January 2001

Preliminary Analysis of a Biologically Inspired 1-DOF "Clock" Stabilized Hopper

Haldun Komsuoglu
University of Michigan

Daniel E. Koditschek
University of Pennsylvania, kod@seas.upenn.edu

Follow this and additional works at: http://repository.upenn.edu/ese_papers

Recommended Citation

This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE endorsement of any of the University of Pennsylvania's products or services. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing to pubs-permissions@ieee.org. By choosing to view this document, you agree to all provisions of the copyright laws protecting it.

NOTE: At the time of publication, author Daniel Koditschek was affiliated with the University of Michigan. Currently, he is a faculty member in the Department of Electrical and Systems Engineering at the University of Pennsylvania.
Preliminary Analysis of a Biologically Inspired 1-DOF "Clock" Stabilized Hopper

Abstract
We investigate the stability of a one degree of freedom mechanical spring-mass system modulated by a feed-forward "clock" that stiffens and relaxes a Hooke's law potential force according to a periodic rhythm. At the present early stage of inquiry, we offer sufficient conditions for local asymptotic stability of an isolated periodic orbit when there is no feedback to the clock at all but some viscous friction in the mechanism. We conjecture that, absent feedback, a lossless mechanical system cannot exhibit an asymptotically stable limit cycle in response to such rhythmic excitation.

Keywords
legged locomotion, coupled oscillators, clock driven system, CPG, feedforward control, biomechanics, spring-mass model

Comments

This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE endorsement of any of the University of Pennsylvania's products or services. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing to pubs-permissions@ieee.org. By choosing to view this document, you agree to all provisions of the copyright laws protecting it.

NOTE: At the time of publication, author Daniel Koditschek was affiliated with the University of Michigan. Currently, he is a faculty member in the Department of Electrical and Systems Engineering at the University of Pennsylvania.
Preliminary Analysis of a Biologically Inspired 1-DOF “Clock” Stabilized Hopper*

Haldun Komsoğlu
(hkomsoog@umich.edu)
Department of Electrical Engineering and Computer Science, The University of Michigan
Ann Arbor, MI 48109-2110, USA

Daniel E. Koditschek
kod@umich.edu

ABSTRACT

We investigate the stability of a one degree of freedom mechanical spring-mass system modulated by a feedforward “clock” that stiffens and relaxes a Hooke’s law potential force according to a periodic rhythm. At the present early stage of inquiry, we offer sufficient conditions for local asymptotic stability of an isolated periodic orbit when there is no feedback to the clock at all but some viscous friction in the mechanism. We conjecture that, absent feedback, a lossless mechanical system cannot exhibit an asymptotically stable limit cycle in response to such rhythmic excitation.

Keywords: legged locomotion, coupled oscillators, clock driven system, CPG, feedforward control, biomechanics, spring-mass model

1. INTRODUCTION

The motivation for this inquiry arises from a practical problem in robotics, inspired, in turn, by our reading of the biological literature. A recently reported set of experiments [3,19] demonstrate that a simple compliant leg hexapod robot, completely open loop with respect to any task level perception, can negotiate widely varied and dramatically adversarial terrain when its leg motors are driven by a purely feedforward “clock” reference signal. At present, no analytical machinery is available that can inform directly our efforts to improve and refine this device, specifically with regard to the introduction of simple task level sensors for the purpose of instrumenting low bandwidth feedback. The results reported here represent our first steps toward that end.

