n-Distributivity, Dimension and Carathéodory's Theorem

Leonid Libkin
University of Pennsylvania

Follow this and additional works at: http://repository.upenn.edu/cis_reports

Recommended Citation

This paper is posted at ScholarlyCommons. http://repository.upenn.edu/cis_reports/377
For more information, please contact repository@pobox.upenn.edu.
Abstract
A. Huhn proved that the dimension of Euclidean spaces can be characterized through algebraic properties of the lattices of convex sets. In fact, the lattice of convex sets of \mathbb{R}^n is $n+1$-distributive but not n-distributive. In this paper his result is generalized for a class of algebraic lattices generated by their completely join-irreducible elements. The lattice theoretic form of Carathéodory's theorem characterizes n-distributivity in such lattices. Several consequences of this result are studies. First, it is shown how infinite n-distributivity and Carathéodory's theorem are related. Then the main result is applied to prove that for a large class of lattices being n-distributive means being in a variety generated by the finite n-distributive lattices. Finally, n-distributivity is studied for various classes of lattices, with particular attention being paid to convexity lattices of Birkhoff and Bennett for which a Helly type result is also proved.

Comments

This technical report is available at ScholarlyCommons: http://repository.upenn.edu/cis_reports/377
n-distributivity, dimension and Carathéodory's theorem

MS-CIS-92-71
LOGIC & COMPUTATION 51

Leonid Libkin

University of Pennsylvania
School of Engineering and Applied Science
Computer and Information Science Department
Philadelphia, PA 19104-6389

September 1992
A. Huhn proved that the dimension of Euclidean spaces can be characterized through algebraic properties of the lattices of convex sets. In fact, the lattice of convex sets of \mathbb{E}^n is $n+1$-distributive but not n-distributive. In this paper his result is generalized for a class of algebraic lattices generated by their completely join-irreducible elements. The lattice theoretic form of Carathéodory's theorem characterizes n-distributivity in such lattices. Several consequences of this result are studied. First, it is shown how infinite n-distributivity and Carathéodory's theorem are related. Then the main result is applied to prove that for a large class of lattices being n-distributive means being in a variety generated by the finite n-distributive lattices. Finally, n-distributivity is studied for various classes of lattices, with particular attention being paid to convexity lattices of Birkhoff and Bennett for which a Helly type result is also proved.

1 Introduction

It was discovered recently that the dimension of Euclidean spaces (more generally, of vector spaces over ordered division rings) has a lattice theoretic characterization. There were two approaches to the problem, both getting dimension as an algebraic property of lattices of convex sets. A. Huhn [11] studied the lattice of convex sets of n-dimensional Euclidean space \mathbb{E}^n. He observed that dimension can be characterized via n-distributivity. A lattice L is called n-distributive [10] if, for any x, y_0, \ldots, y_n, the following equation holds:

\[(D_n) \quad x \land \bigvee_{i=0}^{n} y_i = \bigvee_{i=0}^{n} (x \land \bigvee_{j \neq i} y_j)\]

Huhn proved that the lattice of convex sets of \mathbb{E}^n, denoted by $Co(\mathbb{E}^n)$, is $n+1$-distributive but is not n-distributive. The main tool to prove this result was Carathéodory's theorem saying that in \mathbb{E}^n, if a point is in the convex hull of $m > n+1$ points, then it is in the convex hull of at most $n+1$ of those points [25]. Moreover, it was shown that the dual of $Co(\mathbb{E}^n)$ is $n+1$-distributive but is not n-distributive. This fact was derived from Helly's theorem saying that in \mathbb{E}^n, a finite family of convex sets has a nonempty intersection whenever any $n+1$ sets have a non-empty intersection [25].
In [4] Birkhoff and Bennett introduced convexity lattices which arise naturally when one studies a ternary relation of betweenness β, $(xyz)\beta$ meaning y lies between x and z, and the lattice of convex sets with respect to this relation. A set X is called convex if $x, z \in X$ and $(xyz)\beta$ imply $y \in X$. Several restrictions reminiscent of Hilbert’s connection and order axioms were imposed. The modular core of a convexity lattice was interpreted as the lattice of affine flats which was shown to be a geometric lattice under certain conditions. Its height (to be more precise, height minus one) was interpreted as the dimension. Of course, if β is the usual betweenness in \mathbb{E}^n, such defined dimension of $Co(\mathbb{E}^n)$ is n. It was proved in [4] that lattice theoretic versions of theorems of Radon, Helly and Carathéodory determine the dimension.

The two approaches are not unrelated at all. In fact, one can easily rewrite the proof of [11] to show that if Carathéodory’s theorem of dimension n holds in a convexity lattice (which means its dimension defined as the height of the modular core is n [4]) then this convexity lattice is indeed $n + 1$-distributive but not n-distributive. However, being isomorphic to $Co(\mathbb{E}^n)$ or even being a convexity lattice is too much of an assumption to prove that Carathéodory’s theorem and n-distributivity are related. Convexity lattices (of which $Co(\mathbb{E}^n)$ is an example) enjoy some nice algebraic properties. In particular, they are algebraic atomistic lattices. We will show that being algebraic and atomistic is enough to prove the intimate connection between n-distributivity and the lattice-theoretic version of Carathéodory’s theorem. In fact, even this is too strong: all that is needed is algebraicity and the assumption that every element of a lattice is the join of completely join-irreducible elements below it.

n-distributivity can be viewed as a notion weaker than distributivity: D_n implies D_m if $n < m$ and D_1 is the usual distributivity. It is well-known that algebraic distributive lattices satisfy the law of infinite join-distributivity: $x \land \bigvee_{i \in I} y_i = \bigvee_{i \in I} (x \land y_i)$ [12]. Complete lattices satisfying this law are called frames. They may arise as lattices of open sets of topological spaces. It was shown in [13] that the ideal completion is left adjoint to the forgetful functor from the category of frames to the category of distributive lattices. Furthermore, a certain subcategory of the category frames which corresponds to so-called coherent spaces turns out to be equivalent to the category of distributive lattices. We shall use the main characterization theorem to extend these results to n-distributivity. Every algebraic n-distributive lattice satisfies the infinite n-distributive law:

$$(ID_n) \quad x \land \bigvee_{i \in I} y_i = \bigvee_{K \subseteq I, |K|=n} (x \land \bigvee_{j \in K} y_j)$$

It will be shown that the ideal completion is left adjoint to the forgetful functor from ID_n to D_n considered as categories. To find an analog of the second fact mentioned above, we consider convexities rather than topologies. There is a notion of an (abstract) convexity [28, 30, 8] and the abstract (or axiomatic) theory of convex spaces is well-developed. In this paper we define what it means for an abstract convexity to be n-dimensional. Having defined it, we show that n-dimensional convexities can be given the structure of a category which is equivalent to a certain full subcategory of the category of $n + 1$-distributive lattices.

So much for categories, let’s turn to varieties. Let Δ_n be the variety of n-distributive lattices and $\Delta_n^\mathcal{F}$ the minimal variety that contains all finite n-distributive lattices, i.e. $\text{HSP}(\Delta_n \cap \mathcal{F})$ where \mathcal{F} is the class of finite lattices. It was proved in [11] that $Co(\mathbb{E}^n)$ is in $\Delta_n^\mathcal{F}$ and that $M \cap \Delta_n = M \cap \Delta_n^\mathcal{F}$ where
M is the variety of modular lattices. In this paper we generalize these results in two ways using our main characterization of n-distributivity. First, any algebraic lattice in which every element is the join of completely join-irreducible elements is in Δ_n iff it is in Δ_n^F, hence the first result. Furthermore, if a variety \mathcal{V} is such that any lattice $L \in \mathcal{V}$ can be embedded into $L' \in \mathcal{V}$ such that L' is algebraic, every element of L' is the join of completely join-irreducible elements and the embedding preserves identities, then $\mathcal{V} \cap \Delta_n = \mathcal{V} \cap \Delta_n^F$. Since M is such, we obtain the second result.

Our characterization of n-distributivity via the Carathéodory condition can be applied to obtain nice characterizations of n-distributivity in several classes of lattices. For example, in geometric lattices n-distributivity is related to the sizes of circuits of underlying matroids. As a by-product of our study of n-distributivity in planar lattices we show that any lattice of the order-theoretic dimension n is n-distributive.

Having forgotten about convexity lattices for a while, we return to them in the last section. It is shown that a convexity lattice of dimension n is what we call “an abstract convexity of dimension n” which is defined in terms of n-distributivity when we establish the equivalence of categories. Then we use Helly’s theorem for convexity lattices to show that their dimensions can be defined via the dual n-distributivity as well.

In the rest of this section we give all necessary definition (of course, familiarity with the basic concepts of lattice theory is assumed. We follow the terminology of [12]). The rest of the paper is organized in five sections. In Section 2 we prove the main theorem stating that an algebraic lattice in which every element is the join of completely join-irreducible elements is n-distributive iff Carathéodory’s theorem of dimension $n - 1$ holds. Using this result, we prove a characterization theorem for the infinite n-distributivity and establish the equivalence of categories of what we call convexities of dimension $n - 1$ and certain n-distributive lattices. In Section 3 the results about varieties Δ_n and Δ_n^F are proved. In Section 4 we consider examples. Section 5 deals with convexity lattices. Concluding remarks are given in Section 6.

Let L be a complete lattice. An element x of L is called completely join-irreducible if $x = \bigvee X$ implies $x \in X$. The set of all completely join-irreducible elements is denoted by $CJ(L)$. A complete lattice L is called CJ-generated if $x = \bigvee CJ(x)$ where $CJ(x) = \langle x \rangle \cap CJ(L)$ (they were called V_1-lattices in [27]). An element x is called complete prime if $x \leq \bigvee X$ implies $x \leq x'$ for some x' in X and n-complete prime if there are n elements $x_1, \ldots, x_n \in X$ such that $x \leq x_1 \vee \ldots \vee x_n$. The set of n-complete primes is denoted by $CP_n(L)$.

A complete lattice is called atomistic if every element in it is the join of atoms. Atomistic lattices are obviously CJ-generated. The lattice $Co(I\mathbb{E}^{n-1})$ is atomistic and Carathéodory’s theorem has the following lattice theoretic formulation: Given atoms $a, b_1, \ldots, b_m \in Co(I\mathbb{E}^{n-1})$ such that $a \leq b_1 \lor \ldots \lor b_m$ and $m > n$, there exist n indices i_1, \ldots, i_n in $\{1, \ldots, m\}$ such that $a \leq b_{i_1} \lor \ldots \lor b_{i_n}$. We use $n - 1$-dimensional space here because the least k such that the lattice of convex sets becomes k-distributive is the dimension plus one.

