
University of Pennsylvania
ScholarlyCommons

Departmental Papers (CIS) Department of Computer & Information Science

6-6-2007

Reasoning about Concurrency for Security
Tunnels
Alwyn E. Goodloe
University of Pennsylvania, agoodloe@seas.upenn.edu

Carl A. Gunter
University of Illinois

Copyright 2007 IEEE. Reprinted from Proceedings of the 20th IEEE Computer Security Foundations Symposium, CSF '07, pages 64-78.

This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE endorsement of any of the
University of Pennsylvania's products or services. Internal or personal use of this material is permitted. However, permission to reprint/republish this
material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by
writing to pubs-permissions@ieee.org. By choosing to view this document, you agree to all provisions of the copyright laws protecting it.

This paper is posted at ScholarlyCommons. http://repository.upenn.edu/cis_papers/351
For more information, please contact repository@pobox.upenn.edu.

http://repository.upenn.edu
http://repository.upenn.edu/cis_papers
http://repository.upenn.edu/cis
http://repository.upenn.edu/cis_papers/351
mailto:repository@pobox.upenn.edu

Reasoning about Concurrency for Security Tunnels

Alwyn E. Goodloe
University of Pennsylvania

Carl A. Gunter
University of Illinois at Urbana-Champaign

Abstract

There has been excellent progress on languages for rig-
orously describing key exchange protocols and techniques
for proving that the network security tunnels they establish
preserve confidentiality and integrity. New problems arise
in describing and analyzing establishment protocols and
tunnels when they are used as building blocks to achieve
high-level security goals for network administrative do-
mains. We introduce a language called the tunnel calculus
and associated analysis techniques that can address func-
tional problems arising in the concurrent establishment of
tunnels. In particular, we use the tunnel calculus to explain
and resolve cases where interleavings of establishment mes-
sages can lead to deadlock. Deadlock can be avoided by
making unwelcome security compromises, but we prove that
it can be eliminated systematically without such compro-
mises using a concept of session to relate tunnels. Our main
results are noninterference and progress theorems familiar
to the concurrency community, but not previously applied to
tunnel establishment protocols.

1 Introduction

Security tunnels are a common networking technique in
which a pair of nodes share state that enables them to apply
transformations to messages to ensure their security. There
has been a great deal of study of protocols that establish se-
curity tunnels to demonstrate that they ensure integrity and
confidentiality. However, there is less study of how these
protocols can serve as building blocks to achieve the goals
of network administrative domains. In such applications,
there is often the need to coordinate the use of multiple tun-
nels to enforce the policies of security gateways and end-
points involved in the communication. For instance, a mo-
bile client may need to set up a tunnel to a Network Access
Server (NAS) to gain access to the Internet, and then a tun-
nel to a Virtual Private Network (VPN) to gain access to
a company Intranet, and then finally a tunnel to an com-
pany server to access a resource. Such tunnel complexes
can occur in many forms. For instance, rather than hav-

ing the client set up its own ‘voluntary’ tunnel to the VPN,
the NAS may set up an ‘involuntary’ tunnel to the VPN on
behalf of the client. In the current state-of-practice, such
interactions are often undesirable: examples like the ones
above often involve two or three levels of redundant en-
cryption at the client node because of poor coordination be-
tween tunnels in diverse network layers and at security gate-
ways protecting diverse administrative domains. A more
subtle collection of problems arise when security gateways
aim to assure that all of the messages they admit are fully
authenticated and authorized, and nodes aim to find and
traverse these gateways dynamically. In this case tunnels
must be used to find gateways and establish more tunnels.
These problems—coordinating tunnels, dynamic discovery,
authenticated traversal, and nested tunnels—have proved to
be a difficult challenge. We need a formal notation to de-
scribe and reason about them.

In this paper we introduce a way to describe and analyze
functional concurrency properties for the establishment and
use of collections of security tunnels between endpoints and
gateways. Our formalism is called the tunnel calculus. It
models tunnels using layers that describe forwarding, se-
cure processing, establishment, and authorization. These
layers can be used to describe discovery protocols that dy-
namically find and coordinate the traversal of security gate-
ways in accordance with high-level policies. In this paper
we focus on the secure processing and establishment lay-
ers and how the calculus allows us to describe and reason
about functional properties arising from concurrency be-
tween tunnel establishment negotiations. In particular, we
demonstrate how such problems can arise, how they cannot
be trivially or painlessly avoided by straight-forward tech-
niques, and how they can be addressed with a suitable form
of identifier. In our approach, collections of related tunnels
can be negotiated in a form of distributed ‘session’ distin-
guished by an identifier that plays a role similar to a port
number.

Suitable variations on the tunnel calculus could be used
to model existing IPsec network layer security tunnels and
the Internet Key Exchange (IKE) protocol, but the aim of
the tunnel calculus is to provide an abstract foundation for
designing future tunnel protocols in light of their use in tun-

20th IEEE Computer Security Foundations Symposium (CSF'07)
0-7695-2819-8/07 $20.00 © 2007

nel complexes. For example, IPsec has been plagued by
complications related to nested tunnels and dynamic dis-
covery of security gateways. These problems arise in sig-
nificant part from functional complications that have not
been modeled theoretically. The tunnel calculus supplies
a formalism to address this gap. It is a multiset rewrite sys-
tem that can be described with modular groups of rules (the
layers) and models the state used with tunnels. It differs
from other formalisms like the spi calculus [1] and MSR [4]
in that it focuses on functional properties, discovery proto-
cols, and relating high- and low-level authorization policies
rather than the confidentiality and integrity guarantees im-
plied by the key exchange protocols, which the tunnel cal-
culus treats as primitives. Our focus in this paper is on func-
tional properties, specifically deadlock conditions arising in
concurrent runs of the establishment protocol.

We demonstrate three theorems for the tunnel calculus.
Observational Commutativity asserts that the order of exe-
cution of commands in distinct sessions can be interchanged
without essentially changing the semantics of the execution
trace. Noninterference asserts if there is a trace that estab-
lishes a communication in a ‘virginal’ network where only
one pair of parties communicate, then if this communica-
tion occurs in a network with other communicating parties
as well, the result will be equivalent. Progress asserts that if
a communication between two parties is possible in a given
trace, then it is possible to extend any other trace to com-
plete the communication as well. Although the Noninterfer-
ence and Progress Theorems are asserted in terms of pairs of
nodes, the complexity in the results arises from the way in
which tunnels are established at security gateways between
the pairs of nodes.

The paper is organized into eight sections and an ap-
pendix. The second section gives some general background
on IPsec and the configuration of policies and tunnels in
networks. The third section describes mathematical founda-
tions and notation needed to understand the tunnel calculus.
The fourth section describes the concurrency problems that
interest us. In the fifth section, we describe the tunnel cal-
culus precisely, including its concept of session identifier.
The sixth section introduces the trace theory used in formu-
lating our theorems. The seventh section provides the three
core theorems with associated lemmas. The eighth section
concludes. The appendix provides a complete listing of the
grammar and rules for the first three layers of the tunnel cal-
culus together with most of the semantic functions used in
these layers.

2 Motivation

Security tunnel protocols are used commonly on the In-
ternet. SSL/TLS [7] is a transport layer tunnel protocol that
is ubiquitously used for web security and electronic com-

merce. Secure Shell (SSH) [22] is widely used as a secure
remote login for Unix systems. Perhaps the most interesting
and ambitious tunnel protocol is IPsec [16, 15], which was
designed by IETF to provide network layer tunnels and is
projected to be a fundamental part of IPv6, the next genera-
tion of the Internet Protocol (IP). In this section we motivate
the tunnel calculus by taking an abstract look at tunnels in
general and IPsec in particular.

From a high-level perspective, a tunnel protocol can be
viewed ‘type-theoretically’ as follows. A node a communi-
cates with a node g by wrapping each message m it sends
to g within a constructor C. Node g holds a corresponding
destructor C−, which it applies to get the message m. The
constructorC represents the bulk protocol between a and g.
Node a may have a policy that all messages sent to b must
be wrapped in C and node g may have a policy that mes-
sages from a must be wrapped in C. To set this up, there
is an establishment protocol that causes a and g to obtain
C and C− respectively in such a way that they authenticate
each other, authorize the use of the constructor, and assure
that they are the only parties that have these operators.

In IPsec, the constructor and destructor are called a Se-
curity Association (SA) and are collected in an SA Database
(SAD). The messages are individual IP packets and the SAs
are indexed by Security Parameter Index (SPI). The rules
that determine which SAs are used with which messages
are called IPsec Security Policies (SPs) and are held in an
SP Database (SPD). Although it is not critical for this pa-
per, which does not discuss high-level authorization poli-
cies, we would in general like to distinguish IPsec security
policies in the SPD from higher-level policies that deter-
mine them, so we will hereafter refer to IPsec-style security
policies as security mechanisms. IPsec establishes tunnels
using the Internet Key Exchange (IKE) protocol. The most
recent version IKEv2 [13] uses four messages between a
and g to set up a tunnel. This establishment is triggered by
a security mechanism that indicates that messages from a to
g must be in a tunnel: if no such tunnel currently exists, a
run of IKE creates C and C− and enters them in the SAD.
We can abstract the establishment protocol by viewing it
as two messages: a request and a response. This provides
enough detail to model the important issue for the tunnel
calculus, which is when the state that determines the subse-
quent packet processing is written at each of the nodes.