Originating with Wilson’s [20] seminal analysis of insect leg coordination, scientists have identified a spectrum of biologically inspired coordination control strategies whose two extreme endpoints we wish to examine analytically. On the one hand a “reflex” based perspective [4,5] stresses the key role of sensory data in mediating the control signals sent to an animal’s muscles. Alternatively, the “clock” [8,11,12,14] view of animal motion control stresses the role of pattern generation — periodic reference trajectories that act as feedforward control signals — in the coordination of such cyclic behaviors as walking, running, and so on. The robotics literature also explores a comparable spectrum of coordination approaches from reflex [2,15] through pure clock [16,17]. In a recent paper [10] the second author and colleagues re-examine the “reflex” end of this coordination spectrum in the specific context of locomotion. In this paper, we are concerned more with the “clock” end. To the best of our knowledge Birkemeier and colleagues [1] comprise the only previous group that has explored analytically the issue of a clock stabilized 1 dof mechanism. That work addresses a similar coupled system, utilizing rest length as the control input, and introducing approximate return maps derived by perturbation methods. Unfortunately, such perturbation techniques are guaranteed to work only for very small values of the damping coefficient — what appears to be the ultimate source of stability in the first place. In this paper we provide closed form exact return maps from which we derive sufficient conditions for local stability that are easily related to the physical parameters yielding guaranteed behavioral conclusions over the broad range of the model’s operation.

A second motivating influence from the biological literature concerns the model of actuation. Hill’s classical view [7] of muscle presents a combination of a nonlinear passive spring and an “active” component that generates additional force based on the motor commands [13]. A phenomenological view, characteristic of the biomechanics community, has lead to studies of in vivo locomotion behavior suggesting that effective leg stiffness is altered by the motor nervous system to adapt to external disturbances and control gait [6]. Altering the gait through changes in the available potential energy has a long history of success in the robotics literature as well [15]. For this reason, our simple model posits a stiffness control, again, in contrast to the model in [1].

*This work is supported by DARPA/ONR: N00014-98-1-0747.
2. THE SETTING

A 1-DOF Hooke’s Law Hopper with Adjustable Stiffness

We consider a one degree of freedom (mechanical) hopping on a real interval, $X \subset \mathbb{R}$, that consists of a point body mass and a massless (Hooke’s Law) spring leg pointing downward. Letting $\mathcal{X} := T_{\mathcal{F}} X = X \times \mathbb{R}$, define the contact set, $\mathcal{G} := \{ x \in \mathcal{X} \mid x_1 < 0 \}$, with stance (or contact) mode\(^2\)

$$\dot{x} = f_p(x) = \begin{bmatrix} x_2 \\ -x_1 - b x_2 \end{bmatrix}, \quad x \in \mathcal{G} \quad (1)$$

and aerial mode,

$$\dot{x} = f_{\mathcal{L}}(x) = \begin{bmatrix} x_2 \\ -1 \end{bmatrix}, \quad x \in \mathcal{L} := \mathcal{X} - \mathcal{G}, \quad (2)$$

where the control takes the form of an “adjustable” stiffness, $p \in \mathcal{P} := \mathbb{R}^+$.\(^1\)

A Clock-Based Switching Controller

We posit a controller in the form of a one dimensional tunable “clock” — a system defined on the circle, $\theta \in S^1$,

$$\dot{\theta} = w_c = \frac{2\pi}{T_c}, \quad (3)$$

whose state, θ, is filtered by an output function, $\kappa(\theta)$. In order to obtain a periodic pulse train, $o(t)$, we define $\kappa(\theta) := p_o + \Delta p [unit(\theta) - unit(\theta - w_c \beta)]$, where “unit(\theta)” denotes the unit step function. Four parameters define the control signal: controller period, T_c; forcing duration, β; offset value, p_o; and forcing increment, Δp, as depicted in Figure 1. Denote by $B := \{ (\Delta p, \beta) \mid \Delta p > 0 \land \beta \in (0, \pi) \} = \mathbb{R}^1 \times (0, \pi)$ the physically meaningful forcing parameter space.

Figure 1: The clock-based switching controller.

