where information may be revealed at a different rate or accept higher wage and learn
more slowly. It is intuitive that sorting and learning are intimately connected.

Modelling the labor market as a multi-armed bandit problem and solving it is challenging.
Most existing learning models and continuous time games are tractable because they are
essentially one-armed bandit problems with a fixed outside option that acts as an absorbing
state. One-armed bandit problems typically have attractive properties, including reservation
strategies. Instead, multi-armed bandits in general do not have reservation strategies when
arms are correlated, even if the learning rate is the same across firms. But our labor market
is not exactly identical to the canonical bandit problem. First, there are a continuum of
experimenters. Second, because of competitive wage determination a la Jovanovic (1979),
the payoffs are endogenous. Finally, because workers learn about general human capital
instead of match-specific human capital, the arms are positively correlated.

We find that it is the combination of competitive wage determination (endogenous pay-
offs)and the incentives needed to avoid a deviation that give rise to a new condition which we
call the no-deviation condition. This condition must be satisfied in addition to the common
equilibrium conditions of value-matching and smooth-pasting. The no-deviation condition
can be interpreted as the continuous time version of the one-shot deviation principle.? We
prove that the no-deviation condition implies that the second derivative of worker’s value

function at the cut-off belief is the same in the high type as well as in the low type firms.

2The idea of sequential rationality is of course not new and has also been employed in continuous time
games by Sannikov (2007) who uses the concept of self generation. And Cohen and Solan (2009) use
dependence of strategies on a small interval dt to restrict the set of Markovian strategies, in the spirit of our
dt-shot deviation. It is precisely the one-shot deviation in conjunction with endogenous payoffs that leads
to the equalization of the second derivative of the value functions.
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Recall that value matching requires that at the cut-off the worker’s value functions take the
same value in both firms, the smooth-pasting condition requires that the first derivative is
the same, and now the no-deviation requires equal second derivatives as well.

We show that supermodularity of the production technology is a necessary and sufficient
condition for positive assortative matching, and that the equilibrium allocation is unique.
Those workers with the highest beliefs about their ability will in equilibrium sort into those
firms that are most productive. Moreover, we can analytically solve for the equilibrium allo-
cation in terms of the cut-off belief, and we derive in closed form the stationary distribution
of beliefs.

While in most of the analysis we consider common variance across firms, it turns out
that the sorting result holds for different learning rates (noise) across firms, even if the rate
of learning is slower in the high type firm. It is conceivable that with supermodularity and
a learning rate no smaller in high types firms there will be positive sorting. The high type
firm is both superior in the learning rate and in productive efficiency. But if high type firms
learn at a sufficiently slower rate (the noise is sufficiently high), then the signal-to-noise
ratio in the high type firm may well be lower. The reason why this nonetheless does not
affect the learning is that the value of learning also depends on the degree of convexity of
the value function (from Ito’s Lemma), in addition to the signal-to-noise ratio. But by the
no-deviation condition, at the cut-off belief, the degree of convexity is the same in both
firms and therefore the equilibrium value of learning is the same, no matter the difference in
signal-to-noise ratios. Key here is that wages are endogenous and determined competitively.
That is why this property does not necessarily hold in the canonical multi-armed bandit
problem.

We analyze the planner’s problem and show that a planner’s stationary allocation coin-
cides with the decentralized equilibrium allocation, even if learning rates differ across different

firms. This is surprising since there is a market incompleteness: wages are spot market prices
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only and cannot be made contingent on future realizations. It turns out that the efficiency
result and proof crucially hinges on the martingale property inherent in Bayesian learning.
The martingale property implies that no matter how fast workers learn, the expected beliefs
about their ability will stay the same. Since under strict supermodularity, the differential
in expected output between working in high and low productivity firms is monotonically in-
creasing in the likelihood that the worker has high ability, reallocating a group of low belief
workers to a better match will decrease expected outputs no matter how fast they learn.

We extend our analysis of Bayesian learning to allow for observable human capital accu-
mulation. This adds realism in the sense that workers learn on the job and increase their
productivity with tenure, yet we do not resort to non-Bayesian updating. Now cut-off types
that characterize the equilibrium allocation depend on the degree of observable experience,
and beliefs continue to follow a martingale process. The properties of our equilibrium extend
to this more general human capital accumulation case.

The motivation of our analysis and the results are obviously closest related to the labor
market learning literature (Jovanovic (1979), Harris and Holmstrom (1982), Moscarini (2005)
and Papageorgiou (2009)).> Yet, there is a close relation to both the experimentation litera-
ture (Bolton and Harris (1999), Keller, Rady, and Cripps (2005), Strulovici (2010)) and the
literature on continuous time games (Sannikov (2007), Faingold and Sannikov (2007)). Most
models of learning have a finite set of players and have an absorbing state. Ours has a con-
tinuum of agents and there is learning in all states. Moreover, it is essentially a competitive
model with equilibrium prices and therefore payoffs from learning are endogenous.

The idea of analyzing a matching model where the current allocation determines the

future type is first explored in Anderson and Smith (2000). They find the opposite result of

3Papageorgiou (2009) analyzes a learning model with heterogeneity. He estimates the version of
Moscarini’s search model with two-sided heterogeneity. With search frictions, wage setting is non-competitive
and as a result, the no-deviation condition is not imposed in addition to value matching and smooth pasting.
Nonetheless, his findings provide us with realistic estimates of the labor market characteristics of our model.
See also Groes, Kircher, and Manovskii (2009) for estimates of a different learning model.
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ours: positive assortative matching fails even under supermodularity. They analyze a two-
sided matching model of reputations with imperfect information about both matched types.*
Our setup differs substantially, but the main difference is in the information extraction. Their
agents infer the type of each of the matched partners from the realization of a joint signal.’

Another key characteristic of our model is that it is a pure Bayesian learning model
where beliefs follow a martingale. In Section 2.8 we show that our result holds for Bayesian
updating processes other than the Brownian motion (we extend our result to a generalized
Lévy process), and we also establish that positive assortative matching can fail if the updating
process is not Bayesian (this can be interpreted for example as a technology of unobserved

human capital accumulation in addition to the information extraction).

2.2 The Model Economy

Population of Firms and Workers. The economy is populated by a unit measure of workers
and a unit measure of firms. Both firms and workers are exr ante heterogeneous. The
firm’s type y € {H, L} represents its productivity. The type y is observable to all agents
in the economy. The fraction of H type firms is 7 and all firms are infinitely lived. The
worker ability x € {H, L} is not observable, both to firms and workers, i.e., information is
symmetric.® Nonetheless, both hold a common belief about the worker type, denoted by
p € [0,1]. Upon entry, a newly born worker is of type H with probability py and of type L

with probability 1 — py. Workers die with exogenous probability §. New workers are born at

4Qur model is more closely related to the standard firm-worker model to which they compare their two-
sided model in the discussion. There is only a one-sided inference problem in that model and they find that
positive assortative matching arises for extreme beliefs p = 0 and 1, but conjecture it does not in the interior.

5The difficulty is to account for agents switching partners. Anderson and Smith (2000) resolve this by
assuming symmetric learning in discrete time. Both sides of the market update in an identical fashion and
under PAM their new matched partner coincides exactly with the updated type of their old partner. As a
result, in a candidate PAM equilibrium there is never any switching.

6This substantially simplifies the problem at hand. With private signals Cripps, Ely, Mailath, and
Samuelson (2008) show that with a finite signal space there will be common learning, but not necessarily
with an infinite signal space as is the case in our model here.
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the same rate.”

Preferences and Production. Workers and firms are risk-neutral and discount future payoffs
at rate r > 0. Utility is perfectly transferable. Output is produced in pairs of one worker
and one firm (z,y). Time is continuous. Positive output produced consists of a divisible
consumption good and is denoted by fi,,,. We assume that more able workers are more
productive in any firm, pg, > jir,, Vy and refer to it as worker monotonicity. While it is
often useful, we do not in general assume firm monotonicity, which would be p.g > p.r, V.

Strict supermodularity is defined in the usual way:

g — Hpg > UWHL — MLL, (2-1)

and with the opposite sign for strict submodularity. In the entire paper, we will refer to

strict supermodularity when we just mention supermodularity, likewise for submodularity.

Information. Because worker ability is not observable to both the worker and the firm, parties
face an information extraction problem. They observe a noisy measure of productivity,
denoted by X;. Cumulative output is assumed to be a Brownian motion with drift u,, and
2

common variance o

Xt = Mxyt + O'Zt (22)

where Z, is a standard Wiener process and as a result, X; is normally distributed with mean
payt and variance ot. By Girsanov’s Theorem the probability measures over the paths of
two diffusion processes with the same volatility but different bounded drifts are equivalent,
that is, they have the same zero-probability events. Since the volatility of a continuous-time
diffusion process is effectively observable, the worker’s type could be learned directly from

the observed volatility if o depends on workers’ types.®

"Without death, we know the posterior belief will converge with probability one to p = 1 or p = 0. Death
here actually acts as a shuffling device to guarantee a non-trivial stationary distribution of posterior beliefs.

8However, we can allow o to be firm-specific. In section 2.8 we analyze the general case of firm-dependent
ay.
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Equilibrium. We consider a stationary competitive equilibrium in this economy. With two
types of firms and a continuum of p’s in this market, take a competitive wage schedule w,(p)

9 Denote

as given which specifies wage for every possible type p worker working in firm y.
by V, the stationary discounted present value of the competitive profits for firm y. The
flow profit can be written as rV,.'% Now we are ready to define the notion of competitive

equilibrium:

Definition 2.1. A stationary competitive equilibrium consists of a competitive wage schedule
wy(p) = py(p)—1rVy, where p,(p) = ppry+(1—p)pr, denotes worker p’s expected productivity
n firmy = H, L and worker p chooses the firm y with the highest discounted present value.
The market clears such that the measure of workers in L firms is 1 — 7w and the measure of

workers in H firms is .

2.3 Preliminaries
2.3.1 Benchmark: No Learning

Workers differ in the common beliefs p of being a high type. We shut down learning so that
beliefs are invariant. This can be viewed as a special case of the learning model with the
variance o2 going to infinity. We assume that there is no birth or death so we essentially
have a static problem. Suppose without loss of generality that p is uniformly distributed
on [0, 1]. We continue to maintain the assumption that the worker does not know her true
type or that she has no private information about it. Denote w,(p) = pum, + (1 — p)pz, for

y = H, L and r as the discount rate.

9Bergemann and Vilimiki (1996) and Felli and Harris (1996) consider a two-firm, one-worker/buyer
model with strategic price setting in a world with independent arms. With ex ante heterogeneous firms and
workers and correlated arms, we instead focus on competitive price setting which is closest in spirit to the
Beckerian benchmark.

19Notice since there is no free entry, V, need not to be zero. We could model free entry as long as in
equilibrium there is a non-degenerate distribution of firm types in the economy. We consider this does not
add to the insights of our model.
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Under the above notion of competitive equilibrium, it is easy to verify the following claim
(All of the results in this paper are in the sense of “almost surely” because we allow a zero

measure of agents to behave differently):

Claim 2.1. Under strict supermodularity, PAM is the unique (stationary) competitive equi-
librium allocation: H firms match with workers p € [1 — 7w, 1], L firms match with workers
p € (0,1 — 7). The opposite (NAM) holds under strict submodularity: H firms match with

workers in [0, ).

Since there is no learning, essentially this result is identical to Becker’s (1973) result,
but with uncertainty. Noteworthy about this version of Becker is that even though for
PAM there is supermodularity of the ex-post payoffs (ugy + pirr > pur + tiom), there need
not be monotonicity in expected payoffs, i.e., py(1 — 7) may be smaller than (1 — m).
In fact, that will be reflected in the firm’s equilibrium payoffs: Vy > Vi if and only if
(1= 7) > (1= ).

As in Becker, the equilibrium allocation is unique, but there may be multiple splits
of the surplus. In the case of PAM, we only require at the cutoff type p = 1 — 7 that
wy(p) = wr(p). There are multiple equilibrium payoffs if the surplus of a match between L

and p = 0 is positive. Instead, if pz(0) = 0," there is a unique equilibrium payoff.
2.3.2 Belief Updating

In the presence of learning we can now derive the beliefs and subsequently the value functions.
The posterior belief p, that the worker has a high productivity is a sufficient statistic for
the output history. Now, we can use the following well-known result: conditional on the
output process (X;)i>0, (pt)i>o is a martingale diffusion process. Moreover, this process

can be represented as a Brownian motion. Based on the framework of our model, denote

sy = (ltry — piry) /o, y = H, L, By(p) = 5p*(1 — p)?s; and then we get:

1 And there is limited liability, i.e., workers and firms cannot receive negative payoffs.
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Lemma 2.1. (Belief Consistency) Consider any worker who works for firm y between to
and ty. Given a prior py, € (0,1), the posterior belief (p;)iy<t<t, 1S consistent with the output

process (Xy i )w<t<t, 4f and only if it satisfies
dpy = pt(1 - Pt)Sdey,t

where

_ 1
dZy = g[de,t — (pepry + (1 — pe)pary)dt].

The proof of this Lemma is in Faingold and Sannikov (2007) or Daley and Green (2008).
The basic idea behind the proof is a combination of Bayes’ rule and Ito’s lemma. Given the

period t posterior belief p, and dX;, we know the posterior belief at period t + dt is:

dX¢— dt)?
pevar = proxp{ = Tt}
t4-dt — AX1— 1. dtl2 Z 2
prexp{—IEEAE 4 (1 - p) exp{ )
Hence,
— 2 _ 2
exp{ — T} — exp{— Pt}

dps = Prrar — Pe = pe(1 — pt) IX. i dtl2 AN — 1 diZ <
prexp{— Ay + (1 — py) exp{—HsnALy

Apply Ito’s Lemma and we obtain the above result.

Lemma 2.1 establishes that dp depends on three elements: p(1 — p), which peaks at 1/2;
the signal-to-noise ratio of output, s, = (g, — fir,)/0 and dZ,, the normalized difference
between realized and unconditionally expected flow output, which is a standard Wiener pro-
cess with respect to the filtration {X,}. Obviously, beliefs move faster the more uncertainty
about worker’s quality (p close to 1/2); the less variation in the output process (smaller o)
and the larger the productivity difference (higher ppm, — pry)-

Learning considerations will change the benchmark results. Moreover, supermodularity
not only affects the value of the static output created as in the standard Beckerian model,
but it also has dynamic effect by changing the speed of learning. For example, under super-

modularity (ugy — pgr > poa — pror), the learning speed is faster in the high type firm,
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which is especially significant for p close to 1/2. Intuitively speaking, learning makes it more
attractive to match with a high type firm even though statically it is better for her to match

with a low type firm without learning.

2.3.3 Value Functions

Given the wage schedule, each worker is facing a two-armed bandit problem. We restrict the

workers’ strategies to be Markovian:
a:[0,1] — {H, L}.
The value function of a type p worker can be written as:

W(p) = sup {E/ e_(r+5)twat(pt)dt}
¢

a:[0,1]—{H,L} =0

s.it.dp; = pi(1 — pi)$a,dZg,; and a; = a(p;).

Denote W, (p) to be the value function of a worker with posterior in a neighborhood of p
optimally choosing firm y.

The value function W, (p) is given by'?:

1"

rWy(p) = 1y (p) — Vy + Sy ()W, (p) — W, (p), (2.3)

from Ito’s Lemma. The term p,(p) — V,, is equal to the flow wage payoff and corresponds to

1

the deterministic component of the diffusion X, ;, and the term X, (p)W,

, () is the second-

order term from the transformation W of the diffusion process X, ;. First-order and all
higher-order terms vanish as the time interval shrinks to zero. The general solution to this
differential equation is:

_ my(p) -V,

Wy(p) — 5 Y + kylpl—ay(l _p)ay + ky2pay(1 _p)l—ay7 (2.4)

12Note that we critically need the assumption that the worker does not have any private information about
his type. If this assumption is violated, the worker’s value functions could not be written like this.
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where

11 20r+0)
— o a4 2T
Wyt it T e

First notice that the boundedness of the value function implies that if 0 is included in the
domain, then k,; = 0 and if 1 is included in the domain, then £, = 0. If not, with a,, > 1
the value of W shoots off to infinity. Second, ¥,(p)W,” (p) is the value of learning and this is
an option value in the sense that the worker has the choice to change his job as he learns his
type p. It is easy to verify that this value is zero if the worker never changes his job.!® From
the Martingale property of the Brownian motion, at any p the expected value of p in the next
time interval is equal to p. There is as much good news as bad news to be expected in the
next period. It is the option value of switching to a more suitable match that generates the
value of learning. Equation (2.4) implies that this option value can be decomposed into two
parts: k,1p'~* (1 —p)* (kyop™ (1 —p)'~*) denotes the option value of switching to a more
suitable match when p goes down (up). The option value ky1p' = (1—p)* (kyap® (1—p)t=*)

must be zero if 0 (1) is included since no switch happens as p goes down (up).

2.4 Analysis and Results
2.4.1 Characterization of the Equilibrium Allocation

Now consider any candidate stationary equilibrium where a type p worker switches from firm
y to y'. Since the worker is essentially facing a two-armed bandit problem given the wage
schedule, optimality in stopping time requires the value-matching condition (the worker gets
the same value at the cutoff) and the smooth-pasting condition (the marginal of both value
functions is identical) (see Dixit (1993)). For example, if for p € [p1, pa), the worker works

in the low type firm and for p € [ps, p3), the worker works in the high type firm, then we

13In that case, p can take both the values 0 and 1. So the boundedness of the value function requires that
both ky; and ks are zero and hence W,” (p) = 0 for every p.
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must have:*

Wi(p2) = Wr(pz) and Wi'(p2) = We'(p2). (2.5)

Notice that workers are price takers. As a result, there is no strategic interaction between
players where equilibrium solves for the fixed point of individual strategies. It is also impor-
tant to point out that both the value-matching condition and the smooth-pasting condition
are on-equilibrium path conditions. They have nothing to do with the off-equilibrium path
(i.e., instead of accepting offers from low type firms, workers with p € [p1, ps) are tempted
to accept offers from high type firms). In the following lemmas we characterize the value

functions establishing convexity and monotonicty:
Lemma 2.2. The equilibrium value functions W, are strictly convex for p € (0,1).

Proof. In Appendix. O

The intuition for this Lemma is the following. Preferences and output are linear in p,
and the option value of learning is strictly positive, hence the value function with the option
of learning is convex. To see this, observe that since the measure of both types of firms
are strictly positive, market clearing requires that workers with some p’s will be employed
by high type firms while workers with other p’s will be employed by low type firms. This
implies that some worker has to change jobs at some point and the option value of learning
Yy (p)W," (p) is strictly positive. Hence we have W//(p) > 0, for all p € (0, 1) since X, (p) > 0.
On the other hand, when p = 0 or 1, the posterior belief will always stay at 0 or 1 by Bayes’
rule such that learning never happens. It is easy to verify that W,/(p) =0 for p=0or 1.

Given the strict convexity of equilibrium value functions and the smooth pasting condi-

tion, we can immediately derive the following Lemma:

14We slightly abuse notation hers since Wp is not defined on p,. A more precise way of writing the
equations is Wr(pa+) = Wy(p2) and Wi/ (pe+) = Wg'(p2). In what follows, we will continue to use the
expression in the text in order to economize on notation.
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Lemma 2.3. The equilibrium value functions W, are strictly increasing.

Proof. In Appendix. O]

One important implication is that if we define WW(p) as the envelope of all equilibrium
value functions Wy (p), then this envelope function W(p) is continuous, strictly increasing
and strictly convex for p € (0,1). Suppose workers with p € [0,p) are employed by type
y firm and workers with p € (p, 1] are employed by type —y firm. Then we should have:

W,(0) = Hl—eke < W’ (1) = % This gives us another result:

Lemma 2.4. Under supermodularity, in any equilibrium p = 0 workers match with L firms;

p = 1 workers match with H firms. The opposite under strict submodularity. Moreover,

min(AH, AL)
r+0

max(Ag, Ar)

<Wip) < r+0

)

where Ay = pgg — o and A, = Uy — prr.

Intuitively this result is best understood by using the standard sorting argument from
Becker (1973). At p =0 and p = 1 there is no value of learning. As a result, there the value

function can be interpreted as being determined by the no-learning allocation.

The properties derived above are mainly concerned with on-equilibrium path behavior.
We also need to specify what happens in the event of deviations and consider behavior off-
equilibrium path. We contemplate the equivalence of a one-shot deviation in continuous
time because we think of the continuum as an idealization of discrete time. This amounts
to a worker playing the deviant action over an interval [t, ¢ 4 dt) according to the belief p at
time ¢, and considering the limit as dt — 0.!° This is very important because it allows us
to derive the value function for deviation. On the contrary, if the deviation only takes place

at a single point in time ¢, then the value function for deviation is essentially the same as

15This notion is also implicitly used in Proposition 2 of Sannikov (2007), and also in Cohen and Solan
(2009) who consider deviations from Markovian strategies in bandit problems.
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the one without deviation because no information will be extracted from just a single time
point.
The next Lemma establishes that if we consider off-the-equilibrium path deviations, we

actually derive one additional condition, which we call the no-deviation condition.

Lemma 2.5. To deter possible deviations, a necessary condition 1s:
Wy (p) =Wi(p) (No-deviation condition) (2.6)
for any possible cutoff p.

Proof. Without loss of generality, we assume that on the equilibrium path, a worker in a
neighborhood right of p accepts offers from H firms (say, p € (p,p)) and a worker in a
neighborhood left of p accepts offers from L firms. Consider one possible one-shot deviation:
at time t, a p > p worker chooses a low type firm for dt length of time and then switches
back. On the equilibrium path, the value function is defined as before (from Hamilton-

Jacobi-Bellman equation):

(r+0)W(p) = (r+0)Wh(p) = wu(p) + Zu(@)Wi(p).

The deviator’s new value could be written as:

_ t+dt
Wi(p) =E {/ 6_(r+6)(8_t)wL(Ps)d5 + 6_(T+5)dtW(pt+dt)} . (2.7)
t

Potentially, p;i 4 can take any value between 0 and 1. We have to show that as dt
becomes very small, almost surely, p;q4 will be close to p such that it is in the region where

the worker will still accept offers from high type firms: Pr(pia: ¢ (p, D)) = o(dt).'®

16Since the deviator’s belief updating follows a Brownian motion: dp; = s p(1 — p)dZy 4, the probability

P—p
sLp(1—p)Vdt
distribution function for a standard normal distribution. Apply L'Hopital’s rule and it is straightforward to
see that

that a worker p > p will have belief p;;4; < p is given by ® ( ), where ®(-) is the cumulative

® (ot pvm)
lim st(l—p)\/E =0
dt—0 dt '

Use the same logic and it is easy to see that Pr(piyq: > p) = o(dt).
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Notice that for any dt > 0,

) t-dt
Walp) > WL<p>>E{ / e-<f+5><s—t>wL<ps>ds}
t

+ Ee(ro)dt (Wa(pryar)(1 = Pr(pryar ¢ (p. D)) + Pr(pesar & (p.0))W (0)] (2.8)

The first inequality comes from the fact that there should be no profitable deviation. The
second inequality is true because we replace the value for p;, 4 ¢ (g, p) with the lowest value
W(0) (W(-) is an increasing function by Lemma 2.3). From Ito’s Lemma, we can get for the

deviator:

EWh (perar) = Wa(p) + Bo(p)Wy(p)dt + o(dt).

For any dt > 0, the no deviation condition implicit in equation (2.8) implies:

E{ " e= 060w, (p,)ds}
dt
E {e= Wy (prear) (1 — Pr(psar € (p,D))) + Pr(pevar € (p,0))W(0)]} — Wr(p)
dt

+ < 0.

Let dt — 0 and first, it follows immediately that:

E {ft+d,t 67(r+6)(8*t)w1;(ps)d5}

I !
dt@@ dt

= w(p).

Second, as proved earlier,
Pr(piiar & (p, D))

dlw§1£n>0 ar = 0.
Finally,
lim E {6_(T+6)dtWH(pt+dt)(1 — Pr(piyar ¢ (27 ﬁ)))} — Wu(p)
dt—0 dt
= SRR LEL )tztEL(p)Wg(p)dHO(dt) = Zr(p)Wg(p) — (r +6)Wa(p).