The most common use of IPsec, often called the road
warrior scenario because of its use by employees travel-
ing outside their enterprise network administrative domain,
is depicted in Figure 1. In this scenario, a wishes to com-
municate with a node b that is located within a protected
administrative domain, while a is located outside of it. To
do this, a must convince a security gateway g protecting the
domain that it is authorized to access b, so it establishes a
tunnel from a to g and dispatches messages to b by encapsu-

2

20th IEEE Computer Security Foundations Symposium (CSF'07)
0-7695-2819-8/07 $20.00 © 2007

a g b

Figure 1. Road Warrior

lating them in messages to g, which are delivered within the
tunnel from a to g so they can be efficiently authenticated
and authorized for forwarding on to b. Where things start to
get tricky is when the gateway g must be dynamically dis-
covered or where a needs tunnels for other nodes besides g.
Let us consider each of these cases in turn.

In something as simple as the road warrior scenario, it
is plausible that a manually configures a mechanism for its
home administrative domain that mentions g specifically.
However, in a more general case, a is automatically given
this mechanism or learns it by trying to communicate with
b. An example of the first is given by Cisco’s Dynamic
Multipoint VPN (DM VPN) [5] system, which optimizes
tunnels in hub and spoke configurations (not the road war-
rior scenario) by setting up tunnels to connect the nodes at
the spokes directly, thereby relieving load on the hub. The
second case is illustrated by Cisco’s Tunnel Endpoint Dis-
covery (TED) [8] protocol, which locates the gateway by
sending a discovery packet from a to b which is intercepted
by g because it is on the communication path between these
nodes (guarding the administrative domain). Gateway g

then informs a of its need for a tunnel. In these and more
elaborate cases, we could benefit from notations to describe
the exact messages that will propagate the mechanisms and
the high-level policies that will determine them.

Special care must be taken when more than one secu-
rity mechanism is need for a single destination. The early
versions of IPsec included provisions for nested tunnels to
accommodate this. For instance, suppose a wishes to pro-
tect its communications to both g and b. To do this it may
establish a tunnel to both nodes. The resulting ‘type theory’
causes a message from a to b to have the form C(D(m)).
Gateway g holds the destructor for the outer constructor C
and node b has the one for D. This entails two IKE ex-
changes, as shown in Figure 1, the first setting up a tunnel
between a and g, the second taking place within that tun-
nel. In particular, the request packet for the tunnel to b is
sent to g in the formC(Req) inside of the tunnel required to
gain admission to the domain in which b resides. This sort
of mechanism management has proved tricky, however, and
many implementations of IPsec do not support it. A com-
promise is to enable IPsec establishment and bulk packets
to pass through g without authenticating them. This breaks

what we can call the authenticated traversal rule, which
says that all packets passing g must be authenticated be-
fore they can be authorized for traversal. Although IPsec
packets may be less harmful to the protected network than
some other types of packets, it is certainly not desirable to
admit them without knowing where they came from.

Our main focus in this paper is on the following prob-
lem, which arises in enforcing the authenticated traversal
rule. Suppose a wishes to establish a tunnel to b at the same
time that b wishes to establish one to a. At some point, each
node aims to set up a constructor and invoke a rule saying
that it must be used in their subsequent communications.
However, the point at which this occurs can cause the nodes
to mutually miss the requests from the other party, resulting
in a deadlock in which neither party can form a message
the other will accept. We introduce a solution and discuss
it in four steps. First, we introduce a strategy for formal-
ization. Second, we go into more detail to discuss the main
focus of the paper, which is a deadlock problem that can
arise in designs that support dynamic creation of security
mechanisms, nested tunnels, and the authenticated traversal
rule. Third, we introduce the tunnel calculus and a notion
of session to address these concurrency problems. Fourth
and finally, we prove that the new calculus and its sessions
have a number of the desired properties, including freedom
from deadlock.

3 Modeling Tunnels

A packet can be modeled as a term formed by applying
the constructor P to a triple (a, b, y), where a is the source
address, b is the destination address, and y is the message.
This is written formally as P(a, b, y). We do not model the
cryptographic transforms performed by a security associa-
tion, but instead assume that any term encapsulated in an
S constructor has undergone such a transformation. The S

constructor is applied to each packet entering the tunnel and
a destructor removes it at the other end. Each association
has a security parameter index SPI that serves as a unique
identifier for the association. Associations are assumed to
act in ‘tunnel’ mode, meaning that a packet entering the
association has the S constructor applied and becomes the
payload of a packet traveling from the association’s source
to its endpoint. For example, suppose packet P(a, b, y) is
to be placed in an association flowing from c to d with SPI
ιd. The constructor is applied and the result encapsulated in
a packet represented by the term P(c, d, S(ιd,P(a, b, y))).
The association flowing from node c to node d having SPI ιd
is represented at node c by the term Out(d, ιd) and at node
d by the term In(c, ιd). The association database Σ contains
the associations active at a node. The inbound and outbound
security mechanism databases Πi and Πo contain entries of
the form Mech(ψ : β), where ψ is a packet filter and β is a

3

20th IEEE Computer Security Foundations Symposium (CSF'07)
0-7695-2819-8/07 $20.00 © 2007

list of security associations called a bundle. When an out-
bound packet matches a filter entry ψ, the packet is directed
into the security associations listed in the bundle. That is,
the constructor for each association in the bundle is applied
to the packet. An inbound packet is checked against the en-
tries in Πi to ensure that the packet is traveling in the proper
associations and the destructors are applied to the encapsu-
lated packet. The details of packet processing are elaborated
more fully in later sections as well as in Appendix A.

Tunnel establishment is the process of setting up a pair of
associations between two nodes. Tunnel establishment has
the following components: the authorization and authenti-
cation of the tunnel at both nodes, the updating of the asso-
ciation and mechanism databases, and the establishment of
shared cryptographic keys by way of a key exchange pro-
tocol [18, 3]. The focus of our model is on the first two
components, and, given that our model abstracts away the
details of the cryptography, we do not model the key ex-
change process. Tunnel establishment is modeled using two
messages that contain credentials for authorization, the SPI
values identifying the associations, and filter entries for the
mechanism database entry. In practice, establishment mes-
sages are distinguished by an identifier in the packet header.
This is modeled by wrapping establishment messages in the
X constructor.

Let us illustrate the basic ideas with the road warrior sce-
nario shown in Figure 1, not including the end-to-end tun-
nel between a and b. Suppose Alice a is an employee away
from the office and needs access to the Bob’s server b. The
corporate network is protected by a gateway g that requires
all traffic to be authenticated and authorized with respect to
a policyL enforced by g. So Alice must present a credential
K to the gateway in order to demonstrate that she satisfies
the policy. The gateway must also present credentials K ′

to Alice to prove that it belongs to a trusted administrative
entity. If the polices at both nodes are satisfied, the estab-
lishment protocol will terminate after creating a pair of as-
sociations and updating the mechanism database. Here are
the main steps of the protocol.

Req Sent: The initiator a generates a SPI value ιa iden-
tifying the association flowing from the responder g to
the initiator. The initiator then forms a message com-
posed of the SPI, the credential K, and the filter selec-
tors a and b. This message is formally expressed as a term
P(a, g,X(Req(a, b, ιa,K))).

Req Received: Upon receiving a message of this from,
the responder calls an oracle that verifies that the credential
K satisfies the responder’s policy L.

Rep Sent: If the oracle returns true, then the responder
generates a SPI value ιg identifying the association flowing
from the initiator to the responder. The responder updates
the state of its association database Σ by adding the associ-
ation flowing from the initiator to responder Σ ∪ In(a, ιg).

An operation ⊗ adds a packet filter to responder’s inbound
mechanism database Πi to indicate that all traffic from a to
b should arrive at the responder in this association:

Mech(a→ b : Bndl[In(a, ιg)]) ⊗ Πi.

The responder then forms a reply message containing the
mechanism filters, both SPIs, and the responder’s creden-
tials K ′. This message is formally expressed as a term
P(g, a,X(Rep(a, b, ιa, ιg ,K

′))).
Write State: After the reply message has been sent, the

responder writes the state for the association flowing from
the responder to the initiator.

Σ ∪ Out(a, ιa)

Mech(b→ a : Bndl[Out(a, ιa)]) ⊗ Πo.

Rep Received: Upon receiving the reply message, the
initiator calls upon an oracle to verify that K ′ satisfies its
policy L′ and if so writes entries to the association and
mechanism databases for both associations.