The Clock Controlled 1-DOF Hopper

The clock controlled hopper is obtained by simply connecting the output of the clock-based switching controller, $o(t)$, to the input of the mechanical hopper system, p, as depicted in Figure 2. There results an autonomous three dimensional hybrid dynamical system, $q = F(q)$ where

$$q = [x_1, x_2, \theta]^T \in \mathcal{Q} := \mathcal{X} \times S^1.$$ In this coupled system the control actions are limited to the (physically unrealistic but illustrative) binary choice of $p \in \{ p_o, p_h \}$ representing a “relaxed,” $p_o \in \mathcal{P}$, and a “stiffened,” $p_h := p_o + \Delta p \in \mathcal{P}$ force profile. Although the resulting discontinuities in the vector field preclude the standard guarantees of existence and uniqueness [9], we will avoid distracting technical considerations by bounding from below the magnitude of the time intervening between successive control actions, i.e. $T_c > \beta > 0$.

![Figure 2: Clock controlled 1-DOF hopper.](image)

3. DERIVATION OF THE RETURN MAP

Continuous-Time Dynamics and Associated Transformations

The clock controlled hopper is a hybrid dynamical system, whose coupled state space, \mathcal{Q}, will be partitioned into three “modes”:

- a normal (stance) mode, \mathcal{N}, $\dot{q} = \begin{bmatrix} f_{p_o}(x) \\ w_c \end{bmatrix}, \quad q \in \{ q \in \mathcal{Q} \mid \theta \in (w_c \beta, 2\pi) \land x \in \mathcal{G} \}$;
- a forced (stance) mode, \mathcal{F}, $\dot{q} = \begin{bmatrix} f_{p_h}(x) \\ w_c \end{bmatrix}, \quad q \in \{ q \in \mathcal{Q} \mid \theta \in [0, w_c \beta] \land x \in \mathcal{G} \}$;
- and a flight mode, \mathcal{A}, $\dot{q} = \begin{bmatrix} f_{\mathcal{L}}(x) \\ w_c \end{bmatrix}, \quad q \in \{ q \in \mathcal{Q} \mid x \in \mathcal{L} \}$.

We prefer to study the mechanical component (hopper) stance behavior in a normalized coordinate system. The linear transformation,

$$g_p : \mathcal{X} \rightarrow \gamma_p, \quad y = g_p(x) = G_p x, \quad G_p = \begin{bmatrix} \xi_p & \mu/\xi_p \\ 0 & \gamma_p/\xi_p \end{bmatrix}$$

itself parametrized by p (where $\xi_p = \sqrt{\beta}$, $\mu = b/2$, $\gamma_p = \sqrt{\xi_p^2 - \mu^2}$), yields the Real Jordan Canonical form of the
linear vector field, Eq.(1), generating the familiar planar rotation and dilation expressions for the flow. This, in turn, motivates a passage to polar coordinates, leading to what we will term the normalized energy-phase coordinate system, \(\mathcal{E} := \mathbb{R}^+ \times S^1 \),

\[
 m : \mathcal{Y} \rightarrow \mathcal{E}, \quad e = \begin{bmatrix} \eta & \phi \end{bmatrix} = m(y) = \begin{bmatrix} \frac{\|y\|^2}{\arctan\left(\frac{\|y\|}{y_2} \right)} \end{bmatrix},
\]

yielding dynamics,

\[
 \dot{e} = f_p(e) = \begin{bmatrix} -\mu \eta \\ -\gamma_p \end{bmatrix}, \quad f_p(e(0)) = \begin{bmatrix} e^{-\mu t} \eta(0) & \gamma_p t + \phi(0) \end{bmatrix}.
\]

(5)

that are conjugate to Eq.(1) via \(f_p \equiv m \circ g_p \circ f_p \circ g_p^{-1} \circ m^{-1} \). One can always choose the dimensionless coordinate system, \(\mathcal{X} \), so that \(\gamma_p = 1 \) and \(\gamma_p > 1 \), which we now assume.