Therefore, the necessary condition such that a p > p worker has no incentive to deviate can

be written as:
wr(p) + X(p)Wg(p) — (r +0)Wr(p) = wr(p) + Er(p)Wg(p) — wu(p) — Zu()Wi(p) < 0.
(2.9)
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The above inequality must hold for any p € (p,p). Let p — p and we have:!7

wr(p) — wu(p) + [Xr(p) — Zu(p)|Wi(p) <0

= wi(p) + ZL(p)WL(p) — (wu(p) + Zu(p)Wi(p)) + Wi (p) — WL (p))EL(p) <0

= Wi(p) < Wi(p). (2.10)

Similarly, we can consider another possible one-shot deviation: a p < p worker matches
with a high type firm for dt and then switches back. The same logic establishes that to deter

such deviation, it must be the case that:

wy (p) —wr(p) + [Xu(p) — (@)W (p) <0 (2.11)

for any p < p. As p goes to p, we should have:

wi(p) —wi(p) + [Zu(p) = Zo(p)WL(p) <0 = Wg(p) = WL (p). (2.12)
(2.10) and (2.12) imply that W (p) = W (p). O

This no-deviation condition is quite unique for the two-armed bandit problem. This
condition is absent in an one-armed bandit problem. Most of the models in the literature on
continuous time learning models (Jovanovic (1979) and Moscarini (2005)) and continuous
time games (see amongst others, Sannikov (2008)) are essentially investigating a one-armed
bandit problem. There, we can directly look at equilibria in cutoff strategies. In the one-
armed bandit problems, the safe arm essentially is an absorbing state so we only need
to worry about the potential deviation from the risky arm to the safe arm.'® Then the

no-deviation condition becomes W7 (p) > Wi (p) = 0 but this is already implied by the

'TAs p goes to p+, notice that wr(p—) = wr(p+), Xr(p—) = Er(p+). Hence, we will have: wr(p—) +
E(p=)WL(p—) — (wa(p+) + Zu(pH)Wg (p+)) + (Wi (p+) = WL (p—))2L(p—) <0.

18For example, in our model assume g7 = prr and the return in the low type firm is deterministic.
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convexity property.t?

We provide some intuition for the no-deviation condition. By assuming Sequential Ra-
tionality, i.e., the equilibrium is robust to a one-shot deviation, we basically impose that the
equilibrium wage is self-enforcing. There is no commitment to future realizations of X; and
therefore of future beliefs p. Now we can interpret W” as the marginal value of learning: W’
is the marginal change of W with respect to the posterior p, and learning changes p and is
therefore quantified by the change in W’ which is W”. The condition states that there is no

deviation if the marginal value of learning at p is the same in both firms.

Now in our two-armed bandit problem, we first need to answer the question whether
there exist non-cutoff stationary equilibria, i.e., a worker with p € [p;, p2) accepts the offer
from a high type firm, with p € [pa,p3) accepts the offer from a low type firm and with
p € [ps,ps4) accepts the offer from a high type firm again. Surprisingly, Lemmas 2.2-2.5
imply that all possible stationary competitive equilibria must be in cutoff strategies. The
next theorem therefore establishes uniqueness and sorting under supermodularity. It does

not shown existence yet, which we do in Theorem 2.3 below.

Theorem 2.1. If an equilibrium exists, PAM is the unique stationary competitive equilibrium

allocation under strict supermodularity. Likewise for NAM under strict submodularity.
To prove this theorem, we only need to prove the following Claim:

Claim 2.2. Under strict supermodularity, it is impossible to have py < ps and equilibrium

value functions Wy (for p € [p1,ps]), Wr1 (for p < p1), Wra (for p > pa) such that:
Wia(pr) = Wii(p1) and Wih(p1) = Wiy (p1)

Wi (p2) = Wia(pz) and Wh(p2) = Wiy(p2)

Tn a model of option pricing by Dumas (1991), there does exist a condition on the second derivative
called the “super contact” condition, which is of a very different nature. It arises as the optimal solution to
the option pricing problem with proportional cost. More discussions about this no-deviation condition can
be found in Eeckhout and Weng (2010)
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are satisfied simultaneously.

Under strict submodularity, it is impossible to have py < ps and equilibrium value func-

tions W, (for p € [p1,p2]), Wu1 (for p < p1), Wy (for p > p2) such that:
Wi(p1) = Wai(p1)  and  Wi(p1) = Wiy (p1)

Wi(p1) = Waa(pz2) and W7 (p2) = Wiy(p2)

are satisfied simultaneously.

Proof. In Appendix. n

This result states that it is not benefial for a worker of type p to learn in the high type
firm H in the middle as long as there there are still types p on both sides who work in the

low type firms. Given the above claim, it is easy to prove the theorem:

Proof. Under supermodularity, by Lemma 2.5, workers with sufficiently low p’s will accept
a low type firm’s wage offer and workers with sufficiently high p’s will accept a high type
firm’s offer. But Claim 2.2 implies it is impossible to have worker first accept low type
firm’s offer, then accept high type firm’s offer and finally accept low type firm’s offer again.
Hence, we must have some cutoff p such that p < p will accept low type firm’s offer and
p > p will accept high type firm’s offer. This is exactly a PAM allocation. Use the same
logic, NAM is the only possible stationary competitive equilibrium allocation under strict

submodularity. O]

Before we turn to the equilibrium distribution, we show that the no-deviation condition

in Lemma 2.5 is not just necessary but also sufficient under strict supermodularity:

Lemma 2.6. Under strict supermodularity, W' (p) = W' (p) implies that no deviation will

happen for the PAM equilibrium allocation.

Proof. In Appendix. m
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2.4.2 The Equilibrium Distribution

The previous section shows that under strict supermodularity (submodularity), PAM (NAM)
is the unique candidate stationary competitive equilibrium allocation. Note that this doesn’t
necessarily mean the equilibrium exists. We still need to construct such an equilibrium. To
do that, we assume strict supermodularity and worker and firm monotonicity: (upy > ppr
and pry > purr)-2° Now consider a strictly positive assortative matching equilibrium such
that workers with beliefs less than p will choose L firms and workers with beliefs higher than
P will choose H firms. From equation (2.4) we hence have kr; = 0 and kps > 0 for y = L

and kg = 0 and kg, > 0 for y = H. Let k;, = krs, kg = ky1 and worker’s value functions

become:
Wilp) = L) 4 g1 pe (2.13)
and
Wa(p) = QiHT(]? + kup' (1 — p)™H, (2.14)
where
ay ==+ i - Z(TS—;” > 1.

To discuss market clearing conditions, we need to consider the ergodic distribution of p’s.
From the Fokker-Planck (Kolmogorov forward) equation, the stationary and ergodic density
fy should satisfy the following differential equation:

df, (p) d?

0= TR d_zﬂ[zy(pﬁy(p)] — 0 fy(p). (2.15)

20Monotonicity is just to help us find one particular way to divide the surplus. The whole construction of
equilibrium also goes through if we do not make this assumption.
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The general solution to this differential equation is (see also Moscarini (2005)):%!

fy(p) — [fy0p7y1(1 _ p)'VyQ + fyl(l _ p)’YylpVyz] (2.16)
where
S S
mMETT AT
and
3 1 26 5
eI

First, the integrability of f, requires that f,; = 0 if 0 is included in the domain and
fyo = 0 if 1 is included in the domain. Second, the Fokker-Planck (Kolmogorov forward)
equation is only valid for p # pg. Since there is a flow in of new workers, for p = py we
should have a kink in the density function. This also raises the issue of the relative position
between py and p. We first consider the case where p < pg. We then derive in abbreviated
format the result when p > py.

Given any pg € (0,1), if p < po, then the density functions are:

fa(p) = [faop”™ (1 = p)"™ + fur (1 — p)" p"™I(p < p < po) + fa2(1 — p)"™ p ™ 1(p > po)

(2.17)
and

fr(p) = frop™ (1 — p)7t2. (2.18)

The density functions are subject to the following boundary conditions. The derivations
of these boundary conditions are shown in the appendix. First, once the posterior belief

reaches the equilibrium separation point p, we should have the cutoff condition:

Su(p+)fulpt) = Xclp—)f(p—). (2.19)

21Here the assumption that there is no heterogeneity in the prior py substantially simplifies the solution
to this differential equation. While there is no solution for a general distribution of priors, we have been able
to solve the stationary distribution if the priors are drawn from a beta distribution. See also Papageorgiou
(2009).
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This condition guarantees that the flow speed of agents who cross p from below is equal to
the flow speed of agents who cross from above. The implication is that since the speed from
above Yy is larger than ¥, the densities are not continuous: fy(p+) < fr(p—). It is worth
comparing this condition to the standard condition when there is an absorbing state (Cox
and Miller (1965), Dixit (1993), and Moscarini (2005)). In the case with only one Brownian
motion and an absorbing state, what is required is X(p+) f(p+) = 0 because the probability
of absorption in a time interval dt must equal the flow-in speed of the Brownian motion
which is proportional to v/dt (see Cox and Miller (1965, p.220)).

Second, total flows in and out of the high type firms must balance:

S (po) g (po—) — Fra(pot)] = 67 + d%[zH@)fH(p)nﬁ.

The left-hand side of the above equation is the total inflow into high type firms, which are
new workers who enter into this economy. The right-hand side of the above equation is the
total outflows from the high type firms, which include workers who reach p and transfer to
low type firms and workers who are hit by the death shock. We manage to show that this

equation will further imply:

SISOy = 5 S fu o)

Third, the density function has to be continuous at py:

fu(po—) = fu(po+).

It is customary to impose this condition as it approximates entry from a non-degenerate
distribution instead of entry of identical types py.

Finally, usual market clearing conditions apply:

/fH(P)dp:W and /Opr(p)dpzl—w.
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In summary, when p < po, the equilibrium is characterized by a system of eight equations

with nine unknowns (Vi, Vi, ki, ku, p, fro, fa1, faz, fro):

Wr(p) = Wi(p) (Value-matching condition) (2.20)

Wy (p) = Wi(p) (Smooth-pasting condition) (2.21)

WIZ,(]_O) =W, (p) (No-deviation condition) (2.22)

u(p+) fu(pt+) = So(p—)fu(p—) (Boundary condition) (2.23)
/ fu(p)dp = (Market clearing H) (2.24)

/ frp)dp=1—m7 (Market clearing L) (2.25)

i S0l Np- = CZ)[ 1 () fu(P)]lp+ (Flow equation at p) (2.26)
Jr(po—) = fu(pot) (Continuous density at pg) (2.27)

Fortunately, Equations (2.23)—(2.27) can be solved separately from Equations (2.20)-
(2.22). In other words, the procedure of solving this system of equation could be: first we
solve p jointly with fuo, fr1, f2, fro from Equations (2.23)-(2.27) and then we plug p into

Equations (2.20)—(2.22) to pin down other unknowns.

Proposition 2.1. Equations (2.23)-(2.27) imply p < po if and only if:

_ 1
o YH1—7YL2 5/8%{ pr p’YHQ(l _ p)ledp § T (2 28)
1 — po 6/s3 [ pr(L—p)yredp ~ 1—7 '
Moreover, if such p exists, it must be unique.
Proof. In Appendix. ]

22Qbserve that with more unknowns than variables, the solution to our system is indeterminate. In fact,
there are potentially a continuum of wages that can be supported in equilibrium, though the allocation will
be unique. This indeterminacy is as in Becker: the allocation is unique, but there may be multiple ways
to split the surplus. In all that follows, when we use the term uniqueness of equilibrium, we refer to the
allocation, not to the wages.
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The proof of Proposition 2.1 is quite straightforward. The idea of the proof is the follow-
ing: since we have 5 equations with five unknowns, we can first express fro, fu1, fu2, fro as
functions of p and then use the last equation to pin down p.

The existence and uniqueness of the solution to the system require that fgo, fu1, fu2, fro
change monotonically with p. Fortunately, this is the case as shown in the appendix. The
monotonicity guarantees that if a solution exists, it must be unique. Furthermore, it enables
us to only check the boundaries when determining whether a solution exists. Equation (2.28)
given in the Proposition is thus derived.

In the second case, p > po. Given any py € (0,1), if p > po, then the density functions

are:

fr(p) = frop™ (1—=p)"21(p < po)+[frip™ (1—p)" 2+ fro(1—p) " p"2]I(po < p < p) (2.29)

and
fu(p) = fuo(l —p)Tmpre. (2.30)

Then the system of equations to determine the equilibrium is:

Wi (p) = Wi(p) (Value-matching) (2.31)
Wy (p) = Wi(p) (Smooth-pasting) (2.32)
Wy (p) = W, (p) (No-deviation) (2.33)
Yu(p+) fulpt) = Xc(p—) f(p—) (Boundary condition) (2.34)
/ falp)dp=m (Market clearing H) (2.35)
/ frip)dp=1—m (Market clearing L) (2.36)

0
RSB = T Zu) ) (Flow equation at p)  (2.37)
fr(po—) = fr(po+) (Continuous density at pg) (2.38)

Based on the above equations, we can prove the following Proposition, the counterpart

to Proposition 2.1, in a similar fashion:
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Proposition 2.2. Equations (2.34)-(2.38) imply p > po if and only if:

1
( Po )’YH1*’YL2 6/5%1 fpo p'YHZ(l B p)'mldp > T

. 2.39
1—po §/s% f(fop'YLl(l—p)VLde —1l-7 ( )

Moreover, if such p exists, it must be unique.

The idea for the proof of Proposition 2 is exactly the same as that for the proof of
Proposition 1 and the proof is also shown in the appendix. Propositions 2.1 and 2.2 together

provide the following existence and uniqueness result:

Theorem 2.2. Under strict supermodularity, for any pair (po,7) € (0,1)%, there exists a

unique PAM cutoff p. Moreover, p < po if and only if:

1
Do YH1—7YL2 5/‘9%{ fpo p’YHZ(l B p)’YHldp < i
1 —po §/s2 fopopﬁl(l—p)Wmdp 1—7

( (2.40)

One of the nice properties about Equation (2.40) is that the whole equation only depends
on po, , 0/s3 and 0/s7. This provides a feasible way to compute p. Given po, 7, 0/s%; and
§/s%, we first need to decide the sign of

1
N
§/s2 fopop%l(l—p)“fmdp 1—7m

If this sign is negative, then we know that p is smaller than py and we can use the system of

()

1 —po

equations in the first case to figure out p. On the contrary, if this sign is not negative, then
we know that p is larger than py and we can use the system of equations in the second case
to compute p. This turns out to be a convenient way to determine the equilibrium cutoff
numerically.

Before presenting the numerical results, we have a simple theoretical comparative static

result:
Corollary 2.1. p is strictly increasing in py and decreasing in 7.

This corollary is proved in the appendix. But the intuition is quite straightforward:

decreasing in 7 means there are more low type firms in the economy and hence p has to
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Figure 2: Equilibrium Distribution of Posterior Beliefs

O 1 1 1 1 J
0 0.2 0.4 0.6 0.8 1

posterior belief

cumulative distribution

0 0.2 0.4 0.6 0.8 1
posterior belief

Figure 2.1: Equilibrium Distribution of Posterior beliefs.

become larger such that more workers are matched with low type firms; increasing in po
means the overall quality of the workers is becoming better in the economy and p has to go
up to make sure that low type firms are also matched with better workers.

Mathematically, it is not easy to derive comparative statics between p and 6/s%; or d/s7.
But intuitively speaking, as sy, increases, the degree of supermodularity will be reduced while
the speed of learning in low type firms will increase. Both of these factors make the low type
firms more attractive and hence P should increase in s;. On the other hand, as sy becomes
higher, both the degree of supermodularity and the speed of learning in high type firms will
go up, which will lead to a reduction in p.

Figure 2.1 plots the stationary distribution of beliefs p, for the case of PAM and with

parameter values: sy = 0.15, s, = 0.05,py = 0.5, 7 = 0.5, = 0.01.
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2.4.3 Equilibrium Analysis: Value Functions

Theorem 2.2 implies that under strict supermodularity, the PAM cutoff p can be uniquely

determined. But given this p, we still have the following conditions to satisfy:

W (p) = Wi(p) (Value-matching condition) (2.41)
W}{(]_?) = WL(]_?) (Smooth-pasting condition) (2.42)
Wh(p) = Wi(p) (No-deviation condition) (2.43)

Equations (2.41)-(2.43) are three equations for four unknowns. The equilibrium is inde-
terminate in the sense that although the allocation p is unique, there could be multiple ways
to divide the surplus. To make the system determinate, we assume firm monotonicity and
set prr, = 0. Then limited liability requires that w(0) has to be zero and hence V; = 0.

Equations (2.41)-(2.43) thus could be written as:

pr(p) 1 pu(p) —rVu -
— k ay, 1_ oy, — — k af 1_ O
s TR (-p) 5 thap (1 -p)
HHL — HLL o l—ap YL~ P MHH — HLH l—o w L—ag—p
—+k- L 1 _ L — +k H 1 o H
r+o p™ (1 —p) (£<1_B>> r+ s HP (1= p)™( (1= p) )

k:L]_?O‘L_Q(l - ]_9)_1_%0@(0“; —-1) = kH]_D_l_aH(l —E)O‘H_QQH(QH -1)

This system of equations will give us a unique formula for Vy:

ag(ar —1)(Ag — Ar)p
ag(arp —1) = (1 = p)(ap — an)

Vi = (prg — prn) + (2.44)

As usual, Ay = pgyg — prg and Ap = pgrp — pprp. Furthermore, it is easy to check that
both ky and kp are strictly larger than zero such that the option value of learning is strictly
positive.

Therefore, we finally reach our main result:

Theorem 2.3. Under strict supermodularity, the stationary competitive equilibrium is unique
in the sense that all equilibria are PAM and the allocation is uniquely determined by Theo-
rem 2.2. Moreover, assume firm monotonicity and normalize Vi, = 0, we can get a unique

formula for Vi given by equation (2.44).
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2.4.4 Wage Gap at the Cutoff

The analysis of the value functions allows us to determine equilibrium wages. We start with
an interesting observation:
OéH<CkL — 1)(AH — AL)]_?

ag(ar —1) = (1 = p)(ar — an)
< AL£+ ML = UJL(]_Q)

wy(p) = pu(p) —rVu = App+prr —

This implies that the worker with posterior belief slightly higher than p will accept the high
firm’s offer even though the wage provided is lower than the wage at the low firm. This
obviously comes from the fact that the learning speed in the high firm is higher and this
would compensate the loss in the flow wages.

On the other hand, we can see that the difference in expected productivity at p is

pr(p) — pr(p) = (prr — prn) + (Ag — Ar)p < rVi.

This implies the high firm can enjoy a strictly positive rent from a higher learning speed. This
above result actually does not depend on the assumption V;, = 0 and it can be generalized

for any possible division of surplus.?® This is illustrated by Figure 2.2:

Lemma 2.7. Under strict supermodularity, we have: wy(p) < wr(p) and rVyg —rVy >

i (p) — pr(p)-
2.5 Firm-dependent Volatility: o,

A wvalid criticism of our approach is that we give the H firms too much of an edge under

supermodularity (likewise for the L firms under submodularity). Not only are they superior

23Generally, value matching and no-deviation conditions imply that

(r+0)Wh(p) = wu(p) + Zu(p)Wg(p) = (r + 6)Wir(p) = wr(p) + Xr(p) W (p)

and
Wr(p) = WL (p)-
These immediately mean that wy (p) < wr(p) and rVig —rVy > pg(p) — pr(p)-
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Figure 3: Equilibrium Distribution of Wages
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Figure 2.2: Equilibrium wage function and value function in terms of beliefs p; Stationary
wage distribution.
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in the production of output, by assuming that the volatility ¢ is common to both types of

firms, effectively the signal-to-noise ratio is higher in H firms:

HH — MLH HL — MLL
o pom  frr = p
g g

SH

from supermodularity. With firm-dependent volatility, that need not be the case. In partic-
ular, for oy sufficiently high, it may well be the case that sy < sp.
Mere observation of the value function in Equation (2.3), rW,(p) = p,(p) — V, +

"

Ey(p)W

, (p) — W, (p), reveals that firm-dependent volatility will play a crucial role here.

Since ¥, = §p*(1 — p)?s2, for sufficiently high oy and therefore low sy, it appears intuitive
that the value Wy can be smaller than the value of W, for high p. It turns out that this
intuition is wrong. First, in this competitive equilibrium, wages are endogenous and there-
fore as the value of learning changes, so does ji,(p) — V,,. Second, the no-deviation condition
requires that at the marginal type p, Wi = W/. It turns out that as a result these two
features, in equilibrium the learning effect is the same in both firms, no matter what the
volatility o, is.

To make this argument formal, when oy # o, we generally define s, = (pp, —

Kry)/oy, y = H, L. It is trivial to show that belief updating also satisfies the formula:

dpt = pt(l — pt)sdey,t-

Furthermore, Lemmas 2.2-2.5 still hold because none of these results depend explicitly on

oy. As shown in the appendix, the statement in Claim 2.2 is generalized to any combination

of (og,0).

With the proof of Claim 2.2 in hand, the result of Theorem 2.1 immediately extends: PAM
(NAM) is the unique candidate stationary competitive equilibrium allocation under strict

supermodularity (submodularity) thus holds for any combination of (o, 0r). Surprisingly,

?4The sufficiency of the no-deviation condition is also extended to include all of the combinations of
(om,0r) by proving a generalized version of Claim 2.2 and Lemma 2.6 in the appendix.
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this implies that under strict supermodularity, even if we have an extremely high oy such
that the learning rate in high type firms is smaller than that in low type firms, we still have
PAM. It is equivalent to assert that the direct productivity consideration dominates the
learning in our model. The reason comes from the fact that the equilibrium wage schedules
adjust to offset the impact of change in learning rate. The key insight here is the no-deviation
condition. At p, the no-deviation condition requires that the second-order effect on the value
function is the same in both firms. This second-order effect W}’ exactly captures the effect of
learning through X, (p)W}/(p) where X, = 1p*(1 — p)?s2. Because equilibrium wages adjust
to satisfy the no-deviation condition at the cutoff, the impact of differential learning rates
is completely offset by the change of wage schedule, and the equilibrium allocation is solely

determined by the productivity consideration.

2.6 The Planner’s Problem

A priori, we might expect the competitive equilibrium not to decentralize the planner’s prob-
lem. Wage contracts cannot condition on future realizations or actions and are assumed to
be self-enforcing. As a result of this lack of commitment, there is a missing market. With
incomplete markets, the competitive equilibrium in general does not necessarily decentralize
the planner’s problem. It turns out however as we show below that this market incom-
pleteness does not preclude the efficiency of the decentralized equilibrium. As will become
apparent, this efficiency result is driven by the martingale property present in all models of
learning.

We consider a planner’s problem under stationarity, i.e., in the presence of an ergodic
distribution. The planner chooses an allocation rule and as a consequence of the Kolmogorov
forward equation, the ergodic distribution associated with this allocation rule. The objective
is to maximize the aggregate flow of output. Given stationarity of the problem, the focus on

output maximization yields the same outcome as maximization of aggregate values.

72



Before we state and prove the efficiency result, we need to derive the stationary distri-

bution under multiple cutoffs. Consider any allocation with multiple cutoffs:
0<p,<---<p <1, N odd.

Without loss of generality, we assume workers with p € (py, 1] are allocated to the high type
firms while workers with p € [0,py) are allocated to the low type firms since for workers
with p = 0 or 1, there is no need for learning and it is optimal to allocate them according
to instantaneous production efficiency (PAM).?> This also implies that generically N is odd.
Denote by €, the set of p’s that match with firms of type y.

Formally, the planner will choose €2, to solve the problem:

Qy

max § = / 1151(0) F (p)edp + / (0 o (p)dp

Qr
d? d
s.t. W[Ey(p)fy(p)] —ofy(p) = % =0 Kolmogorov forward equation
P

/ pr(p)dp+/ pfr(p)dp =po Martingale property

Qy Qr,
fr(p)dp =1—m, fu(p)dp =m. Market clearing

QL QH

It turns out that the martingale property enables an easier way to compare different alloca-

tions, hence the following Lemma:

Lemma 2.8. Consider two possible allocations with ergodic density functions fu(p), fr(p)
(allocation 1) and fH(p), fL(p) (allocation 2) respectively. Then allocation 1 generates higher
aggregate output than the allocation 2 if and only if fQH pfu(p)dp > fle pr(p)dp or alter-

natively, fQL pfr(p)dp < fQL pr(p)dp.