Upon termination, a pair of associations is established
between Alice and the gateway. When Alice sends a packet
P(a, b, y) to the server, the filters in the mechanism database
direct it into the association ιg , and a constructor is applied
yielding P(a, g, S(ιg ,P(a, b, y))). When this packet arrives
at g the destructor is applied and the encapsulated packet is
sent on towards the server.

4 Interference

Using the model for packets, tunnels, and tunnel estab-
lishment given above, we demonstrate a situation where two
different runs of the establishment protocol interleave to
prevent messages from successfully being delivered, leav-
ing both protocol instances in a deadlocked state. After
considering several possible solutions, we introduce a new
syntactic class called a ‘session identifier’ to prevent such
harmful interactions.

The establishment initiator and responder may run con-
currently at a node. Both processes operate on the associ-
ation and mechanism databases. Given that both the ini-
tiator and responder add packet filters to the mechanism
databases, there is the possibility that messages sent in one
establishment session get captured by the filters installed by
the other establishment session. The following scenario il-
lustrates how this can lead to both establishment sessions
becoming deadlocked. Suppose nodes a and b both ini-
tiate establishment with the other simultaneously. These
nodes each act as both initiator and responder in these ses-
sions of the establishment protocol. Table 2 demonstrates
a particular interleaving of the execution of two sessions of
the establishment protocol and illustrates how their interac-
tion prevents either from terminating successfully. To con-
serve space, credentials in the messages are not included

4

20th IEEE Computer Security Foundations Symposium (CSF'07)
0-7695-2819-8/07 $20.00 © 2007

Node A DB @ A Node B DB @ B
1 P(a, b,X(Req(a, b, ιa))) Σ = ∅ P(b, a,X(Req(b, a, ι′

b
))) Σ = ∅

Πi = ∅,Πo = ∅ Πi = ∅,Πo = ∅
2 P(b, a,X(Req(b, a, ι′

b
))) · · · P(a, b,X(Req(a, b, ιa))) · · ·

3 Σ = In(b, ι′a) Σ = In(a, ιb)
Πi = b −→ a : [In(b, ι′a)] Πi = a −→ b : [In(a, ιb)]

Πo = ∅ Πo = ∅
4 P(a, b,X(Rep(b, a, ι′

b
, ι′a))) · · · P(b, a,X(Rep(a, b, ιa, ιb))) · · ·

5 P(b, a,X(Rep(a, b, ιa, ιb))) · · · P(a, b,X(Rep(b, a, ι′
b
, ι′a))) · · ·

6 drop message drop message

Figure 2. Deadlock Scenario

in the table. In the first row of the table, the association
and mechanism databases are empty and establishment re-
quest messages are sent by both principals. The messages
arrive at their respective destinations in the second row, and
the databases are updated in the third row. The filter at a
now says all traffic flowing from b to a should be travel-
ing in association ι′a, and the filter at b now says that all
traffic flowing from a to b should be traveling in associa-
tion ιb. The reply messages are formed in the fourth row
of the table and arrive at their respective destinations in row
five. These messages are not sent in associations, but the fil-
ters at their destinations indicate that they should have been.
Hence both reply messages are dropped in the sixth line of
the table. The two establishment sessions are in essence
deadlocked. Consequently neither instance of the establish-
ment protocol terminates successfully.

Is it necessary to eliminate this risk of deadlock? It is
possible to detect it, tear down the partially set up tunnels,
back off, and run the protocol again hoping it does not occur
again. The overhead and complexity of this solution might
be acceptable if the problem is a rare, and there are no strin-
gent latency requirements. Yet history has shown that situ-
ations thought to be exceptional during design can become
commonplace when systems are used in unexpected ways,
and, in this case at least, one would rather avoid problems
by design rather than attempt to recover from them. Here
are a few ideas about how to do this.

• Limit the establishment protocol to set up a series
of unidirectional associations rather than the bidirec-
tional ones in the given scheme. A trace similar to that
given above can be produced demonstrating the same
deadlock.

• Change the ordering of state changes and message
sends and receives. Having the responder write state
for the association flowing from the initiator to the re-
sponder after the reply message is sent does not elimi-
nate the problem.

• Insist that the system obey a client/server assumption
so nodes do not simultaneously act as both a initiator
and responder. This might solve the deadlock problem,

but is overly constraining in a context where peer-to-
peer communications are important.

• Use locks to eliminate the problem by coordinating the
activities of the establishment initiator and responder
processes at the nodes. This might prevent deadlock in
the establishment protocol, but it has the effect of sim-
ply pushing the problem to the higher-layer protocols
that invoked establishment.

• Use a transaction protocol. It is typical to avoid this
type of complexity in protocols at the network layer.
One hopes for a simpler solution.

• Exempt tunnel establishment packets from processing
by filters. This indeed resolves the problem, but a blan-
ket application of this approach violates authenticated
traversal. A restricted variation engineers the packet
filter processing mechanism so that it only exempts es-
tablishment traffic traveling between the initiator and
responder from flowing in an association directly be-
tween them. This results in a complex packet process-
ing mechanism.

Our proposed solution is to introduce a new syntactic
class called a ‘session identifier’ that uniquely identifies a
complex of tunnels set up during the execution of a proto-
col. This is similar to the idea of unique protocol identi-
fiers employed in [14] to prevent messages from one pro-
tocol from being used in another. The session identifier is
similar to a SPI, but rather than identifying a single asso-
ciation it identifies a complex of tunnels established during
the session bearing that session identifier. The initiator of
the session is assumed to generate the session identifier us-
ing the tunnel calculus new operator, which guarantees its
uniqueness. The session identifier is incorporated into the
mechanism database packet filters. An entry in the mech-
anism database at node a directing all traffic from s to d
in session u into association ι flowing from a to b is writ-
ten as s −→ d : u : [Out(b, ι)]. A packet matches a fil-
ter only if they both possess the same source, destination,
and session identifier. A term representing a secure packet

5

20th IEEE Computer Security Foundations Symposium (CSF'07)
0-7695-2819-8/07 $20.00 © 2007

now has the form P(a, b, S(u, ι,P(s, d, y)), where the se-
cure header identifies both the session u and the association
ι. The messages sent during establishment must contain the
session identifier.

Suppose the proposed solution is applied in the above
scenario. Alice initiates the establishment protocol for ses-
sion u and Bob initiates the establishment protocol for ses-
sion v. The first message sent by Alice is represented by
the term P(a, b,X(Req(a, b, u, ιa))) and includes the ses-
sion identifier. The filter installed at node b during session
u would have the form a −→ b : u : [In(a, ιb)]. When the
establishment reply message P(a, b,X(Rep(b, a, v, ι′b, ι

′

a)))
for session v arrives at node b, the packet will not match
the filter installed in session u and the packet does not get
dropped. The same logic applies to processing at node a.

Traffic belonging to a session will have the same session
identifier as it travels in different associations belonging to
that session’s complex. Associations may be shared across
sessions to improve efficiency. Before generating a new as-
sociation our establishment protocol checks to see if there is
an existing association that may be used. The SPI is bound
to the association not the session so packets belonging to
different sessions traveling in a single association will have
the same SPI but different session identifiers. Yet there are
scenarios where two concurrently executing sessions may
create a pair of distinct associations, but this causes no harm
as traffic for each session travels in its own association.

5 Tunnel Calculus

The tunnel calculus is intended as a formal framework
for expressing and reasoning about protocols that set up a
complex of security tunnels. The framework is structured in
layers that roughly correspond to an abstraction of the net-
work stack. Since we are interested in reasoning about tun-
nels, it is necessary to model the details of packet process-
ing and persistent mutable structures such as the association
and mechanism databases. This contrasts with requirements
for reasoning about cryptographic protocols where one can
abstract away such details because the focus is on proper-
ties such as message freshness and secrecy. In this section,
an introduction to the formalism is followed by a brief de-
scription of each of the layers of the framework including
examples of several of the rules.

The tunnel calculus is formally defined in terms of a tu-
ple (D,S, T,N,E,R), where D is a set of types, S is a set
of basic syntactic elements, T is a set of terms built from
the elements and types, N is a set of node terms represent-
ing the terms located at a node, E is a set of equations over
the elements and types, andR is a set of rules overN . Typ-
ically, (D,S,E) is an equational specification that makes
precise the static aspects of the system. This includes the
algebraic structure of the state space, which in our case is

a multiset, i.e. a commutative monoid, of local state ele-
ments. The dynamics of the system is then given by the
rewrite rulesR, which operate modulo the equationsE, and
in our case correspond to multiset rewrite rules. Hence, we
can visualize the state of the distributed system as a ‘soup’
of local state elements which are transformed by local state
transitions represented by rewrite rules [2]. The tunnel cal-
culus is obtained by instantiating the tuple with particular
types, elements, terms, equations, and rules. The grammar
of the tunnel calculus appears in Appendix A. The types of
the calculus, such as node addresses a ∈ Node and creden-
tials K ∈ Cred, are given in Table 1. Among the syntactic
elements (Table 2) are σi = In(a, ι) and σo = Out(a, ι)
representing associations and p = P(a, a, y) for packets.
Terms, such as ↓ip(k) P(b, c, y), are formed from the syn-
tactic elements, and are defined in Table 3. Node terms,
such as ↓ip(k) P(b, c, y) @a, are formed from the terms by
denoting the node at which the term is located.