These transformations affect neither the time nor the clock state, \(\theta \), hence, for constant parameter, \(p \), the coupled system dynamics in the new coordinate system, \(c = [e, \theta]^T \in \mathcal{E}_c := \mathcal{E}_c \times S^1 \), is obtained by appropriately augmenting Eq.(5) and Eq.(3).

\[
 \begin{array}{c}
 g_p : \mathcal{X} \ \longrightarrow \ \mathcal{E}_p \\
 \gamma_p : \mathcal{E}_p \ \longrightarrow \ \mathcal{E}_p \\
 \end{array}
\]

Figure 3: The induced change of coordinates, \(h \), makes the diagram relating the normal and forced modes commutative.

The parametric dependence of \(g_p \) on the normalized spring stiffness, \(p \), causes the normalized coordinate systems for the normal mode, \(\gamma_p \), and the forced mode, \(\gamma_{p_h} \), to be different. As a consequence, their respective normalized energy-phase coordinate systems differ as well. The change of coordinates \(h : \mathcal{E}_p \rightarrow \mathcal{E}_p \) is given by \(e_{p_h} = h(e_{p}) = m \circ g_p \circ g_p^{-1} \circ m^{-1}(e_{p_h}) \), as depicted in the commutative diagram of Figure 3, where we define,

\[
 h_1(e_{p_h}) := \eta_p \frac{\gamma_p \xi_{p_h}}{\gamma_{p_h} \xi_p} \cos(\phi(e_{p_h})) \sqrt{1 + [T_1 \circ \tan(\phi(e_{p_h}))]^2} \]

\[
 h_2(\phi(e_{p_h})) := \arctan \circ T_1 \circ \tan(\phi(e_{p_h})),
\]

(6)

introducing for convenience in the sequel the first of 4 affine maps, \(T_1(s) := \frac{\gamma_p \xi_{p_h}}{\gamma_{p_h} \xi_p} s + \frac{\mu_p}{\gamma_p} \left[1 - \left(\frac{\xi_{p_h}}{\xi_p} \right)^2 \right] \). The inverse function, \(h^{-1} \), has the same structure as \(h \) except that the parameters \(p_c \) and \(p_h \) are interchanged in the above formulae,

\[
 e_{p_h} = h^{-1}(e_{p}) = \begin{bmatrix} \eta_p h_1^{-1}(\phi(e_{p_h})) \\ \eta_p h_2^{-1}(\phi(e_{p_h})) \end{bmatrix},
\]

\[
 h_1^{-1}(\phi(e_{p_h})) := \frac{\gamma_p \xi_{p_h}}{\gamma_{p_h} \xi_p} \cos(\phi(e_{p_h})) \sqrt{1 + [T_1 \circ \tan(\phi(e_{p_h}))]^2}.
\]

For use in the sequel, we state two facts as established by direct computation.

Lemma 1: \(h_2(\phi) := \frac{dh_2(\phi)}{d\phi} = \frac{\gamma_p}{\gamma_{p_h}} \left(\tan(\phi) \right)^2 \)

Corollary 1: \((h_2^{-1}(\phi)) := \frac{dh_2^{-1}(\phi)}{d\phi} = \frac{\gamma_{p_h}}{\gamma_p} \left(1/\tan(\phi) \right)^2 \)

Details of the Return Map Derivation

For our study, we choose to define a Poincaré section corresponding to the forcing start instant, characterized by \(\theta = 0 \), \(\Sigma := \{ c \in \mathcal{E}_c | \theta = 0 \} \). The flow of the coupled system Eq.(4) has the property that all the state trajectories originating in \(\Sigma \) will return to it after some finite time. Sampling on the event of return to \(\Sigma \) relates the three dimensional continuous-time system Eq.(4) to its corresponding two dimensional discrete-time Poincaré map Eq.(8). The independent states in \(\Sigma \) are \(\eta_p \) and \(\phi_p \), but we find it advantageous to work in an alternative energy-phase coordinate system: \(\mathcal{R} := \mathbb{R}^+ \times S^1 \) defined by \(z : \mathcal{E}_p \rightarrow \mathcal{R} \),

\[
 r = \begin{bmatrix} v \\ a \end{bmatrix} = z(e_p) := \begin{bmatrix} e^{\mu(\phi - \phi_{TD})} \eta_p \phi_p - \phi_{TD} \end{bmatrix},
\]