Proof. In Appendix. n

25This property is also established in the one-sided model of Anderson and Smith (2010). Our results
shows that not only at the extremes but also at the interior the planner’s (and the equilibrium) allocation
exhibit PAM.
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To prove that the competitive equilibrium decentralizes the planner’s stationary solution
under supermodularity, it suffices to show that the PAM allocation is better than any al-
location with multiple cutoffs because from Theorem 2.2, we know that PAM allocation is
unique and will be the same as the competitive equilibrium allocation for any combination
of (sy,sr). The key technical issue is that the ergodic distribution is endogenously deter-
mined by the allocation rule. It is infeasible to compute the ergodic density functions for
each possible allocation. Our strategy of proof is therefore to use a variational argument to
circumvent this difficulty.

The proof heavily uses the martingale property and works as follows. First we consider a
candidate allocation with 3 cutoffs. Under this candidate allocation, there will be an interior
interval of p’s that are matched to L type firms associated with some ergodic distribution.
We move the bounds of that interval slightly to the left, thus generating a new density in
this interval while keeping all other cutoffs and distributions unchanged. The new interval
is chosen by imposing market clearing conditions. Lemma 2.8 then shows that under su-
permodularity this experiment strictly increases aggregate output. This holds until cutoffs
coincide such that the interior rang of p’s matched with L firms disappears, thus reducing the
number of cutoffs to N = 1. We use a similar argument to establish that output increases
when moving from N to N — 2 cutoffs. The result then follows by induction. We derive the

result under supermodularity. The same logic applies under submodularity.

Theorem 2.4. The competitive equilibrium decentralizes the planner’s stationary solution

that maximizes the aggregate flow of output.

Proof. In Appendix. n

2.7 On-the-job Human Capital Accumulation

On the job, workers and firms not only learn about their unknown innate skills, they also

accumulate human capital. In reality, human capital accumulation is an ongoing, continuous
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process. The longer the tenure of a worker, the higher her productivity. This monotonically
increasing relation between tenure and human capital experience is likely also to be concave.
For modeling purposes, here we consider a very simple form that captures this relation. With
probability ), a worker transitions from being unexperienced to being experienced.?® Once
a worker is experienced, her productivity increases to i, + &, and the status of experience
is complete information.?” Now there are the same value functions for experienced workers

as before Wye

el

rWy(p) = wy(p) +£&p) —rVy, + Z ()W, (p) — W;(p)

where &(p) = péy + (1 — p)&; is the expected experience.?® For the unexperienced worker
there is now one additional value function. As before, there are unexperienced workers who
are matched with L firms, and who continue to match with an L firms; and there are those
who match with H firms both when unexperienced as well as when experienced. We denote
those values by W', , W ;. There are now also some types p who match with an L firm when
unexperienced and who switch to an H firm when they become experienced, the value of
which is denoted by W;';. This requires that the reservation type of an experienced worker
(p°) is lower than that of the unexperienced worker (p*). We start from this premise and

later verify that this is indeed the case. The value functions then are:

ull

Wy (p) = wy(p) —rVy + Z5(p)W,, (p) + AW (p) — (0 + \)W, (p)

vy

ull

Wig(p) = po(p) =V +ZL(p)Wrg(p) + \WWg(p) — (0 + Wik (p)

Observe that even though experience is completely observable, it does affect the inference

from learning in the sense that the signal-to-noise ratio changes to [(ftzry +E&u — piry —&1)] /02

26Having a continuous relation between tenure and human capital renders the system of differential equa-
tions into a system of partial differential equations. Typically there is no solution. In the current setup,
there is an additional state (experienced versus unexperienced) and the model remains tractable.

2TObserve that experience is worker dependent, but not firm dependent. While it is likely a realistic feature
to have experience dependent on the job type, the reason is that we would have a different level of experience
for different histories which makes the problem non-tractible.

281n this section we maintain the earlier assumption that oy = o, = 0.
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As a result, ¥, depends on experience u, e.

m 2 (p) —rV, u l—a¥ a¥ u . a¥ —al
Wyy(p) ;iT_{_)\y + kylpl y(l —p) v + ky2p U(l — p)l v
A
+ EDICETESY [1y(p) +&(p) — V4]
A e e e e
+ - ('™ (1 = p)* + kypp™ (1 — p)' =]
(A+3+7) = (o (r + ) /! v
u ML(p) - TVL u l—a¥ al u 1—a¥
Wigp) = erkmp L(1 —p)*L + kpop®t (1 — p) %L
A
+ Y [1m (p) + &(p) — V]
A e e e e
+ . [k5p' =1 (1 — p)*H + kipp®i (1 — p)' ]
(A+0+7) = £z (r +0) . e
e H (p) + é(p) -1V, e —at af e af —a
Wi(p) = R Lt ko p' (1 — p)® + KSyp®n (1 —p)' =
where
1 1 2(1" 40+ )\)
(N - S S |
ay =5 + \/4 + (s1)2 =

. 1 1 2(7’—|—5)
ay=§+ Z+W21

There are now two cut-offs p*,p®. Since we just want to compare p* and p°, we can
consider the following thought experiment. First, we assume that p* = p® = p. Then we
can get two systems of equations: one system is the set of value-matching, smooth-pasting
and no-deviation conditions for the unexperienced workers and the other one is for the
experienced workers. Second, we can solve AV = Vi — V,, the way we did previously but
now we can get two possible values for AV. Denote them to be AV¢ and AV*. Notice that
AV®and AV*" are both increasing in the cutoff p. Finally, we compare AV and AV* under
the assumption that p* = p® = p. If AV > AV*, this means that we should decrease p® or
increase p* and hence p* > p° on the contrary, if AV¢ < AV*, this means that we should
decrease p* or increase p¢ and hence p* < p°. We derive this in the Appendix and can show

this to hold when human capital accumulation is not too different for H and L types.
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Proposition 2.3. Assume supermodularity and g ~ £. Then p® < p*.

Proof. In Appendix. n

With human capital accumulation, we can now characterize the entire equilibrium, in-
cluding wage schedules and the ergodic distribution of types. Even though there are types
who gradually learn they are of low productivity, wages need not decrease over the life cycle

as they accumulate human capital.

Turnover and Tenure. We express the expected future duration of a match by tenure
7,(p). Tenure relates inversely to turnover. For p < p® and p > p*, 7,(p) satisfies the

following differential equation (see also Moscarini 2005):

%y (p)7, (p) — 07y(p) = —1

with solutions:

1 D 1—p 1/2—4/1/4-26/(s%)?

1 1/2-/1/4=26/(s3)? /1 _ 1/2—1/1/4+25/(s% )2
H) =541 (o .
TL 5 ]_)u 1 _ z_)u

1 12=/1/4428/(s5)* /1 _ 1/2—4/1/4—25/(s

p p
(p)=<91- (= -
0 p l—p

1 » 1/2—4/1/4—-25/ (5% )2
w32
L( ) 5 { Be

If p € (p°,p"), the only difference is that

1/2—4 /1/4+25/(5L)2}

Yy (p)ri"(p) — (6 + N7 (p) = —1,

since unexperienced workers will switch jobs once they become experienced. An immediate

implication of the Proposition above is the following:
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Proposition 2.4. (Tenure) Assume supermodularity and &g ~ &p. Then, 11(p) > 75(p)
for p < p® and 15 (p) < 75(p) for p > p*. For p € (p°,p*), there is a cutoff such that
11 (p) < 75 (p) for p higher than this cutoff and 1} (p) > 75 (p) for p smaller than this cutoff.

For the lowest types p, tenure for the unexperienced worker is longer as the experienced
workers are more likely to be hired by an H firm given positive information revelation. The
opposite is true for the highest p: the unexperienced types face a higher cut-off type and will

therefore upon bad information be more likely to switch to an L firm. In the intermediate

range, tenure depends on how close p is to either of the cut-offs.

2.8 Robustness
2.8.1 Generalized Lévy Processes

One may suspect that our results are exclusively driven by the specific assumptions of the
Brownian motion. In the section, we illustrate that this is not the case by considering a
generalized Lévy process, i.e., a compound Poisson process. Let \;, denote the expected
arrival rate of jumps for a type x worker in a type y firm. Following Cohen and Solan (2009),

the worker’s value function can be written as:

W, (p) = wy(p)dt + (1 — rdt — 0dt){[pAuy + (1 — p) AL, |dtW, (pp)
+ (1 - [p)‘Hy + (1 - p)/\Ly]dt)Wy(p + dp)

p>\Hy

Py pr g ' v and ¢’ is the firm type which matches with worker p;. If no jump

where p, =

occurs, the updating of the posterior belief in firm y follows:
dp = —p(1 — p)(Amy — Ary)dt + p(1 — p)s,dZ.

As usual, the value function could be rewritten as a differential equation:

(r+ 0+ [pAmy + (1 = p)Ar, )Wy (p)

= wy(p) + [pPAry + (1 = p)Ay]Wy (pr) — p(1 — p)(Amy — ALy) W, (p) + Zy ()W) (p).
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The no-deviation condition derived earlier still holds in this situation. The proof is similar

and is omitted here.

Lemma 2.9. To deter possible deviations, a necessary condition 1s:
Wr(p) = Wi(p) (No-deviation condition-Lévy) (2.45)

Jor any possible cutoff p.

Consider the simplifying assumption that Ar, = 0 and denote Ay, by A,. Then p;, is

always 1 and the value function becomes:
(r + 0 + pAIWy(p) = w,(p) + pPAW,(1) — p(1 — p)/\yW;(p) + Ey(p)W;'(p)‘
The differential equation could be solved explicitly by guess and verify:

Wy(p) = Ay + Byp + kyip™ (1— p)liayl + ky2pay2<1 - p)lf%"’

where A, = “Li;gVy, B, = Ay“ii":ﬁi)—f“w and
LA 1A 2(r+46 A
1 = §+—;j+\/(§+—;’)2+—( > ) >1+222
Sy Sy Sy Sy
LY 1Ay, 2(r+0)
= 5T (5T ——= <0.
Qy2 2+SZ2J \/(2—’_85) + SZQJ

Obviously, the envelope of W, is a strictly increasing and strictly convex function for
p € (0,1). First, we would like to argue that for p = 1, ¥ = H. Since the function is strictly
convex, it must be the case that 0 and 1 workers are matched with different types of firms.
Now suppose 3y’ = L. Then since 0 workers are matched with H firms, Ay > A and hence
Wi(l) = rATL(s + AL < % + Ay = Wg(1). A contradiction.

Therefore, the value function could be rewritten as:

(r 40 4 pAy )Wy (p) = wy(p) + pA,Wi(1) — p(1 — p)A, W, (p) + Xy (p) W,/ (p). (2.46)
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with general solution:
Wy(p) = Ay + Byp + kyup™ (1 = p)' ™" + kyop™? (1 — p)' =2, (2.47)

Notice that the equilibrium payoffs are such that A, > Ay, B, < By and A, + B, <

Ap + Bpy. At any cutoff p, the following three equations should hold simultaneously:

W (p) = Wi(p) (Value-matching condition) (2.48)
W;{(g_)) = WL(];)) (Smooth-pasting condition) (2.49)
Wh(p) = Wi(p) (No-deviation condition) (2.50)

Then from Equation (2.46), it is immediate to get at p,

(Ag — AL)pWa(p)

= wy(p) —wr(p) + Ay = A)pWr (1) — Ay — An)p(1 = p)Wi (p) + (S (p) — Sr(p)) W (p).

Apply Equation (2.47) and the above equation could be simplified as:

0 =wp(p) —wr(p) + (r + 6+ Ap)[AL — Ay + (BL — Bu)pl.

The RHS of the above equation is linear in p. Therefore, if we can prove the slope is not zero
then there cannot exist two p’s satisfying the equation simultaneously. Fortunately, this is

the case. The slope is

AH — AL + (7“ ++ /\L)(BL — BH)
Notice that By = TAT% and (r+ 6+ Ap)Br = Ap + Ap(Wg(1) — Ar). Hence,
AH — AL + (7" + 0+ )\L)(BL — BH) = )\L(AL — AH) > 0.

The following result summarizes the findings above and corresponds to Theorem 2.1 in the

Brownian motion case:
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Proposition 2.5. Given the Lévy process and provided an equilibrium exists, PAM is the

unique stationary competitive equilibrium allocation under strict supermodularity.

Under PAM, k;; > 0, ko = 0 and kg1 = 0, kgo > 0. We can use the procedure
introduced in the previous sections to pin down the equilibrium cutoff p and derive value
functions based on p.

Notice also that under the Lévy process, beliefs are formed through Bayesian updating.
We conjecture that PAM will always be the competitive equilibrium allocation under strict
supermodularity for any stochastic process as long as there is Bayesian updating. This
is because under Bayesian learning, the belief updating process is always a martingale.
Of course, establishing this result for general information processes is impossible because
it requires the explicit solution of the differential equations for the value function, which

generally does not exist.

2.8.2 Non-Bayesian Updating

Suppose instead that the belief updating is not a martingale. Then it must be generated by
some non-Bayesian learning process. We will now show for an example that the competitive
equilibrium can be non-PAM even if there is supermodularity.

Suppose the belief updating process in firm y is given by: dp = A\ pdt for p < 1, with A,
a constant, and once p reaches 1, dp = 0. We may think p as a special human capital with

1 as an upper bound on the accumulation. The value function of a worker is given by:?°

(r + )Wy (p) = wy(p) + )\prZ,/l (p)

with solution:

r448 A

r+s —rV,
Wy(p> _ pr Ay KLy r y‘

r+0

y
7“—#5—/\yp+

29We can write the value of a worker of type p in firm y as W, (p) = wy(p)dt + (1 — (r + 8)dt)Wy(p + dp).
Using a Taylor expansion W, (p + dp) = W, (p) + W, (p)dp + o(dt) and the fact that dp = A\, pdt, we obtain
the expression for W, (p).
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Suppose PAM is the equilibrium allocation, then

AH MLH—TVH
7“+6p r—+0

;1_{1% Wr(p) = Wg(1) =

Y

which implies that:

O = _ )\HAH
T +8)(r+6— )
At the cutoff p we have:
W (p) = Wi(p) (Value-matching condition) (2.51)
WI/{(]_)) = WL(]_?), (Smooth-pasting & No-deviation condition) (2.52)

where it turns out that for this belief-updating process, the no-deviation condition coincides
with the smooth-pasting condition. We derive the no-deviation condition in the Appendix.

This is a system of equations in C7, and p. Substitute Cy, and p could be expressed as:

Ap prL—7rVe  AL—Aw  Au ()%;—i—(l— /\L) Ay +MLH—TVH
rol T e r+0 r+0—iyL R Y R
or
Ap—Ay  pr—rVe  Au =X Ay sesyppa — Vi
= — _ 2.53
S P s A (2:53)

Notice that PAM requires that the p = 0 worker has incentive to be matched with L firms.

Hence,

prr —rVe  prg — 1V
r+0 r+0

Also notice that

>\H_>\L AH 46

r+90 r—l—é—)\H[E_(]—?) 1]<0

if A\, > g andr—|—5>)\H.

If we can show that

AH—AL <)\L_/\H AH _ r+é
r+o C () 7“+5—)\HB =
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then Equation (2.53) cannot hold as equality, which is the result we are looking for. First
notice that the LHS of the inequality goes to zero as Ay — Ay decreases to zero. Meanwhile,
the belief updating process implies the ergodic distribution only depends on \’s and will not
depend on A’s. From previous sections, if PAM is indeed the equilibrium allocation, then p
should not depend on A’s. Therefore, fix any A\;, > Ay and r + 6 > Ay and we can derive
some corresponding p € (0,1). Then, let Ay — A, decreases to zero and it is immediate to

see that eventually we will have:

AH—AL )\L_/\H AH 44

_ by
PR A e s

This implies that PAM cannot be an equilibrium if A\;, > Ay and the degree of supermodu-

larity is sufficiently small.

2.9 Concluding Remarks

In this paper, we have proposed a competitive equilibrium model of the labor market that
unifies frictionless sorting and a learning-based theory of turnover. In equilibrium under
supermodularity, workers with better posteriors about their ability tend to sort into more
productive jobs. The main technical contribution of this paper is that we find a new con-
straint on the worker’s value function as a result of sequential rationality in the presence
of competitively determined payoffs. At the cutoff type, the second derivative of the work-
ers’ value function must equate. In addition to the standard conditions of value-matching
(zero-th derivative) and smooth-pasting (first derivative), we now also have the no-deviation
condition (second derivative).

What is possibly most surprising is that the result of positive sorting under supermodu-
larity is not determined by the speed of learning. In the trade-off between the learning speed
and instantaneous productive efficiency, productive efficiency always takes the upper hand.
As such, the equilibrium allocation does not depend on the signal-to-noise ratio (the ratio of

the average payoff gain, which measures the efficiency, over the noise term). This seems to
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indicate in this competitive environment the sorting aspect dominates the learning. Quite
surprisingly, this sorting result does not hinge on the particular information structure and
is robust to general Bayesian learning processes.

Our analysis has certain limitations and several issues remain unanswered. First, like
most experimentation models, payoffs are linear and agents are risk neutral. Non-linearity is
desirable for the economic interpretation. However, it renders the solution to the differential
equation of the value function much harder to solve.

Second, ideally we would like to extend the analysis to general distributions of worker and
firm types. Like in much of the experimentation literature the realized type is either high or
low on a risky arm. Here, in addition we have two risky arms that are correlated, since there
is learning in both types of firms. The focus on the two firm-type case (two arms) keeps
down the dimensionality of the continuous time problem. With more than two firm types,
analyzing the Brownian motion process is mathematically substantially more demanding.

Finally, our result that PAM obtains under supermodularity and that the planner’s prob-
lem can be decentralized, is established for a stationary equilibrium. While a solution of a
general non-stationary equilibrium is too complex, one can easily construct a two-period

counterexample in which PAM will not necessarily obtain in a non-stationary environment.
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Chapter 3

Learning In War of Attrition Games

3.1 Introduction

Imagine a situation where two players are bargaining over a joint decision or two political
parties are voting for a bill. The two individuals disagree with one another because of
conflicting preferences. In particular, each of the two players must choose between sticking
to his own favorable choice or conceding to the other player’s favorable choice. The return to
conceding decreases with time, but, at any time, a player earns a higher return if the other
concedes first. War of attrition games are theoretical tools widely used to characterize how
each of the two players chooses a time path of conceding in the event that the other player
has not already conceded. Continuous-time war of attrition games have been investigated
under both complete information (Hendricks, Weiss, and Wilson (1988)) and incomplete
information (Abreu and Gul (2000)).

Delay is a key feature in war of attrition games. As shown by both Hendricks, Weiss,
and Wilson (1988) and Abreu and Gul (2000), there at least exists an equilibrium such that
rational players will randomize between conceding and staying.! As a result, it takes time
to reach an agreement. However, in many realistic situations, each player is also receiving
private information about how favorable the alternatives are while he is bargaining with the

other player. Especially in the political environment, learning by political parties is a very

L Abreu and Gul (2000) show that this is the unique sequential equilibrium when information is incomplete.
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common phenomenon. If a player learns that his opponent’s alternative is quite favorable,
he becomes more willing to concede. In this sense, the learning process may exogenously
facilitate the players to reach an agreement. However, rational players will also respond to
such a process, which may cause a longer delay. The natural question to ask is: if there is an
exogenous information flow that facilitates an agreement, is it easier to reach an agreement
taking into account the response of the rational players?

This paper develops a dynamic war of attrition model with learning to answer the above
question. Learning is modelled in the following way: I assume at each point in time, each
player may receive a private Poisson signal that reveals the payoff for conceding. Receiving
the signal makes the player more willing to concede. This captures the idea that the flow
of information exogenously facilitates an agreement. The main result of the paper is the
following: compared to the model without learning, learning makes it more difficult to reach
an agreement. Especially when the learning rate is low, the expected concession rate in the
unique sequential equilibrium is always smaller than the expected concession rate without
learning. When the learning rate is high, there also exist periods in which the expected
concession rate is higher than the expected concession rate without learning. However, the
paper shows that there will also be some periods in which it is harder to reach an agreement
compared to the model without learning. In equilibrium, it may be easier to reach an
agreement initially but it becomes more and more difficult over time. The later decrease in
the concession rate will always offset the former increase and hence the expected expected
delay becomes longer instead of shorter. I also consider a one-sided learning model where
only one of the two players is able to learn. Interestingly, that model shows that to make
the delay shorter, it is better to allow only one player to learn than to allow both to learn.

Due to private learning, each player may have two possible rational types at each point
in time. The player could be either sure about his private payoff or still unsure. The

sure player is more willing to concede than the unsure player. I show that in the equilibrium
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when concession still takes place, only one of the following three cases is possible: 1) the sure
player is randomizing while the unsure player strictly prefers staying; 2) the unsure player is
randomizing while the sure player strictly prefers conceding; and 3) the sure player strictly
prefers conceding and the unsure player strictly prefers staying. The expected concession
rate in the first (second) scenario is strictly higher (lower) than the expected concession rate
without learning.

A player’s strategy and the learning rate determine the expected concession rate of this
player, which affects his opponent’s equilibrium play. When the learning rate is sufficiently
high, the first scenario will happen initially but eventually the second scenario will happen.
Since the sure player always concedes (weakly) before the unsure player, the posterior belief
that a player is unsure is (weakly) increasing as no concession happens. This increases
delay since more weight has to be put on the second scenario, which has a lower expected
concession rate. Interestingly, my paper shows that learning might decrease delay if learning
did not change the weight because the expected concession rate is convex in posterior beliefs.
However, delay is always increasing if I take into account the increasing in posterior beliefs.
Although it is difficult to the derive the explicit expression of the expected equilibrium delay,
a lower bound can be derived assuming the players choose the highest concession rate in all of
the three scenarios. The paper shows that even this lower bound is higher than the expected
delay without learning.

This paper is closely related to literature on bargaining and delay. The classical complete
information bargaining game developed by Rubinstein (1982) has the feature that agreement
is reached immediately. Although delay is possible in some variations of the Rubinstein bar-
gaining framework (see e.g., Baron and Ferejohn (1989) and Merlo and Wilson (1995)), many
authors have focused on incomplete information as the prime cause of delay (Kennan and
Wilson (1993)). A non-exclusive list of sequential bargaining models with incomplete infor-

mation includes Abreu and Gul (2000), Admati and Perry (1987), Chatterjee and Samuelson
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(1987) and Damiano, Li, and Suen (2010a,b). In many of the above papers, the concession
game structure is derived from a bargaining or political environment. In this paper, I as-
sume a concession game theoretical framework by writing down the payoff matrix directly.
Private learning generates multiple rational types on the equilibrium path. Compared to
the standard incomplete information war of attrition model with only one rational type, this
increases the difficulty of characterizing the equilibrium. Still, I am able to fully characterize
the unique sequential equilibrium under some parameter values.

There are also several papers considering how public learning affects delay in the com-
plete information Rubinstein bargaining framework. For example, Avery and Zemsky (1994)
consider a situation where the players are allowed to wait for new public information about
the size of the pie before accepting or rejecting an offer. In such an environment, the players
may exercise their option value of waiting, yielding long delays with positive probability.
In my model, learning is about player’s private payoff state. For each player, there is no
option value of waiting associated with learning since learning is a martingale process. The
key driving force is that private learning generates more asymmetric information. The in-
teraction between different private types leads to a longer delay. Yildiz (2004) considers a
model where learning might increase delay in a complete information sequential bargaining
model. However, to generate this result, the players have to be excessively optimistic about
their bargaining power. Also, in that model, learning may not increase delay under some
parameter values whereas in my model, learning always increases delay.

Recently, Kim and Xu (2011) also consider learning in war of attrition games. In their
paper, learning is about the common payoff state, while, in this paper, learning is about the
private payoff state. Both papers discuss the incentive of information acquisition. In Kim
and Xu (2011), information acquisition is modelled as revealing the common payoff state
immediately after paying a sunk cost. However, in this paper, information acquisition is

modelled as choosing the learning rate by paying a flow cost. I show that if the maximum
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achievable learning rate is sufficiently low, then nobody has an incentive to acquire any
information in the unique sequential equilibrium.