Motivated by this, we give the following definition. A CJ-generated lattice L is said to satisfy the Carathéodory condition of dimension $n - 1$, or (cc_n) for short, if the following holds:
If \(a, b_1, \ldots, b_m \in CJ(L) \), \(a \leq b_1 \lor \ldots \lor b_m \) and \(m > n \), then there exist \(n \) indices \(i_1, \ldots, i_n \) in \(\{1, \ldots, m\} \) such that \(a \leq b_{i_1} \lor \ldots \lor b_{i_n} \).

The Carathéodory rank of a lattice is the minimal \(n \) such that \((cc_n) \) holds. If no such \(n \) exists, the rank is \(\infty \). Similarly, the Huhn rank of a lattice is the minimal \(n \) such that the lattice is \(n \)-distributive. If no such \(n \) exists, the rank is \(\infty \). Both Carathéodory and Huhn ranks of \(\text{Co}(\mathbb{E}^{n-1}) \) are \(n \).

2 \(n \)-distributivity and the Carathéodory condition

In this section we prove our main result stating that for algebraic CJ-lattices the Carathéodory rank equals the Huhn rank. We also study infinite \(n \)-distributivity in such lattices and discover an equivalence between a subcategory of \(n+1 \)-distributive lattices and the category of what we call convexities of dimension \(n \). Finally, it is shown how \(n \)-distributivity and closure ranks [21] are related.

Theorem 2.1 Given an algebraic CJ-generated lattice \(L \), the following are equivalent:

1) \(L \) is \(n \)-distributive;
2) \(L \) is infinitely \(n \)-distributive;
3) \((cc_n) \) holds in \(L \);
4) \(CJ(L) \subseteq CP_n(L) \).

Proof: The most important part of the proof is the equivalence 1) \(\Leftrightarrow \) 3). Any infinitely \(n \)-distributive lattice is always \(n \)-distributive (just take \(I \) that consists of \(n+1 \) elements), so to prove 1) \(\Rightarrow \) 2) it is enough to show that an algebraic \(n \)-distributive lattice is infinitely \(n \)-distributive. Clearly, 4) implies 3) and only 3) \(\Leftrightarrow \) 4) needs to be shown to prove the remaining equivalence 3) \(\Leftrightarrow \) 4).

1) \(\Rightarrow \) 3). Assume that \(L \) is \(n \)-distributive but \((cc_n) \) does not hold. That means, there exist \(a, b_1, \ldots, b_m \) in \(CJ(L) \) such that \(a \leq b_1 \lor \ldots \lor b_m \) but \(a \not\leq b_{i_1} \lor \ldots \lor b_{i_n} \) for every sequence of \(n \) indices \(i_1, \ldots, i_n \in \{1, \ldots, m\} \). Then there exists a number \(p \) such that \(n \leq p < m \) and \(a \not\leq b_{i_1} \lor \ldots \lor b_{i_p} \) for every sequence of \(p \) indices \(i_1, \ldots, i_p \in \{1, \ldots, m\} \) and \(p \) is maximal such. That means, \(a \leq b_{i_1} \lor \ldots \lor b_{i_{p+1}} \) for some choice of \(p+1 \) indices. Since \(n \leq p \), \(L \) is \(p \)-distributive. Therefore,

\[
a = a \land \bigvee_{j=1}^{p+1} b_{i_j} = \bigvee_{j=1}^{p+1} (a \land \bigvee_{l \neq j} b_{i_l})
\]

Since \(a \) is join-irreducible, \(a = a \land \bigvee_{i \not\in j} b_{i_j} \) for some \(j \), i.e. \(a \leq \bigvee_{i \not\in j} b_{i_j} \) which means \(a \) is under the join of \(p \) elements from \(\{b_1, \ldots, b_m\} \), a contradiction. This contradiction shows that \((cc_n) \) holds.

3) \(\Rightarrow \) 1). Let \(L \) be an algebraic CJ-generated lattice satisfying \((cc_n) \). We must prove that \(L \) is \(n \)-distributive. The \(\geq \) inequality always holds for the left and right hand sides of \(D_n \). Since \(L \) is CJ-generated, it is therefore enough to prove that for any \(a \in CJ(L) \), \(a \leq x \land \bigvee_{i=0}^n y_i \) implies \(a \leq \bigvee_{i=0}^n (x \land \bigvee_{j \neq i} y_j) \). Let \(Y = CJ(y_0) \cup \ldots \cup CJ(y_n) \). Then \(a \leq \bigvee_{i=0}^n y_i = \bigvee Y \). Since \(a \) is compact, there is a finite subset \(\{z_0, \ldots, z_p\} \) of \(Y \) such that \(a \leq z_0 \lor \ldots \lor z_p \). If \(p \geq n \), by \((cc_n) \) there exist \(n \)
indices \(i_1, \ldots, i_n \) such that \(a \leq z_{i_1} \lor \ldots \lor z_{i_n} \) since \(a \) and all \(z_i \)'s are in \(CJ(L) \). Therefore, we may assume without loss of generality that \(p < n \). Then each \(z_i \) is under some \(y_{i_1} \) and \(a \) is below the join of at most \(n \) \(y_{j} \)'s. Hence, \(a \leq x \land \bigvee_{j \neq i} y_j \) for some \(i \) and we are done. 3) \(\Rightarrow \) 1) is proved.

Every algebraic n-distributive lattice \(L \) is infinitely n-distributive. Again, the left hand side of ID\(_n\) is always greater than the right hand side. To prove our claim we must show that any compact \(a \leq x \land \bigvee_{i \in I} y_i \) is also below

\[
\bigvee_{K \subseteq I, |K| = n} (x \land \bigvee_{j \in K} y_j)
\]

Since \(a \) is compact and \(a \leq \bigvee_{i \in I} y_i \), \(a \leq y_{i_1} \lor \ldots \lor y_{i_p} \) for finitely many \(i_1, \ldots, i_p \in I \). If \(p \leq n \), we are done. If \(p > n \), then \(L \) is \(p \)-distributive and

\[
a \leq x \land \bigvee_{j=1}^{p} y_{j} = \bigvee_{j=1}^{p} (x \land \bigvee_{l \neq j} y_{i_l})
\]

If \(p - 1 = n \), we are done; if \(p - 1 > n \), then \(L \) is \(p - 1 \)-distributive and we can apply \(p - 1 \)-distributivity to every disjunct of the right hand side thus reducing the size of the inner disjunctions by one. We repeat this procedure until the sizes become \(n \). Therefore,

\[
a \leq \bigvee_{j=1}^{p} (x \land \bigvee_{l \neq j} y_{i_l}) = \bigvee_{K \subseteq \{1, \ldots, p\}, |K| = n} (x \land \bigvee_{i \in K} y_{i_l}) \leq \bigvee_{K \subseteq I, |K| = n} (x \land \bigvee_{j \in K} y_j).
\]

This finishes the proof of infinite \(n \)-distributivity of \(L \).

3) \(\Rightarrow \) 4). Let (cc\(_n\)) hold and \(a \in CJ(L) \). We must show that \(a \in CP_n(L) \), i.e. if \(a \leq \bigvee X \), there exist \(x_1, \ldots, x_n \) in \(X \) such that \(a \leq x_1 \lor \ldots \lor x_n \). Let \(X' = \bigcup_{x \in X} CJ(x) \). Then \(a \leq \bigvee X' = \bigvee X \) and by compactness \(a \leq x_1' \lor \ldots \lor x_p' \) where \(x_1', \ldots, x_p' \in X' \). By (cc\(_n\)) we can assume \(p \leq n \). Since any element in \(X' \) is below an element in \(X \), \(a \) is below a join of at most \(n \) elements of \(X \), i.e. \(a \in CP_n(L) \).

This finishes the proof of 3) \(\Rightarrow \) 4) and the theorem. \(\square \)

Corollary 2.2 For any algebraic CJ-generated lattice, its Carathéodory and Huhn ranks coincide. \(\square \)

Our next goal is to characterize infinite \(n \)-distributivity in CJ-generated lattices via the Carathéodory condition.

Corollary 2.3 A CJ-generated lattice is infinitely \(n \)-distributive iff it is algebraic and (cc\(_n\)) holds.

Proof: If \(L \) is CJ-generated, algebraic and (cc\(_n\)) holds, then \(L \) is infinitely \(n \)-distributive by theorem 2.1. Conversely, let \(L \) be infinitely \(n \)-distributive CJ-generated lattice. It is enough to show that \(L \) is algebraic. Then the result will follow from theorem 2.1. Let \(a \in CJ(L) \). Prove that \(a \) is compact. Let \(a \leq \bigvee X \). Without loss of generality, \(X \) does not contain elements which are below \(a \). Since \(L \) is infinitely \(n \)-distributive,

\[
a = a \land \bigvee X = \bigvee_{X \subseteq I, |X| = n} (a \land \bigvee X_f)
\]
Since a is in $CJ(L)$, there exists $X_f \subseteq X$ such that $|X_f| = n$ and $a = a \wedge \bigvee X_f$, i.e. $a \leq X_f$. Thus, a is compact and L is algebraic. Corollary is proved. \hfill \square

Corollary 2.3 shows that algebraicity can not be dropped if we want to prove that 2) and 3) of theorem 2.1 are equivalent. However, the question whether algebraicity is needed is justified if we are concerned with the equivalence of n-distributivity and (cc_n). It was proved in [11] that the lattice of closed convex sets of IE^n is $n+1$-distributive. The Carathéodory condition of dimension n (i.e. (cc_{n+1})) is true in that lattice but algebraicity fails. Huhn’s proof is very geometric and required a lot of calculations and it is unclear to which extent it can be generalized. But we can show that Huhn’s result follows from theorem 2.1 and the following simple lemma:

Lemma 2.4 Let L be an algebraic lattice and L' its sublattice containing all compact element. Then a lattice identity ϵ holds in L iff it holds in L'.