(7)

where \(\phi_{TD} := \arctan(\mu/\gamma_p) \) represents the touchdown boundary phase in \(\mathcal{E}_p \). Notice that \(v \) is the dimensionless touchdown velocity, and \(a \) is the dimensionless delay in the time that the next forcing interval starts relative to the last touchdown instant\(^3\). Figure 4 illustrates a typical state trajectory of the coupled system projected onto \(\gamma_{p_h} \) coordinates.

Each returned state, \(r \in \mathcal{R} \), can be assigned a unique “mode sequence” — a string over the alphabet \(\{ N, F, A \} \), Eq.(4) — according to the sequence of modes that its future continuous-time trajectory passes through on the way to the next return. This defines a partition of \(\mathcal{R} \) according to common mode sequence. We will concentrate on a specific mode sequence, \(F N A N \), and evaluate the corresponding return map, \(n(r) \). Denote hopper state (in \(\mathcal{R} \)) at the \(k \)th Poincaré sample by \(r_k \). The next Poincaré sample is given by \(r_{k+1} = n(r_k) = z \circ N_2 \circ A \circ N_1 \circ F \circ z^{-1}(r_k) \) where the factors are defined as \(N_1 := \frac{f_p}{f_p} (1st \ normal \ state), F := h^{-1} \circ f_p^3 \circ h \) (forced stance), \(A := m \circ g_p \circ f_p^3 \circ g_p^{-1} \circ m^{-1} \) (flight), \(N_2 := \frac{f_p}{f_p} + 1, \) 2nd normal stance) The forcing mode, \(F \), starts right after the Poincaré sampling and lasts for a constant interval, \(\beta \). In

\(^3\)These useful return map coordinates, \(v \) and \(a \), were proposed to us by Prof. Philip Holmes in a personal communication.
touchdown heights are the same, we have $\pi_1 \circ m \circ g_p \circ f_{TA} \circ g_p^{-1} \circ m^{-1} = \id_k$. Therefore, the only energy change occurs during the k^{th} cycle stance, which consists of $\mathcal{F}N\mathcal{A}N$ modes from its touchdown to take-off, $n_1(r) = \pi_1 \circ f_{TA} \circ h^{-1} \circ f_{TA} \circ h \circ z^{-1}(r)$. For ease of exposition in the sequel, we reorganize this expression exploiting the fact that $h_1 (\text{Eq.}(6))$ and $\pi_1 \circ z^{-1}$ (Eq.7) are linear in η and v, respectively.\footnote{Note that $\varepsilon(a)$ models the total loss due to viscous friction in stance, while $l_1(a)$ and $l_2(a)$ represent the effects of the forcing start and forcing end parameter alternations, respectively.}

$$n_1(r) := v \rho(a), \quad \rho(a) := \varepsilon(a) l_1(a) l_2(a),$$

$$\varepsilon(a) := \exp[-\mu(a + \beta + T_{ST}(a))]$$

$$l_1(a) := \frac{T_{ST}(a) - \beta}{T_{ST}(a) - 2\nu \rho(a)}$$

$$l_2(a) := \frac{h_1^{-1} \circ T_3 \circ h_2 \circ T_2(a)}{T_{ST}(a)}$$

where $T_2(s) := s + \delta v D$, and $T_3(s) := s + \gamma_p \beta$. Second, we derive the phase delay component of the map, $n_2(r) := \pi_2 \circ n(r)$. Here, we exploit the fact that the time interval between two consecutive forcing start events is a constant, T_c. It follows that the intermediate time intervals must satisfy $\beta + T_{ST} + T_{FL} + a_{k+1} = T_c$, which yields $n_2(r) = T_c - \beta - T_{ST} - T_{FL}$. In normalized energy-phase coordinates, the angle swept by the state vector Eq. (5) is a linear function of time\footnote{The delay and the angle are related by a linear function, $\Delta \phi = \gamma_p \Delta \eta \in \mathcal{P}$ (Eq.5).}. For the normal stance, $\gamma_p = 1, \Delta \phi = \Delta \eta$, therefore, the remaining stance time, T_{ST}, can be computed as $T_{ST}(r) := T_s \circ \phi_{FE}(r)$.