The remainder of this paper organizes as follows. Section 3.2 presents the concession game
theoretical framework. Then Section 3.3 analyzes the benchmark model without learning
about private payoff states. Section 3.4 characterizes the equilibrium where there is learning
about private payoff states and compares the expected concessions with and without learning.
Section 3.5 extends the model to investigate endogenous information acquisition. Finally,

Section 3.6 concludes.

3.2 Model Setting

Two risk-neutral players (i = 1,2) are playing a continuous-time war of attrition game.
There is no discounting. At each point in time, both players have to choose simultaneously
between one of two actions: to stay (S) or to quit (Q). Each player is either a commitment
type or a normal type. The commitment type player will always choose to stay. For the
normal type players, if neither of the two players chooses to quit, the game continues and
each player has to incur a flow cost of ¢, which reflects the cost of delay. If at least one of
the players chooses to quit, the payoff matrix is specified as the following (player 1 is the

row player and player 2 is the column player):

S Q
S (“7_) (UHv UQ)
Q (v, vg)| (M, M)

If player ¢ stays while —z quits, then player 7 is the winner of the game and gets a winning
payoff of vg. If player ¢ quits first, then he is the loser and gets a losing payoff v;. The payoff
when both players quit simultaneously is M. There is common knowledge about vy and
M < vy but there is incomplete information about losing payoffs v; and wvs.

In particular, I assume that v; and vy follow independent and identical binary distribu-

tions. wv; can be either a positive number v, < vy or zero. Throughout the paper, I will
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maintain the assumption that v, < %’UH. The reason for making this technical assumption is
to guarantee the equilibrium expected concession rate is monotonic over time. Each player ¢
initially does not know the exact value of v;. It is common knowledge that v; = vy, happens

with prior pg. It is also common knowledge that a player is normal with probability ~q.

Remark 3.1. In the current model, the flow cost of delay is fized. An alternative way
of modelling the cost of delay is to introduce discounting. However, discounting has an
undesirable feature if I maintain the same assumption on the losing payoff v;. In particular,
if the player i knows for sure that v; = 0, there will be no cost of delay and hence the
expected delay is infinity. To avoid this issue, I have to assume that v; can be either vy or
vy, where 0 < v; < v < vyg. Under that hypothesis, I conjecture that there is a unique
sequential equilibrium, and the equilibrium has the same qualitative feature as characterized

by Theorem 3.4.

3.3 Benchmark Case: No Learning

I will first discuss the case without learning as a benchmark. Without learning, each normal
player’s belief that v = vy, will stay at pg. But there is incomplete information for each player
1, since he is unsure whether his opponent is a normal player. The key is to characterize how
a normal type player chooses a time path of conceding in the event that the other player has
not already conceded. In the future, I will refer to a normal type player whenever I use the
term “player.”

A strategy for normal player 1 (2) is denoted as X*(t) (X?(t)) where X*(¢) denotes the
probability that player i concedes to player —i by time ¢ (inclusive). X*(0) is allowed to be
strictly positive such that player i concedes to player —i immediately. T use F(t) to denote
player —i’s expected probability that player ¢ concedes to player —i by time ¢t. Obviously,
Fi(t) = vX(t). Therefore, I can use either F"(t) or X'(t) to denote player i’s strategy.

Given player 2’s strategy 2, player 1’s expected payoff by conceding at time ¢ is given by:
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Ul(t, F?) = /<t<UH —¢8)dF?(s) + (M — ct)(F%(t) — F*(t—)) + (povr — ct)(1 — F%(t)).

Here [?(t—) = lim, ~ F(7). The expected payoff from never conceding is given by:

Ul(oo, F?) = / (vi — cs)dF?(s).

<00

Finally, define U'(F!, F?) to be player 1’s expected discounted value by playing the profile

(F', F?). Formally, U'(F', F?) can be written as:
1
UYF', F?) :/ Ult, FHdX'(t) = —/ Ult, F)dF'(t).
te[0,00] Yo Jie[o,00]
U?(F!', F?) can be defined similarly. A Nash equilibrium is defined as a profile of F =
(F', F?) such that F' € argmaxU*(-, F 7).

The set of sequential equilibria is characterized by the following proposition:

Proposition 3.1. Without learning, there exists a unique sequential equilibrium such that:

(1) each normal type player concedes at a positive rate between time 0 and T where

T— _ (vg — povr)log(1 — 7o)

Cc

After time T, only the commitment type player stays;

(2) for each player at time t € [0,T], the expected concession rate f, = dfi(?(/;)lt is a
constant (vH:;ovL)" the normal type player’s concession rate x; = % satisfies:

ct C
fL‘t[]_ — (1 — Vo)evH_pOUL] = m

Sketch of the proof. The proof of the above proposition is similar to the proof of proposition
1 in Abreu and Gul (2000). In particular, the key features of the candidate equilibrium are
the same as those in Abreu and Gul (2000):

(1) A normal type player will not delay conceding once he knows that his opponent will

never concede.
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(2) F' is continuous and strictly increasing.
(3) At time 0, neither of the two players concedes with a positive probability.

(4) After time 0, each player is indifferent between conceding and staying for any ¢ before

The last property implies that the expected utility of a normal type player —: who

concedes at time ¢ is the same as povy, for all ¢ € [0, T]:

PovL = /0 (v — es)dF"(s) + (povy, — ct)(1 — F'(t)).

As a result, F'(-) is differentiable and f; & le_i g?(gt satisfies:

)

(vg —povr)fi = c.

It is straightforward to see the expected concession rate f/ = m fori=1,2.

On the other hand, since F(t) = v X"(t), f can be shown to be xi?, where z! = dl)ii)(fz(/gt

is normal type player i’s concession rate at time ¢ and 7} denotes the posterior belief that
player ¢ is normal given that player i does not concede until time ¢.
Obviously, the rate x! is chosen such that player i’s normal opponent is indifferent between

staying and quitting and hence

i ¢
T=—
it Vg — PolL
7} is updated by Bayes rule:
i o0~ Fi(t)
TR
and the law of motion for ~; satisfies: 4/ = —xiv/(1 —~}), which implies that beginning from
Y0, Vi =77 =~y for all ¢ such that
_ c
= (1)
Ve — PolL

The solution to the above differential equation is given by 7, = 1 — (1 — %)e”H*C:’O”L. The

normal type players will concede for sure if ; reaches zero. Therefore, for the normal type

92



players, the game will last for at most 7' = — 2= Oszlog(l_WO) length of time.> W

The expected delay is infinity since the commitment type players will always choose to
stay. However, the expected delay () conditional on at least one of the two players being

normal is finite.Conditional on at least one of the two players being normal, with probability

_ 2
2;? 072,720, the conceding times follow a truncated exponential distribution
0

Pl = 1o e T :
Yo

%
270—3 "
Y0—7o

with probability the conceding times follow the distribution

F(t)=1-(1— F(t))

Therefore, the expected delay ) is given by:

vy — 2~2 T 2 T
Q= 70—720/ tdF(t) + LQ/ td[l — (1 — F(1)Y
2% — 7 Jo 2% = Jo

1 /T __ 2ct VH — PoVUL 1 2 2
=5 | tdl—e uron) = —————c[o(1 = (1 —70)7) +1og(1 —70)(1 — )7
270 =5 Jo (270 —75) 2

As vy goes to one, the limiting equilibrium is the following equilibrium in the complete

C
vH—povr’

information game: each player concedes with rate the maximum delay time is

infinity and the expected delay is 2L,

3.4 Learning

I introduce learning by assuming that after the game starts, as long as no player concedes,
each player receives an exogenous private signal that arrives according to a Poisson process.
The Poisson processes are independent across players. The arrival rate is A\ if v = v and

zero otherwise. Therefore, after receiving this signal, player ¢ immediately believes with

2Compared to a complete information war of attrition game, the incomplete information setting sub-
stantially reduces the set of equilibria. In a complete information war of attrition, there always exists a
degenerate equilibrium where player ¢ concedes immediately while player —¢ never concedes.
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probability one that v = v;. Absence of the signal will make the player more and more
pessimistic about the probability that v = vy. In this section, I will first solve a two-sided
learning model where both players have access to the above learning technology and then

solve a one-sided model where one of the two players is able to learn.

3.4.1 Two-Sided Learning

Compared to a model without learning, learning adds more uncertainty about each player’s
type. In particular, at any time ¢ > 0, each normal type player may have different private
beliefs about his payoff state depending on the learning outcomes. If the player has received
at least one Poisson signal, he believes v = vy, for sure. I call him a sure type player. If

the player has not received any Poisson signal, his posterior belief about v = v becomes

poe

Pe = 57—+ 1 call him a learning type player. I will use i (8) to denote the posterior

belief that player i is a learning (sure) type at time ¢ given he has not conceded by time ¢.
Obviously, 74 = v and S} = 0.

A strategy for the learning type player 1 (2) is denoted as X'(t) (X?(t)) where X*(t)
denotes the probability that player i concedes to player —i by time ¢ (inclusive). A strategy
for the sure type player 1 (2) is denoted as X! (¢; 7) (X?(¢; 7)) where 7 < t is the time when the
first Poisson signal is received.®> Both X*(0) and X'(7;7) are allowed to be strictly positive
such that player i concedes to player —i immediately. I use Y to denote the combination of
sure players’ strategies: Y(t) = (X'(¢;7)),<;; and Z' to denote the overall strategy of player
ir Z' = (X'(+),Y'(:)). Z' determines F'(t), which is player —i’s expected probability that
player i concedes to player —i by time t. Given player 2’s strategy Z? and F? induced by
Z?%, a normal player 1’s expected payoff by conceding at time ¢ (if player 1 is still learning

at time t) is given by:

3There is a continuum of sure type players that is indexed by the arrival time of the first Poisson signal.
The sure type players are not required to use the same strategy at any time ¢. There might be a continuum
of equilibria by assigning different sure type players different concession rates. However, all of the equilibria
are outcome equivalent in terms of the expected concession rate.
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A / (vnr — es)(poe + 1 — po)dF(s)

s<t

—l—/ pore (1 — F2(s))(WH(ZY, Z%; s) — cs)ds
s<t

+ (M — et)(F?(t) — F2(t—)) + (poor, — ct)(poe ™ + 1 — po)(1 — F2(t)).

Here F2(t—) = lim, ~ F?(7) and W'(Z', Z?% s) denote the expected discounted value for
player 1 who becomes sure at time s under the strategy profile (7!, Z?).

Given F and player i has not conceded by time ¢, I can use F(s|t) to denote the truncated
probability of conceding after time ¢. The expected payoff for player 1 who is sure at time

7 and concedes at time ¢ is given by:

Wi, z2% 1) = / (vg — c(s — 7))dF?(s|7) + (M — c(t — 7)) (F%(t|7) — F*(t — |7))

T<s<t
+ (v — c(t — 7)) (1 — F2(t|7)).
Similarly, the expected payoff for player 1 who is still learning at time 7 and concedes at

time ¢ (if player 1 is still learning at time t) is given by:

Ul(t, A Z2;7') = / (vg — (s — T))(pTe_’\(S_T) +1 —pT)dF2(S|’7')

T<s<t

b [ e = V(21 28) s s
T<s<t

+ (M —c(t—7))(F?(t|T) — F2(t — |7)) + (por — c(t — T))(pTef)‘(th) +1—p,)(1— F2(t|]7)).

Finally, define UY(Z!, Z% 1) (WY(Z', Z?;7)) to be the learning (sure) type player 1’s
expected discounted value by playing the profile (Z!, Z?) after 7. Formally, U*(Z*, Z?;7)

and W1(Z', Z% 1) can be written as:

Ul z', 7% ) = / U't,z", 2% 7)d X (t|r)

te[r,00]
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and

WYz, 7% 1) :/ W(t, 2% 7)d X (t; 7).

te[r,00]

U*(Z', Z?;7) and W?(Z', Z% 7) can be defined similarly. A strategy profile (Z', Z?) is a
sequential equilibrium if both U‘(-, Z7% 7) and W(-, Z%;7) are maximized at any time 7
when nobody has conceded yet.

Any candidate sequential equilibrium shares the following key features of the equilibrium
without learning:

(1) A rational player will not delay conceding once he knows that his opponent will never
concede.

(2) F' (the expected distribution by i’s opponent) is continuous and strictly increasing
for 0 < t < T% where T" is the terminal time at which a normal type player i will concede
for sure.

(3) At time 0, at most one of the two players will concede with a positive probability.

The first property means that a normal player will not delay conceding once he knows
that his opponent will never concede. The most important property is the second one, which
means that F'(t) cannot have jumps or be constant in a time interval. Also the second
property implies that expected values U'(t, F%;7) and W (¢, F?;T) are continuous.

The proofs of the above properties are similar to the proofs provided in Abreu and Gul
(2000) and hence are omitted. For both the sure and learning type players, there are three
possibilities: strictly prefer conceding, strictly prefer staying, or indifference. There are nine
different combinations in total. The next lemma shows that only three of them can happen

in any equilibrium.

Lemma 3.1. In any sequential equilibrium, at any time t such that a normal player is still
possible to concede, only one of the following three cases is possible:
(1) the learning type is indifferent between conceding and staying and the sure type strictly

prefers conceding;
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(2) the sure type is indifferent between conceding and staying and the learning type strictly
prefers staying;

(3) the sure type strictly prefers conceding but the learning type strictly prefers staying.

Proof. First, I will show that the sure type player can never strictly prefer staying in any
candidate equilibrium. Suppose on the contrary that there exists a time interval (¢i,1%5)
such that the sure type player 1 strictly prefers staying for any ¢ € (¢1,t3). Define t* to be

* must be finite

the supremum of ¢ such that player 1 strictly prefers staying for (¢1,%). ¢
since there is a strictly positive probability for player 2 to stay forever. This implies that
there exists 7 > 0 such that for all n < 7, W(¢t, F?;7) > vy, for any t € (t*,t* +n) and

7 € (t* — n,t*). From the expression of W(¢, Z?; 1), it must be:

Wl(t, 2% 1) = / (vg — (s — T))AF2(s|7) + (v, — et — 7))(1 — F2(t|7)) > vy.

T<s<t
For the learning type player, if he chooses to concede at time t regardless of whether he
receives a signal, the expected payoff can be written as:

U't, 2% 1) = / (v — c(s — 7))dF?(s|7) + (v, — c(t — 7)) (1 — F2(t|7))

T<s<t

— o, W, Z%7) + (1 — pT)(/ (v — (s — ))AF2(s|7) — c(t — 7)(1 — F2(t|r))). (3.1)

r<s<t
The second term is strictly positive since W1(t, Z2;7) > vr. Therefore, it must be the case
that U'(t, Z2%;7) > p,W(t, Z% 1) > pyvr. This implies that the learning type player also
prefers staying in a neighborhood left of #*. Then F'' must be flat in a neighborhood left of
t*, which contradicts the second property.

Also, the learning type player cannot strictly prefer conceding at any time 7. Suppose
not and the learning type player strictly prefers conceding for ¢ € (7,t). Then the sure type
player has to randomize for ¢ € (7,t). The expected payoff for a learning type player who

concedes at t hence is given by:
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Ul(t,z%r) = /< <t(UH — (s = T))dF?(s|T) + (prvp — et — 7))(1 = F*(t|7)).

Equation (3.1) immediately implies that if U'(¢, Z2;7) < p,v, then W(t, Z% 1) < vy,
which contradicts the fact that the sure type is indifferent at time ¢.
The above analysis leaves only three possibilities on the equilibrium path, which are listed

in the lemma. O

The above lemma has very intuitive interpretations. Since the sure type player is more
optimistic about the private payoff state than the learning type, the sure type has a higher
incentive to concede. As a result, if the learning type is indifferent between conceding and
staying, the sure type must strictly prefer conceding; if the sure type is indifferent between
conceding and staying, the learning type must strictly prefer staying. In the benchmark
model without learning, the normal type must always be indifferent between conceding and
staying. Here, it is possible that neither the learning type nor the sure type is indifferent.

If the sure or learning type player —i is indifferent between conceding and staying at

time ¢, then F* must be differentiable at time ¢. In particular, the expected concession rate

fi = dENB)/dt ot he —

{ = TR F— if the sure type player —i¢ is indifferent and be € if the

VH —PtVL

learning type player —i is indifferent. If the expected concession rate is between those two
numbers, then the sure type player —i strictly prefers conceding while the learning type
player —i strictly prefers staying. Therefore, the expected equilibrium concession rate must
(& C

and .
VH—ptvL VH—VL

be between Finally, if the normal type player —¢ does the above, then

F~*is also differentiable such that the expected concession rate is A\vy,p;.

Slow Learning Case

Based on the previous lemma, I am able to show that in any sequential equilibrium with
learning, there will be some periods of time such that the equilibrium concession rate in

those periods is lower than the equilibrium concession rate without learning.
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Lemma 3.2. Fiz any sequential equilibrium with learning. There exists T < oo such that

normal players concede with probability one by time T. Also there exists € > 0 such that for

allt € (T — €, T, the expected equilibrium concession rate f, = % s

c(1 —po + Poe_kt)

vp (1 — po + poe™) — poe~Muvp

Proof. Suppose T is infinite. Then, with a positive probability, the normal type player has
to stay forever and get a payoff of —oo. This cannot be optimal. Therefore, T" must be finite.
Also T cannot be zero. If not, then both normal type players concede with probability one.
This contradicts the third property of the sequential equilibrium. For 7" > 0, suppose the
statement is not true and there exists ¢; < T such that the expected equilibrium concession
rate is strictly larger than

)

c(1 — po + poe”
vr (1 — po + poeM) — poeMuy,

for all t € (t1,T]. Notice that it is impossible for the learning type to concede with probability
one by time ¢;. This implies that the posterior belief 4, must be strictly positive. However,
if the expected equilibrium concession rate is strictly larger than

—)\t)

c(1 = po + poe
vr (1 —po + poe™) — poe Mg,

for all t € (t1,T1], the learning type strictly prefers to stay. As a result, y7 > 0 as well. But
since the normal type players stop waiting at T', there must be a jump in [ at time 7', which

leads to a contradiction. O

The above lemma implies that with exogenous learning, there always exist some periods

C
vg—ptvL

such that the expected equilibrium concession rate is When the learning rate is low,

the following theorem shows that this is always the case for the unique sequential equilibrium.

Theorem 3.1. If AMyypy < m, there exists a unique sequential equilibrium such that:
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(1) each learning type player concedes with probability zero at time 0 and at a positive
rate between time 0 and T'. The sure type player concedes with probability one upon receiving

the first Poisson signal;

(2) T satisfies:

___°r
_cr Vg — PoVL Avg (v —vr)

=1—e vm
o (v — v)poe ™ + (1 — po)vn

After time T, only the commitment type player stays;

AF(t)/dt

—r@ 8

(3) for each player at time t € [0,T] , the expected concession rate f; =

c(1 — po + poe™™)

v (1 — po + poe) — poeMup

Proof. First, notice that at the beginning of the game, if only the sure type concedes with
probability one, the expected concession rate is no more than A\yypo.* The assumption

that Myopo <

p— implies that if only the sure type concedes, the expected concession

rate is lower than the minimum requirement of the equilibrium concession rate, which is

C
VH—povL

Therefore, in any candidate sequential equilibrium, it must be the case that the
sure type concedes immediately and the learning type randomizes at the beginning of the
game. Suppose the sure type continues to concede with probability one until time 7. Then
at time 7, the posterior beliefs are such that g, = 0 and v, < .

If the learning type player stops randomizing at time 7, it must be case that at time 7,

C
VH —PTVL

N . However, for any ¢ < 7, the law of motion for v,p;(vyg — p,vr) satisfies:

drypy (UH - Pt%)
dt

= Yupe(ve — prvr) — AP — p) (v — 2pevy).

The first term is negative since 4; < 0 and the second term is negative because vy > 2vy.

As a result, yp;(vyg — pyvr) is strictly decreasing over time. There cannot exist any 7 such

41f the learning type player concedes with probability zero at time zero, Ayopo is exactly the expected
concession rate. But if the learning type player concedes with a strictly positive probability at time zero,
the expected concession rate is less than A\ygpg since the posterior is less than ~p.
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that Av,p, > €. Therefore, on the equilibrium path, the learning type is always

VH —PrVL

randomizing between time 0 and 7.
Denote z; to be the equilibrium concession rate of the learning type. The indifference

condition implies that:
(Ve 4 % Ape + Ap)prvr = —c 4+ v + Y Apom + Apor — Ape(1 — pr)ur.

Also 4 is updated by Bayes rule:

e = —(Ape + 2) 1 (1 — 7).

As a result, it is straightforward to derive an ODE about v; and solve ~; as:

e
VH — PolL } Avr (v =vL)

1—5 [(UH —vp)poe™M + (1 — po)vn

T is chosen such that v = 0 and hence T satisfies:

. °
VH _pO/UL :| Avpr (v —vr,)

{(UH —vg)poe M + (1 — po)vy

cT

’}/0:1—6 VH

The above calculation also suggests that it is impossible to have a learning type player
conceding with strictly positive probability at time zero. If player ¢ does that, then to
guarantee that both normal players stop conceding at the same 7', it must be the case that
the learning type player —i also concedes with a strictly positive probability at time zero.

This contradicts the third property of the candidate equilibrium. O

The expected equilibrium concession rate is changing over time, which is different from
the model without learning. In particular, it is relatively easier to reach an agreement
initially but it becomes more and more difficult over time. Since p; < po for all ¢ > 0, it is

trivial to observe:

Corollary 3.1. If Mygpy < vH_‘;OUL, compared to a model without learning, the erogenous

learning increases the expected time of delay.
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The result is quite surprising in the sense that on the equilibrium path, the sure player
who receives a Poisson signal will concede immediately. Then it seems that the exogenous
learning should facilitate agreement. However, this intuitive thinking ignores the strategic
response of the rational players. Learning as a martingale process can make the rational
player both more and less optimistic about his private payoff state. The more optimistic
player is more willing to concede, while the less optimistic player becomes less willing to
concede. If the learning rate is low, the expected equilibrium concession rate is to make the
less optimistic rational player indifferent. This implies that the rational players will overreact

to this exogenous learning process and cause a longer delay.
Intermediate Learning Case

Exogenous learning increases delay when the learning rate is low. However, if \ is sufficiently
large, the strategy profile described above is no longer an equilibrium. This is because if it is
still an equilibrium for the sure player to concede immediately, then the expected concession
rate is very high when A is large. As a result, the learning type player can never be indifferent.

In this section, I will construct an equilibrium when the learning rate is intermediate.

C C
Vg —POVL’ VH—VL

Theorem 3.2. Suppose Ayopo € ( ), and the unique sequential equilibrium has
the following feature: there exists Ty < Ty such that fort € (0,T1), each learning type player
concedes with probability zero and the sure type player concedes with probability one upon
recetving the first Poisson signal; for t € (T1,T,), the sure type player still concedes with

probability one upon receiving the first Poisson signal and the learning type player concedes

at a positive rate.

Proof. 1f no player concedes with strictly positive probability at time 0, it must be the case

that the learning type player strictly prefers staying while the sure type player strictly prefers

C C
VH—povL ' VH—VL

conceding since A\yopo € ( ). As shown in the proof of the previous theorem,

Yept(vg — pror) is strictly decreasing over time under the assumption vy > 2vp. It is trivial
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to notice that v;p; is also strictly decreasing over time. Therefore, there exists T} such that

My pr, = —<—. For t < Ty, Mypr € (—= € ) and hence the learning type player

VH—PTy VL VH—PtVL’ VH—VL
strictly prefers staying while the sure type player strictly prefers conceding. For ¢ > 717,

C
VH —PtVL

Ape < and the equilibrium is characterized by the previous theorem.

The final thing to prove is that it cannot be the case that a normal player concedes with
a strictly positive probability at time 0. Suppose on the contrary that is the case. Player 1
concedes with a positive probability at time 0. Then this implies that player 2’s strategy is
such that the learning type of player is indifferent. This can only happen if the sure type of

player 2 is randomizing at time 0 since A\yopy >

< However, it is impossible for player
VH —PoVL

C
vg—vL’

1 to find a strategy such that the sure type of player 2 is indifferent since Ayopy <

This leads to a contradiction. O

When the learning rate is in the intermediate region, the sure type players will concede
for sure once they receive the Poisson signal. The learning type players will strictly prefer
staying initially and begin to concede after some period. It is hard to tell directly whether

delay increases compared to a model without learning. For ¢ € (0,7}), it is possible that the

C
VH—PovL

expected concession rate is strictly larger than if \ is sufficiently large. However, for

C
VH—PpovL

t > T}, the expected concession rate is strictly lower than

Also in the intermediate learning case, the impact of the learning rate on delay is ambigu-
ous. When the sure player strictly prefers conceding and the learning type player strictly
prefers staying, a larger A\ increases the expected concession rate A\y;p;. However, when the

learning type player is randomizing, a larger A leads to a lower expected concession rate.