Proof: Let ϵ hold in L'. Then ϵ holds when all its arguments are compact elements and therefore ϵ holds in L according to [24]. \hfill \square

Observing that if L is CJ-generated then (cc_n) is true in L if and only if it is true in L' and that algebraicity was not used to prove 1) \Rightarrow 3) of theorem 2.1, we obtain the following corollary from which the result of Huhn mentioned above follows immediately:

Corollary 2.5 Let L be an algebraic CJ-generated lattice and L' its sublattice. If L' contains all compact elements, then it is n-distributive iff (cc_n) holds. \hfill \square

In [23] Nation gives a characterization of n-distributivity which has the same flavor as theorem 2.1. It is shown that a variety V lies in Δ_n if and only if for any $L \in V$ the following condition σ_n holds: if $x \in J(L)$ and $x \leq \bigvee X$, $|X| < \infty$, then x is below a join of at most n elements of X. Notice that it is not required that the elements of X be join-irreducible. He also observed that for finite lattices n-distributivity is equivalent to σ_n. It is routine to rework the proof to show that the equivalence holds not only for finite lattices but also for lattices generated by their join-irreducible elements. σ_n can also be used to characterize n-distributivity in arbitrary lattices as follows:

Proposition 2.6 A lattice L is n-distributive iff the dual of the ideal completion of its dual, $Idl(L^*)^*$, satisfies σ_n.

Proof: If L is n-distributive then so is $Idl(L^*)^*$ and σ_n is verified as in the proof of theorem 2.1. Conversely, assume that $Idl(L^*)^* = F(L)^*$ satisfies σ_n but L is not n-distributive. Then $a = x \wedge$

1 It may be interesting to note that before I saw Pálfy’s paper (which is about modular subalgebra lattices), I suggested lemma 2.4 as an exercise for the chapter on Scott domains in Carl Gunter’s book on programming semantics (The MIT Press, 1992). However, the proof that I had in mind was different from that in [24]. Suppose ϵ holds in L'; then it holds in the ideal generated by L' since the latter is union of the ideal completions of principal ideals (x), $x \in L'$. Therefore, ϵ holds in I, the ideal generated by compact elements. The whole lattice L can be reconstructed as a lattice of ideals of I which are closed under arbitrary joins and a standard argument shows that such completion preserves identities.
\[\bigvee_{i=0}^n y_i \geq \bigvee_{i \neq j}^n (x \land y_j) = b \text{ for some } x, y_0, \ldots, y_n. \] If \(f \) is a maximal filter satisfying \((a) \subseteq f, (b) \not\subseteq f \), then \(f \) is meet-irreducible in \(F(L) \) and join-irreducible in \(\text{Idl}(L^*)^* \). The number of filters in the right hand side of \(f \geq [y_0] \land \ldots \land [y_n] \) can not be reduced for otherwise we would have \((b) \subseteq f \). This demonstrates a failure of \(\sigma_n \) in \(\text{Idl}(L^*)^* \).

We will use \(D_n \) and \(ID_n \) to denote the categories of \(n \)-distributive and infinitely \(n \)-distributive lattices. Infinite \(n \)-distributivity requires completeness as the infinite join operation is used in equation \(ID_n \).

We define morphisms in \(ID_n \) as lattice homomorphisms preserving infinite joins as well; the morphisms in \(D_n \) are just lattice homomorphisms. It was already stated that any infinitely \(n \)-distributive lattice is \(n \)-distributive.

Corollary 2.7 The ideal completion is left adjoint to the forgetful functor from \(ID_n \) to \(D_n \).

Proof: Given \(L \in D_n \), its ideal completion is \(n \)-distributive (since the ideal completion preserves identities and algebraic; hence it is infinitely \(n \)-distributive by theorem 2.1). Given a homomorphism \(f : L_1 \rightarrow L_2 \), we define \(\text{Idl}(f) : \text{Idl}(L_1) \rightarrow \text{Idl}(L_2) \) by making \(\text{Idl}(f)(\mathcal{I}) \) to be the minimal ideal of \(L_2 \) that contains \(f(\mathcal{I}) \). To show that the functor \(\text{Idl} \) is left adjoint to the forgetful functor, we have to establish a 1-1 correspondence between the sets of morphisms between \(\text{Idl}(L) \) and \(L' \) in \(ID_n \) and \(L \) and \(L' \) in \(D_n \). Given \(f : L \rightarrow L' \) in \(D_n \), define \(g = \psi(f) \) by \(g(\mathcal{I}) = \bigvee_{x \in \mathcal{I}} f(x) \). Conversely, given \(g : \text{Idl}(L) \rightarrow L' \) in \(D_n \), define \(f = \phi(g) \) by \(f(x) = g((x)) \). Clearly, \(f = \phi(g) \) is a homomorphism if \(g \) is a morphism in \(ID_n \) and \(g = \psi(f) \) preserves arbitrary joins if \(f \) is a morphism in \(D_n \). To show that \(g \) is a meet-homomorphism, we must show \(g(\mathcal{I}_1 \cap \mathcal{I}_2) = g(\mathcal{I}_1) \land g(\mathcal{I}_2) \). Calculate the right hand side by applying the law of infinite \(n \)-distributivity twice:

\[
\bigvee_{x \in \mathcal{I}_1} f(x) \land \bigvee_{y \in \mathcal{I}_2} f(y) = \\
= \bigvee_{K_2 \subseteq \mathcal{I}_2, |K_2| = n} \bigvee_{x \in \mathcal{I}_1} f(x) \land \bigvee_{y \in K_2} f(y) = \\
= \bigvee_{K_2 \subseteq \mathcal{I}_2, |K_2| = n} \bigvee_{K_1 \subseteq \mathcal{I}_1, |K_1| = n} f(\bigvee K_1 \land \bigvee K_2) = \\
= \bigvee_{K_1 \subseteq \mathcal{I}_1, K_2 \subseteq \mathcal{I}_2, |K_1| = n} f(\bigvee K_1 \land \bigvee K_2) \leq \bigvee_{x \in \mathcal{I}_1 \cap \mathcal{I}_2} f(x)
\]

which shows \(g(\mathcal{I}_1) \land g(\mathcal{I}_2) \leq g(\mathcal{I}_1 \cap \mathcal{I}_2) \). The reverse inequality is obvious. This shows that \(g \) is a morphism. It is straightforward to check that \(\phi \) and \(\psi \) are mutually inverse and establish an adjunction.

Given a CI-generated lattice \(L \), define \(C_L : 2^{CI(L)} \rightarrow 2^{CI(L)} \) by \(C_L(Y) = CI(\bigvee Y) \). Clearly, \(C_L \) is a closure operator and \(L \) is isomorphic to the lattice of its closed sets. A closure operator \(C \) on a set \(X \) is said to be of rank \(n \) if \(C(Y) = Y \) whenever \(C(Y') \subseteq Y \) for any \(Y' \subseteq Y \) such that \(|Y'| \leq n \) [21].
Corollary 2.8 If L is an algebraic CJ-generated n-distributive lattice, then C_L is of rank n.

Proof: Let $Y \subseteq CJ(L)$ and $C_p(Y') \subseteq Y$ for any n-element $Y' \subseteq Y$. Let $a \in C(X)$. Then $a \leq \bigvee X$ and by compactness $a \leq \bigvee X'$ where $X' \subseteq X$ is finite. Since L is n-distributive, (cc_n) holds and X' can be chosen to contain fewer than n elements. Then $a \in C_L(X') \subseteq X$, i.e. $C(X) = X$. □

Algebraic distributive lattices in which the dual infinite distributive law holds are generated by their complete prime elements [22]. This result can be generalized to algebraic distributive lattices in which the dual of ID_n holds. By the dual of ID_n, we mean

\[(ID_n^*) \quad x \vee \bigwedge_{i \in I} y_i = \bigwedge_{K \subseteq I, |K| = n} (x \vee \bigwedge_{j \in K} y_j)\]

Corollary 2.9 Any distributive algebraic lattice L satisfying ID_n^* is generated by its completely join-irreducible n-complete primes, i.e. $x = \bigvee (CJ(L) \cap CP_n(L) \cap \{x\})$ for every $x \in L$.

Proof: Let $x \in L$ and $y = \bigvee (CJ(L) \cap CP_n(L) \cap \{x\})$. Since the bottom element of L is in $CJ(L) \cap CP_n(L) \cap \{x\}$, $y \leq x$. If $y = x$, we are done. Assume $y < x$. Since L is algebraic, there is a compact element $a \leq x$ such that $a \nless y$. $L - \{a\}$ is closed under least upper bounds of directed sets. Hence, every element in $L - \{a\}$ is bounded above by a maximal element not under a. Let z be a element in $L - \{a\}$ which is above y. Define q as $\bigwedge (L - \{z\})$. Since $a \nless z$, $q \leq a \leq x$. Assume $q \leq z$, i.e. $\bigwedge (L - \{z\}) \leq z$. By ID_n^*,

\[z = z \vee \bigwedge (L - \{z\}) = \bigwedge_{Z \subseteq L - \{z\}, |Z| = n} (z \vee \bigwedge Z)\]

For every n-element $Z \subseteq L - \{z\}$ we have $z \leq z \vee \bigwedge Z$; if the inequality is strict, then $z \vee \bigwedge Z > a$. Since $z \nless a$, there exists an n element Z such that the inequality is not strict, i.e. $z \geq \bigwedge Z$. Let $Z = \{z_1, \ldots, z_n\}$. By distributivity, $z = z \vee (z_1 \wedge \ldots \wedge z_n) = (z \vee z_1) \wedge \ldots \wedge (z \vee z_n)$. Since z is maximal, $z \vee z_i \geq a$ for all i and $z \geq a$, a contradiction. Therefore, $q \nless z$ and $q \nless y$. Let $q \leq \bigvee X$. Since $q \nless z$, there exists $x' \in X$ which is not under z. Then $q = \bigwedge (L - \{z\}) \leq \bigwedge (X - \{z\}) \leq x'$. Hence $q \in CP_1(L) \subseteq CP_n(L)$. If $q = \bigvee X$, then again $\bigvee X = q \leq x' \leq \bigvee X$, i.e. $q = x'$ which proves $q \in CJ(L) \cap CP_n(L) \cap \{x\}$, but $q \nless y$, a contradiction. This contradiction finishes the proof. □

One may observe that in the proof, having assumed $y \leq x$ we demonstrated an element of $CP_1(L) \cap CJ(L)$ which is below x but not below y. This is apparently more than one would need for the proof so one may wonder whether distributivity is too strong and a similar result can be proved under weaker assumptions. This question remains open.