A rewrite rule has the form

t1 @a1, . . . , tn @an −→ t′1 @a′1, . . . t
′

m @a′m if E

whereE is an optional condition on the firing of the rule. If
all the terms in a rule are located at node a, then we drop
location annotation on each term and write the rule as

`a L −→ R.

Variables appearing on the right-hand side of a rule must
also appear on the left-hand side of the rule or have its val-
ues randomly generated using the new operator.

The network state is represented by a multisetM of node
terms written t@a (term t at node a). State is transformed
by the application of a rewrite rule. A rule is executed at a
node only if node terms matching the left side of the arrow
are present at that node in the multiset. Given a multiset of
node terms M and a rule of the form above, the left-hand
side of the rule is matched (unified) against the node terms
in M and rewritten to the pattern on the right-hand side of
the rule. If all of the node terms in a rule are located at the
same node, then its application can be viewed as a change
of state at a single node. Communication between nodes is
represented by a rule that moves a term from one node to
another.

If more than one rule is ready for dispatch, then their
order of execution is non-deterministic. This means that
there is no natural ordering built into the model so, if we
want a set of rules to be executed sequentially, then the rules
themselves must enforce the ordering. Another feature of
term rewriting is that state must be explicitly passed from
one rule to the next when executing a sequence of rules.
Both issues are resolved using the syntactic construct we
call a resumption term. A resumption term is an n-tuple of
elements 〈ele1, ele2, . . . , elen〉 that represent the state of an
execution. Such terms appear in most of the rules.

6

20th IEEE Computer Security Foundations Symposium (CSF'07)
0-7695-2819-8/07 $20.00 © 2007

Each rule in the tunnel calculus is accompanied by a la-
bel given in bold face of the form Rule X.Y.Z, where X is a
letter denoting the layer, Y is 1 if it is an initiator rule and 2
if it is a responder rule, Z is a numerical label for that rule.
For instance, the first rule of the secure processing layer re-
sponder is labeled S.2.1.

The tunnel calculus is structured as four layers. The low-
est layer of the tunnel calculus is the forwarding layer (ip),
which models the forwarding of packets based on a for-
warding table. The secure processing layer (sec) performs
the processing associated with secure tunnels. The autho-
rization layer (auth) acts as an oracle that, given a set of
credentials K, returns true if they satisfy the given policy
L. The establishment layer (estab) sets up a pair of uni-
directional security associations. Historically, the focus at
this layer has been on the key exchange. Instead, our focus
is on the establishment of state at the nodes for the asso-
ciations and the packet filters that direct traffic into the as-
sociations. These layers form the framework upon which
discovery protocols are built.

The authorization layer acts as a function that is called
by writing a ↓auth term to the multiset and the result is re-
turned via a ↑auth term. The forwarding, secure processing,
and establishment layers are structured as having initiator
and responder processes expressed as a collection of rewrite
rules. Both processes may run concurrently at each node in
the system. The first rule of an initiator always has the form
of a rewrite rule with ↓I on the left of the arrow, where
I ∈ {ip, sec, est}. The last rule of an initiator always has
the form of a rewrite rule with ↑I on the right side of the
arrow. The initiator will remove the ↓I term from the mul-
tiset when it begins executing and write an ↑I term when
it terminates. So a layer is invoked by writing a ↓I term
and then waiting for an ↑I term indicating that processing
has terminated. The responder processes for the forwarding
and secure processing layers run as daemons at each node.
The establishment layer responder (eresp) is structured like
the initiator processes using ↓eresp and ↑eresp terms. All re-
sponder processes await the arrival of a message from the
corresponding initiator and, upon termination, pass infor-
mation to a higher layer. If a responder is running as a dae-
mon, information is passed to a higher level by writing a ⇑I

term.
Each ↓I and ↑I term is annotated with a unique identifier

k so that a rule with an ↑I on the left of the arrow can be
assured that it matches the ↓I that was intended. Otherwise,
there could be confusion as there may be many ↑I terms
in the multiset. The identifiers are always generated using
the tunnel calculus new operator to ensure uniqueness. In
the forwarding layer, these terms have the form ↓ip(k) and
↑ip(k) . The ↓ terms of the remaining layers are also an-
notated with the session identifier. For instance, the secure
processing layer is invoked in session u with acknowledg-

ment identifier k by writing the term ↓sec(u,k) p to the mul-
tiset.

The layers are intended to model those of a network
stack. It is assumed that only the secure processing layer
makes use of the forwarding layer. All other messages are
sent via the secure processing layer. To see how the layers
interact, consider what happens when a packet p@a is sent
to node b via the secure processing layer. The secure layer
applies the appropriate constructors to the packet and sends
the result p′ to the forwarding layer; the forwarding layer
forwards it to the next node where it is processed by the for-
warding layer responder, which passes it up to be processed
by the secure processing layer responder, which applies the
appropriate destructors and passes the packet up for pro-
cessing. At node a this sequence of operations will add the
terms:

↓sec(v,k1) p@a, ↓ip(k2) p
′

@ a, ↑ip(k2) @ a, ↑sec(k1) @a

and at node b they will add the terms:

⇑ip p
′

@ b,⇑sec(v) p@ b.

The send/acknowledgment structure of messages models
the processing in the IP stack where a send does not return
until the message has traversed the stack [9].

Having given an explanation of the structure of the tun-
nel calculus, a brief survey of the processing performed at
each layer follows. A formal presentation of all the rules
can be found in Appendix A.

The forwarding layer models the movement of packets
based on a forwarding table. Packets can move from one
node to another only via an application of the forwarding
layer. We do not attempt to model packet fragmentation or
routing.

The secure processing layer provides an abstract model
of the processing performed by secure tunnels. This layer
employs an abstract model of cryptographic protocols that
suppresses explicit mention of keys, time stamps, and
nonces. The processing associated with security associa-
tions is performed at this layer. Each node maintains an as-
sociation database Σ as well as inbound (Πi) and outbound
(Πo) mechanism databases. The entries in the mechanism
database take the form Mech(ψ : v : β) where ψ and v act
as a filter consisting of source and destination address and a
session identifier, and β is a bundle of security associations
that are applied to packets matching the filter.

There are two outbound processing rules which we de-
scribe below for illustration. The other rules of the calculus
are given in the appendix.

Rule S.1.1

Πo `e ↓sec(v,k) P(b, c, y) −→

↓ip(k′) Nest(BndlSel(b, c, v, Πo), e, v, P(b, c, y)),

〈k, k
′

, v〉

where k
′ is new.

7

20th IEEE Computer Security Foundations Symposium (CSF'07)
0-7695-2819-8/07 $20.00 © 2007

The outbound mechanism database Πo appears to the left
of the turnstile indicating it can be used in the rule, but not
consumed. If a secure layer message is ready for dispatch,
the semantic function BndlSel is invoked to determine the
security association(s) to apply to the packet. The semantic
function Nest applies the appropriate constructors and en-
capsulates the packets in the proper header creating a packet
p′. The term ↓ip(k′) p

′ is written to the multiset indicating
that the packet should be sent to the forwarding layer with
the acknowledgment identifier k′ generated by the new op-
erator. A resumption term is written to the multiset contain-
ing the two acknowledgment identifiers k and k′. Here is
the second rule for outbound processing.

Rule S.1.2

`e 〈k, k
′

, v〉, ↑ip(k′)−→ ↑sec(k)

If a forwarding layer acknowledgment term is in the mul-
tiset and that term possesses the acknowledgment identifier
k′ (matching the resumption term), then this rule rewrites
a secure layer acknowledgment indicating that the message
has been sent to its destination.

Secure layer inbound processing works as follows. The
forwarding layer relays all packets to the secure processing
layer responder process for further processing. A packet
arriving at a node must either be traveling in a valid asso-
ciation or be a distinguished packet, such as an establish-
ment packet. In either case, the packet contains the session
identifier. The responder strips off and verifies the secure
headers for all associations terminating at that node. The
inbound mechanism database is consulted to verify that the
incoming message arrived in the proper associations. If the
decapsulated packet is a distinguished packet it is passed
to higher layers for further processing. If the decapsulated
packet p is destined for this node, then a ⇑sec p term is writ-
ten to the multiset. If the decapsulated packet does not have
this node as a destination, the packet is sent on its way.

The authorization layer takes as parameters a credential
K and a policy L, and calls an oracle that returns true or
false depending on whether K satisfies L. The choice of
this oracle is determined by the security objectives of hosts
and gateways. In other work we explored a specific autho-
rization layer that provides high-level control over packet
flows based on public key certificates.