Fast Learning Case

If AMyopo > UH_‘;OUL, then the learning type players randomize at the beginning of the game.
The unique sequential equilibrium in this fast learning case may have two different possibil-
ities. In the first possible equilibrium, there exists 77 < Ty < T3 such that for ¢ € (0,7}),

each learning type player concedes with probability zero while the sure type player concedes
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with a strictly positive probability upon receiving the first Poisson signal and with a positive
rate afterwards; for ¢ € (7,T3), each learning type player concedes with probability zero
while the sure type player concedes with probability one upon receiving the first Poisson
signal; for ¢ € (13,T3), each learning type player concedes with a positive rate while the
sure type player still concedes with probability one upon receiving the first Poisson signal.
In the second possible equilibrium,there exists 7} < T3 such that for ¢ € (0,77), each learn-
ing type player concedes with probability zero while the sure type player concedes with a
strictly positive probability upon receiving the first Poisson signal and with a positive rate
afterwards; for ¢t € (7T1,T3), the learning type player concedes at a positive rate while the

sure type player concedes with probability one upon receiving the first Poisson signal.

Notice that at time ¢ such that Ayp, = vH_CptvL, the sure type players cannot switch
to strictly prefer conceding immediately. This is because there is a positive probability to
be a sure type player at time ¢ and the distribution F* cannot have jumps. The sure type

players will continue to randomize until the posterior belief to be a sure type player reaches

zero. There are two possibilities at this point in time ¢’. In particular, it might be the case

that Ayypy < < and hence the equilibrium immediately jumps to the phase where the

VH =Dy VL
learning type player is randomizing.

C
vg—vr’

In both types of equilibria, the expected concession rate initially is which is higher

C
VH —PoVL

than the expected concession rate without learning. But eventually, the expected

C
VH —PtvL

concession rate will drop to The explicit expression for expected delay is hard
to derive since the expected concession rate is changing over time. However, I can fully
characterize the expected delay in the limiting case where A = oo. A = oo corresponds
to the immediate revelation case, where the normal type player ¢ starts with two possible
private types: either v; = vy or v; = 0. Each player ¢ knows exactly what v; is but his

opponent does not know. The initial beliefs are such that v; = vy, with probability vopo and

v; = 0 with probability (1 — po). The next result shows that in this limiting case, the
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expected delay is longer than in the case without learning.

Theorem 3.3. Fiz any pair (Yo,p0) € (0,1)%, if X\ = oo, conditional on at least one of the
two players being normal, the longest delay is higher than the longest delay without learning

and the expected delay is longer than the expected delay without learning.

Proof. The prior beliefs are such that v; = vy with probability vopy and v; = 0 with prob-
ability 7o(1 — po). The unique sequential equilibrium has the following feature: the normal
type players with v; = v, will randomize first and the v; = 0 players will strictly prefer to
stay. After some time T}, the v; = v, players concede with probability one and then the

v; = 0 players begin to randomize for 75 length of time. The expected concession rate is

€ before Tiand -< after 7;.
L VH

VH—U

Notice that if no concession takes place before T, the posterior beliefs are such that with

probability -7 M > (1 — po), each player is normal. The longest delay is:
1770
T =T + Ty = — (vir — vr) log(1 — yopo) Ve log T .
c c
The longest delay without learning is T = — @z=povn)o8l=%) -~ Ghyigusly, T > T since

log(1 — ~vopo) > polog(l — o).
For the expected delay, I have to consider two different cases. Conditional on one of

(2- 70P0)P0
—70

the two players being normal, with probability , at least one of the two players has

270(1—v0)(1— P0)+Wo(1 —po)?
2v0— 'Yo

v; = vp; with probability , neither of the two players have v; = vy, but
at least one has v; = 0.

The expected delay is given by:
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—__¢ct p
0 — 2(1 — 70po)Y0Po /Tl tdl € VHVL N vepd / [ l—e = )2]
0 0

27 — 78 “YoPo 27 — V8 YoPo

n 270(1 = y0)(1 — po) + (1 _p0>2T1 . 270(1 — 70)(1 — Do /T2 td (1 —0po)(1—e ”H)
2% — % 27 — % 0 Yo(1 — po)
2(1 —po)? [T 1— 1—e @
+’Yo( P02) / td 1_(1_( Yopo)(1 — e H))z .
2% =7 Jo Yo(1 = po)
The above expression can be simplified as:
~ vg — v 1 9 2
=M (1 (1- log(1 — 1—
@ _73)[2( (1 =70p0)”) + log(1 = y0po) (1 — 70)]
— (1 - —(1- log ——° (1 — 3.2
+ (270 — 73)[2« Yopo)” — (1 —0)7) + log 1= ’Yopo( Yopo)7]- (3:2)
The expected delay without learning is:
v vr 1
0= 2 PO (1= (1= 70)?) + log(1 = 70) (1 = 70)?]. (3.3)

(270 —78) 2
It is straightforward to observe that for any fixed vy > 0, 2 is linear in py while 2* is

concave in pg. 2 and Q°° coincide when py is either 0 or 1. Therefore, 2°° > () for any pair

(70, p0) € (0,1)% O

Since —<— is convex in p: p +(1-p) >

— it seems that the expected
H—PvL UH vy,

()24 pv’

concession rate is higher if we can fully separate the v; = vy and v; = 0 players. Then
intuitively, letting A = oo will increase the expected concession rate and hence decrease
delay. The intuition is wrong because it ignores another channel affecting delay. Since in
equilibrium, the more optimistic player always concedes first, at the time when the v; = vy,

players concede with probability one, the posterior belief that v; = 0 increases from ~o(1—po)

70(1—po)

to i .
—70Po

This increase in the posterior also leads to a longer delay. If the players think
naively and do not update beliefs at time 77 (i.e., at t = T1, % = (1 — po)), the longest

delay

(vir — vr)log(1 —yopo)  valog(l — (1 — po))
C C

T =T +T,=—
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is lower than the longest delay without learning.

In summary, compared to a model without learning, there are three factors affecting
delay in the limiting case of A = oco. First, the expected concession rate before 77 is higher
than the expected concession rate without learning, which leads to a shorter delay. Second,
the expected concession rate after 77 is lower than the expected concession rate without
learning, which leads to a longer delay. Third, since the more optimistic (v; = vy) players
concede first, the posterior belief that a player is less optimistic (v; = 0) is increasing over
time. The last effect implies that more weight has to be put on the lower expected concession
rate, which also increases delay. The above analysis shows that the first effect dominates the
second effect but is dominated by the combination of the second and third effects. Hence,
the change of posterior beliefs is an important driving force leading to a longer delay.

For an arbitrary learning rate, it is hard to get an explicit solution for the longest delay
and expected delay. But the idea of the above proof can be generalized to get a lower bound
on expected delay. The next result shows that even this lower bound is longer than the

expected delay without learning.

Theorem 3.4. Fix any pair (Yo, p0) € (0,1)% and any learning rate \, conditional on at least
one of the two players being normal, the longest delay with learning is higher than the longest
delay without learning and the expected delay with learning is longer than the expected delay

without learning.

Proof. Suppose the learning type players begin to concede at time t. Before time ¢, only
the sure type players concede. The probability of conceding before time ¢ is x. Feasibility

requires that = € [0,70po]. This implies that at time ¢, the posterior beliefs are such that:

c_ .
—vg,?

S and =2 I. Before time ¢, an upper bound for the concession rate is
t t )
Yo—T 1—x vV

C
VH—DPtVL

after time ¢, an upper bound for the concession rate is Therefore, a lower bound on

the longest delay is given by:
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o _non)log(1 =) _ (o0 = 2 og 2
¢ c
Jopo—2 1—%
_ —vmlog(l—n0)  vrlog(l—w) = 5= vr log 7% -,
c g -
The longest delay when there is no learning is 7' = —&z=rov)1os=%) = The difference

c

A

T — T is proportional to A(z) = yglog(l — x) — zlog(1l — 7). The first derivative of A(x)
is 72 — log(1 — 7o), which is decreasing in z. It is trivial to observe that A’(0) > 0 but
A'(z) could be negative if z is sufficiently large. A(x) possibly first increases in « and then
decreases in z. Since A(0) = 0 and A(yopo) > 0, it must be the case that A(xz) > 0 for all
x € [0,7po). Therefore, T > T for sure.

Similarly, a lower bound on the expected delay is given by:

) = "t 50— (1= 2)?) + log(1 = 2)(1 = 30’

UH_'YOPO*IUL 1 1_7
07T o — )2 — (1 — )2 1 91 — )21 .
(1 =) = (L= ) o 21— ). (35

Notice that the first derivative of {2 is given by:

Q,(LL')_ Vg — VL [1_1,_ (1_’70)2]

(270 — 13) =
’70(1_]70)7% 1 2 2 1 -0 2
— 2 ((1—x)"—(1— + log 1—2x
vy — L=y, 1—=z
+ ——"-92(1 —x)log . (3.6
(270 — 3) ( ) I—7 (3.6)

On the RHS of the above equation, the second term is positive for sure. The first and third

terms are positive because x < gpg. Therefore, Q(x) is increasing in x. And the expected

delay when there is no learning is

vy — povr 1 2 2
0= m[§(1 — (1 =70)*) +log(1 — %) (1 — 70)?.

Obviously, Q(O) = Q. Then it must be the case that Q(x) > Q for all z € [0, vopo. O
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The basic idea of the above proof is that in any equilibrium, it is possible to divide
the equilibrium into two phases. In the first phase, the learning type players strictly prefer

staying; in the second phase, the learning type players is randomizing. The concession rate

C
vg—vL’

in the first phase may be as high as But compared to a model without learning, it is

more difficult to reach an agreement in the second phase. Delay increases from two possible

channels. One is the Bayesian updating process which increases the posterior belief of being a

C
VH—ptvL

learning type; the other is the equilibrium concession rate becomes The combination

of these two effects in the second phase will completely offset the possible decrease in delay

5

in the first phase.” As a result, the expected delay will always be increasing instead of

decreasing.

3.4.2 One-Sided Learning

Another interesting situation is one which only player 1 is able to learn. Player 2 has no
access to the exogenous learning process. Then, at any time ¢, player 1 has three possible
types: a sure type who is sure that v = vy, a learning type who is still unsure and a
commitment type. I use 7;; to denote the posterior belief that player 1 is a learning type,
B¢ to denote the posterior belief that player 1 is a rational type, p; to denote player 1’s
posterior belief that v = vy, given he is a sure type at time ¢ and finally ~9; to denote the
belief that player 2 is a normal type.

The next result shows that conditional on at least one of the two players being normal,

the one-sided learning model has the same longest delay as the model without learning.

Theorem 3.5. In the one-sided learning model, conditional on at least one of the two players

being normal, the longest delay is always T = — (”pr‘)”glog(lﬂo).

5The change in posterior beliefs also plays an important role here. If the players update beliefs naively,
then the lower bound on longest delay with learning is

7_ (v —vp)log(1 —x) (v — 222 2vp) log(1 — 0 + @)
c c ’

which could be less than the longest delay without learning for x close to yopo.
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Proof. To prove the theorem, I need to consider two separate cases A\ygpy < and

VH—PpPovL

C
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C
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is characterized

AMYopo > . The unique sequential equilibrium when Ayypg <

by the following proposition.

Proposition 3.2. If A\yopy < <

— UVH—PoVL

, there exists a unique sequential equilibrium in the
one-sided learning model satisfying:

(1) for player 1, the learning type concedes with probability zero at time 0 and at a positive
rate between time 0 and T'; the sure type player concedes with probability one upon receiving
the first Poisson signal;

(2) the normal type player 2 concedes with strictly positive probability at time 0 and at a

positive rate between time 0 and T';

(8) T = —(”prov’:()zlog(lgm) and after time T, only the commitment type player stays;

C
VH —PoVL

(4) at time t € (0,T] , player 1’s expected concession rate is and player 2’s

expected concession rate is
(1 —po + poe™™)
v (1 = po + poe™) — poe~Mur,

Proof. The proof of the equilibrium properties is very similar to the proof in the two-sided

learning model and is omitted. The assumption that Aygpg < guarantees that the

VH—PovL

learning type player 1 must randomize and the sure type player 1 must concede immediately
in equilibrium. Therefore, denote xy; (x9) to be the equilibrium concession rate of the

learning type player 1 (normal type player 2). The indifference conditions imply:

(Y2tTor + Ap)prvr = —¢ + Yoy + Apvr — Ape(1 — pr)vp.

and

(Y11t + YADL) POV = —C + V11V + Y1 ADL VR .-

Y1¢ and ¥y, evolve as:

110



Yie = —(Ape + 1)1 —y1e)  and Ay = —9y2 (1 — Y2r).
Therefore, we have:

. C . C
Y1t = _—(1 - 7115) and Yot = _—(1 - 7215)‘
Vg — PoVL Vg — PtVL

Since p; = }% < po, the expected concession rate of player 2 is smaller than the

expected concession rate of player 1. Also the learning type of player 1 and the normal type
of player 2 have to stop conceding at the same time 7. As a result, the normal type of player

2 has to concede with a strictly positive probability at time 0.

(v —povr) log(1—vo

) .
- and g satis-

T is determined by the shortest time of concession T' = —

fies:
e
11— _ et vy — PovL M (v =vr)
— = e VH .

1 — o [(UH —vg)poe M + (1 — po)vy

At time 0, the probability of concession by the normal type of player 2 is chosen such that:

L
VY _pOUL :| Avpg (v —vr)

|:(UH —vg)poe ™ + (1 — po)vy

cT

N=1—en

]

If Myopo < - then initially the sure type of player 1 will randomize such that the

vH—povr’

C
VH—povL

expected concession rate is always Then at time 0, it is impossible for player 1 to
concede with a positive probability. Next, I will show that there cannot exist two disjoint
time intervals (tg,t1) and (t9,t3) such that the sure type is indifferent on both intervals and

strictly prefers conceding for ¢ € (t1,t3). If there exists such an equilibrium, at t,, it must

be the case that: AMy,py, > ———. Since v, py, > Yooty MuPry > 55— Therefore, if
a sure type player concedes with probability one at ¢;, his normal opponent must stay for
sure, which leads to a contradiction. Therefore, on the equilibrium path, the sure type will

first randomize until 77 and the learning type randomizes afterwards.
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At t < Ti, denote v; to be the belief that player 1 is a learning type at time ¢ and [,
to be the belief that a player is a sure type at time ¢. Suppose the existing sure type has a
concession rate of x; and a new sure type will concede with probability y,. The indifference

of player 2 means that:

(Bizy + APy ) povr, = —c + (Bixe + APy v

The laws of motion for 3; and ~; are such that:

Br = —x5e(1 — Br) — veApeye (1 — Br) + v Apy
and
Yt = —Ape + Ve (Bexs + Ve Apeyr).

The above equations imply that:
. . cC
Be+%=—————(1-05 —m)
UH — PoVL

and hence
By +y=1- (1 _%)em,

Notice for ¢t > T3, f; = 0 and the expected concession rate for the learning type of player

C
vg—povL

is also Therefore, beginning from Sy + vo = Yo, Bt + : satisfies:

c

Bi+v=1—(1—rp)evnror

for all ¢ > 0. There is also no discontinuity in §; 4+ 7, for any ¢ > 0. As a result, it must be

the case that T = — wa—povr)log(1—10) .

[

The above result implies that allowing only one player to learn is better than allowing both
players to learn in terms of delay regardless of what the initial parameters are. Compared to
a model without learning, one-sided learning does not increase the longest time of waiting if
either player 1 or player 2 is normal. In particular, the expected equilibrium concession rate

of player 1 is exactly the same as the case without learning.
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3.5 Endogenous Information Acquisition

This section briefly discusses the implications of the above results on endogenous information
acquisition. In particular, following the setup in Bonatti and Horner (2009), I assume that
a player can achieve arrival rate A with flow cost ¢(\) with ¢(0) = 0 and ¢/(-) > 0. The
information acquisition decision is made at every instant of time given there is no concession
by time ¢. Formally, normal player i’s information acquisition decision is denoted as ¢ :
[0,00) x {0,1} — [0,A]. 0 means player i has not yet received any Poisson signal, and 1
means player ¢ has received at least one signal. Obviously, if player ¢ has received one signal
at time 7, then ¢;; = 0 for all ¢t > 7. X is the maximum achievable learning rate. Given the
information acquisition strategy, the total cost of information acquisition from time 0 to ¢ is
given by C'(t) = [} e~"cldt. Also define A'(t) = [; Nidt.

Given player 2’s strategy Z2, a normal player 1’s expected payoff by conceding at time ¢

is given by:

Ut 2, 2%) = / vy —cs — CY(s)) (poe ™' +1 — po)dF?(s)
—l—/ (WHZ, 2% s) — cs — C’l(s))po)\;e_/‘l(s)(l — F%(s))ds
+ (M —ct — CH () (F?(t) — F?*(t—))

+ (1= F2(t))(pvr — ct — CH(#))(poe ™ O + 1 — py).

Player 2’s expected payoff can be defined similarly.

The paper shows that when the maximum achievable learning rate is not high enough, the
unique sequential equilibrium is such that no player acquires information on the equilibrium
path. Then the unique sequential equilibrium is the same as the equilibrium in the no

learning case.
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Proposition 3.3. If the mazimum achievable learning rate \ satisfies:

A< ‘ ,
’Yopo(UH - povL)

then the unique sequential equilibrium is such that each player chooses Ni = 0 almost every-

where.

Proof. Suppose the statement is not true. Then there exists a time interval [t1, 5] such that
at least of one the two normal type players begins to acquire information at time ¢; and then

stops at to:

to
/ c(As)ds > 0.

t1

Since the player has not acquired any information before time ¢, p;, = pp. The assumption

A< m guarantees that for ¢ € [ty, 5], the learning type has to randomize between

conceding and staying. This implies that if the learning type player ¢ concedes at t5, the

expected payoff at t; can be written as:

PovL — / C'(s)(poe™™ @ + 1 = po)dF ¥ (s]t,)
s<ta
- / Ci(s)pox\ie_“(s)(l — F7'(s|ty))ds — (1 — F_i(t2|t1))(poe_m(t2) + 1 —po)C(ty).
s<ta
Obviously, the expected value of playing the war of attrition game at ¢; is always povp,
regardless of whether this player acquires information or not. Therefore, the learning type has

no incentive to acquire information and the equilibrium arrival rate is zero almost everywhere

in the endogenous learning model. O]

3.6 Conclusion

Delay is a pervasive phenomenon in bargaining and voting environments. It is natural to
ask whether there is any way to reduce delay since delay is usually costly. This paper devel-

ops a continuous-time incomplete information war of attrition model with private learning
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investigate whether delay will become shorter if there is an exogenous information flow that
facilitates an agreement. It turns out that this exogenous private learning makes delay longer
instead of shorter. Also, to minimize delay, it is better to allow one player to learn than to
allow both to learn. The result that private learning may lead to a longer delay is quite ro-
bust to some changes in the model specifications. For example, similar results can be derived
if the Poisson signal is such that it reveals v; = 0 for sure, or exogenous learning is about the
winning payoff vy instead of the losing payoff. The key insight is that this private Bayesian
learning is a martingale process and generates multiple normal types. Due to learning, it
is always possible for a normal player to become less optimistic about the payoff state over
time. In equilibrium, there must exist some periods such that the less optimistic players are
randomizing. Compared to the benchmark model without learning, the concession rate in

these periods will be smaller and the expected delay will be longer.
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Appendix A

Appendices

A.1 Appendix to Chapter 1
A Admissible Strategies

Before formally defining admissible Markovian strategies, we define admissibility for general

strategies. First denote an outcome h to be

h 2 ({aiu, Nu}l,, Pt)0§t<oo )

and H is the set of all possible outcomes. A sub-outcome A~ C h only includes information

about purchasing decisions and lump-sum payoffs:

h™ = ({ag, Nit}?:1)0§t<oo;

and H~ is the set of all possible sub-outcomes.

In general, a strategy can be viewed as a map from the set of outcomes to actions.
We focus on strategies which are independent of previous prices since allowing pricing as
a function of previous prices may generate more complicated problems.! The monopolist’s

pricing decision is given by the mapping:

P:H™ x[0,00) = R;

For example, any decreasing price path is consistent with the pricing function P(h,t) = inf,; P;.
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and the buyers’ acceptance decision is given by the mapping:

a; : H x [0,00) — {0,1}.

P(h™,t) is the price charged by the monopolist at time ¢, and «;(h,t) is the purchasing
decision made by buyer ¢ at time ¢. Assumptions A1l and A2 stated below guarantee the
strategies are well defined.

Denote vector a = (ay,- -+ ,a,) and vector N = (Ny,--- , N,). A metric on the sets of

outcomes is defined as:

and
t
D(ht,ht) = / [d(&T,&7)+d(NT,NT):| dT"‘ |Pt_Pt|
0
where d is the Euclidean norm. In particular, the previous prices do not enter in the definition

of D(hy, hy); only the current price matters. The metric D (D™) determines a Borel o-algebra

By (Bg-). The first restriction on strategies is that:
Al. Pis a By~ X Bjg) measurable function and «; is a By x Bjp,«) measurable function.

The second restriction requires the strategies take the same actions if two histories are

almost the same:

~ ~

A2. For all t, and h,h € H such that D(h, hy) = 0, then P(h~,t) = P(h~,t) and a;(h,t) =
Oéi<h, t)

Al and A2 are two natural restrictions on strategies. Additional conditions have to
be imposed to guarantee the induced outcome is unique. Before doing that, we define an
outcome h to be compatible with a given strategy profile { P, a} if h satisfies: P(h™,t) = P,
and «;(h,t) = ay. A straightforward modification of the argument in Bergin and McLeod

(1993) shows the following:
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Proposition A.1. A strategy profile (P, ) generates a unique distribution over compatible

outcomes if it satisfies:
1. for any outcomes h and h and any time t such that D(fALt, izt) =0 and Nt = Nt,
lim P(h,t + €) = lim P(h,t + €);
e\,0 e\0
and

2. for any h and h and any t such that D(ﬁt,fzt) =0, N, = N, and limes o P =
limes o ]5t+€, then there exists € > 0 and a € {0, 1} such that Oéi(iL, t) = &i(ﬁ,f) = a for

any t € (t,t+¢).

We say a strategy profile (P, «) is weakly admissible if it satisfies conditions 1 and 2
in proposition A.1. In proposition A.1, condition 2 is the key condition. This condition
is slightly different from the inertia condition proposed in Bergin and McLeod (1993). The
modification is needed to handle the possible situation when the arrival of a lump-sum payoff
at time t results in the purchasing decisions a; to be not right continuous in time.

Any Markovian strategy profile (P, a) which induces a weakly admissible strategy profile
generates a unique distribution over compatible outcomes. But the notion of weak admis-
sibility does not guarantee that the induced outcome allows us to use equations (1.1) and

(1.2) to update beliefs.

Definition A.1. A Markovian strategy profile (P, «) is strongly admissible in the good news

case if it satisfies:?

1. P(p) is left continuous and non-decreasing when it is continuous: for each p € ¥ and
d > 0, there exists some € > 0 s.t. P(p') < P(p) and |P(p")— P(p)| < for all feasible

p' < p such that ||p' — p|| < €

2For the bad news case, condition 1 should be changed to require that P is piecewise non-increasing.

3We write (z1,- - ,2n) < (y1,+++ ,yn) if 2; <y; fori=1,--- n, and || - || is the Euclidean norm.
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2. a;(p, P) is left continuous: for each p € X and § > 0, there exists some € > 0 s.t.
0:(ef, P') = au(p, P) for all feasidle (of, P') < (p, P) such that ||(¢/, ")~ (p, P)|| < ¢;

and

3. if h is a history compatible with (P, «), C(t;h) < oo for t < oo, where C(t;h) denotes

the number of times T before t such that purchasing behavior a, is discontinuous.