In the rest of the section we turn to the abstract theory of convexity. We augment the standard definition of a convexity by an additional clause saying that intersection of two polytopes is a polytope again (which is true of families of convex sets in vector spaces over order division rings) and then define n-dimensional abstract convexities via the Carathéodory condition. Such convexities form a category which is shown to be equivalent to a full subcategory of D_{n+1}.
Definition Given a set X, a convexity on X is a family C of subsets of X (which are called convex) such that

- $\emptyset, X \in C$ (empty set and X are convex);
- C is closed under arbitrary intersections;
- The union of a directed family of sets of C is in C;
- $\{x\}$ is in C for every $x \in X$ (every singleton is convex).

This is the standard definition to which we add one more condition. Given $Y \subseteq X$, its convex hull H_C is defined as the intersection of all $Y' \in C$ that contain Y.

- If Y_1 and Y_2 are finite subsets of X, then there exist a finite set Y such that $H_C(Y_1) \cap H_C(Y_2) = H_C(Y)$ (intersection of two polytopes is a polytope again).

The usual convexity in \mathbb{E}^n is the most famous example. For more examples see [28, 30] and Section 5.

We say that a convexity C has dimension n if it satisfies the Carathéodory condition of dimension n (which is actually (cc_{n+1})): If $x \in H_C(Y)$ where $|Y| > n + 1$, then there is an $n + 1$-element subset Y' of Y such that $x \in H_C(Y')$ and n is the minimal number with this property.

The following belongs to folklore:

Lemma 2.10 Given a convexity C, its convex sets form a lattice $L(C)$ which is atomistic and algebraic. Moreover, compact elements of $L(C)$ (which are joins of finitely many atoms) form a sublattice of $L(C)$. $L(C)$ is isomorphic to the lattice of closed sets of H_C, closures of finitely many atoms being compact elements.

The class of all convexities can be given the structure of a category by defining morphisms as follows: Given two convexities (X_1, C_1) and (X_2, C_2), a morphism $f : (X_1, C_1) \to (X_2, C_2)$ is a mapping that maps convex sets to convex sets, preserves arbitrary intersections and directed unions and maps polytopes to polytopes. The category of convexities of dimension n is denoted by Conv$_n$.

Let AD$_{n+1}$ be the full subcategory of D$_{n+1}$ that consists of atomistic lattices in which every element is a finite join of atoms and neither of which satisfies D$_n$. The following result is reminiscent of the equivalence of the categories of distributive lattices and coherent spaces and coherent maps [13].

Proposition 2.11 The categories Conv$_n$ and AD$_{n+1}$ are equivalent.
Proof: Given a convexity (X,C) in Conv, let $\Phi((X,C))$ be the lattice $K(C)$ of compact elements of $L(C)$. Since $L(C)$ is algebraic and atomistic and $(CC)_{n+1}$ holds, $L(C)$ is $n+1$-distributive by theorem 2.1. $K(C)$ is $n+1$-distributive as a sublattice of $L(C)$. It is in AD_{n+1} because its elements are finite joins of atoms of $L(C)$.

Given a lattice L in AD_{n+1}, define a convexity $(X,C) = \Psi(L)$ as follows. X is the set of atoms of L and $Y \subseteq X$ is convex if and only if any atom of L which is below $\bigvee Y'$ is in Y whenever Y' is a finite subset of Y.

Both Φ and Ψ can be easily defined for morphisms. Given $f : (X_1,C_1) \rightarrow (X_2,C_2)$, define $g = \Phi(f) : \Phi((X_1,C_1)) \rightarrow \Phi((X_2,C_2))$ in AD_{n+1} as follows. Let $x \in \Phi((X_1,C_1))$, i.e. x is a compact element of $L(C)$. Then x is a join of atoms, say, $x = a_1 \vee \ldots \vee a_n$, where a_1, \ldots, a_n correspond to elements $x_1, \ldots, x_n \in X_1$. Let X'_2 be $f(x_1) \cup \ldots \cup f(x_n)$. Then $g(x)$ is the join of all atoms of $\Phi((X_2,C_2))$ corresponding to elements of X'_2.

Conversely, given a morphism $g : L_1 \rightarrow L_2$ in AD_{n+1}, define $f = \Psi(g) : \Psi(L_1) \rightarrow \Psi(L_2)$ by $f(Y) = H_{\Psi(L_2)}(\bigcup_{y \in Y} g(\{y\})$ where Y is a subset of the set of atoms of $\Psi(L_1)$.

It is routine to verify that Φ and Ψ are functors which establish an equivalence between the two categories. \hfill \Box

3 Varieties Δ_n and $\Delta_n^\mathcal{F}$

In this section we use theorem 2.1 to prove a result which shows that a large class of n-distributive lattices lies in the variety $\Delta_n^\mathcal{F}$ generated by the finite n-distributive lattices. In fact, all lattices for which the equivalence between n-distributivity and the Carathéodory condition was proved in theorem 2.1 are such. Consequently, we show that two results of this kind proved in [11] are easy corollaries of our theorem.

Theorem 3.1 Let L be an n-distributive CJ-generated algebraic lattice. Then L is in $\Delta_n^\mathcal{F}$.

Proof: The proof is based on the idea of [11]. Let M be a finite subset of $CJ(L)$. Let L_M be the set of all finite joins of elements of M (including the bottom element 0 of L). Then (L_M, \leq) is a finite lattice but not necessarily a sublattice of L. We denote the join and the meet operations of L_M by \vee^M and \wedge^M respectively. Clearly, $x \vee^M y = x \vee y$ and $\vee M' \wedge^M \vee M'' = \vee \{x \in M' \mid \exists m' \in M', m'' \in M'' : x \leq m', x \leq m''\}$, $\bigvee \emptyset$ being 0, for any $M', M'' \subseteq M$. Given $x \in L$, define x_M as $\bigvee \{y \mid y \leq x, y \in L_M\}$.

Let $t = t(x_1, \ldots, x_n)$ be a term. By $t^M(x_1^M, \ldots, x_n^M)$ we mean the term that is obtained from t by substitution of x_i^M for x_i and changing \vee to \vee^M and \wedge to \wedge^M. Let \mathcal{M} be the family of all finite subsets of $CJ(L)$. Our goal is to prove

\begin{equation}
(1) \quad t(x_1, \ldots, x_n) = \bigvee_{M \in \mathcal{M}} t^M(x_1^M, \ldots, x_n^M)
\end{equation}

10
We prove (1) by induction on the number of operations in \(t \). If \(t \) is just a variable, \(x = \bigvee_{M \in \mathcal{M}} x^M \) follows from the fact that \(L \) is CJ-generated. Notice that \(x^M \leq x^{M'} \) if \(M \subseteq M' \), hence \(t^M(x_1^M, \ldots, x_n^M) \leq t^{M'}(x_1^{M'}, \ldots, x_n^{M'}) \).

Let \(t(x_1, \ldots, x_n) = t_1(x_1, \ldots, x_n) \lor t_2(x_1, \ldots, x_n) \). Then
\[
\bigvee_{M \in \mathcal{M}} t^M(x_1^M, \ldots, x_n^M) = \bigvee_{M \in \mathcal{M}} (t_1^M(x_1^M, \ldots, x_n^M) \lor t_2^M(x_1^M, \ldots, x_n^M)) = \bigvee_{M \in \mathcal{M}} (t_1^M(x_1^M, \ldots, x_n^M) \lor t_2^M(x_1^M, \ldots, x_n^M)) = (\bigvee_{M \in \mathcal{M}} t_1^M(x_1^M, \ldots, x_n^M)) \lor (\bigvee_{M \in \mathcal{M}} t_2^M(x_1^M, \ldots, x_n^M)) = t_1(x_1, \ldots, x_n) \lor t_2(x_1, \ldots, x_n) = t(x_1, \ldots, x_n)
\]
The last equation follows from the induction hypothesis.

Let \(t(x_1, \ldots, x_n) = t_1(x_1, \ldots, x_n) \land t_2(x_1, \ldots, x_n) \). By induction hypothesis,
\[
t(x_1, \ldots, x_n) = t_1(x_1, \ldots, x_n) \land t_2(x_1, \ldots, x_n) = \bigvee_{M \in \mathcal{M}} t_1^M(x_1^M, \ldots, x_n^M) \land \bigvee_{M \in \mathcal{M}} t_2^M(x_1^M, \ldots, x_n^M).
\]

Now we must show the equality
\[
(2) \quad \bigvee_{M \in \mathcal{M}} (t_1^M(x_1^M, \ldots, x_n^M) \land t_2^M(x_1^M, \ldots, x_n^M)) = \bigvee_{M \in \mathcal{M}} t_1^M(x_1^M, \ldots, x_n^M) \land \bigvee_{M \in \mathcal{M}} t_2^M(x_1^M, \ldots, x_n^M)
\]
since the left hand side of (2) is \(\bigvee_{M \in \mathcal{M}} t^M(x_1^M, \ldots, x_n^M) \). First, the \(\leq \) inequality clearly holds. To prove the reverse inequality, let \(z \) be a completely join-irreducible element which is below the right hand side. By compactness, there are finitely many sets \(M_1, \ldots, M_k \in \mathcal{M} \) such that
\[
z \leq \bigvee_{i=1}^k t_i^M(x_1^M, \ldots, x_n^M), \quad l = 1, 2
\]
Let \(M = M_1 \cup \ldots \cup M_k \cup \{z\} \in \mathcal{M} \). Then \(t_i^M(x_1^M, \ldots, x_n^M) \leq t_l^M(x_1^M, \ldots, x_n^M), l = 1, 2 \). Therefore, \(z \leq t_i^M(x_1^M, \ldots, x_n^M) \) for \(l = 1, 2 \) and since \(z \in M \),
\[
z \leq t_i^M(x_1^M, \ldots, x_n^M) \land t_l^M(x_1^M, \ldots, x_n^M)
\]
which finishes the proof of (2). Thus, (1) is proved.

Since \(L \) is \(n \)-distributive, \((cc_n) \) holds in \(L \). Then, from the definition of \(L_M \) it immediately follows that \((cc_n) \) holds in \(L_M \) for any \(M \in \mathcal{M} \). Since \(L_M \) is finite, it is \(n \)-distributive by theorem 2.1.