$$T_4(s) := -s + \pi + \phi_{TD}$$

using the forcing end phase, which is given by $\phi_{FE} = h_2^{-1} \circ T_3 \circ h_2 \circ T_2(a)$, yielding $T_{ST}(a) := T_4 \circ h_3^{-1} \circ T_3 \circ h_2 \circ T_2(a)$. The flight duration, T_{FL}, is a linear function of the take-off speed, which is also the touchdown speed for the next step, $T_{FL}(r_k) = 2v_{k+1} = 2v_h \rho(a_k)$.

4. RETURN MAP ANALYSIS

Fixed Points

Fixed points of the return map, $n(r)$, must satisfy $n(r^*) = r^*$, which is equivalent to

$$\rho(a^*) = 1$$

$$v^* = \frac{T_s - 2\nu \rho(a^*)}{2} \cdot r^* = \left[\begin{array}{c} v^* \\ a^* \end{array} \right]$$

Clearly, the existence and number of fixed points are governed by ρ, since the second formula in Eq. (11) simply evaluates the corresponding touchdown speed for a given forcing delay value, a^*. Recall, as well, that the return map, Eq. (8) is only valid for Poincaré states in the mode sequence $\mathcal{F}N\mathcal{A}N$, so we must also require that r^* is in that subset as well\footnote{From Eq.(9) and Eq.(11) it follows that $a^* \in [0, \alpha] \Rightarrow r^* \in \mathcal{F}N\mathcal{A}N$.}, as characterized in Eq.(9). We will call the fixed points of n “valid” if and only if they are in this mode sequence. Figure 5 illustrates three different cases, where Eq.(8) can have one, two or no valid

\begin{itemize}
 \item \textbf{Fixed Points}
 \item \textbf{Fixed Points}
 \item \textbf{Fixed Points}
\end{itemize}
fixed points. Figure 6 summarizes the numerical parameter space study that illustrates the relationship between the existence of valid fixed points and the controller (forcing) parameters, \(\Delta \rho \) and \(\beta \).

Figure 5: The plots of the \(\rho(a) \) and \(T_{ST}(a) \) functions \((\rho_{p_0} = 1.2 \text{ and } \beta = 0.5)\) for three different \(\mu \) values resulting in one, two and no valid fixed points.

Conjecture 1: For any \(\mu > 0 \) there exists a non-empty set \(B_1(\mu) \subseteq B \), such that for all \((\Delta \rho, \beta) \in B_1(\mu), \rho(a^*) = 1 \) has a real root, and all the solutions, \(a^* \), satisfy \(|\rho'(a^*)| < 0 \). Furthermore, there is a unique \(a^* \in [0, \alpha] \) such that \(\rho'(a^*) > 0 \).

Figure 6: Numerical computation of \(B_1(\mu) \) for; (a) \(\mu = 0.05 \), (b) \(\mu = 0.25 \). The white region is the open set of parameter values, \(\beta \) and \(\Delta \rho \), yielding a unique valid fixed point satisfying \(\rho'(a^*) > 0 \). In the gray region, even though \(\rho(a) = 1 \) has roots, all of them are invalid. Finally, there is no \(\rho(a) \) unity crossing for the parameter pairs in the black region.