It is straightforward to check that conditions 1 and 2 in definition A.1 are sufficient to
guarantee that (P, «) induces a weakly admissible strategy profile. More than that, these
two conditions imply any outcome induced by the Markovian strategy profile (P, a) is well
behaved in the sense that the purchasing decisions a; and pricing decisions F; are right
continuous functions when there is no arrival of lump-sum payoffs. This enables us to use
equations (1.1) and (1.2) to update beliefs. In the good news case, condition 1 implies P,
is decreasing when it is continuous but it also allows jumps in the price path. Condition
3 requires that each buyer can change actions no more than a finite number of times in a
finite time interval, since condition 2 does not preclude the possibility of an infinite number
of changes on any time interval. This additional condition is needed to simplify the analysis
of the equilibrium.

Definition A.1 is too strong in the sense that even cutoff strategies may not be strongly
admissible.? We use the completion argument in Bergin and McLeod (1993) to overcome
this issue. First define a metric on the space of strongly admissible strategies. A Markovian
strategy profile (P, «) is admissible if there exists strongly admissible Markovian strategy
profiles {(Py, )}, such that limy . (Pg, o) = (P, ). An outcome h is consistent with
an admissible strategy profile (P, «) if there exists strongly admissible Markovian strategy

profiles {( Py, o) }32, and outcomes {hy}32; satisfying the following three conditions: i) for

4For example, consider a cutoff strategy such that the cutoff price for buyer i is strictly increasing in
beliefs and buyer ¢ takes the risky product at the cutoff price. This strategy violates the condition that «;
is left continuous in beliefs.

119



each k, hy is compatible with (P, ag), ii) limg o0 (Pr, o) = (P, ) and iii) limg_,o by = h.
An admissible Markovian strategy profile (P, o) may not generate a unique distribution over
compatible outcomes. But the proof of theorem 2 in Bergin and McLeod (1993) applies here
as well to show that each admissible Markovian strategy profile (P, «) is identified with a
unique distribution over consistent outcomes. When referring to outcomes generated by an
admissible Markovian strategy profile (P, ), we restrict to the consistent outcomes.

In the definition of Markov perfect equilibrium, we allow the deviating strategies to be
non-Markovian. Additional conditions on the non-Markovian strategies are also needed to
make sure that the induced outcome is well behaved even off the equilibrium path. The

conditions imposed are counterparts of conditions 1-3 in definition A.1.

Definition A.2. Define time t as a reqular time for outcome h if there is no arrival of lump-
sum payoffs at time t. A weakly admissible strategy profile (P, «) is strongly admissible in

the good news case if it satisfies:

1. P is right continuous and non-increasing when continuous at any reqular time: for any

outcomes h and any regular time t,

1{% P(h,t+¢€) = P(h,t);

and there exists € > 0 such that P(h,t + €) < P(h,t) for all ¢ < €

2. for any h and any requlart such that P, is right continuous and non-increasing at time
t, there exists € > 0 and a € {0,1} such that a;(h,t) = a;(h,t) for any t € (t,t + &);

and
3. if h is a history compatible with (P,«), C(t;h) < oo fort < oo.

A non-Markovian strategy profile (P, «) is admissible if there exists strongly admissible
non-Markovian strategy profiles {(Py, o)}, such that limy o (Pr, ax) = (P,«). For an
admissible non-Markovian strategy profile (P, «), we also restrict to the consistent outcomes

which can be similarly defined.
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B Proofs of Results from Section 3

B.0 General Solution to Linear First Order Ordinary Differential Equations

The following observation is widely used throughout the paper to solve linear first order

ordinary differential equations.

Observation A.1. Given that f and g are continuous functions on an interval I, the ordi-

nary differential equation y' + f(x)y = g(x) has a general solution

y(z) = 2[((5))

where h(x) = @) R(x) is an antiderivative of f(x) on I and H(x) is an antiderivative of

h(x)g(x) on I.°

Proof. Multiply both sides of differential equation v’ + f(z)y = g(x) by h(z). Then the

original differential equation becomes

d
o (h(2)y(2)) = h(z)g(2).
After integration, it is straightforward to see that the general solution is y(z) = ZI((:)). O

B.1 Proof of Proposition 1.1

Proof. Before proving the proposition, we first show the socially optimal allocation is indeed

symmetric.

Claim A.1. The socially optimal allocation is symmetric when buyers are homogeneous.

Proof. For any posteriors p, denote the social surplus to be Q(p). The social planner’s

problem can be written as:

Q(p) = sup E{/ re ”Z ai(p)pia(py)g + (1 — ai(py))s]dt + e ™ Q(p, | a)}.

(-)e{0,1}n

An antiderivative of a function f(x) is defined as any function F(x) whose derivative is f(z): F'(x) =

f(@).
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Consider any p which is a permutation of p. Naturally, the social surplus should be the
same: Q(p) = Q(p) since the strategies a can be permuted as well. Suppose buyers are
homogeneous with the same prior pg and denote pg = (po, -+ , po). From the HJB equation,

it is socially optimal for buyer i to purchase the risky product if and only if:

IQ(py)
Ipi

7poqog + poqoAm (1 (po) — Py)) — Amp(l —p) > TS

Since Q(p) = Q(p), for any j # i, we can switch i and j without affecting the partial deriva-

tives. In other words, the partial derivatives are identical when buyers are homogeneous:

9po) _ 8%;90). Therefore, it is socially optimal for buyer ¢ to purchase the risky product

opi

if and only if it is also optimal for buyer j to purchase. This implies the socially optimal

allocation is symmetric. O

Notice in equation

rnpq(p)g + npq(p)Aush(p) = (r + npq(p)Am)ns, (A1)

2 (+) is a piece-wise function since W (-) is a piece-wise function. The next result claims that

pS is always larger than p¢ such that ;(p%) > (n —1)s +g.

Claim A.2. Beginning from any combination of po < 1 and qy < 1, the efficient cutoff in the
social learning phase will always be larger than the efficient cutoff in the individual learning

phase: pG > pf.

Proof. We first substitute the expression Q;(p) = g + (n — 1)WW(p) into equation (A.1) and

get

rnpq(p)g + npg(p)Aulg + (n — )W (p)] = (r + npg(p)Am)ns. (A.2)

By contradiction, assume p§ < p¢ and W (p%) = s by definition. Equation (A.2) then gives

us a cutoff pg satisfying
rs
(r+Au)g— Ags

e

/3€SQ(/3€5) =pPr =
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As q(p%) < 1, the above equation implies that: p§ > p§, which contradicts the assumption

pS < p§. Therefore, it must be true that p§ > p$ and thus W(p%) > s. O

From claim A.2, p$ should satisfy equation (A.2) where ¢(p%) is given by equation (1.6).

Given the priors, the efficient cutoffs (p%(po, q0), ¢5(po, qo)) can be solved jointly:

= g+ (= DA (o) — s (4-3)
qg _ (1 - Po)nQO (A4)

(1= po)"go + (1 — p§)"(1 — qo)

Clearly, W(p%) is increasing in p§ and thus ¢§ is decreasing in p§ from equation (A.3).
Equation (A.4) describes how p and ¢ evolve jointly over time: since both p and ¢ decrease
over time, ¢§ is increasing in p§. Hence the intersection of equations (A.4) and (A.3) is
unique. Equation (A.3) describes the stopping curve such that it is socially efficient to keep

experimenting if
rs
(r+Am)g+ (n— DAgW(p%) — nAgs’

pq >
Finally, we still have to check that it is indeed the case that p% > p%. Notice that pg is

decreasing in ¢g on the stopping curve. If ¢ = 1, it is easy to check the unique cutoft p% is
the same as p7 = o555 And for ¢5 <1, we should have pg > pf. O
B.2 Proof of Proposition 1.2

Proof. In the individual learning phase, denote p to be the common posterior belief about the
unknown buyer’s idiosyncratic uncertainty. Denote P;(p) as the price set by the monopolist

for p > pj, where pj is the equilibrium cutoff. Then, the value function for the unknown

buyer satisfies

rUr(p) = r(gp — Pi(p)) + pAu(s = Ui(p)) — Aup(1 — p)Uj(p).

Certainly, a profit-maximizing monopolist always sets prices P;(p) = gp — s such that

Ur(p) = s. The monopolist’s problem is to choose between charging a low price gp — s to
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keep experimenting and charging a high price g— s to extract the full surplus from the known

buyer. Obviously, this is an optimal stopping problem with HJB equation

rJr(p) = max{r(g —s),2r(gp — s) + pAr(2(g — s) — Jr(p)) — Amp(L — p)J1(p)}. (A.5)

On the RHS of equation (A.5), g — s is the value if the monopolist only sells to the
good buyer by charging g — s; if the monopolist decides to continue experimentation, she
not only receives instantaneous revenue 2(gp — s) by selling to both buyers but also may
receive a future value of 2(g — s) if the unknown buyer receives a lump-sum payoff. From
the value matching and smooth pasting conditions, it is straightforward to characterize the

equilibrium cutoff as

. rlg+s)
Pr 2rg+ Ag(g —s)

The equilibrium value function J;(p) could be solved as:

1-p7 L(1=p7)p

() = 2(gp — 5) + (g + 5 — 29p5) L [ if p > i
(p) =
g—s otherwise.

The known buyer only needs to pay P;(p) = gp — s < g — s before p reaches pj, but has

to pay g — s afterwards. The value function for this buyer is given by differential equation

rVi(p) = r(g(1 = p) + ) + pAu(s = Vi(p)) — Aup(1 = p)Vi(p) (A.6)
for p > pp = %gff—;% and Vi(p) = s for p < p5 = Mff—%. Equation (A.6) is

an ordinary differential equation with boundary condition: Vi(pj) = s. This gives us the

expression of V;(p) in the proposition. ]

124



B.3 Characterize lim;,_,q w

Lemma A.1. Fiz a pair of priors (po, qo) such that p§ is the equilibrium cutoff in the social

learning phase. In a mass market, for any p > p5s,

Us(p) — Ulp: h)

lim h =2(r + Aupq)(Us(p) — s) + Aup(l — p)Us(p)
1_ *
+(r+Amp)g(l — p)q(%)m’f = Augp(l = p)q
1
TIPS PT \ejan PS5 \l+r/A 2 L= Py
_ T Y T/AH 1— TIAH (AT
T o (1_[)7) H(l_pg) g(1 = p)q( p ) (A7)

In a niche market, for ps < p < pj,

Us(p) — Ulp; h)

lim - = 2(r + Aupq)(Us(p) — s) + Aup(l = p)Us(p)
rg rAug p5(L—p)*q, (1= p)p§ ./
- Arp(1 — p)g + " (A8
r+ Ay 1Pl 2L r+Ag 1—p§ (p(l_pg ) (A.8)

and for p > pj,

Us(p) — Ulp; h)

lim : =2(r + Ampq)(Us(p) — s) + Amp(1 — p)Us(p)
1 _ >
(4 upg(t — P2y _ 3601 — p)g
P(l - PI)
T+ An+Arpr P A PS5 \1tr/A 2 L =Py
v | (1 — p)2g(—Ly M (A9

Proof. First notice that if limj,_,q %D(p’ph) exists, limy,_ w can be written as:

1o Uslp) = Ulpih) (4 Apa(0) (Us(p) — ) + Tim P52 = }(lfD(p, ) (a0)

h—0 h h—0

The main issue is to evaluate UP(p, ps) for p > p,. We proceed in the following steps:

1. Decompose off-equilibrium-path value function
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Fix h > 0 to be sufficiently small and the monopolist will still sell to both buyers after

an h-deviation.® Therefore, there exists A’ such that for all A’ < &', we have:

h/
U (p, pn) = E/ re " (prqrg — Py)dt

t=0
+ pqh(l . efAHh’)efrh’%<ph+hl) + pthh(l . ef)\Hh’)efrh/S

+ 1= pdn(1 — M) — prgn(1 — e N e ™ Up, praw ). (A11)

In the above expression, p; is the posterior about the deviator and starts from py =

p; qn is the posterior about the product characteristic after an h-deviation: ¢, =

qo(1—po)?
q0(1—p0)2+(1—qo)(1—p)(1—pn

7 and P, is the off-equilibrium-path price set by the monopolist

after an h-deviation.

By purchasing the risky product, the non-deviator gets value

h/

UNP(p, pr) = E/ re " (piqig — B,)dt

t=0
+ pan(1 — e 2 e™™ s 4 pui(1 — e MY e ™ Vi (o)

+ L= pan(L — e ") — puu(1 — e )]e ™™ Ulpnan, o), (A12)
where p} is the posterior about the non-deviator and starts from py,.

Obviously, the off-equilibrium-path value function UP(p, p;) can be decomposed as

UD(p7 Ph) - UND(p7 ph) + Z<p7 ph)

where Z(p, pn) = U" (p, pn) — UNP(p, pn).

The fact that the p, buyer purchases the risky product means that it is not profitable

6Tf the monopolist only sells to the deviator, the loss from not selling to the non-deviator is proportional
to Js(prn) where Jg > 0 is the equilibrium value for the monopolist in the social learning phase but the gain
is proportional to p — py. As h goes to zero, the loss always dominates the gain.
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for her to have “one-shot” deviations:
h/

UNP(p, pn) = U() = / re " sdt + pgn(1 — e MM )e s
t=0

+[1 = pdn(1 — e 2" e™™ U (pp, pr).  (A.13)
Since the p, buyer is more pessimistic about the probability of receiving lump-sum
payoffs, the optimal off-equilibrium-path price P is set such that the pp buyer has

incentives to experiment.

Denote U(p; pi) as UNP(p, pp) for a fixed pj, since p, does not change in the expression
of U(h'). The fact that

ND T

Py W = (r + Mup@n)U(p; pr) — (r -+ Nerpdn)s + Nup(1 — p)U' (05 pn)

is left-continuous in p and p, implies that in equilibrium, the following equation is

satisfied:”

ND TR
i o (pspr) = U(H)

h'—0 h =0

Thus we derive an ordinary differential equation for U (p; pn)
(r + Aipdn)U(p; pr) = (r + Aupdn)s — Aup(L — p)U'(p; pr) (A.14)

where the expression for g, is provided by equation (1.5)

o go(1 — o)’
an(p) = w0l —po)2+ (1 —qo)(1—p)(1—ppn)

The off-equilibrium-path value function U (p, pj,) can be further decomposed as:

UP(p, pn) = Up; pr) + Z(p, pn).

"The proof is similar to the proof of lemma A.2. If it is strictly larger than zero, we can find a neighborhood
of beliefs to increase price P(p, pr) but the buyers will still purchase the risky product. This constitutes a
profitable deviation for the monopolist.
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2. Solve for the off-equilibrium-path value function U(p; ps).

Equation (A.14) is an ordinary differential equation with general solution:

. _1—p..
Upipn) = s+ Cp x (1 — P)%(Tp) /ru

When p = p;, the two buyers are identical and it goes back to the equilibrium path:

U(pn; pr) = Us(pr). This boundary condition implies:

G Usle =s (A.15)

_ L=pn\r/Ag’
(L= pr)gn(=20 )/ 2

qo(1—po)?
q0(1—p0)2+(1—qo0)(1—pn)?"

where ¢, satisfies: ¢, =

Since on the equilibrium path, experimentation stops at pg, the unknown buyer receives
a value less than the outside (Us(p) < s) for p < p§. Equation (A.15) implies that the
non-deviator’s posterior will never be lower than pg no matter how large h is. In other
words, the monopolist always stops selling to both buyers if (p, pr) = (f(p%; h), p%),

where

x Ps
h) =
TS0 = e =)

corresponds to the deviator’s posterior when the non-deviator’s posterior drops to p%.

3. Solve for the off-equilibrium-path value function Z(p, p;).

Denote
Z(t) = Z(p(t), pn(t)) = U(p(t), pu(t)) — Ulpn(t), p(t))

where p(t) and pp(t) are posterior beliefs after ¢ length of time beginning from p and
pr (given that no lump-sum payoff is received during this period). The posteriors can

be expressed as:




and
qo(1 = po)*
qo(1 = po)? + (1 = qo)(1 — p(t))(1 — pn(t))

n(t) =

Given any ¢ < A/, the monopolist would also make a sale to both buyers p(t) and pp(t).

Subtract equation (A.12) from (A.11) yields:

Z(t)=E /0 re”""(prqrg — prqrg)dT
+ e (1= e {p(8)an () [Vi(pn(t + B")) = 8] + pa(t)an(t)[s — Vi(p(t + B"))]}

+e [1 — p(t)Gu(t) (1 — e ") — py(£)Gu(t)(1 — e_AHhN)] Z(t+h"). (A.16)
Let h” go to 0 and we get an ordinary differential equation about Z(t):

(r + Arp(t)@n(t) + Arpn(D)an(6) Z(t) — Z(t) = H(t) (A.17)

H(t) = r(p(t) = pn(t)dn(t)g + Aap()gn(t) (Vi(pn(t)) — ) = Aupn()qn () (Vi(p(t)) — ).

Next, the explicit expression for Z can be derived for mass and niche markets, respec-

tively.

In a mass market, both p(t) and p,(t) are larger than pj. In that case,

Vilo) = s+ (1 = p)(1 = [y

(1- Ph(t))P?]r/AH)
pu(t)(1 — p7)
(

— Xapn(t)an(t)g(1 — p(t))(1 — [%%]WH)-

H(t) =r(p(t) = pu(t))@n(t)g + Aup(t)an(t)g(1 — pa(t))(1 = |

The solution to differential equation (A.17) is
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Z(t) = (p(t) — pa(t))dn(t)g
_ _ 1_—ph<t> T/AH _ (1 _ 1——p(t) T/AH) 5 p_; r/Am
(1= ) (D — (1= o) (=B a2
+Ce™(1 = p(t))(1 — pu(t))dn(t). (A.18)

From the expressions of p(t) and pp(t), time ¢ can be inversely expressed as either

p(1 = p(t))

As a result, Ce™(1 — p(t))(1 — pu(t))qn(t) can be written as:

(1 B ph)/)h(t)]

or —Llo [
& pr(1 = pu(t))"

1
——log Y

A

- 1 — pp(t)

D11 (1)1 = )0} EEL A 4 Dol = p0) (1= )

p(t)

When the two buyers are identical, there should be no difference in the values:

Z(p(t), pu(t)) =0

for p(t) = pu(t). This implies D; = —Dy = Dj,. Drop the time index ¢ to transform
Z(t) back into Z(p, pp):
~ 1 — Ph\r 1 - Pr ~ p* r
Z(p,pn) = (p = pu)ang — [(1 = pu) (=) — (1 = p) (=) Gpg (=)™
Ph p L —pj

+Du(1 = p)(1 = pr)inl (2 = (L (A9

Observe that: after the non-deviator stops purchasing the risky product, the deviator
always receives the outside option. This implies a boundary condition for Z(p, ps):

Z(f(psih), ps) = 0. The constant Dy, can be pinned down by the boundary condition:

)\Hh_l * 1+ 6)‘Hh—1 s —eirh *
D, — € - h)9( Ps *)HT/AHJF[ ( . )05 — }9( PI_yrixn (A.20)
L —em "1 —p§ (L—pg)(L—e") L —=p7

Summing up UNP and Z yields an expression for UP(p, py):
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(1= p)an(,2)" "
(1= pn)gn (522 )/

L= phriag pl Pr/Am ~ PT \r/r
_[(1_Ph)(T) P (1— )(7) / ]th(l_—py) /

+ Du(1 = p)(1 = pr)inl (2 = (L, (a2

UP(p, pn) = s+ (p — pr)dng + (Us(pn) — s)

where D), is given by equation (A.20).
In a niche market, the value function Z can be derived by a backward procedure.

First, if both p(t) and pp(t) are smaller than p}, then both Vi(p(t)) and Vi(pn(t)) are
sand H(t) = r(p(t) — pn(t))qn(t)g. It is straightforward to solve differential equation
(A.17):

Z(t) = —ZL—(p(t) = pu(£))@n(t) + Cem (1= p(£)) (1 = pn(t))dn(?). (A.22)

r+ Ay

Repeating the above procedure yields

(=)t Dus(1—p) (L= pr)an| (== Ly (L= Ly (93

Zs3(p, =
3(p; pn) "t Ay o P

where

)\Hh *
rg e -1 ,

r+Agl—eTh 1l —pt

Second, if p(t) > pj and pp(t) < pj, then

H(t) =r(p(t) — pu(t)an(t)g — Aupn(t)dn(t)g(1 — p(t))(1 — [;l(t)_(lp;(f))pg]r/m)'

Similarly, we solve Z as:

(1— p)/ﬁ]r/AH
p(1—p})

+ Dral1= (1= (LY. (A24)

" N N
pn(L = p)gn + pr(1 — p)angl

ZQ(p’ ph) = +)\H

Y AH(p— Pr)n —
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Dy, is determined such that Z; and Zs coincide when p = pj. This gives us

_ rg (e(r—i-)\H)h_erh)( P )1+7«/,\H+6—,\Hh( P1 >1+r/)\H

D _
L . 1—pt 1—p5

Finally, if both p(t) and py(t) are larger than pj, then we have already solved

Z2(p.) = 0= p)ing = (L= p) (L2 = (1= ) Ly g Ly o

+ Dpi(1 = p)(1 — Ph)(jh[(lg—hph)r/m — (FTP)T/AH]. (A.25)

Dy, is determined such that Z; and Z, coincide when p;, = pj:

1 r+Ag)e " — Ay — re”rtAm)h rlerh _ .
Dy = |— + ( 1) H ( ) ( Pr )1+r/,\H

_|_
0% (r+Ag)(l—e"h) (r+Ag)(l—e") | 1 —p3
+ Dhps.

After solving for U D(p, on), limy,_yo %D(p’ph) can be evaluated directly. Substitute

the results into equation (A.10) and we get the equations stated in lemma A.1. ]

B.4 “Binding” Incentive Constraint

Lemma A.2. Fiz a pair of priors (po, qo) such that p% is the equilibrium cutoff in the social

learning phase. For p > p§, we must have:

Us(p) — Ulp; h)

it h =0
Proof. First, it is obvious that
—Ulp:h
i Z800) —Ulpih) o
h—0 h



since Ug(p) > U(p; h) for h < h. Suppose by contradiction that there exists p; such that

Flpy) 2 lim Us(p1) — Ulpis h)

h—0 h >0

From lemma A.1, F(p) is left continuous in p, which implies that if F(p;) = ¢ > 0, then

there exists h' and €; such that for all h < A and p1 — €1 < p' < pu1,

Us(p') = U(p';h) > he/2.

Choose €5 to satisfy

pre— it

pre T 1 (1= py)

Pr— €=
and define é = min{ey, e5}. Now define a new pricing strategy such that

s _J Ps(p)+5ifp—e<p<p
Pslp) = { Ps(p) otherwise.

Obviously, under this new pricing strategy, the unknown buyer will still purchase the risky

product since

Us(p') = U(p';h) > he/2.

But the monopolist obtains a higher profit and hence this constitutes a profitable deviation

for the monopolist. Therefore, it is impossible to have

i Us(p) = Ulpi h)

h—0 h >0

in equilibrium. O
B.5 Proof of Proposition 1.3

Proof. The necessity part directly comes from lemma A.1 and lemma A.2. To prove the

sufficiency part, the first step is to show there does not exist profitable one-shot deviations.

Lemma A.3. The value functions derived are sufficient to deter one-shot deviations: it is

not profitable for an experimenting buyer to deviate for any h > 0 length of time.
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Proof. After a buyer deviates h length of time, the monopolist can either make a sell to
both buyers or sell only to the deviator. If the latter is the continuation play, UP(p, py) = s
since the optimal price only needs to satisfy the deviator’s participation constraint. Since
Us(p) > s, it is immediate to see that it is not profitable to deviate. Therefore, the interesting
case happens when the monopolist makes a sell to both buyers after an h-deviation.

In a mass market, the value associated with an h > 0 deviation is given by:

h
U(p;h) = / re "sdt + pg(1 — e MM)e s + [1 = pg(1 — e M) e UP (p, pr)
t=0

where UP (p, pj,) satisfies equation (A.21).