Now, let \(t_1 = t_2 \) be an \(n \)-ary lattice equation that holds in all finite \(n \)-distributive lattices. Then \(t_1 = t_2 \) holds in all lattices \(L_M \). Then, since \(t^M(x_1^M, \ldots, x_n^M) \in L_M \) for any \(M \in \mathcal{M} \) and \(t_1 = t_2 \) holds
in all lattices L_M,
\[
\begin{align*}
t_1(x_1, \ldots, x_n) &= \\
&= \bigvee_{M \in \mathcal{M}} t_1^M(x_1^M, \ldots, x_n^M) = \\
&= \bigvee_{M \in \mathcal{M}} t_2^M(x_1^M, \ldots, x_n^M) = \\
&= t_2(x_1, \ldots, x_n)
\end{align*}
\]
which proves that $L \in \Delta^F_n$. □

From theorem 3.1 we immediately conclude

Corollary 3.2 [11]2 $Co(\mathcal{E}^{n+1}) \in \Delta^F_n$. □

Notice that only once in the proof of theorem 3.1 did we refer to n-distributivity. It was needed to show that all lattices L_M are n-distributive which in turn was possible because the characterization of n-distributivity restricted to finite lattices does not make use of the \wedge operation. Therefore, theorem 3.1 admits the following generalization. Let \mathcal{P} be a universally quantified first-order sentence in the language that contains \leq, \lor and a unary predicate $J(\cdot)$. We write $L \models \mathcal{P}$ if \mathcal{P} is true in L when \leq, \lor and J have obvious interpretations. Let \mathcal{P}_c be obtained from \mathcal{P} by replacing $J(\cdot)$ by $CJ(\cdot)$, the meaning of $CJ(\cdot)$ being "completely join-irreducible". Now, assume that a variety \mathcal{V} can be described by the following condition: a variety \mathcal{V}' lies in \mathcal{V} iff $\mathcal{V}' \models \mathcal{P}$ and all finite models of \mathcal{P} are in \mathcal{V}. (It follows from [23, theorem 3.1] that Δ_n is such; in fact, [23] has more examples). Given an algebraic CJ-generated lattice L which satisfies \mathcal{P}_c, all the lattices L_M are models of \mathcal{P} since \mathcal{P} does not make use of the meet operation; therefore, they are in \mathcal{V}. Then it follows from the proof of theorem 3.1 that $L \in \mathcal{V}_{\text{fin}} = \text{HSP}(\text{finite lattices of } \mathcal{V})$. If $L \in \mathcal{V}$ and $L \not\models \mathcal{P}_c$, let M be a finite set of elements that witness the failure of \mathcal{P}_c. Then completely join-irreducible elements from M are join-irreducible in $[M]$, the sublattice generated by M, and $[M] \not\models \mathcal{P}$, i.e. $[M] \not\in \mathcal{V}$, a contradiction. Thus, $L \models \mathcal{P}_c$. Slightly modifying the argument above, one can show that the equivalence of $L \models \mathcal{P}_c$ and $L \in \mathcal{V}$ remains true if \mathcal{V} is given by $L \in \mathcal{V} \Leftrightarrow \text{Idl}(L'') \models \mathcal{P}$. (It follows from proposition 2.6 that Δ_n is such). Combining this with lemma 2.4, we obtain

Corollary 3.3 Let \mathcal{P} be a universally quantified first-order sentence in the language that contains \leq, \lor and $J(\cdot)$ but does not contain \wedge. Let \mathcal{P}_c be obtained from \mathcal{P} by replacing $J(\cdot)$ by $CJ(\cdot)$. Assume that a variety \mathcal{V} is described by either of the following conditions: $\mathcal{V}' \subseteq \mathcal{V}$ iff $\mathcal{V}' \models \mathcal{P}$ and all finite models of \mathcal{P} are in \mathcal{V}; or $\mathcal{V} = \{L \mid \text{Idl}(L) \models \mathcal{P}\}$. If L is a CJ-generated algebraic lattice and L' its sublattice containing all compact elements, then the following are equivalent:
1) $L' \in \mathcal{V}$;
2) $L' \in \mathcal{V}_{\text{fin}}$;
3) $L' \models \mathcal{P}_c$. □

2To prove this fact in [11], Huhn used another idea which exploited the fact that the compact elements of $Co(\mathcal{E}^{n+1})$ form a sublattice. The proof given in this paper is more general.
In the rest of the section we will prove two more results about Δ_n and Δ_n^F.

Proposition 3.4 Let \mathcal{V} be a lattice variety with the following property: Every lattice $L \in \mathcal{V}$ can be embedded into a CJ-generated algebraic lattice $L' \in \mathcal{V}$ and L' can be chosen to satisfy all identities of L. Then

$$\mathcal{V} \cap \Delta_n = \mathcal{V} \cap \Delta_n^F$$

Proof: Clearly, $\mathcal{V} \cap \Delta_n^F \subseteq \mathcal{V} \cap \Delta_n$. Conversely, given $L \in \mathcal{V} \cap \Delta_n$, let L' be a CJ-generated lattice into which L can be embedded. Then $L' \in \mathcal{V} \cap \Delta_n$ and by theorem 3.1 $L' \in \mathcal{V} \cap \Delta_n^F$. Then $L \in S(\mathcal{V} \cap \Delta_n^F) \subseteq \mathcal{V} \cap \Delta_n^F$. \[\square\]

From this proposition the result of [11] stating that $\mathcal{M} \cap \Delta_n = \mathcal{M} \cap \Delta_n^F$ follows immediately since \mathcal{M} satisfies the condition of proposition 3.4, see [9].

Corollary 3.5 Let L be an n-distributive lattice in which every element is a join of finitely many join-irreducible elements. Then $L \in \Delta_n^F$. In particular, $\mathcal{F} \mathcal{L} \cap \Delta_n = \mathcal{F} \mathcal{L} \cap \Delta_n^F$ where $\mathcal{F} \mathcal{L}$ is the class of lattices of finite length.

Proof: The ideal completion of L is algebraic and CJ-generated. It is n-distributive because the ideal completion preserves identities. Hence, it is in Δ_n^F and $L \in \Delta_n^F$ as a sublattice of its ideal completion. \[\square\]

4 Examples

In this section we use theorem 2.1 to study n-distributivity in several classes of lattices. The most convenient way to characterize n-distributivity for a lattice L is to calculate its Huhn rank, from now on denoted by $\text{Hn}(L)$. Then L is n-distributive iff $n \geq \text{Hn}(L)$. We consider the following classes of lattices: lattices of finite length, geometric lattices and partition lattices in particular, subsemilattice-lattices, planar lattices and convexity lattices of posets. Convexity lattices are studied separately in Section 5.

4.1 Lattices of finite length

If L is a lattice of finite length, it is vacuously CJ-generated and algebraic. If $\ell(L)$ is its length, every element is a join of at most $\ell(L)$ join-irreducible elements which means $(cc_{\ell(L)})$ holds. From theorem 2.1 we conclude

Proposition 4.1 If L is a lattice of finite length, $\text{Hn}(L) \leq \ell(L)$. \[\square\]
For finite lattices the result is even more precise:

Corollary 4.2 The Huhn rank of a finite lattice is at most the width of the poset of its join-irreducible elements. \qed

4.2 Geometric lattices

Geometric lattices arise as lattices of flats of *matroids* [1]. There are several definitions of matroids via rank functions, closures with the exchange property, independent sets, bases and circuits. The definition via family of circuits is the most suitable for our study of n-distributivity.

Definition [1] A *matroid* \(M \) is a pair \((S, \mathcal{R}) \) where \(S \) is a set and \(\mathcal{R} \) is a family of subsets of \(S \) called *circuits* that satisfies the following conditions:

- \(\emptyset \notin \mathcal{R} \) and \(\mathcal{R} \) is an antichain;
- If \(C \neq C' \in \mathcal{R} \) and \(p \in C \cap C' \) then there exists \(D \in \mathcal{R} \) such that \(D \subseteq (C \cup C') - \{p\} \);
- There exists a number \(k \) such that \(|X| \leq k \) whenever \(C \not
subseteq X \) for all \(C \in \mathcal{R} \).

We will call a matroid *simple* if it does not have one- or two-element circuits. \qed

The following lemma combines several results from [1, chapter 6].

Lemma 4.3 1) Given a matroid \(M = (S, \mathcal{R}) \), define an operation \(\overline{\cdot} \) as follows:

\[
p \in \overline{A} \iff p \in A \text{ or } \exists C \in \mathcal{R} : p \in C \subseteq A \cup \{p\}
\]

Then \(\overline{\cdot} \) is a closure operation and the lattice of closed sets is a geometric (i.e. atomistic semimodular and of finite length) lattice whose atoms correspond to elements of \(S \) if \(M \) is simple.

2) Given a geometric lattice \(L \) with the set of atoms \(S \), one can define the structure of a simple matroid \(M = (S, \mathcal{R}) \) such that the lattice of closed sets of this matroid is isomorphic to \(L \). \qed

It follows from lemma 4.3 that we can consider geometric lattices as lattices of closed sets (sometimes called *flats*) of simple matroids. Given a matroid \(M \), let \(c(M) \) be the size of the maximal circuits of \(M \).

Theorem 4.4 Given a simple matroid \(M = (S, \mathcal{R}) \) and the lattice of its flats \(L(M) \),

\[
\operatorname{Hn}(L(M)) = c(M) - 1.
\]
Proof: If C is a circuit of a matroid and $a \in C$, then $C - \{a\}$ is so-called independent set [1]. Since sizes of independent sets are bounded above [1], so are the sizes of circuits, i.e. $c = c(M)$ is finite. Since M is simple, atoms of $L(M)$ correspond to elements of S and we will always use the same letter for an element of S and the corresponding atom. Let $a \in S$ and $A \subseteq S$, $a \notin A$. Let $a \leq \bigvee A$. Then $a \in \overline{A}$ and there exists $C \in M$ such that $a \in C \subseteq A \cup \{a\}$. Applying the characterization of the closure operation from lemma 4.3 again we obtain $a \in C - \{a\}$. Since $|C| \leq c(M)$, $|C - \{a\}| \leq c(M) - 1$ which proves the Carathéodory condition with parameter $c(M) - 1$ for $L(M)$. Since $L(M)$ is algebraic and CJ-generated (in fact, atomistic), by theorem 2.1 it is $c(M) - 1$-distributive.