Local Stability Analysis

The return map (Eq. (8)) must be linearized about the fixed points to determine local stability. The Jacobian of the return map evaluated at the fixed points is given by

\[
J(r^*) := Dn(r)|_{r^*} = \begin{bmatrix}
1 - T_{ST}(a^*) - 2r^*\rho'(a^*) \\
-2 - T_{ST}(a^*) - 2r^*\rho'(a^*)
\end{bmatrix}
\]

with two eigenvalues, \(\lambda_{\pm}(r^*) = \frac{1}{2} \left(\text{tr} \pm \sqrt{\Delta} \right) \) where \(\text{tr} := 1 - T_{ST}(a^*) - 2r^*\rho'(a^*) \) is the trace, and \(\Delta := (1 - T_{ST}(a^*) - 2r^*\rho'(a^*))^2 + 4T_{ST}^2(a^*) \) is the discriminant of \(J(r^*) \). The following results obtain from direct computation.

Lemma 2: The determinant of the Jacobian at the fixed points is \(|J(r^*, a^*)| = -T_{ST}^2(a^*) \).

Lemma 3: The first derivative of \(T_{ST}(a) \) with respect to \(a \) is related to \(\rho(a) \) (Eq. (10)) by

\[
\frac{dT_{ST}(a)}{da} = -\left(\frac{1}{l_1(a)} \right)^2
\]

(12)

Corollary 2: \(T_{ST} \) is a negative definite function whose magnitude is constrained depending on the dimensionless normalized damping coefficient, \(\mu \).

\[
\mu > 0 \quad \Leftrightarrow \quad -T_{ST}(a^*) \in (0, 1)
\]

(13)

Proposition 2: For \(\mu > 0 \), any fixed point, \(r^* \), satisfying \(\rho'(a^*) < 0 \) has a real eigenvalue outside the unit circle for all \(\nu > 0 \), and therefore, is unstable.

Proof:

Define a discriminant bound, \(\Delta := (1 - T_{ST}(a^*)^2 + 4T_{ST}^2(a^*)) \), and a trace bound, \(\text{tr} := 1 - T_{ST}(a^*) \). Corollary 2 implies that for \(\mu > 0 \), we have \(\text{tr} > 1 \) and \(\Delta = (1 + T_{ST}(a^*)^2) > 0 \). Therefore, for \(\nu > 0 \) and \(\rho'(a^*) < 0 \), \(\text{tr} > \text{tr} > 1 \) and \(\Delta > \Delta > 0 \), hence, \(\lambda_{\pm} = 1/2 \left(\text{tr} + \sqrt{\Delta} \right) > 1/2(\text{tr} + \sqrt{\Delta}) = 1 \), which is on the real axis and outside the unit circle.

Proposition 3: For \(\mu > 0 \), any fixed point, \(r^* \), satisfying \(\rho'(a^*) > 0 \) has two complex conjugate eigenvalues inside the unit circle, when \(\nu \in V_1 := (\nu, \nu) \), and two real eigenvalues inside the unit circle, when \(\nu \in V_2 := (0, \nu) \cup (\nu, \nu) \), and therefore, is stable for all \(\nu \) such that \(\nu^* \in V_s \), where

\[
V_s := (0, \nu).
\]

(14)

and \(\nu, \nu, \) and \(\nu \) are defined in the proof below.

Proof:

Since \(\rho'(a^*) > 0 \), \(\Delta \) is a quadratic function of \(\nu^* \) possessing two positive roots, \(0 < \nu < \nu \). We partition the touchdown speed space, \(\mathbb{R}_+ \), into 3 cells according to the sign of \(\Delta \): \(V_{r1} := (0, \nu) = \{ \nu | 0 \leq \Delta(\nu^*) < \Delta \} \); \(V_{r2} := (\nu, \nu) = \{ \nu | \Delta(\nu^*) < 0 \} \); and \(V_{r3} := (\nu, \infty) = \{ \nu | \Delta(\nu^*) > 0 \} \).