Rearranging terms yields
U(p;h) — s = e ™1 = pg(1 — e MU (p, pr) — 9). (A.26)

Using the expressions that

PR= 1 p(1 — eah)
we can directly evaluate Ug(p) — U(p; h) and get

)\H(]- _ 67(2r+)\H)h)

2T+>\H

Us(p) - Uloit) = | - L= ) gl g

Ag(l—e™) { P% o} Py 1—p
+ e)\Hh_l_ r/Ag __ (__FI \r/Am gql_pZ—S —’l"/)\H'
( ) [ — ey et = D)

A sufficient condition for Ug(p) — U(p; k) > 0 is that both

a Ap (1 — e @rrmhy —rh —Aph
f— —_ r 1 _ H
S (a)

and
)\H(l — e”"h)
T

T(h) 2 (Mt — 1 — )

are larger than zero. Notice S(0) =0, $’(0) = 0 and S”(h) > 0. Therefore, S(h) is a convex

function which achieves its minimum at ~ = 0. As a result, S(h) > 0 for all h > 0. Similarly,
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it can be shown that 7'(0) = 0, 7"(0) = 0 and 7”(h) > 0. Therefore, T(h) > 0 as well.
Hence, for any h > 0, there is no profitable one-shot deviation.
In a niche market, we have to consider the following two cases.

Case 1. p < pj. In this case, it is straightforward to show

U( h) 7a)\Hef(27“Jr)\H)h N Tefrh(]_ _ 6*/\Hh)
jh) —s =
P 2r + ) (r + M) I

e (e = D] g (1 - p)*qps [(1 — )P

gp(1 = p)gq

1—
" Dg(1 = p) (= E

r+ Ay L—ps  p(1—ps
and
rAi Aug (1=p)%q05 (1= p)pS
U —_ = 1_ - T/H
s(p) —s (2r+)\H)(r+)\H)gp( P r+Ag 1-p§ [P(l—Pg]

1—po
+ Dg(1 — p)2(7)2 A

In order to show U(p; k) < U(p), it suffices to prove for all A > 0, S(k) > 0 and T(h) > 0,
which have been shown already.

Case 2. p > pj. In this case, py > pj for h sufficiently small and we have:

A (1 — e~ Crrmh)

2r + Ay

lh@%—ﬁwﬂwz{ —e*wl—e*Mﬂgm1—mq

N (T(eAHh _ 1) _ )\H(l _ e—rh)) [(1 — p)P§]1+r//\ng(1 — ,O)C]
T+ A p(1 = ps)
- {(7‘ + 2)\H)e—rh . 2)\H + T(BAHh _ 6_(T+>\H)h — 1)} [(1 - p)p}]l-i-r/)\ng(l _ p)(]
Notice pp > pj implies that [—(;(;f)ppg)]“”‘/’\f’ < (e Mt/ An  Hence, Us(p) — U(p; h) > 0 if

> 0.
(T—I—)\H) -

S(h)elrrmh rT'(h) ([(1 — P?)PE]HT/AH B 1) (o Ap)e = Ay — re(r Pk

r+ A\ pr(l—p§

We have shown that T'(h) > 0. It is straightforward to check that

—rh —(r+Ag)h
X(h) & €(r+)‘H)hS(h) — :i(i\” — (r+An)e r__i_)\)\H — re~(rtin) =0
H H
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This implies that it is not profitable to deviate in a niche market as well. O]

The next step is to show after some deviations, both the deviator and the non-deviator

do not want to have another deviation.

Lemma A.4. Given the deviator has deviated h length of time in total such that the posterior

beliefs are p and py,, respectively, it is not profitable for both buyers to have another deviation.

Proof. First, assume after the deviation, the monopolist is selling only to the deviator. Then
setting UP(p, pr) = s is sufficient to deter deviations. If the monopolist is making a sell to
both buyers, then given the expressions of off the equilibrium path value function UP(p, pp,),
we are also able to show it is not profitable to deviate for A’ length of time. The proof is
similar to the tedious proof of lemma A.3 and is omitted.

Second, for the non-deviator, if the monopolist is only selling to the deviator, it is not
profitable for the non-deviator to purchase the risky product since she is more pessimistic.
We only need to show, if the monopolist is selling to both buyers, the p; buyer will not
deviate for any h’ length of time. Notice that it suffices to consider h’ < h because lemma
A 4 already implies that it is not optimal to deviate any longer once h’ exceeds h. The value

associated with an h’-deviation is provided by:
s h, / / / /
UL = / re "sdt + pdn(1 — e MM e ™™ s 1 (1 — pgn(1 — e M) e ™ UNP (pp,, pir).
t

_L=p,,
UND(,O, pr) =5+ Ch x (1 — P)%(Tp) .
it is straightforward to show: UNP(p, py) = U(K) for all b < h. O

Finally, we are in a position to show any admissible deviation is not profitable. Suppose

on the contrary, there exists another admissible strategy &; (could be Non-Markovian) for
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buyer 1 such that the value under this strategy is higher than the equilibrium value for some

p
Ui(aq, P, as;p) — Ug(p) = € > 0.
Notice by the definition of admissible strategies, a; can be written as the limit of a sequence
of strongly admissible strategies a¥. Take T sufficiently large and define a new strategy d;
as:
@1:{ aq %ft<T;
af ift>T.
For T sufficiently large, this new strategy also generates a value higher than Ug(p).® Similarly
define &% and obviously, &; is the limit of 4¥. For each &}, there can be at most a finite
number of deviations in a finite time interval [0,7"). Lemma A.3 and lemma A.4 together
imply that any finite deviation is not profitable: U, (&¥, P*, a3; p) — Us(p) < 0 for all k. But

by the construction of admissible strategies,
Ul<d17 P*a Oé;, IO) = kli)n(;lo Ul(dlfa P*a 0537 10) S U.S'(/O)7
which leads to a contradiction. O

B.6 Proof of Proposition 1.4

Proof. In a niche market, Ug(p%) = s and equation (1.21) implies

An

P 14+2r/X
D= T2/
27"+)\H( )

1 —p§

Substituting this expression into equation (1.26) yields

Ps(ps) = psalps)g — s
Then boundary conditions

Js(ps) =0 and Jg(ps) =0

8Notice the value each buyer is able to get cannot exceed g. Therefore, we can choose T such that
e g =¢/2.
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immediately imply that pg should satisfy equation

rs rs

palp) = rg+ Agg — Ags - rg + A a(Vilp) + Jr(p)) — s

In a mass market, similarly we get pg should also satisty

P = Vi) + T1(0)) = s

Thus, the equilibrium cutoff p§ is characterized by equation (1.29) regardless of whether it

is a mass or niche market. Since pq(p), Vi(p) and J;(p) are all increasing in p, the solution
to the above equation is unique given a pair of priors (po, qo)-

Furthermore, a mass market appears (p5 > pj) if and only if

rSs
rg + A a(Vi(p7) + Ji(p})) — Aus

p1a(p7) <

or equivalently,
qo(1 — po)® i
qo(1 —po)*+ (1 —q)(1 —p1)*  p}

Rearrange terms and we get the condition stated in the proposition.

From proposition 1.1, the efficient cutoft p§ is characterized by equation

rs
palp) = (r+Au)g+ 2 XaW(p) — 2Ags

First, Jr(p) + Vi(p) + s represents the total equilibrium surplus in the individual learning

phase, and hence must be strictly less than the socially optimal surplus Q;(p) = g + W (p)

for any p > p$ since equilibrium is inefficient in the individual learning phase. Therefore,

rg+Au(Vilp) + Ji(p) — Aus < (r+ Am)g + AuW(p) — 2 ms. (A.27)
Second, it cannot be the case that p§ < p§ for gy < 1. Otherwise, Vi(p§) = s, Ji(p§) =

g — s and Vi(ps) + Ji(ps) = g imply
s

R W P (A.28)

ps < q(ps) = p7 =

138



The above equation contradicts the assumption that pg < pf.
Since W(-) is a strictly increasing function for p > p¢, inequality (A.27) implies that
Py > ps- H

B.7 Proof of Proposition 1.5

Proof. Given the monopoly price Ps(q) (notice p = 1 and we should switch to use ¢ as the

state variable), the value function for a representative unknown buyer can be written as

rUs(q) = r(9q — Ps(q)) + ngiu(s — Us(q)) — nAuq(1 — q)Us(q). (A.29)

Participation constraint implies that Us(q) > s and there is also an incentive compatibility

constraint which means “one-shot deviations” are not profitable:

h
Us(q) > U(g; h) = / re sdt + e Mq(1 — e 4 e (1 — g+ ge I U (gy)
t=0

qef(nfl)AHh

for any h > 0 where ¢, = s —Ce Ry

Let h go to zero and the incentive constraint is

binding such that the following differential equation is satisfied:

n—1
Us(q)28+

[aAm (s = Us(q) = Auq(1 — q)Us(q)]

for ¢ > ¢§. The general solution is

1—
Us(q) = s + Ds(1 — q)(Tq)r/«nl)AHx

On the other hand, given price Ps(p), the monopolist’s value function is given by:

rJs(q) = nrPs(q)dt + nghg(n(g — s) — Js(q)) — nAuq(l — q)Jg(q). (A.30)

At the optimal stopping cutoff ¢%, value matching and smooth pasting conditions are
satisfied:

Us(qs) = s, Js(gs) =0 and Js(gs) = 0. (A.31)
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Boundary conditions (A.31) imply that Us(q§) = s for some ¢§ < 1. As a consequence, it
must be the case that Dg = 0 and Ug(q) is always s. From equation (A.29), the equilibrium

price is Ps(q) = gq — s. Substituting the price expression into equation (A.30) yields

rJs(q) = nr(g9q — s) + ngAu(n(g — s) — Js(q)) — nAuq(l — q)Js(q).

This is an ordinary differential equation with boundary conditions
Js(¢s) =0 and J5(q§) = 0.

It is easy to solve g% as:

rs

Is = 4s = nAg(g—s)+rg

Therefore, the Markov perfect equilibrium is efficient. m
B.8 Proof of Theorem 1.1

Proof. In the individual learning phase, denote pj to be the equilibrium cutoff such that at
this belief, the monopolist would stop selling to the unknown buyers when k& > 1 buyers
have received lump-sum payoffs. Let Vj, U, and Ji be the equilibrium value functions for
the known buyers, the unknown buyers and the monopolist, respectively, when k£ > 1 buyers
have received lump-sum payoffs. Finally, let P, denote the price charged by the monopolist.

From a backward procedure, it could be shown that:

Lemma A.5. The equilibrium cutoffs satisfy

B nrs+kr(g —s)
g+ (n—k)Ar(g —s)

*

Pl

and
PT < Pl < P

foralll <k <n-—2.
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Proof. 1f all of the buyers turn out to be good, then it is optimal for the monopolist to
charge g — s and fully extract the total surplus. If all but one buyers have already received
lump-sum payoffs, the monopolist faces the same tradeoff of exploitation and exploration
as in the two-buyer case. The monopolist has to charge gp — s to keep the unknown buyer

experimenting and her value function from selling to the unknown buyer is written as:

(r+ pAn)Jn-i1(p) = nr(gp — s) + npAu(g — ) — Aup(l — p)J;,_1(p);
with boundary conditions
Jna(pra) = (n—=1)(g—s) and J, 4(p; ) =0.

It is straightforward to see that:

. _ rs+(n—1)rg
"1 = 3y — 5 + nrg

and

Jn-1(p) = max{(n —1)(g — s),

n(gp—s)+ [(n—1)g+s—ngp),_|]

1-p {(1 —p)pzl]mH}.

L—pry LA=pi1)p

Meanwhile, the value for the known buyers is given by:

Vn_1(p) = max {8, S+ g(l — p)(l — [%]r/AH)} .

If all but two buyers have received lump-sum payoffs, the value function for the monopolist

becomes:

Jn_o(p) = max {(n —2)(g—s),nP,o(p) + T[Jn—l(p) — Jna(p)] - Agp(l—p)

r

Jé_Q(p)} :

If the monopolist sells to the unknown buyers, the price P,_s is set such that the unknown

buyers have an incentive to keep experimenting:
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rP2(p) = r(pg — Un—2(p)) + A p(s — Un—2(p))

+ Aup(Va-1(p) — Un—2(p)) — Aup(1 — p)U;,_5(p).

Value matching and smooth pasting conditions mean that at the equilibrium cutoft p;_,,

Un—2(P;—2) =S, U;L—2(P:L—2> =0, Jn—2<P:L—2) = (n—2)(g — s) and Jrlz—2(P:z—2) =0.

The above equations imply that p}_, satisfies equation

(n—=2)(g—5) =n {pzzg — s+ p;_jAH [Va1(ph—2) — 5] }

4 20p—2 [

—— [ (pha) = (n = 2)(g = 9)] -

If pr_o > pr_y, then V,_1(p}_5) > s and J,,_1(p}_y) > (n — 1)(g — s). But this implies

2rs + (n —2)rg . rs+(n—1)rg
< Ppn—1 = :
(g — 5) + nrg Ay —5) + 1rg

= Pr-o <

This contradicts the assumption that p;_, > p;_;. Therefore, it must be the case that
Pr_o < pr_y such that V,,_1(ps_s) = s and J,—1(p)_5) = (n—1)(g — s). It is straightforward

to see
. 2rs+(n—2)rg
Pr—2 2Ag(g —s) +nrg

For general 1 < j < n — 1, assume

nrs + kr(g —s)
nrg+ (n—k)Ay(g —s)

*

Pr =

for k > j+ 1. At pJ,

*

5 V() — 5)] + DA |

r

jlg—s)=n|(pjg—s) + Jia(p;) —ilg—s9)].
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It is similar to show by contradiction that it is impossible to have p; > p7., and hence the

equilibrium cutoff can be solved as

. nrs + jr(g — s)
T g+ = )alg =)

Standard induction argument then implies that for all 1 < k£ <n — 1, we would have

B nrs+kr(g —s)
g+ (= BAalg— )

*

Pl

and it is trivial to check that
PT < Pk < Pis1

foralll <k <n-2. O

Lemma A.5 means the equilibrium is inefficient in the individual learning phase. From

the boundary conditions, the equilibrium cutoff pg in the social learning phase should satisty

rs
rg + A [Vi(ps) + J1(ps) + (n — UL(p%)] — nAus

psq(ps) =

The inefficiency in the individual learning phase means
Vi(p) + Ji(p) + (n — D)Ui(p) < g + (n — LYW (p) = i (p)
for p > p} and hence
rg + Au[Vi(p) + Ji(p) + (n = DYUL(p)] — nAus < (r + Au)g + Au(n — W (p) — nAys.

This implies that the equilibrium is inefficient in the social learning phase as well: pg >

€

Ps- H

C Proofs of Results from Section 4

C.1 Proof of Proposition 1.7

Proof. Notice the derivative of

qo(1 — po)" + (1 — qo)(1 — p)"

p
( (L—p)"

£y
1_p)+ og(

)

"
— 10
Ay B
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is r+Aunpg

From observation A.1, a general solution to differential equation (1.32) is

Aup(l=p)’
rn[A—zg(z) B]+-) (@) [(n—1)W (x)+s]
I L v
h(p)
where

P g @1 —po)" + (1 —qo)(1 —p)"
h(p)Z(l_p)/ (D :

First, we show p¢ is always smaller than p%.

Lemma A.6. Given any qo < 1, the efficient cutoff for starting experimentation in the social

learning phase is larger than the efficient cutoff in the individual learning phase: pg > p5.

Proof. For p < pg,

)\HA+TB—)\HS

Wip)=A-
(P) T+ /\H
We solve for 25(p) using integration by parts:
rn[A zq(z) Bl+Agnzq(z)[(n—1)W (z)+s]
() = LA = {A L R L | P
h(p) +Ag " Am h(p)’

Since 0 is included in the domain of Qg(-), the constant term C' must be 0 to guarantee

Qg(+) is bounded away from infinity. Therefore,

LA
r_'_/\HPQ( + s

Am

s() = [ 4= g2+ A= 5)]

Suppose on the contrary, we have pg < p¢, then pg should satisfy

)\H rB
A A—s)| =ns= = /7
s )\HPSQ( )()\H + 5)] ns psq(ps) = py
This leads to a contradiction since g < 1. O

For p > p%, W(p) = s and by observation A.1,

Qs(p) = () AR gy
S\ = 1(p)
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The constant C' is chosen such that 2g(p) is continuous at p§:

Am

(& e (& (&4 e TB
C= h(ﬂz)Qs(Pz) = h(ﬂf)n {A - mﬁﬂ](ﬂf)(g +A—s)| >0.

At the efficient starting cutoff p%(qo), Qs(p%;q0) = ns. Substituting the expression of

Qs(p) into the above equation yields:

Ps rn[A — zq(x)B — s
; Agz(l —x)

dz = 0.

Notice

(& € AH (& € TB
O — h(p5)ns = h{p)n [A s () (G A=) =0

doesn’t depend on p§. This implies: if an interior solution p§(go) exists, it must be the case

that

//: h(:c)m[A)\;;(ql(i)f)_ J dx <0

and hence A — AgpsqoB — s < 0. Suppose for a given g, there exist two efficient cutoffs p;

and py > p;. Then we have

P r[A —xq(x)B—s] ,  [" rn[A — zq(x)B — s]
/pe L o s R /ﬁ S v TS B

which is impossible since
rn[A — zq(x)B — s

0
Agaz(l —x) =

h(z)
for @ € (p1, p2). Therefore, if there exists some p% satisfying Qg(p%; qo) = ns, such p§ must
be unique. When there does not exist pg satistying

C — h(pj)ns + /Ps h(w)rn[A)\;;g(i)f)_ d dr =0,

€

Pr
just set pg = 1 since it is always beneficial to take the risky product. To summarize, for any

qo, there is a unique p%(qop) such that it is socially efficient to start experimentation if and

only if p < p%(qo). O
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C.2 Proof of Theorem 1.2

Proof. When k buyers have already received lump-sum damages, the monopolist chooses to

sell to the unknown buyers if:

Ji(p) = (n = k)(A = pB —s) + % [(n = E)Aup(Jia(p) = Jk(p)) — Aup(l = p)Ji(p)] = 0.

Induction argument is used to solve the equilibrium cutoffs. First,

r—+ Ay

Jn—l(p):A_s_ pZO
if and only if p < p_; = p7. We can guess that

Jilp) = (n—k) [A—s—

’I“—l—)\H

)\H(A—S—i‘%)
pl-

Suppose this is true for j =k +1,--- ,n — 1, then solving differential equation

Ji(p) = (n = k)(A = pB —s) + % [(n = B)Amp(Jes1(p) — Jip)) — Aup(l — p) Ji(p)]

yields

Jelp) = (n—k) [A—s—

r+ Ay

)\H(A—S—F%) ]
Pl

The conjecture about Ji(p) hence is justified by induction.
Obviously,

Ji(p) = (n—k) |A—s—

(A —s+ 18
T—f-)\H

if and only if p > p§ for all k& > 1. Therefore, the symmetric Markov perfect equilibrium
is efficient in the individual learning phase. In the social learning phase, for p < p%, the

monopolist’s value function is

Ts(p) =n (A~ paB — )+  nhpali(p) — Js(p)) — Amp(1 — p) (o))

The solution to the above differential equation is given by:

)\H rB

Ts(p) =n(A —s) —npa(p)-— y (A—s+ E)'
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It is easy to check that for any ¢ < 1, Js(p) > 0 for all p < p§ and hence the equilibrium

cutoff in the social learning phase must be larger than p7. For p > pf,

1
Js(p) = nlA—pgB = 5] = [nAupgJs(p) + Aup(l = p) J5(p)]
Solving the above differential equation yields

Js(p) = . () B e + D
S\ = h(p)

where

p /o qo(1 — po)" + (1 — qo)(1 — p)”
1—p (1—p)m '

The constant D is chosen such that Jg(+) is continuous at p$. This implies: D = C —

h(p) = (

h(p$)ns, where C' is the constant given in the proof of proposition 1.7. From integration by

parts,

dz —ns(h(p) — h(p})).

/p rn(A — xq(x)B) + Agn’zq(x)s
P Agz(l — )

As a consequence, Js(p) = Qg(p) — ns.
For a fixed ¢o, the monopolist starts selling her product as long as Js(po; qo) > 0, which
implies that the equilibrium cutoff p§(go) must be the same as p§(go). Therefore, the sym-

metric Markov perfect equilibrium is efficient in the social learning phase as well. O
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A.2 Appendix to Chapter 2
Proof of Lemma 2.2

Proof. The worker p € (0,1) always has the choice that stays in one firm y forever. Then

the value is L®-"Yu Byt obviously, this is not an optimal choice (Suppose not, then all of

r44

the workers will stay in one type of firms and the market is not cleared). So we have that

the equilibrium value function W, (p) must satisfy: W, (p) > %. This immediately
implies:

Sy(0)W,"(p) = (r + )Wy (p) — (u'(p) —7V") > 0.
So the equilibrium value functions W, convex for p € (0, 1). O

Proof of Lemma 2.3

Proof. Suppose workers with p € [0,p) are employed by type y firm. This implies that
Wy (p) = ‘“’@T_{Vy + kyop® (1 — p)' = since 0 is included in the domain. It is easy to see

that WW,/(0) = Htte > 0 and since W, is strictly convex, W (p) > 0 for all p € [0,p).
At p, worker will transfer to type —y firm but smooth pasting condition implies W’ (p) =
W, (p) > 0. Strict convexity implies W, (p) > 0 so on and so forth. Therefore, we must have

the equilibrium value functions W, are strictly increasing. O]

Proof of Claim 2.2

Proof. We will actually prove a more general claim, i.e., that the result holds for any com-
bination (sg, sz), including sy < sp. This makes the proof also applicable to the case of
oy # or. Under strict supermodularity, for any combination of (sg, sy ), it is impossible to
have p; < ps and equilibrium value functions Wy (for p € [p1, pa]), Wr1 (for p < p1), Wia

(for p > pa) such that:

We(p1) = Wia(pr) and  Wih(p) = Wi (p1)
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W (p2) = Wia(p2) and  Wi(p2) = Wiy(p2)

are satisfied simultaneously.
Suppose on the contrary the equations described above hold simultaneously. Then from

Equation (2.3), we should get:

wr(p1) + B (p)Wh(p) = wi(pr) + Zp(p)Wi(p1)
and
wy (p2) + Xu (p2)Wh(p2) = wr(p2) + Xr(p2) Wia(p2)

since

WH(pz) = WLQ(p2) and WH(pl) = WL1(}91).

Notice that
Wh(p2) = Wiy(p2) and Wh(p) = Wii(p1),

by Lemma 2.5 and hence:

Zn(p1) — B (p1) —w B ZL(pl)w
Su(pr) (r+0)Wn(p1) = wr(p1) S (pr) u(p1) (A.32)
and
S (p2) — B (p2) oy SLp2)
Si(p2) (r 4+ 6)Wr(p2) = wr(p2) S t(pa) 1 (p2). (A.33)

By definition,

Yu(p) —Xo(p1) _ Yu(p2) — Xr(p2) _ sy — 57
Yu(p1) Yu(p2) s

First, if 3, = s%, Equations (A.32) and (A.33) imply that: wg(p1) —wr(p1) = wi(p2) —
wr,(p2) = 0 which cannot hold simultaneously for p; # ps since wgy(+) and wg(-) are linear
functions with different slopes Ay and Aj.

Second, if s%; > s% then Equations (A.32) and (A.33) could be simplified as:

T4 5) (W) = W) = ) = ) = 22 (o) = wi)
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Under strict supermodularity, the LHS of the above equation is strictly larger than

2 _ .2
SH—SL

L (r + 0)Wy(p1)(p2 — p1) by the convexity of the value function. And
H
52, — 52 s2, — g2
= 2 L(T + )Wy (p1)(p2 —p1) > L 5 LAL(M — 1)
s2; 5%,

by Lemma 2.4. Meanwhile, the RHS of the above equation is strictly smaller than

EL(P2) 5%{ - 5%
A — = =——=A -
Sy (pg) H (]92 P1 )) s% L (]92 Pl)

AL(M - p1) -

which contradicts the fact that LHS is the same as RHS. The impossibility in s% < s% case
could be proved similarly and is thus omitted. By contradiction, we immediately know the
claim at the beginning of the proof is correct.

For the strict submodularity case, it suffices to relabel ‘H’ by ‘L’ and ‘L’ by ‘H’. The

claim is obviously correct given we have already proved the strict supermodularity result. [J

Proof of Lemma 2.6

Proof. We will actually prove a more general Lemma, i.e., that the result holds for any
combination (sy, s1,), including sy < sr. This makes the proof also applicable to the case
of oy # or. First of all, we want to show all of the one-shot deviations are ruled out by our
no-deviation condition as dt — 0.