Now assume that the Carathéodory condition with parameter $c(M) - 2$ holds. Let C be a circuit that contains exactly $c(M)$ elements. From the definition of the closure operation it follows that $a \leq \bigvee (C - a)$ for any $a \in C$. By $(cc)_{c-2}$ we find an element $b \in C$, $b \neq a$ such that $a \leq \bigvee (C - \{a, b\})$, that is, $a \in C - \{a, b\}$. Then there exists a circuit C' such that $a \in C' \subseteq C - \{b\}$, i.e. $C' \subset C$ which contradicts the definition of matroids (circuits must form an antichain). Therefore, $L(M)$ does not obey $(cc)_{c-2}$ which finishes the proof of $H_n(L(M)) = c(M) - 1$.

If matroids are defined in terms of the closure operation satisfying the exchange property, circuits arise as minimal dependent sets, a set A being independent if $p \notin A - \{p\}$ for no $p \in A$. Since a projective geometry can be viewed as a simple matroid underlying matroid induced by the linear closure in a vector space, matroid independence being linear independence, theorem 4.4 tells us that the Huhn rank of a projective geometry is its dimension plus one, cf.[11].

As another application of theorem 4.4, we characterize n-distributivity in finite partition lattices. Let $\text{Part}(n)$ be the lattice of partitions of an n-element set.

Corollary 4.5 $H_n(\text{Part}(n)) = n - 1$.

Proof: $\text{Part}(n)$ is the lattice of flats of the polygon matroid of a complete graph with n vertices. Circuits of the polygon matroids are sets of edges which form circuits in the underlying graphs [1]. Therefore, the size of the maximal circuit of the polygon matroid of a complete graph with n vertices is n. Now $H_n(\text{Part}(n)) = n - 1$ follows from theorem 4.4. □

More generally, for any finite graph the Huhn rank of the lattice of closed sets of its polygon matroid is one less than the size of the maximal circuit.

4.3 Lattices of subsemilattices

Let (S, \cdot) be a semilattice, i.e. an algebra with one commutative associative idempotent operation. We assume that the semilattices are join, that is, the ordering is given by letting x be under y if and only if $x \cdot y = y$. The set of all subsemilattices of S forms a lattice under the inclusion ordering which we denote by $\text{Sub}(S)$. It is an atomistic algebraic lattices, atoms being singletons. The meet and join
operations are given by \(S_1 \land S_2 = S_1 \cap S_2, S_1 \lor S_2 = S_1 \cup S_2 \cup \{ s_1 \cdot s_2 \mid s_1 \in S_1, s_2 \in S_2 \} \), see [19]. To distinguish the ordering of \(S \) and \(\text{Sub}(S) \), we will denote the former by \(\subseteq \). The join operation of \(S \) is denoted by \(\sqcup \).

All nonempty subsets of an \(n \)-element set ordered by inclusion form a semilattice, the join operation being union. This semilattice is denoted by \(F(n) \). \(F(n) \) is the free semilattice with \(n \) generators.

Proposition 4.6 Given a semilattice \(S \), the lattice of its subsemilattices \(\text{Sub}(S) \) is \(n \)-distributive iff \(S \) does not contain a subsemilattice isomorphic to \(F(n + 1) \).

Proof: Suppose \(\text{Sub}(S) \) is not \(n \)-distributive. Since it is algebraic and atomistic, \((cc_n) \) does not hold. Then there exists \(k > n \) such that \(\{ a \} \leq \{ a_1 \} \lor \ldots \lor \{ a_k \} \) but for no \(i \) is \(\{ a \} \) below \(\bigvee_{j \neq i} \{ a_j \} \). Here \(a \) and \(a_i \)'s are elements of \(S \). In other words, \(a \) belongs to the subsemilattice generated by \(\{ a_1, \ldots, a_k \} \) but does not belong to any subsemilattice generated by a proper subset of \(\{ a_1, \ldots, a_k \} \). According to the definition of the join operation in \(\text{Sub}(S) \) this means that \(a = a_1 \cup \ldots \cup a_k \) but \(a \neq \bigcup_{i \in I} a_i \) for any proper subset \(I \) of \(\{ 1, \ldots, k \} \). Assume that for two different subsets \(I_1, I_2 \) of \(\{ 1, \ldots, k \} \) it holds: \(\bigcup_{i \in I_1} a_i = \bigcup_{i \in I_2} a_i \). Without loss of generality, let \(i \in I_1 - I_2 \). Then \(a = a_1 \cup \ldots \cup a_k = \bigcup_{j \neq i} a_j \), a contradiction. Hence, the subsemilattice generated by \(a_1, \ldots, a_k \) is isomorphic to \(F(k) \) and \(F(n + 1) \) is a subsemilattice of \(S \) since it is a subsemilattice of \(F(k) \). Conversely, if \(S' \) is a subsemilattice of \(S \) isomorphic to \(F(n + 1) \), let \(a_1, \ldots, a_{n+1} \) be its atoms and \(a \) its top. Then \(\{ a \} \leq \{ a_1 \} \lor \ldots \lor \{ a_{n+1} \} \) but \(\{ a \} \nsubseteq \bigvee_{j \neq i} \{ a_j \} \) for any \(i \). Hence, \((cc_n) \) does not hold and \(\text{Sub}(S) \) is not \(n \)-distributive. \(\square \)

As the first corollary we obtain the result of [18] that \(\text{Sub}(S) \) is distributive if and only if \(S \) is a chain. Another corollary of proposition 4.6 deals with dimension. The \(n \)-dimensional Euclidean space can be considered as a semilattice with the ordering being componentwise. The join operation is \(\max: (x_1, \ldots, x_n) \lor (y_1, \ldots, y_n) = (\max\{x_1, y_1\}, \ldots, \max\{x_n, y_n\}) \). Clearly, the semilattice \((\mathbb{E}^n, \max) \) contains a subsemilattice isomorphic to \(F(n) \) but no subsemilattice isomorphic to \(F(n + 1) \).

Corollary 4.7 \(\text{Sub}((\mathbb{E}^n, \max)) \in \Delta_n - \Delta_{n-1} \). \(\square \)

Finding a characterization of \(n \)-distributivity in the lattices of sublattices for an arbitrary \(n \) remains open. For 2-distributivity see [6].

4.4 Planar lattices

A finite lattice is called *planar* if its diagram can be drawn without self-intersections. Planarity is closely related to the order theoretic concept of dimension. Given a poset \((P, \subseteq) \), its dimension, \(\dim((P, \subseteq)) \) is the least number of linear orders whose intersection is the ordering \(\subseteq \). Alternatively, \(\dim((P, \subseteq)) \) is the minimal number of chains whose product contains \((P, \subseteq) \) as a subposet, see [15]. A finite lattice is planar if and only if its dimension is \(\leq 2 \) [14]. In this subsection we will show that all finite planar lattices are 2-distributive. In fact, we will derive this as a consequence of a more general result.
Proposition 4.8 Let L be a finite lattice. Then $H_n(L) \leq \dim(L)$.

Proof: Suppose that there exists a finite lattice L such that $H_n(L) > \dim(L) = n$. Then L is not n-distributive and (cc_n) does not hold. Then there exists a number $k > n$ and $k + 1$ join-irreducible elements a, a_1, \ldots, a_k such that $a \leq a_1 \vee \ldots \vee a_k$ but $a \not< \bigvee_{j \neq i} a_j$ for all $i = 1, \ldots, k$. Clearly, neither of a_i's is the bottom element of L and $\bigvee_{i \in I} a_i \neq \bigvee_{j \in J} a_j$ whenever I and J are distinct subsets of $\{1, \ldots, k\}$ (cf. the proof of proposition 4.6). Consider the subposet of L formed by the bottom element and all joins $\bigvee_{i \in I} a_i$ where $\emptyset \neq I \subseteq \{1, \ldots, k\}$. From the above observation it follows that this subposet is isomorphic to $1 \oplus F(k)$, i.e. 2^k, the lattice of subsets of a k-element set. This lattice is known to have dimension k [15], hence $\dim(L) \geq k > n$, a contradiction. This contradiction shows $H_n(L) \leq \dim(L)$.

Corollary 4.9 Any finite planar lattice is either distributive or 2-distributive.

Planar lattices were characterized in [14] via a family of forbidden subposets. To characterize distributive planar lattices one has to add N_5 and M_3 to this family. The rest of planar lattices are 2-distributive.

We have shown above that the Hunh rank of a finite lattice does not exceed its width. Alternatively, this can be concluded from proposition 4.8 and the fact that the dimension of a poset does not exceed its width [15]. Proposition 4.8 also shows that the Hunh rank of a series-parallel lattice (i.e. a lattice which does not have a subposet whose diagram looks like the letter N) is 1 or 2.

4.5 Convexity lattices of posets

Given a poset (P, \sqsubseteq), its subset is called convex if it includes, together with $x \sqsubseteq y$, any element z such that $x \sqsubseteq z \sqsubseteq y$. The lattice of convex subsets of P is called its convexity lattice and denoted by $Co(P)$, see [5]. It was proved in [5] that $Co(P)$ is atomistic, algebraic and its Carathéodory rank is at most 2. Therefore, $Co(P)$ is either 1- or 2-distributive. To characterize its Hunh rank it is enough to describe those posets P for which $Co(P)$ is distributive. Let P contain a nonsimple interval $[x, y]$ and $z \in [x, y], z \neq x, y$. Then $\{z\} \subseteq \{z\} \cup \{y\}$ in $Co(P)$ which shows that (cc_1) fails. Obviously, (cc_1) holds if all intervals are simple. Thus, we have

Proposition 4.10 Given a poset (P, \sqsubseteq), its convexity lattice $Co(P)$ is distributive or 2-distributive. It is distributive iff P is of length 0 or 1.

5 Convexity lattices

In this section we study n-distributivity and dual n-distributivity in convexity lattices. We will show that the Hunh rank of a convexity lattice coincides with its affine rank defined as the height of the
lattice of "affine flats" (in fact, the height of the modular core). Under natural assumptions about
the properties of the underlying betweenness relation convexity lattices of dimension n (equivalently,
of affine rank $n + 1$) arise as lattices of convex sets of convexities of dimension n (see section 2 for
the definition). Finally, we will relate the dual n-distributivity to dimension in convexity lattices. We
start with some terminology.

Definition [3] An atomistic lattice is called biatomic if $p \leq x \lor y$ where p is an atom and x, y are
nonzero implies $p \leq x' \lor y'$ where $x' \leq x$ and $y' \leq y$ are atoms.

Given a lattice L, (a_1, \ldots, a_n) denotes the sublattice of L generated by $a_1, \ldots, a_n \in L$.