The establishment layer is the highest layer of the tun-
nel calculus framework and was previously described in
some detail. Intended for use in the design of protocols
that discover security gateways and set up a complex of
tunnels among them, the establishment layer is used in
the following way. A distinguished discovery packet in
session u is intercepted by a gateway a on the dataflow
path. The discovery protocol invokes the establishment
layer ↓est(u,k) E(b, s, d) to set up a tunnel with node b that is
already known to session u, where the filter values are s and
d. The establishment responder does not run as daemon, but

must be invoked by the discovery protocol by writing the
term ↓eresp(u,k) to the multiset.

We are aware of only one other effort [12] to formally
model the packet header processing associated with a tunnel
complex. This uses an automata-based approach to model
IPsec security association processing to prove confidential-
ity and authentication properties. We have attempted to
model tunnel processing in the π-calculus, but it does not
provide explicit help for representing and manipulating per-
sistent mutable structures such as the association and mech-
anism databases and the operations for updating these struc-
tures. The resulting experiment left us with a system that
looked like the present tunnel calculus with the π-calculus
bolted on the side. Like automata and process algebras,
multiset rewriting possess a rich theory and excellent tool
support. Using this framework leads to a modular system
in which it is rather straight-forward to prove correctness
properties in terms of the trace semantics given in the next
section.

6 Trace Theory

Our analysis requires a certain amount of trace theory,
which we now describe. The application of Rule X : L −→
R to the multiset M rewrites to the multiset M ′ = (M −
L′) ∪ R′, where L′ = Lρ and R′ = Rρ and ρ is a unifier.
We callL′ the redux andR′ the contractum. To indicate that
M −→M ′ is an application of Rule X at node a executing
in session uwith reduxL′ and contractumR′ we often write
Rule X(u)(L′, R′)(a) or

M
X(u)(L′,R′)(a)

−→ M ′.

When the context is clear we drop the redux, contractum,
and node. If all the rules belong to the same session or the
session identifier is not needed in an argument, then we drop
the session identifier as well and simply write M X

−→M ′ or
in some cases X to denote an application of Rule X. The
sequential application of Rules X1(u1), . . . ,Xn(un) to the
multiset M1 is written as

M1
X1(u1)
−→ M2

X2(u2)
−→ · · ·Mn

Xn(un)
−→ Mn+1.

The sequence of multisets M1,M2, . . . ,Mn+1 is
called a trace of the sequential execution of rules
X1(u1), . . . ,Xn(un) and provides a view of the multiset
representing the network state as the protocol executes.
Each change to the network state results in a new multiset
being added to the trace sequence.

The following lemma shows that there is a one-to-one
relationship been the rules and a step in the trace. A conse-
quence of this result is that it is possible to formulate many
of the functional correctness properties that interest us in
terms of a protocol’s trace.

8

20th IEEE Computer Security Foundations Symposium (CSF'07)
0-7695-2819-8/07 $20.00 © 2007

Lemma 1 Consider the trace M,M ′ produced by the ap-
plication of a rule in the tunnel calculus. There exists only
one rule X whose application to M (M X

−→M ′) could have
producedM ′. �

We have asserted that session identifiers are always gen-
erated by the tunnel calculus new operator ensuring their
uniqueness. The following proposition asserts uniqueness
for acknowledgment identifiers and follows from an inspec-
tion of the rules.

Proposition 2 (Uniqueness of Identifiers)
Let M1, . . . ,Mn be a trace. Suppose I ∈
{sec, auth, eresp, est} and I ′ = ip. Suppose t is a
term that begins with ↓I(v,k) or ↓I′(k) and there is an i such
that t 6∈ Mi−1 and t ∈ Mi. Suppose t′ is another term
having the form ↓I(v,k′) or ↓I′(k′), and there is a j > i with
t′ ∈Mj and t′ 6∈ Mj−1. Then k′ 6= k. �

Consider the execution of the tunnel calculus establish-
ment protocol between two nodes. If one only observed
the actions at a single node, there is only one possible trace
for a successful execution of the protocol. Yet the protocol
is executing on a distributed network of nodes. A trace of
this protocol must record that the initiator has sent the re-
quest message before it records that the message has been
received at the responder and it must record that the reply
has been sent by the responder and received by the initiator
before the initiator writes state. This is due to the causal
ordering induced by the messages [17]. No such order-
ing exists between the writing of state for the two asso-
ciations at the initiator and the writing of state at the re-
sponder for the association flowing from the responder to
the initiator. Hence there is more than one possible trace
for the execution of the establishment protocol. This has
been formalized in Mazurkiewicz trace theory [6] via the
concept of an independence relation between actions that
captures possible concurrency. For instance, if Rule X and
Rule Y are independent of each other, the trace may record
Mi

X
−→Mi+1

Y
−→Mi+2 or M ′

i

Y
−→M ′

i+1
X

−→M ′

i+2. The for-
malization of independence that follows is similar to that
found in [19].

State shared among different sessions at a node is main-
tained in the forwarding table, association database, and
mechanism databases at a node. Let H(a) be the infinite
multiset of all terms representing shared state at node a, that
is:

H(a) = {|F(f) @a,Σ @a,Πi
@a,Πo

@a|},

where F(f),Σ,Πi, and Πo represent all possible terms of
that form. Let

H =
⋃

a

H(a).

Consider an application of Rule X having redux L1 and
contractum R1 and an application of Rule Y having redux
L2 and contractum R2. Define an ordering on the applica-
tion of rules as X ≺ Y if and only if

(R1 −H) ∩ (L2 −H) 6= ∅.

Define the principal ideal of an application of Rule X as
X̌ = {Y | Y ≺ X}. The application of rules X and Y
are said to be dependent if X ∈ Y̌ or Y ∈ X̌ or (L1 −
H) ∩ (L2 −H) 6= ∅. If an application of rules X and Y are
not dependent, then they are said to be independent and we
write X ‖Y.

7 Noninterference and Progress

This section is devoted to the formalization of a nonin-
terference theorem that implies that the deadlock illustrated
in section 4 cannot occur in the tunnel calculus. We also
demonstrate a progress property for the tunnel calculus. Al-
though the theorems presented in this section presume re-
liable delivery of messages, the properties hold in the case
of the unreliable message delivery as well. The theorems
in the unreliable case are more involved and the proofs are
tedious, so, for ease of presentation, we limit ourselves to
the reliable case in this paper.

7.1 Noninterference

The first step in developing a noninterference theorem is
to prove that the application of any two rules executing in
distinct sessions is independent in the sense that we defined
in the previous section. The session matching property for-
malizes the idea that the filters in the tunnel calculus mech-
anism database only match packets belonging to a specified
session. The main lemma asserts that the order of execu-
tion of rules in distinct sessions can be swapped without
changing the semantics of the trace. With this machinery in
place it is possible to formulate and prove our noninterfer-
ence theorem.

Recall that the defect exposed in Section 4 arose because
packets from one session match the packet filters installed
during establishment for another session. The adaption of
session identifiers purportedly prevented this from occur-
ring. The session matching property demonstrates that this
is indeed so. Inspection of the secure processing layer rules
immediately reveals the following

Lemma 3 (Session Matching Property) Let T =
M1, . . . ,Mn be a trace and assume session v is active
in T . Suppose Mi −→ Mi+1 is an application of Rule
S.1.1(v), where the outbound message being processed is
the term ↓sec(v,k) P(b, c, y) @a. If the semantic function

9

20th IEEE Computer Security Foundations Symposium (CSF'07)
0-7695-2819-8/07 $20.00 © 2007

BndlSel produces a match in the outbound mechanism
database Πo @ a, then the matching database entry must
have the form Mech(ψ : v : βo).

A similar property holds for inbound messages. �

The Session Matching property is critical in proving the re-
sults that follow.

The following two results demonstrate that the applica-
tion of any two rules in distinct sessions are independent.
Let Rule X(u) and Rule Y(v) denote any two rules in the
tunnel calculus.

Lemma 4 Let u and v be distinct session identifiers. Let
T = M1, . . . ,Mn be a trace. Suppose Mi −→ Mi+1 is an
application of Rule X(u)(L1, R1)(a), and Mj −→ Mj+1 is
an application of Rule Y(v)(L2, R2)(b). Then

(L1 −H(a)) ∩ (L2 −H(b)) = ∅ and (1)
(L1 −H(a)) ∩ (R2 −H(b)) = ∅. (2)

�

That is, neither the execution of Rule X(u) nor Rule Y(v)
will consume terms that would otherwise have been con-
sumed by the execution of the other unless those terms rep-
resent shared state. The following is implied by Lemma 4,
the definition of ≺, and the definition of independence.