For all \(\nu \in V_{r1} \), the discriminant and trace are monotonically decreasing and bounded by \(0 < 2\sqrt{-T_{ST}^2(a^*)} < tr < 1 - T_{ST}(a^*) \), \(0 < \Delta \leq \Delta \). Therefore, the eigenvalues are real, and inside the unit circle.

For all \(\nu \in V_2 \), the discriminant is negative, \(\Delta < 0 \). Therefore, the eigenvalues of \(J(a^*) \) are complex conjugate. Lemma 2 states that \(|\lambda_{\pm}|^2 = -T_{ST}^2(a^*) \), which is
known to be less than unity by Corollary 2 for \(\mu > 0 \). Therefore, both eigenvalue functions, \(\lambda_\pm \), are complex and lie on the circle with radius \(\sqrt{-T_{SF}(a^*)} \) inside the unit circle.

For \(v^\ast \in V_\varepsilon \) the eigenvalues are real, and by continuity, \(\lambda_\pm(v^\ast) = \text{tr}(\Psi) = -\sqrt{-T_{SF}(a^*)} > -1 \) Note that \(\text{tr} \) is monotonically decreasing, and \(\Delta \) is monotonically increasing for \(v^\ast \in V_\varepsilon \). Let \(\overline{\lambda}(v^\ast) := \lambda_\pm^{-1}(-1) \). It follows that \(\forall v^\ast > \overline{\lambda} \), \(\lambda_-(v^\ast) < -1 \). Hence, for \(v^\ast \in (\overline{\lambda}, \overline{\lambda}) \) the eigenvalues are real and inside the unit circle.

Theorem: In the presence of viscous friction, \(\mu > 0 \), the clock controlled 1-DOF hopper, Eq. (4), has a locally asymptotically stable limit cycle (hopping gait) for the mode sequence \(\mathcal{F}_N^\Lambda \), if there exists a valid \(a^\ast \) such that \(\rho(a^*) = 1 \) and \(\rho'(a^*) > 0 \) (Eq. (10)), and \(T_\varepsilon \) is chosen so that \(v^\ast \in V_\varepsilon \) (Eq. (14)).

Proof:
For a fixed \(a^\ast \), Eq. (11) shows that \(v^\ast \) is completely determined by choice of \(T_\varepsilon \). From Proposition 3, the valid fixed point, \(r^\ast = (n^\ast, a^\ast) \), is locally asymptotically stable, if \(\rho'(a^*) > 0 \) and \(v^\ast \in V_\varepsilon \) when \(\mu > 0 \).

Corollary 3: If there exists a valid \(a^\ast \) such that \(\rho(a^*) = 1 \) and \(\rho'(a^*) > 0 \), and \(T_\varepsilon \) is chosen so that \(v^\ast \in V_\varepsilon \), then \(\mathcal{F}_N^\Lambda \) contains an open positively invariant attracting subset.

5. CONCLUSION

We have presented a simple vertical spring-mass hopping model modulated by a biologically inspired clock-based feedback strategy for controlling gait — in this simple setting, steady state hopping height. Our stability results take the form of effectively computable sufficient conditions imposed upon the roots of Eq.(11). As we state in Conjecture 1, it is clear from numerical study (although not yet formally demonstrated) that these sufficient conditions are always satisfied for one and only one fixed point over a significant portion of those physically meaningful parameter values consistent with lossy operating conditions. Further, we suspect that losses in the mechanical system are necessary for stability of the coupled system when the control is imposed in this feedback manner with no sensory feedback pathway.

The longer term goal of this research would be to leverage an understanding of more elaborate (i.e., mechanically and biologically more realistic models) from relationships between the controller parameters and the system behavior exhibited by this caricature. Moreover, we are investigating “low bit rate” feedback schemes that confer stability in the absence of mechanical losses and greatly increase the domain of attraction in all circumstances. Finally, we are looking into parallel composition and synchronization [10] of CPG-based controllers to handle mechanical systems of higher degree of freedom, such as the hypothetical SLIP [18] and physically extant Rhex [3, 19].

6. REFERENCES