Definition [4] A biatomic algebraic lattice L is called a convexity lattice if it satisfies the following
properties CL1 and CL2:

CL1 If p, q, r are distinct atoms, then (p, q, r) is isomorphic to 2^3 or $Co(3)$;

CL2 If p, q, r, s are distinct atoms and both (p, q, r) and (q, r, s) are isomorphic to $Co(3)$, then (p, q, r, s)
is isomorphic to $Co(4)$.

$Co(n)$ is the lattice of intervals of an n-element chain. The diagrams of $Co(3)$ and $Co(4)$ are shown
below:

```
\begin{tikzpicture}
\node at (0,0) {$Co(3)$};
\draw (0,0) -- (1,1) -- (2,0) -- (1,-1) -- cycle;
\end{tikzpicture}
```

```
\begin{tikzpicture}
\node at (0,0) {$Co(4)$};
\draw (0,0) -- (1,1) -- (2,0) -- (1,-1) -- (0,0) -- (1,0) -- (2,1) -- (1,0) -- cycle;
\end{tikzpicture}
```

The conditions CL1 and CL2 can be better understood if one thinks in terms of the betweenness
relation β. If three points are non-collinear, i.e. they form a triangle, the lattices of convex sets of
such a configuration is 2^3. If they are collinear, i.e. one of them is between the others, the lattice of
convex sets is $Co(3)$. The condition CL2 says that if two triples of points, (p, q, r) and (q, r, s) are
collinear, then all four are collinear.

Usually the definition of convexity lattices is augmented by properties reminiscent of Hilbert’s order
axioms for the betweenness\footnote{Axiomatization of elementary geometry in terms of the betweenness relation was given by Tarski [29]. One can consult that work or [4] for the motivation for the conditions to be introduced.}. To introduce them, some preliminary work needs to be done.

An element a of a lattice L is called modular if, for any $x \in L$, $c \leq a$ implies $c \lor (x \land a) = (c \lor x) \land a$. The set of modular elements is denoted by $M(L)$. The following results appeared in [4]: If L is the
lattice \(Co(V) \) of convex sets in a vector space \(V \) over an order division ring, \(M(Co(V)) \) is the meet-subsemilattice of affine flats. If \(L \) is a convexity lattice, \(M(L) \) is closed under arbitrary meets and \(1 \in M(L) \). Define

\[
X \nabla Y \overset{\text{def}}{=} \bigwedge (M(L) \cap [x \vee y])
\]

Then \((M(L), \nabla, \wedge) \) is an algebraic atomistic lattices, its atoms being the atoms of \(L \). If \(p, q \) are distinct atoms, \(p \nabla q \) is called a line. A line given by \(p \) and \(q \) consists of all atoms \(r \) such that \((p, q, r) \cong Co(\mathbb{R}) \). In other words, \(p \nabla q \) consists of all atoms \(r \) such that \(r \leq p \vee q \) or \(p \leq q \vee r \) or \(q \leq p \vee r \).

The Pasch axiom says that if a line intersects one side of a triangle internally, then it intersects another side. Formally, if \(p, q, r, s, t \) are distinct atoms and \(r \neq p \nabla q, s \leq p \nabla q \nabla r, t \leq p \vee q, t \neq p, q \) then \((s \nabla t) \wedge (p \nabla r) \neq 0 \) or \((s \nabla t) \wedge (q \nabla r) \neq 0 \). A convexity lattice is said to be a Peano convexity lattice if for distinct atoms \(p, q, r, s, t \) such that \(s \leq p \vee q \) and \(t \leq q \vee r \) there exists an atom \(w \leq (s \vee r) \wedge (p \vee t) \), see the picture below.

A convexity lattice is said to have the divisibility property if for any two distinct atoms \(p \) and \(q \) there exists an atom \(r \leq p \vee q, r \neq p, q \). It is called unbounded [17, 20] if for any \(p \) and \(q \) there exists an atom \(r \) such that \(p \leq r \vee q \) (this is reminiscent of Hilbert’s axiom II2). Equivalently, a convexity lattice is unbounded if \(0 \) and \(1 \) are the only codistributive elements [17, 20].

A convexity lattice is Peano iff it satisfies the Pasch axiom. Any convexity lattice with the divisibility property is Peano. If \(L \) is a Peano convexity lattice, \(M(L) \) has the exchange property [4]. Hence, if it is of finite length, it is a geometric lattice and its length is denoted by \(\text{aff}(L) \) and is called the affine rank of \(L \). If \(L \) is unbounded and \(\text{aff}(L) > 2 \), then \(L \) has the divisibility property [20].

Given a convexity lattice \(L \) with the set of atoms \(A \), define \(C_L \subseteq 2^A \) to be the family of sets of atoms under elements of \(L \), i.e. \(X \in C_L \) if and only if there exists \(x \in L \) such that \(X \) is the set of atoms below \(x \). Now we are ready to prove the first result of this section.

Theorem 5.1 Let \(L \) be a convexity lattice of affine rank \(n \) satisfying the divisibility property and \(A \) the set of its atoms. Then \((A, C_L) \) is an \(n-1 \)-dimensional convexity.

Proof: We need a few auxiliary definitions first. By \(A(x) \) we mean the set of atoms below \(x \). If \(L \) is a convexity of finite affine rank \(n \), a coatom of \(M(L) \) is called a hyperplane. Given a hyperplane \(h \), define a relation \(E_h \) on \(A \) by \(pE_h q \Leftrightarrow p \vee q \leq h \) or \((p \vee q) \wedge h = 0 \). Then \(E_h \) is an equivalence relation having two or three equivalence classes, \(A(h) \) being one of them [2, 20]. We denote the equivalence classes different from \(A(h) \) by \(h^+ \) and \(h^- \). \(h^- \) may not exist. \(h^+ \overset{\text{def}}{=} h \vee h^+ \) and \(h^- \overset{\text{def}}{=} h \vee h^- \) are
called the \textit{closed halfspaces} \cite{20}. \(A(h^*) = A(h) \cup A(h^*) \), where \(* \in \{+, -, \} \). Given atoms \(p_1, \ldots, p_n \), \(d = p_1 \lor \ldots \lor p_n \) is called a \textit{simplex} \cite{20} if \(p_1 \lor \ldots \lor p_n = 1 \). Its \(i \)th side is \(d^i = \bigvee_{j \neq i} p_j \).

If \(x \) is an element of \(L \), \(\nabla x \) is the minimal element of \(M(L) \) above \(x \), i.e. \(\wedge (y \in M(L) \mid y \geq x) \).

It is clear that the lattice of convex sets of \((A, C_L) \) is \(L \). To prove that \((A, C_L) \) is \(n - 1 \)-dimensional, \((c_{c_n}) \) must be shown to hold in \(L \). But this follows from \cite[theorem 19]{4}. Thus, it is enough to show that the compact elements of \(L \) form a sublattice. We start with two claims.

\textbf{Claim 1:} Let \(d \) be a simplex and \(h \) a hyperplane. Then \(d \land h^+ \) is compact.

\textbf{Proof of claim 1:} If \(h^- \) does not exist, \(d \land h^+ = d \) which is a compact element. Assume that \(h^- \) exists. Let \(d = p_1 \lor \ldots \lor p_n \) where \(p_1 \lor \ldots \lor p_n = 1 \). If all \(p_i \)'s are under \(h^- \), \(0 = d \land h^+ \) is a compact element. Now, let \(p_1, \ldots, p_k \in A(h^+) \) and \(p_{k+1}, \ldots, p_n \in A(h^-) \). For any \(i \leq k \) and \(j > k \) define \(p_{ij} = (p_i \lor p_j) \land h \). According to the definition of \(E_h, p_{ij} \neq 0 \). Moreover, it follows from the properties of the modular core elements that \(p_{ij} \) is an atom, cf. \cite{20}. Let \(d' = p_1 \lor \ldots \lor p_k \lor \bigvee_{i \leq k, j > k} p_{ij} \).

We claim \(d' = d \land h^+ \). Clearly, \(d' \leq d \land h^+ \). To prove the reverse inequality, let \(v \leq d \land h^+, v \in A \). Then, by biatomicity, there exist atoms \(q \leq p_1 \lor \ldots \lor p_k \) and \(r \leq p_{k+1} \lor \ldots \lor p_n \) such that \(v \leq q \lor r \). Since \(q \leq h^+ \) and \(r \leq h^- \), \(w = (q \lor r) \land h \) is an atom and \(v \leq w \lor q \). If \(w \) does not coincide with any of \(p_{ij} \)'s, consider the line \(w \lor p_{ij} \). By \cite[theorem 10]{4} there exists an index \(l \) and an atom \(s \leq d_l \) such that \(w \leq p_{ij} \lor s \). Since \(s \leq p_{ij} \lor w \leq h \), this shows \(w \leq \bigvee_{i=1}^n (d_i \land h) \). Now, \(d' \land h = (h \land (\bigvee d^i)) \land d^i \). If \(\nabla d^i \leq h \), then \(h \lor \nabla d^i = d^i \) and \((h \lor \nabla d^i) \land d' \leq p_1 \lor \ldots \lor p_k \). If \(h \neq \nabla d^i \), then \(h \land \nabla d^i \) is a hyperplane in \(\nabla d^i \) because \(M(L) \) is a geometric lattice and \(h \land d^i = \bigvee_{i,j} (h \land d^{i,j}) \). Continuing this process, we finally obtain \(w \leq p_1 \lor \ldots \lor p_k \lor \bigvee_{i,j} (h \land (p_i \lor p_j)) \) where \((i,j) \)'s range over a set of pairs of indices. Since \(h \land (p_i \lor p_j) \) is either \(p_i \lor p_j \) (and then \(i,j \leq k \) or \(0 \) or \(p_{ij} \), this shows \(w \leq d' \) and \(v \leq d' \) as \(q \leq d' \). Hence, \(d' = d \land h^+ \). Since \(d' \) is the join of finitely many atoms, it is compact. Claim 1 is proved.

Using claim 1, we can prove the following.

\textbf{Claim 2:} If \(x \) is a compact element and \(h \) is a hyperplane, then \(x \land h^+ \) is compact.