Corollary 5 (Independence Between Sessions) Let u and
v be distinct session identifiers. Let T = M1, . . . ,Mn be
a trace. Let a and b be nodes. Suppose Mi −→ Mi+1 is
an application of Rule X(u)(a), and Mj −→ Mj+1 is an
application of Rule Y(v)(b). Then X(u)(a) ‖Y(v)(b). �

To illustrate the use of this result, consider applications
X1(u) ≺ X2(u) ≺ X3(u) in session u and Y1(v) ≺
Y2(v) ≺ Y3(v) in session v. Although Xi ‖Yj for
i, j ∈ {1, 2, 3}, any legal trace must respect the or-
dering within the session. So a trace may record these
rules being applied in the order X1,Y1,Y2,Y3,X2,X3 or
Y1,X1,X2,Y2,Y3,X3, but not X2,X1,Y3,X3,Y2,Y1.

Intuitively, our notion of noninterference says that the
communication pattern engendered by a protocol in the tun-
nel calculus is the same regardless of the actions performed
by other sessions. In order to illustrate this, consider the
two traces

T = M1
X(u)
−→M2

Y(v)
−→M3

T ′ = M ′

1

Y(v)
−→M ′

2

X(u)
−→M ′

3.

It follows from our informal view of what constitutes non-
interference that the messages sent and received by session
v are the same in both T and T ′. In order to formalize our
noninterference theorem, it is necessary to develop some
machinery and prove several critical properties.

Let M denote a sequence of multisets M1, . . . ,Mn. Let
intersection distribute over a sequence of multisets as in
M ∩ V = M1 ∩ V, . . . ,Mn ∩ V for some multiset of
terms V . Define Q(u) to be the infinite multiset of terms of
the form ↓sec(u,k) P(a, b, y) and ⇑sec(u) P(a, b, y) contain-
ing session identifier u, where the values of a, b, y, and k
can take any legal value. So given a trace T , the sequence
T ∩ Q(u) is the messages sent and received in session u.
Hence it may seem that we can formulate noninterference
in terms of T ∩ Q(u) = T ′ ∩ Q(u), but more work yet
remains.

Consider the situation where the order of application of
two operations in different sessions is swapped

M1
X(u)
−→M2

Y(v)
−→M3

M ′

1

Y(v)
−→M ′

2

X(u)
−→M ′

3

The traces T = M1,M2,M3 and T ′ = M ′

1,M
′

2,M
′

3 both
contain the same v messages. If a term t ∈ Q(v) was pro-
duced by Y(v), then T ∩ Q(v) = {|t|} and T ∩ Q(v) =
{|t|}, {|t|} because the t term must still be in the multiset
M ′

3 since the application of a rule in session u will not re-
move a v term. Although this satisfies our notion of the
two traces containing the same messages, we would like
the traces to be the same. The introduction of an operator
rectifies this problem by removing duplicate entries in a se-
quence of multisets. Given a sequence of multisets M , the
filter operator (|M |) removes empty sets from the sequence
and removes duplicate subsequences of multisets from the
sequence. For example, (|∅, {|1, 2, 2|}, {|1, 2, 2|}, {|3, 4|}|) =
{|1, 2, 2|}, {|3, 4|}.

Given terms t and t′, we define the relation t ∼ t′ if
and only if there exists a substitution ρ of SPI and ac-
knowledgment identifier values for those in t such that t
and t′ are syntactically identical. Given a multiset M , let
Mρ = {|tρ | t ∈ M |}. Write M1 ∼ M2 if, and only if,
there exists a substitution ρ such that M1ρ = M2. Traces
T and T ′ are said to be v-observationally equivalent if
(|T ∩ Q(v)|) ∼ (|T ′ ∩ Q(v)|).

With this machinery in place it is now possible to for-
mulate the Observational Commutativity Theorem. It says
that, if we consider two operations belonging to two dis-
tinct sessions u and v, then the messages sent and received
in session v are the same regardless of the interleaving of
operations.

Theorem 6 (Observational Commutativity) Let T be a
trace

M1
X1(u1)
−→ M2

X2(u2)
−→ M3

X3(u3)
−→ · · ·

Xn−1(un−1)
−→ Mn,

where u1 6= u2. Then there is a trace T ′ that has the form

M ′

1

X2(u2)
−→ M ′

2

X1(u1)
−→ M ′

3

X3(u3)
−→ · · ·

Xn−1(un−1)
−→ M ′

n,

10

20th IEEE Computer Security Foundations Symposium (CSF'07)
0-7695-2819-8/07 $20.00 © 2007

where (|T ∩ Q(u1)|) ∼ (|T ′ ∩ Q(u1)|). �

The next lemma gives us a useful tool to apply when
proving two traces are semantically the same.

Lemma 7 (Simulation Lemma) If M1
X

−→M2 and M1 ∼
M ′

1, then there exists M ′

2 such that M2 ∼ M ′

2 and
M ′

1
X

−→M ′

2. �

A virginal network state is defined as a multiset where
the only terms in the multiset are the forwarding tables that
define the topology (terms of the form F(f)).

Consider a run of the establishment protocol. The ini-
tiator invokes the establishment protocol by writing a ↓est

term to the multiset, and a ↑est term is written when the
establishment initiator terminates. The responder process
is invoked by writing a ↓eresp term to the multiset, and a
↑eresp term is written when the establishment responder ter-
minates. We say that an invocation of establishment termi-
nates successfully when both the initiator and responder’s ↑
terms are written to the multiset. The discovery protocols
built on the framework of the tunnel calculus are presumed
to to have the same ↓, ↑ structure. In addition, the discovery
protocol is assumed to be invoked with a fresh session iden-
tifier. Given a trace T = M1, . . . ,Mn of the execution of
a discovery protocol. The trace is said to record a complete
session if it contains both the ↓ and ↑ terms for the proto-
col session and all invocations of establishment terminate
successfully.

We are now in a position to formalize our noninterfer-
ence theorem. Suppose trace T records the execution of
session v beginning in the same virginal network state and
trace T ′ records the concurrent execution of sessions v and
u also beginning in a virginal network state, then the mes-
sages sent and received in session v are the same in both
traces up to the afore-mentioned α-equivalence.

Theorem 8 (Noninterference) Let T = M1, . . . ,Mn be a
trace in which M1 is assumed to be a virginal network and
the only active session recorded in the trace is session v. Let
T ′ = M ′

1, . . . ,M
′

l be a trace whereM1 ∼M ′

1 and sessions
v and u are active in the trace. If session v is complete in
both T and T ′, then

(|T ∩ Q(v)|) ∼ (|T ′ ∩ Q(v)|). �

That is, with the hypotheses of the Theorem, the messages
sent and delivered in the execution of the rules in session v
are the same in both traces. It follows that the execution of
the rules in session u does not ‘interfere’ with the messages
sent and delivered in session v.

There is a large body of work in the existing literature on
formal reasoning about noninterference. Most approaches

to controlling interference in concurrent and distributed sys-
tems have used a more general definition of interference and
are intended for use in a more general setting. Axiomatic
approaches are usually rooted in the Gries-Owiki [10] proof
technique. A more complete axiomatic methodology for
reasoning about interference in concurrent programs can
be found in [11]. An alternate approach has its origins in
Reynolds’ Syntactic Control of Interference [20]. The goal
of this program is the design of a powerful Algol-like lan-
guage in which interference is possible, but syntactically
detectable. The tunnel calculus is more application-specific,
yet our solution adopts a similar philosophy. Having proven
noninterference between two sessions with distinct identi-
fiers, we need only verify that the respective sessions use
the new operator to generate the session identifier thus guar-
anteeing its uniqueness. This is an easy syntactic check.

7.2 Progress

We now characterize several properties relating the exe-
cution of rules in the same session. The first result demon-
strates that the application of two rules at different nodes,
but executing in the same session, can be swapped without
essentially altering the correctness of the protocol. The sec-
ond result is a progress theorem that states that if communi-
cation between two parties is possible, then it is possible to
extend any other to complete the communication.

When introducing the concept of independence, we
demonstrated a situation where operations within the same
session are independent. In particular, we showed that in the
execution of the establishment protocol, the writing of state
at the initiator and the writing of state at the responder for
the tunnel flowing from the responder to the initiator are in-
dependent. The next result says that different interleavings
of independent tunnel calculus operations at different nodes
within the same session has no effect on the communication
pattern engendered by the protocol.

Lemma 9 (Independence) Suppose

X(u)(L1, R1)(a) ‖Y(u)(L2, R2)(b),

where a 6= b and M1
X(u)
−→M2

Y(u)
−→M3 where M1 ∼ M ′

1.

Then there exist M ′

2,M
′

3 such that M ′

1

Y(u)
−→M ′

2

X(u)
−→M ′

3 and

(|M1,M2,M3 ∩ Q(u)|) ∼ (|M ′

1,M
′

2,M
′

3 ∩ Q(u)|). �

It is now possible to formulate a progress theorem that
says that if a trace T records a complete session starting in
the initial state M1, then given an incomplete trace of the
protocol, there is a possible extension that completes the
trace.