Under strict supermodularity, PAM is the only candidate equilibrium allocation by The-

orem 2.1. The value functions thus are given by:

Wi(p) = Z:LT(]? + hrp®t (1 —p)' s
and
Win(p) = 22 4 o1 — pye
Let
Gr(p) = krp™ (1 — pf““(ﬁ) >0
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and
1l—ay—p
p(1—p)

be the first derivatives for the non-linear parts of the value functions. Smooth pasting at p

Gu(p) = kyp' =" (1 — p)*"( ) <0

implies:

Ar B
S +gL(1_?) = m +gH(I_?)-

From the proof of Lemma 2.5, it suffices to show that inequality (2.11) holds for p < p
and inequality (2.9) holds for p > p.

For p < p, define:

2 2

Z0(p) = wnlp) = wn(p) + S E (0 + W p) — wn () (A.34)

Obviously, we have lim,, », Z1(p) = 0 from Lemma 2.5. If we can show that Zr(p) is
increasing in p as p increases from 0 to p, then we are done since Z7(p) < Zr(p) = 0. Notice

that

2 2 2

s 52, — s
Z40) = An = A, + B gy )
L L
and W/ (p) lies between rATL(s and TATL(; + Gr(p) for p € [0,p].”
If s% > s%, then
52 52, — §° A
Zh(p) > Ay — BN, + "L 4 5= — Ay — AL > 0;
L(p>— H S% L+ S% <T+ )7‘—}-(5 H L>0;
if 5%, < s7, then
52 52, — 52 A
Zi(p) > Apg— S—;IAL + %(7’ + 5)[7" +L5 +GL(p)]
L L
52 52, — 52 Ay
= Ay — éAL'f' HS% L(T+5)[m + Gu(p)]
82 82 —82

9This comes from the fact that Wy, (+) is a strictly convex function.
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Therefore, we conclude that Z;(p) > 0 for both sy > sy and sy < s, cases, which
implies that Z;(p) < 0 for all p < p and hence there is no profitable one-shot deviation as
dt is sufficiently small.

For p > p, similarly define:
Zu(p) = wi(p) — wa(p) + [Er(p) — Lu(p) Wi (p). (A.35)
Under PAM equilibrium, we have Z(p+) = 0 from Lemma 2.5. Notice that

Zu(p) = wr(p) — wu(p) + [E(p) — Zu(p)[Wh(p)

= welp) — wn(p) + "5+ W) ~ wn(p))

with W7, (p) lies between £ + G (p) and £ for p € [p, 1]. Similar to the proof for p < p

case, if s2 > s%

Zy(p) < Ap — Ay <0;

and if s7 < s%

2

Zy(p) <A —iA +S%_3H(r+5)( A +Gr(p)) <0
H\P) = AL 3%1 H 3%1 1o \p .

Therefore, Z},(p) < 0 for both sy > s, and sy < sp cases and hence Zg(p) < 0 for all

p>p.

Second, since there is no one-shot deviation for any p, obviously there will be no any other
deviation for any p. Consider any deviation starting at p. Then the above result says it is
better not to deviate for at least dt time. Suppose after dt, we achieve a new p’. Similarly,

there should be no profitable deviation for at least dt’ time. Keep using the same logic and

we can conclude that any deviation is not profitable. O]

Derivation of the Boundary Conditions

Here, we just investigate the boundary conditions for the first case: p < py. The derivation

is similar for the second case.
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In a stationary equilibrium, both the total measure fol fy(p,t)dp and the expectations

fo pfy(p,t)dp are constant over time. Hence, it must be the case that fo afy pt) =dp = 0 and

olpaf%(ft dp =0
From
0 d’
L) IS0 0) - 800
we should have:
/{ fu)] = 8fu(p)}dp = 0

and

/ {—zH )i ()] — 8 () }dp + / {—2H< ) ()] — 62 (p) }dp = 0.

The above two equations give us:

dipmp)mp)np —5(1 )
and

) (=) = Spo)) = (0 o)l + O

since the market clearing conditions imply:

and there is continuity at pg:
fru(po—) = fu(pot).

Meanwhile, notice that inflow at po must be the same as §, which implies that X g (po) [/ (Po—)—

fu(po+)] = 9. This immediately gives us the flow equation at p:

RSB = 7 Sn ) )]s
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Now apply similar logic and we can get:

[ (om0 =550 b+ [ {0 ) - 559 bt =

Notice that

/ * 8L (p)dp + / P8 fir(p)dp = p
0 p

by the martingale property. Meanwhile, we still have: Xy (po)[fy(po—) — fi(po+)] = 6.

Hence,after some tedious algebra, we can get:

(o S 0 + 2000}l = {20 )+ S0 ) s

which gives us the boundary condition at p:

Yu(p+)fulpt) = Xclp—)f(p—).
Proof of Proposition 2.1

Proof. First, we can express fro, fu1, fu2, fro as functions of p. Equations (2.25) and (2.27)

imply:
Fro = 1—m
Lo = félp’Ym(l _p)'YLde'
and
fH2 = fHO(l Po )'YHI—'YHZ 4 le
—Po

From Equations (2.23) and (2.26), fyo and fg1 as could be written as:

and
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Here,

Y L LY
=g s2 =AY s ‘

Next, we want to show that both fio and fg; are decreasing in p.

Rewrite fpo as:

f :77H+77Li( P )z l—m
o 2ng sy l—p Jopre (1 — p)readp’
and it suffices to show that (%B)UL—”]H f()BpVL1ij)7L2dp is decreasing in p. Notice that
P _ Lo p _ 2 P I |
= \IL—MH _— NL=NH dp = _ nL—nu—1 2dn.
= [t = Mot
Let Gi(p) = p**(1 — p)7£2 and G,(p) = (l%y))"ﬁ’“ﬁf’l(l%p)2 such that:
D) _ ydima(1 — py-dom
Ga(p)

is increasing in p. Therefore, we could derive:

p 1—m

( = )7IL—7’]H
1— P fgzp’}’[,l(l — p)'VLde

is decreasing in p'® and hence fgq is decreasing in p as well.

Similarly, we can rewrite fp; as:

L — e S% p NL+NH l—m
fm = — — ) - ——
2 5 L-p) e ppedp
Similarly,
p / £ p o, 1
_ = \n.+tnH _—_ ( Y Nnp4mp-—-1,_ — 2d
(—) = | (. +nm)(=—) (5—)"dp.
I—-p 0 I—p L—p
Let G3(p) = (ﬁ)””””fl(ﬁf and we have:
Gi(p) —pam(] — p) 2t
Gs(p)
10 Actually, we are using the result that if gfg g is decreasing in p, then % will also be decreasing in
p. This is true because by the definition of Riemann integral, fog G1(p)dp and fog G4o(p)dp could be written as

the limit of Riemann sum. The ratio of two Riemann sums is always decreasing in p since gfg ; is decreasing

in p.

155



is decreasing in p. Therefore, it must be the case that

_( ]—9 )77L+77H L—m

1— p félp’vm(l — p)’Ymdp

is decreasing in p and hence fg; is also decreasing in p.

Finally, it is immediate that

Po

e

)’YH1 —YH2 + le

is also decreasing in p. Therefore, we can expressing fro, fr1 and fuo as §o(p), i(p) and
& (p) respectively such that &' < 0, &' < 0 and &' < 0.

Hence, the market clearing condition (2.24) implies:

H(p) = / e (1 - p) 4 G (1 — p)mdp + / & (p)pm (1 — pymdp = .

It is easy to check that H" < 0 since §' <0, &’ < 0 and &' < 0. There exists p € (0, po)
such that H(p) = 7 if and only if lim, ,o H(p) > 7 and lim,,_,,,, H(p) < 7.

Asp— 0, fro = &o(p) — oo and fi1 = & (p) — 0, which imply:

Il)lil[l)H(p) — 00 > T.

Meanwhile, when p — po, it is obvious that H(p) — fplo frap?2(1 — p)'Htdp. Notice that

1—m
fg)o p’YL1(1 _ p)’YLde

2
Do )’YH1—’YH2+]CH1_>S_L( Po )nL+77H

I —po 5%1 1 —po

fH2 = fHO(

as p — Po.

As a result, lim, ,,, H(p) < = if and only if:

2 1
SL Po NL+NH L—m / VH2 (] VH1 ]
e — <,
4 G (i PP

which establishes Equation 2.28 in the proposition. Moreover, since H(-) is strictly decreas-

ing, the solution to H(p) = m must be at most one. This completes our proof of Proposition

2.1. [l
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Proof of Corollary 2.1

Proof. To make the proof, we have to redefine the H(-) function in the proof of Proposition
2.1 as H(p; 7, po) with equilibrium cutoff p satisfying H(p; w,po) = 7. It is obviously to verify
that H is linear in (1 — 7). So as 7 increases, 7/(1 — ) increases and we have to decrease p

to balance the equation. On the other hand,

aH H H H H H H
a = 50(1_?)Pgl (1—=po) + 51(1_?)1?32 (1 —po)™ — 52(2_9)]932 (1 —po)™
Opo
! 852(17) ,YH H
=" 2 1 _ "1 d X
 om P (1—p)dp

It is easy to verify that the first line on the RHS is zero while the second line is strictly
positive. Hence H (p; 7, po) is increasing in pp and we have to increase p to keep the equation
as pg increases.

The proof for the comparative statics for p > pg case is similar and hence is omitted. [

Proof of Proposition 2.2

Proof. First, from equation (2.35), we have:

m
N fgl p’YHz(l — p)’YHl dp'
Second, Equations (2.34) and (2.37) imply:

fro

fL1:77L L B (—=—)=m=m f,

2ny, g 1 -p
and
nL+nE sy, P, _

fro = CH (= Y fy

L2 2 s% (1 _B) HO
Here,

1 26 1 26
=4/-+—=> =4 /-+—=>1/2.
nL 4 + s2 H 4 + s% /
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It is easy to verify that fyo, fr1, fro are increasing in p and hence fro = fr1 + fLQ(%)JnL
is also increasing in p by Equation (2.38).
Hence, we can express fro, fr1, fr2 as §o(p), §1(p) and & (p) respectively such that &' > 0,
&' >0and &' > 0.
Finally, the market clearing condition (2.36) implies:
Po P
H(p) = /0 So(p)p™' (1 —p)"2dp+ /po [E1(p)p™ (L =) + &(p)p”** (1 —p)"]dp = 1 —.

Obviously, H(+) is strictly increasing, which guarantees the solution is unique if it exists

and lim,,,, H(p) <1 — 7 will give us Equation (2.39) in Proposition 2.2. O

Proof of Lemma 2.8

Proof. By substituting g (p) and ur(p), the total expected surplus for allocation 1 could be

written as:

Sy = / (Agp + prw) fa(p)dp + / (Arp + prr) fr(p)dp.
Ou 0

L

From market clearing and martingale property conditions, we can furthermore rewrite

Sy as:

S1=(Ag —Ap) / pfu(p)dp + Arpo + mppa + (1 — m)prr.
Qu

And similarly,

Sy = (Ag — Ap) / pfu(p)dp + Arpo + mprpa + (1 — m)prr.
Qp

Therefore, S7 > S5 if and only if

/Q pfutrip > | piuv)ip

Qn

or alternatively, fQL pfua(p)dp < fQL ofL (p)dp. ]

158



Proof of Theorem 2.4

Proof. We establish the proof of Theorem 2.4 under supermodularity. The same logic goes
through for submodularity. The proof is constructed in the following three steps: 1. for
N = 3 we show that the planner can increase output when changing the cutoffs; 2. for
N = 3 no allocation dominates PAM; 3. For any N, the allocation with N — 2 cutoffs

dominates that with N cutoffs.

1. For N = 3, output increases from changing the cutoffs

Consider any allocation with three cutoffs 0 < p, <p, <p <1 such that workers
with p € (1_91, 1] and p € (1_93,1_92) are allocated to the high type firms while workers with
p E [0,1_93) and p € (22’1_91) are allocated to the low type firms. Furthermore, denote the
ergodic density function for this allocation to be f, and for p close to 0, let the density
function be fi(p) = frop™ (1 — p)'~7= while the ergodic density function for p close to 1 is
denoted by fu(p) = faop' 77 (1 — p)" where fro and fyo are constants. Correspondingly,

denote the ergodic density under the PAM allocation to be f; with the unique cutoff p.

1. Suppose the planner changes the allocation by moving the interval to the left: (]22, p 1) —
(pl. p)) where (p),p!) = (p, — €2,p, — €1). Choose €1, €z such that market clearing is

satisfied:

[ o= [ gt

2. Given the new cutoffs, the Kolmogorov forward equation will pin down a new density f I
in the interval (Q'z, E’l) Globally, we need to satisfy market clearing and the martingale
property conditions. The market clearing condition for the H types is satisfied by the

construction. For the L type firms it requires that:

/ * Fulo)dp - [ o
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The martingale property condition requires that Eq, p + Eq p = po or:

/

p3 Dl I 1
dp + dp + dp + dp = po.
/O pfi(p)dp /p 3 pfu(p)dp /p /2 pfi(p)dp /p 1 pfu(p)dp = po

Above are a system of two linear equations about the distributional parameters for fL

and fL could be solved as a result.!!

3. Then comparing the original allocation to the new one, we get

P

fas | BQ
Eq,p —Eq,p = / pfu(p)dp — / pfu(p)dp >0
p.

/ /
El =2

since by construction
Py P,
[ tutwyio= [ futvias
4 P,

and the interval [p, p!] is strictly to the left of [p,, p,]. From Lemma 2.8, Eq, p > Eq,p

implies the planner prefers allocation €2’ over (2.

4. Similarly, we can consider another transform which is to move the interval to the right:
(pysp,) — (P4, p,) where (p},p)) = (p, + €2,p, + €1). This can also lead to output
increases. Keep on doing such transformations and eventually, we can have both the
distance and the measure between ]_3; and ]_)’1 arbitrarily small while the new (g’l, ]_9’2, Q;,)

allocation strictly dominates the original (p ,p,.p,) allocation.

2. For N = 3, no allocation dominates PAM

1. We now show by contradiction that no allocation dominates PAM for N = 3. Sup-
pose on the contrary that there exists an allocation with cutoffs p;, po and ps which
dominates the PAM allocation. Then by Lemma 2.8, we should have:

[ pfu(p)dp + / prfH(p)dp> / pfi(p)dp (A.36)

P1 p3 p

UThings are slightly different if we have py € (ph, p}). Then we have four new distribution coefficients but
we also have two more equations: fr,(po—) = fr(po+) and X1 (po)(f7,(po—) — 1. (Po+)) = 6. We can use this
system of four linear equations to pin down the four parameters.
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and

/pl pr(p)dp+/p3pr(p)dp< /ppf;j(p)dp. (A.37)

P2 0 0
From Step 1, we can first fix p3 and make pj, move towards ps, which is efficiency
improving. p; could be extended to the left until it reaches p;: fpll fu(p)dp = 7. Since
fﬁl,l fu(p)dp < m, it must be the case that p; < p}. If p), is sufficiently close to ps, we

will have p, < p;. By hypothesis:

/lpr(p)dp>flpfﬂ(p)dp+[ﬁépffl(p)dp>/lpf;;(p)dp

p1 P D3 P
On the other hand, it is also efficiency improving by fixing p; and making p), move
towards p;. Similarly define ps as: 533 fr(p)dp = (1 — m) such that ps > p;. By
hypothesis,
D3 P
/ pfr(p)dp < / pfL(p)dp.
0 0

since we can make p, sufficiently close to py.

. The next step of the proof requires Lemma A.7 below. The Lemma implies that we

should have p3 < p3 < p < p1 < p} to guarantee that

IR R

p1 p 0

pfr(p)dp < /O Bpfi (p)dp-

Therefore, inequalities (A.36) and (A.37) only hold when p} — p4 > p; — ps > 0 which
contradicts that fact that we can make the distance between p} and pj arbitrarily small
while still keeping the inequalities (A.36) and (A.37). Hence, no allocation with N = 3

cutoffs could be better than the PAM allocation in terms of aggregate surplus.

3. For N cutoffs, the allocation is dominated by any allocation with N —2 cutoffs.

and p € (p

Consider three adjacent cutoffsp ., >p >p  such that workers with p € (p, P, )

_nH,]_)n) are allocated to high type firms; workers with p € (p ,p ) and p €

(£n+2’ P, 1) are allocated to low type firms. Suppose the density functions are such that the

market clears and the expectation of p’s is pg. Then we just need to choose k such that
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[ sawan= " gutiip

—n—1 n

Nowp .. p and p,., convergetop  —k but p,.o is kept to be the same. The market
clearing condition requires that

/p A frlp)dp = / o fr(p)dp + / Fr Fr(p)dp.

—n-+2 En Bn+2

Meanwhile, the martingale property condition requires that:

/plpr(p)dp+ et /ppn;pr(p)der /ppnl

—n—1 —n—+2

- Py

pFo)dp+ -+ [ phulw)dp = po
0

Similar to Step 1, we have a system of two linear equations about two distributional

coefficients and density f;, could be solved. As before,

Eq,p = /ﬂ pfu(p)dp

must become higher and this allocation with N — 2 cutoffs will generate a higher aggregate

payoff.

Finally, by the standard induction argument, we can conclude that the PAM allocation

with one cutoff dominates any allocation with N > 3 cutoffs in aggregate surplus. O]

Lemma A.7

Lemma A.7. Let p; be such that fﬁll fu(p)dp = m, where fy(p) satisfies the Kolmogorov
forward equation, then f;l pfu(p)dp is increasing in py. Let ps be such that fom fr(p)dp =
(1 — ), where fr(p) satisfies the Kolmogorov forward equation, then fgag pfr(p)dp is also

mcereasing in ps.

Proof. We just prove the case that p; > py. The other cases are similar. Let fy(p) =

Cy (1 — p)HE1p a2 where

3 3
VHL= 5 +ng and ypo = —5 ~h-
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From Kolmogorov forward equation,
d2
[ s = [ ot ) -

N+ P — 3 R .
— =) = om.
p1(1 _pl) H(p1>fH(p1>

/ pfu(p)dp = 5/ w(p) fu(p)ldp

and could be simplified as:

or

Notice that

. Tl —pr) T (ne + 3)
NE +D1— 5 77H+151—%

which is increasing in p; since

On the Job Human Capital Accumulation

Under the assumption of p* = p® = p, the value functions could be written as:

n Hy\P -V, u  1—a¥ al u ol —a¥
W, (p) = i(+)5+)\y +]{71/1191 v(1—p)™ + kyop i(1—p)t—*
)\(35)2
(s9)?
— : 1y (p) + &(p) — 7V4)]
(r+ 3+ N[(A+3+7) = i +9) !
A
+ I Wy (p)
A+d+7r)— Gt )( r+0)

and

+ -1V, e —at af e af —ayg
uy(p) S(p) Y +k pl y(l _p) ¥ +ky2p 9(1 _p)l y

We(p) = T+(§ yl

Y
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where

1 264N

YTt T e
11 20 +9)

6:_ - >1
YTy T S

Boundary conditions

Wilp) =Wg(p), Wi(p)=Wgp), W' (p)=Wg(p)

would imply (by normalizing V7, = 0 as usual):

~ ag(ag —1)(Ag —Ar)p
Vi = H —H + e e e ~ e\’
i = i = ) e ) — (1= p){ag, — o)

And from

Wi(p) = Wg(p), Wi(p) =Wg(p), W (p)=Wg'(p),

another equilibrium payoff VH“ could be derived as:

u = HrH BLAHMLL AHT+5+)\ BH BL
N Bu afy(af —1)(Dy — Dr)p
Ap afy(af —1) — (1 = p)(af — a¥)’
where
Ay 1—Ap AAe
Dy = —"Ay —
=By By r+d0+A
Ay 1—Ap A
D = —=A; —
PUBLTY T B r+d+ A
(sh)? (s%)?
Ap=1- By =\A+0+7r)— r+9
A A A
Su2 w2
AL:l—ES)Z BL:(A‘{‘(S‘FT)—(g)Q( +5)
s7) (s7)
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Proof of Proposition 2.3

Proof. Supermodularity is equivalent to Ay > Ap, and {g ~ & is equivalent to A, =

&g — & — 0. The proof can be divided into three parts. As a sufficient condition,

1.
(o —xBu oy B M (1= Aw 1-Auy
HLH B, AHMLL Agr+o+ 2 Bg B, HLH — HLL
2.
B
A_H(DH_DL) < AH—AL
H
and
3.
ay(af —1)p ag(ag —1)p

ai(at —1) = (1—p)(af — %) ~ ag(as — 1) — (1—p)(as — as)

should be satisfied simultaneously.

u \2 u)2
First of all, notice that CH) S BL dince Ay > A, As a result, 42 < 4L

CALIEGN e 5y < & and
1;’:}1 > IEL‘L. The first inequality holds since MLH—g—ig_ZMLL < prg—prr and g—if—g,uLL)—
f—gri‘gi A(IBiH — IE;L‘L) > (0. The second inequality could be proved similarly.

For the last inequality, we just need to compare:

and

To prove 3, it suffices to show

ap(ap —1)(af — af) > alphag (o], — 1)(af — af).

The direct proof is not easy. But notice from the expressions of a’s:
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o? o?

(O[i _O‘%)(QE‘FO‘?{ - ]‘) = 2<T+5)[(AL+A§)2 - (AH+A£)2]

and

o? o?
(of —afy)(a]l +af —1) = 2(r+(5+>\)[§ — A_Q]
L H
Hence, when A = 0,
ap —ay  r+dapt+apy—1

at —a¥,  r+édal +afy—1

The original inequality is transformed to compare:
(r+0)ag(af —1)(af +af — 1)

and

(r+0+ MNagy(af — 1) (af +af —1).

Meanwhile, we have:

(r+0)aj(a} — af = (r+ 5)@%
L
> (r+ 0+ Nag(af = 1)ag = (r+ 5+ A)a;_z(; %)
L
and
(r + 8)aly (ol — 1)(aly — 1) = (r +8)(a} - 1>W
2(f +6)

>(r+d+Nay(a; —1)(ay—1)=(r+d+N)(aj —1) A2

since ayy > ay. This implies:

e_

ag(af —1)(ag —afy) > ay(ag — D(ag — af)

and therefore,

aj(af —p af(ag —1p

it — 1) — (L= p)(al —al) ~ ag(ag — 1) — (I—p)(ag, — %)’
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Notice from the above proof, 3 holds only when A is small and will not hold as A, becomes
sufficiently large.

Finally, we can conclude that f/H“ < f/f} when (g ~ {1, and as a result p® < p*. [

No-deviation condition for the non-Bayesian learning example

Under the non-Bayesian learning case, suppose it is optimal for a p worker to choose firm
y, the value function for this worker should be such that (from Hamilton-Jacobi-Bellman

equation):

(r+0)Wy(p) = wy(p) + /\prg;(p)'

Suppose there is a cutoff p such that workers with p > p are matched with H firms and vice
versa.
Then the absence of deviation implies that a p > p worker has no incentive to deviate,

rematch with a L firm and switch back after dt time:

t+dt
Wh(p) > Wir(p) =E { / e~ (py)ds + 6_(T+6)dtW(pt+dt)} '
t

For dt sufficiently small, p;,4 is still close to p such that it is optimal for a p;, 4 worker

to choose firm H as well. It is immediate to see that:

- W (p) - WLlp) _ o (p) = wi(p) + Ot = AW ().

and hence no deviation implies that:

wr(p) — wr(p) + A — AL)pWi(p) > 0

for all p > p. Let p — p+ and we have by applying the value matching condition:

wy (p+) —wr(p—) + (Ag — AL)pWg(p+) = Aep(Wi(p—) — Wy (p+)) > 0

or equivalently W7 (p—) > Wi (p+). On the other hand, a p < p worker also has no incentive

to deviate, rematch with a H firm and switch back after dt time. Similarly, no deviation
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implies that:

wr(p) —wu(p) + (AL — Ag)pWi(p) > 0

for all p < p. Let p — p— and it could be shown:

wr(p—) — wu(p+) + (A — Au)pW(p—) = Aap(Wy (p+) — Wi(p—)) >0

or equivalently Wi, (p+) > W (p—). Therefore, at p, it must be the case that W (p) = W (p)

and no-deviation condition coincides with the smooth-pasting condition.
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