\textbf{Proof of claim 2:} Assume without loss of generality that \(\nabla x = 1 \) (if this is not the case, consider \(h' = h \land (\nabla x) \). Then, if \(x \not\subset h, h' \) is a hyperplane in \((\nabla x) \)). Since \(\text{aff}(L) = n \), the Carathéodory condition \((c_{c_n}) \) holds \cite{4}. Therefore, there exist simplexes \(d_1, \ldots, d_i \) such that \(x = d_1 \lor \ldots \lor d_i \) and, moreover, \(A(x) = A(d_1) \cup \ldots \cup A(d_i) \). Let \(x_i = d_i \land h^+ \). Then \(x \land h^+ = \bigvee_i x_i \), which proves compactness of \(x \land h^+ \).

Now, let \(x, y \) be two compact elements. Since \(x \land y = (x \land (\nabla x)) \land (y \land (\nabla x)) \), we may assume without loss of generality that \(\nabla x = 1 \). Again, \(A(x) = \bigcup_{i=1}^n A(d_i) \) and \(x = \bigvee_{i=1}^n d_i \) where \(d_i \)'s are simplexes. According to \cite[theorem 15]{20}, for each simplex \(d_i \), there exist \(n \) hyperplanes \(h_{ij}, j = 1, \ldots, n \) such that \(d_i = \bigwedge_{j} h_{ij}^+ \). Then, according to claim 2, \(d_i \land y = y_i \) is a compact element. We claim \(x \land y = \bigvee_i y_i \). Clearly, \(y_i \leq x \land y \). Conversely, given an atom \(p \leq x \land y \), there exists an index \(i \) such that \(p \leq d_i \). Hence, \(p \leq y_i \). Thus, \(x \land y \) is compact, which finishes the proof of the theorem.

\textbf{Corollary 5.2} \textit{Given a convexity lattice} \(L \) \textit{with the divisibility property,} \(\text{aff}(L) = H_n(L) \).

\hfill \Box
In the rest of the section we will show that the affine rank can be characterized via the dual n-distributivity as well. The key lemma establishes the relationship between the dual n-distributivity and the Helly condition of dimension n in a class of lattices that, as we shall show, includes many convexity lattices. The Helly condition of dimension n, reminiscent of Helly’s theorem, reads as follows:

Let L be a lattice with 0 and $x_1, \ldots, x_k \in L$, $k > n + 1$. Then $\bigwedge_{i=1}^k x_i \neq 0$ whenever $\bigwedge_{j=1}^{n+1} x_{ij} \neq 0$ for any sequence i_1, \ldots, i_{n+1} of indices.

Lemma 5.3 Let L be a biatomic algebraic lattice satisfying the following property: If x_0, x_1, y_0, y_1 are atoms and p is an atom below $x_i \lor y_i$ for $i = 0, 1$, then for any atom $x \leq x_0 \lor x_1$ there exists an atom $y \leq y_0 \lor y_1$ such that $p \leq x \lor y$. Then L is dually n-distributive if the Helly condition of dimension $n - 1$ holds.

Proof: We first prove that the condition of lemma implies the following, more general property: If $x_0, \ldots, x_k, y_0, \ldots, y_k$ are atoms and p is an atom below $x_i \lor y_i$ for all $i = 1, \ldots, k$, then for any atom $x \leq x_0 \lor \ldots \lor x_k$ there exists an atom $y \leq y_0 \lor \ldots \lor y_k$ such that $p \leq x \lor y$. The proof is by induction on k. For $k = 1$ this is the condition of lemma. For an arbitrary k, by biatomicity there exists an atom $x' \leq x_1 \lor \ldots \lor x_k$ such that $x \leq x_0 \lor x'$. By induction hypothesis, there exists an atom $y' \leq y_1 \lor \ldots \lor y_k$ such that $p \leq x' \lor y'$. Then there exist an atom $y \leq y_0 \lor y' \leq y_0 \lor \ldots \lor y_k$ such that $p \leq x \lor y$.

Let the Helly condition of dimension $n - 1$ hold. To prove that L is dually n-distributive, it is enough to show that for any atom p,

$$p \leq \bigwedge_{i=0}^n (x \lor \bigwedge_{j \neq i} y_j) \implies p \leq x \lor \bigwedge_{i=0}^n y_i$$

Let p be below the left hand side. If any $\bigwedge_{j \neq i} y_j$ is 0, then p is trivially under x. Assume $\bigwedge_{j \neq i} y_j \neq 0$ for all i. Then for any i there exist atoms $p_i \leq x_i$ and $q_i \leq \bigwedge_{j \neq i} y_j$ such that $p \leq p_i \lor q_i$. Define y'_j as $\bigvee_{j \neq i} q_i$. Then $q_i \leq \bigwedge_{j \neq i} y'_j$. By the Helly condition, there exists an atom $q \leq \bigwedge_{i=0}^n y'_i$. Then $q \leq q_0 \lor \ldots \lor q_{n-1}$ and there exists an atom $r \leq p_0 \lor \ldots \lor p_{n-1} \leq x$ such that $p \leq r \lor q \leq x \lor \bigwedge_{i=0}^n y'_i \leq x \lor \bigwedge_{i=0}^n y_i$, proving dual n-distributivity.

Theorem 5.4 Let L be an unbounded convexity lattice of affine rank n, $n \geq 3$. Then L is dually n-distributive but not dually n - 1-distributive.

Proof: Since $\text{aff}(L) \geq 3$, L has the divisibility property [20]. Therefore, L satisfies the condition of lemma 5.3, see [20, lemma 1]. According to [4], the Helly condition of dimension $n - 1$ is true in L. Therefore, L is dually n-distributive by lemma 5.3.

To show that L is not n - 1-distributive, notice that the Helly condition of dimension $n - 2$ does not hold [4]. Therefore, there exist $y_1, \ldots, y_n \in L$ such that each $\bigwedge_{j \neq i} y_j$ contains an atom q_i but $\bigwedge_{i=1}^n y_i = 0$. Some q_i’s may be the same. Let $\{q_1, \ldots, q_k\}$ be distinct elements of $\{q_1, \ldots, q_n\}$, $k \leq n$. Clearly, we can assume that $k > 1$ for otherwise q_1 would be in $\bigwedge y_i$. Using CL1 and CL2, it is easy
to show that there exists q_i which is not under the join of all q_j's, $j \neq i$. Without loss of generality, let $i = 1$. Since L is unbounded, find an atom r_1 such that $q_1 \leq r_1 \vee q_i$, $i = 2, \ldots, k$. Let $x = r_2 \vee \ldots \vee r_k$. If $q_1 \leq x$, then $q_1 \leq r_2 \vee r_2'$ where r_2' is an atom under $r_3 \vee \ldots \vee r_k$. By the property proved in lemma 5.3, there exists an atom $q_2' \leq q_3 \vee \ldots \vee q_k$ such that $q_1 \leq r_2' \vee q_2'$. Then from CL2 it follows that q_1, q_2, r_2', r_2' lie on the same line and then it is easy to show that $q_1 \leq q_2 \vee q_2' \leq q_2 \vee \ldots \vee q_k$, a contradiction. Hence, $q_1 \nless x$.

Let $y'_i = \bigvee_{j \neq i} q_j$. Then $q_i \in \bigwedge_{j \neq i} y'_i$ and $\bigwedge_{i} y'_i \leq \bigwedge_{i} y_i = 0$. We have: $x \vee \bigwedge_{i=1}^n y'_i = x \nless q_1$ but $q_1 \leq x \vee \bigwedge_{j \neq i} y'_j$ for any $i = 1, \ldots, n$, hence $q_1 \leq \bigwedge_{i=1}^n (x \vee \bigwedge_{j \neq i} y'_j)$. Therefore, L is not $n-1$-distributive.

The assumption $\text{aff}(L) \geq 3$ was needed only in order to prove that L has the divisibility property. Since the divisibility property is true in $\text{Co}(\mathbb{E}^n)$ for an arbitrary n, we obtain

Corollary 5.5 [11] The dual of $\text{Co}(\mathbb{E}^n)$ is in $\Delta_{n+1} - \Delta_n$.

6 Concluding remarks

In this paper we have developed the idea of [11] that dimension can be expressed as an algebraic property of lattices of convex sets. We have proved that in a large class of lattices (algebraic lattices in which every element is the join of completely join irreducible elements) the lattice theoretic form of Carathéodory's theorem is equivalent to n-distributivity. Moreover, such lattices are n-distributive if and only if they are in the variety generated by the finite n-distributive lattices. These results were applied to characterize n-distributivity in various classes of lattices. For example, in a geometric lattice it is the size of the maximal circuit of the underlying matroid that determines the least n such that the lattice is n-distributive. In convexity lattices, which are a generalization of lattices of convex sets, the dual n-distributivity determines dimension as well.

A few questions remain open. Two of them have been mentioned already. It seems that assuming distributivity in corollary 2.9 is too strong and a similar result can be proved under a weaker assumption. A concise characterization of n-distributivity of subsemilattice-lattices was given but it remains open whether a similar result can be proved for sublattice-lattices.

The lattices of convex sets (and even convexity lattices with the divisibility property) are n-distributive iff they are dually n-distributive. Since Carathéodory’s theorem is equivalent to n-distributivity and Helly’s theorem implies the dual n-distributivity, this suggests that there may exist a lattice theoretic duality between Carathéodory’s and Helly’s theorems. This is not a mere speculation. Indeed, take a convexity lattice L of affine rank n with the divisibility property. Then it is dually n-distributive which means its dual is n-distributive. The dual of any algebraic lattice is CJ-generated. Now, if we notice that algebraicity was not used to prove 1) \Rightarrow 3) of theorem 2.1, we conclude that (cc_n) holds in the dual of L, i.e. Helly’s theorem of dimension n implies the dual of Carathéodory’s theorem of the same dimension. This kind of duality will be further investigated.
n-distributivity was first introduced and studied for modular lattices. It was observed that it allows us to characterize the dimension of a projective geometry in the way similar to the one exploited in this paper. Another sequence of dimension discriminating equations for projective geometries was given in [7]. It is not clear, however, to what extent the results of this paper can be generalized if equations of [7] are used.

Finally, several algebraic models of convexity have been proposed recently, e.g. [8, 26, 28, 30]. We believe that investigation of the relationship between Carathéodory’s and Helly’s theorems and (dual) n-distributivity in those models may lead to new interesting results.

Acknowledgements: I would like to thank E.T. Schmidt and Ilya Muchnik for many fruitful discussions of the first version of this paper (which appeared as a preprint of the Hungarian Mathematical Institute [16]) and J.B. Nation for pointing out the reference [23]. This work was partially supported by NSF Grants IRI-86-10617 and CCR-90-57570 and ONR Grant NOOO14-88-K0634.

References