11

20th IEEE Computer Security Foundations Symposium (CSF'07)
0-7695-2819-8/07 $20.00 © 2007

Theorem 10 (Progress) Consider the trace T =
M1, . . . ,Mn and the only active session in the trace is ses-
sion u, where

u complete
︷ ︸︸ ︷

M1 −→∗ Mn .

Suppose there exists W = N1 −→∗ Nl, where N1 ∼ M1

and session u is the only active session, but session u is not
complete. Then there exists Nl −→∗ Nq such that

N1 −→∗ Nl −→
∗ Nq

︸ ︷︷ ︸

u complete

,

where (|T ∩ Q(u)|) ∼ (|N1, . . . , Nl, . . . , Nq ∩ Q(u)|). �

7.3 Relevance of the Theory

Let us now return to a concrete example to illustrate the
utility of the theorems developed in this section. Consider
two nodes a and b and assume that both have their oracles
set to allow any connection. Suppose a initiates an estab-
lishment session u with b and b initiates an establishment
session v with a. Assume that the execution of these two
protocols reaches a point where the global state records that
the request message for session u has arrived at b and the
request message for session v has arrived at a. Expressing
this in terms of our formalism, we say that at Mi the trace
T = M1, . . . ,Mi of this activity records

⇑sec(u) P(a, b,X(Req(a, b, u, ιa,K
a))) @ b ∈ Mi

and

⇑sec(v) P(b, a,X(Req(b, a, v, ιb′ ,K
b))) @ a ∈ Mi.

It follows from Independence Between Sessions (corol-
lary 5) that operations performed in sessions u and v are
independent. From the Observational Commutativity The-
orem 6 it follows that neither an operation in session u nor
an operation in session v will affect the messages sent in
the other session. Finally the Noninterference Theorem 8
informs us that regardless of the interleaving of the oper-
ations of the two sessions, they will terminate with their
respective tunnels set up.

8 Conclusion

It is often appreciated in practical operations, but per-
haps less so in theoretical investigations, that security sys-
tems create ‘friendly fire’ risks in which systems are harmed
by their own security protection mechanisms. An illustra-
tion of this appears in a recent NIST report [21] on SCADA
security, which includes a list of documented security inci-
dents for SCADA facilities (see Section 3.7). In particular,

the list contains as many incidents arising from faults in se-
curity protection measures as ones arising from deliberate
attacks by adversaries. This phenomenon is not at all sur-
prising, as anyone who has locked their keys in their car
will testify, but it underscores the importance of theory that
can provide assurances that security mechanisms will not
themselves cause failures.

In this paper we showed that tunnel establishment pro-
tocols risk non-trivial functional problems with deadlock
when negotiation packets are themselves placed in tunnels,
as they would be if authenticated traversal is enforced. We
presented a language, the tunnel calculus, that can be used
to express these issues precisely and reason about them. We
included in this system a concept of session that can be
used to separate tunnels to assure non-interference between
them. We stated a series of theorems that assert some de-
sired properties for this solution. We expect in future work
to provide a stronger version of the Progress Theorem: one
that is analogous to results on routing protocols, where it is
typical to show that suitable convergence can be achieved
from an arbitrary network state. In particular, a proper ver-
sion of this result will imply that any failures in the state of
the tunnel complex can be addressed by simply rerunning
the discovery protocol with a new session identifier.

A full version of this paper will include proofs of
the results. Related work on the tunnel calculus can
be found at the project web site: seclab.uiuc.edu/
tunnelcalculus.

Acknowledgements

We appreciated the assistance and encouragement from
Cathy Meadows, Marc-Oliver Stehr, and Steve Zdancewic
on this project and comments from anonymous refer-
ees on the paper. The research was partially supported
by NSF CNS05-5170 CNS05-09268 CNS05-24695, ONR
N00014-04-1-0562 N00014-02-1-0715, and a grant from
the MacArthur Foundation. Views expressed here are those
of the authors only.

References

[1] M. Abadi and A. Gordan. A Calculus for Cryptographic
Protocols: The Spi Calculus. Information and Computation,
148(1):1–70, 1999.

[2] G. Berry and G. Boudol. The chemical abstract machine. In
Principals of Programming Languages, pages 81–94. ACM
Press, 1989.

[3] C. Boyd and A. Mathuria. Protocols for Authentication and
Key Establishment. Springer-Verlag, 2003.

[4] I. Cervesato. A specification language for crypto-protocols
based on multiset rewriting, dependent types and subsorting.
In Workshop on Specification, Analysis, and Validation for
Emerging Technologies, pages 1–22, 2001.

12

20th IEEE Computer Security Foundations Symposium (CSF'07)
0-7695-2819-8/07 $20.00 © 2007

[5] Dynamic multipoint vpn (dm vpn). Cisco White Paper.
http://www.cisco.com/.

[6] V. Diekert and G. Rozenberg, editors. The Book of Traces.
World Scientific, 1994.

[7] T. Dierks and E. Rescorla. The TLS Protocol. RFC 4346,
IETF, 2006. Obsoletes: 2246.

[8] S. Fluhrer. Tunnel endpoint discovery. Internet Draft draft-
fluhrer-ted-00.txt, IETF, 2001.

[9] A. Goodloe, M.-O. Stehr, and C. A. Gunter. Formal proto-
typing in early stages of protocol design. In Workshop on
Issues in the Theory of Security (WITS ’05), Long Beach,
CA, January 2005. IFIP.

[10] D. Gries and S. Owicki. An Axiomatic Proof Technique for
Parallel Programs. Acta Informatica, 6:319–340, 1976.

[11] C. B. Jones. Accommodating Interference in the Formal De-
sign of Concurrent Object-Based Programs. Formal Meth-
ods in System Design, 8(2), 1996.

[12] Joshua D. Guttman and Amy L. Herzog and F. Javier
Thayer. Authentication and confidentiality via ipsec. In F.
Cuppens and Y. Deswarte and D. Gollmann and M. Waid-
ner , editor, European Sympsosium on Reseach in Computer
Security (ESORICS), Lecture Notes in Computer Science
1895. Springer-Verlag, 2000.

[13] C. Kaufman. Internet Key Exchange (IKE V2) Protocol.
RFC 4306, IETF, 2005. Obsoletes: 2407, 2408, 2409.

[14] J. Kelsey, B. Schneier, and D. Wagner. Protocol interactions
and the chosen protocol attack. In Proceedings of the 5th In-
ternational Workshop on Security Protocols, Lecture Notes
in Computer Science 1361, pages 91–104. Springer-Verlag,
1998.

[15] S. Kent. IP Encapsulating Security Payload (ESP). RFC
2406, IETF, 2005. Obsoletes: 2406.

[16] S. Kent and K. Seo. Security architecture for the internet
protocol. RFC 4301, IETF, 2005. Obsoletes: 2401.

[17] L. Lamport. Time, Clocks, and the Ordering of Events
in a Distributed System. Communications of the ACM,
21(7):558–565, July 1978.

[18] A. J. Menezs, P. C. van Oorchot, and S. Vanstone. Handbook
of Applied Cryptography. CRC Press, 1996.

[19] R. Morin. On regular message sequence chart languages and
relationships to Mazurkiewicz trace theory. In F. Honsell
and M. Miculan, editors, Foundations of Software Science
and Computation Structures (FOSSACS), Lecture Notes in
Computer Science 2030. Springer-Verlag, 2001.

[20] J. Reynolds. Syntactic control of interference. In Proceed-
ing of Fifth Symposium ACM on Principle of Programming
Languages, pages 39–46, 1978.

[21] K. Stouffer, J. Falco, and K. Kent. Guide to Supervisory
Control and Data Acquisition (SCADA) and industrial con-
trol systems security. Technical Report Special Publication
800-82, NIST, September 2006.

[22] T. Ylonen and C. Lonvick. The Secure Shell (SSH) Trans-
port Layer Protocol. RFC 4253, IETF, 2006.

A The Tunnel Calculus

This appendix contains a concise definition of the gram-
mar and rules of the tunnel calculus. The types of the

Node a ∈ Node
Message m ∈ Msg

Forwarding Table f ∈ Addr Addr

Request Identifier k ∈ Identifier

Security Parameter Index ι ∈ SPI

Domains d ∈ Domain

Session v ∈ Session + −∞
Policy L ∈ Pol

Credential K ∈ Cred

Booleans B ∈ Boolean

Table 1. Tunnel Calculus Types

calculus are given in Table 1. The basic types include
the addresses of nodes in the network, an address range
(Domain), generic messages, Booleans, and SPI values.
The forwarding table is a partial function from the desti-
nation address to the address of the next hop. A variable de-
noting the session identifier v may be either of type Session

or have the value ∞ indicating that no session identifier has
been assigned to that variable. Policies and credentials are
treated abstractly in this paper where they are represented
by the basic types Pol and Cred.

Fwd F ::= F(f)
Sec s ::= S(v, ι, p)
Req/Rep κ ::= Req(a, a, v, ι,K) |

Rep(a, a, v, ι, ι,K,L)
Establishment χ ::= X(κ)
Payload y ::= m | p | s | χ
Packet p ::= P(a, a, y)
Association In σi ::= In(a, ι)
Association Out σo ::= Out(a, ι)
Associations Σ ::= Assoc({σi, . . . σi}

∪{σo
1 , . . . σ

o
m})

Bundle In βi ::= Bndl[σi, . . . , σi]
Bundle Out βo ::= Bndl[σo, . . . , σo]
Pattern ω ::= a | d | ∗
Selector ψ ::= ω → ω

Security Mech In πi ::= Mech(ψ : v : βi)
Security Mech Out πo ::= Mech(ψ : v : βo)
Mechanisms In Πi ::= MechIn[πi

1, . . . , π
i
n]

Mechanisms Out Πo ::= MechOut[πo
1 , . . . , π

o
m]

Communication η ::= ω 7→ ω | ω ↔ ω

Resumption z ::= β | a | p | ι | k
Resumption Term Z ::= 〈〉 | 〈z, . . . , z〉

Table 2. Tunnel Calculus Elements

The elements given in Table 2 are the basic structures
used to model packets, messages, associations, and mech-
anisms. The establishment messages must undergo special
processing and are distinguished by the X constructor. The
association database Σ is the set of associations active at a
node. There are distinguished mechanisms for inbound πi

and outbound πo traffic. As discussed above, a mechanism
is a triple consisting of a packet filter ψ, a session identifier
v, and a bundle of associations. A bundle is a list of inbound
βi or outbound βo associations. An inbound Πi and an out-

13

20th IEEE Computer Security Foundations Symposium (CSF'07)
0-7695-2819-8/07 $20.00 © 2007

bound Πo mechanism database is maintained at each node.
A mechanism database is a list of inbound or outbound se-
curity mechanisms. Resumption terms represent the state
of a protocol execution and are used to control the order of
execution of rewrite rules.

The terms of the tunnel calculus are specified in Table 3.
Packets, resumption terms, the association database, and the

Term t ::= F | p | Z | Σ | Πi | Πo |
To IP ↓ip(k) p |
Ack from IP ↑ip(k) |
Receive from IP ⇑ip p |
To Sec ↓sec(v,k) p |
Ack from Sec ↑sec(k) |
Receive from Sec ⇑sec(v) p |
To Establish ↓est(v,k) E(a, a, a) |
Ack from Estab ↑est(k) |
To Est Resp ↓eresp(v,k) |
Ack from Est Resp ↑eresp(k) R(a)
To Authorization ↓auth(v,k) A(L,K)
Ack from Auth ↑auth(k) B |
Node Term nt ::= t@a

Table 3. Tunnel Calculus Terms

mechanism databases are terms. The other terms represent
interfaces. For instance, a packet p is sent down the IP stack
by writing a ↓ip(k) p term; and a packet traveling up the
stack from the IP layer is given by the term ⇑ip p. Node
terms have a grammar nt ::= t@ a,where t is a term located
at node a. Each node in the network will have a collection
of node terms representing the state at that node. The state
of the entire network is represented as a multiset of node
terms.

The outbound processing rules were given earlier in
terms of semantic functions BndlSel and Nest. Here are
precise definitions

BndlSel : Addr × Addr × Session × Policies Bundle

BndlSel(b, c, v, Πo) = β

if Mech(b → c : v : β) ∈ Πo

BndlSel(b, c, v, Πo) = Bndl[] otherwise

Nest : Bundle × Addr × Session × Packet → Packet

Nest(Bndl[], e, v, p) = p

Nest((Out(d, ι) :: β), e, v, p) = Nest(β, e, v, P(e, d, S(v, ι, p)))

Secure layer inbound processing uses a semantic function
Strip, which removes and verifies the headers of secure
packets that are destined for the node performing the pro-
cessing. When Strip is initially called the session number
is unknown and the parameter is assumed to be set to −∞.
The type is

Strip : Associations × Addr × Packet × Bundle

Packet × Bundle + Exchange(Packet × Bundle).

Due to space considerations we do not give the detailed def-
inition here.

We now give the rules for each layer of the tunnel calcu-
lus accompanied by a brief explanation. The rule identifiers
use the notation F for Forwarding, S for Secure processing,
and E for Establishment. In the presentation that follows,
the rule precedes a brief explanation.

We begin by examining the two rules for the forwarding
layer that move packets from one node to another.

Rule F.1.1

F(f) @a ` ↓ip(k) P(b, c, y) @a −→

P(b, c, y) @ f(c), ↑ip(k) @a

In Rule F.1.1, the forwarding table appears to the left of
the ` indicating that it can be used in the rule, but is not
removed from the multiset. If a packet from b to c is ready
for dispatch at a, then it is sent to the node f(c) obtained
from the forwarding table at a. An acknowledgment of this
dispatch is provided at a. This is not an acknowledgment of
delivery at f(c), however.

Rule F.2.1

`a p −→ ⇑ip p

If a packet p has been received at a node, the forwarding
layer responder Rule F.2.1 rewrites to ⇑ip p, indicating that
the message has been received.

The secure layer performs processing of secure pack-
ets. The rules for the secure layer initiator are given in the
main body of this text and are not repeated here. The se-
cure layer responder processes an incoming message that
has been passed up by the forwarding layer responder. If
the message is an establishment packet, then the packet is
sent up to the higher layers for processing (Rule S.2.1). If a
non-establishment packet arrives in a valid association and
is destined for this node, then pass the packet up for fur-
ther processing (Rule S.2.3). If a non-establishment packet
arrives in a valid association and is destined for a different
node, then send the packet on its way (Rules S.2.4, S.2.5).
This processing is formalized by the following five rules.

Rule S.2.1
Σ `e ⇑ip p −→

⇑sec(v) P(b, c,X(κ))

where Exchange(P(b, c,X(κ)), β)

= Strip(Σ, e,−∞, p,Bndl[])

if Mech(b → c : v : β) ∈ Πi or (β = []

and not (Mech(b → c : v : β′) ∈ Πi

and β 6= β′)).

Rule S.2.1 only executes if the decapsulated message re-
ceived from the forwarding layer is an establishment mes-
sage and there is either a matching entry in the mechanism
database, indicating that the message arrived in a valid tun-
nel, or there is no matching entry and an empty bundle value
has been returned by Strip, indicating that the packet has ar-
rived in the clear. The rule passes the message up for further
processing.

Rule S.2.2
Σ `e ⇑ip p −→ 〈p′, β, v〉

where (p′, v, β) = Strip(Σ, e,−∞, p,Bndl[]).

The second rule of the secure layer responder decapsulates
messages that are not establishment packets. The next two

14

20th IEEE Computer Security Foundations Symposium (CSF'07)
0-7695-2819-8/07 $20.00 © 2007

rules decide what to do with the message.
Rule S.2.3

Πi `e 〈P(b, c, y), β, v〉 −→ ⇑sec(v) P(b, c, y)

if e = c and Mech(b → c : v : β) ∈ Πi.

If the packet was traveling in a valid association and it is
destined for this node, then Rule S.2.3 passes it up for fur-
ther processing.

Rule S.2.4
Πi `e 〈P(b, c, y), β, v〉 −→ ↓sec(v,k4) P(b, c, y), 〈v, k4〉

if e 6= c and Mech(b → c : v : β) ∈ Πi

where k4 is new.

Rule S.2.5
`e 〈k4〉, ↑sec(k4) → ·

If the packet was traveling in a valid association and it is
not destined for this node, then Rule S.2.4 invokes the se-
cure layer to send the packet towards its destination. Upon
receiving the acknowledgment that the message has been
sent, the protocol terminates in Rule S.2.5.

We now present the rules for the establishment layer.
The initiator a invokes the establishment layer by writing
a ↓est(v,k) E(b, s, d) term, where b is the responder and s
and d are the packet filters to be installed in the mechanism
database. The establishment layer initiator is defined by the
following three rules.

Rule E.1.1
Ka `a ↓est(v,k1) E(b, s, d) −→

↓sec(v,k2) P(a, b,X(Req(s, d, v, ιa, K
a))),

〈v, a, b, s, d, k1, k2, ιa〉

if ∃In(b, ιx) ∈ Σ then ιa = ιx else ιa is new

where k2 is new.

Rule E.1.1 generates an establishment request message. If
there is an existing association flowing from b to a, then
use the existing association. Otherwise, generate a new SPI
value ιa. The initiator then sends the establishment request
message to node b.

Rule E.1.2
La `a 〈v, a, b, s, d, k1, k2, ιa〉,

↑sec(k2) ,

⇑sec(v) P(b, a,X(Rep(s, d, v, ιa, ιb,K
b))) −→

↓auth(v,k3) A(La,Kb),

〈v, a, b, s, d, k1, k2, k3, ιa, ιb〉

where k3 is new.

Upon receiving the establishment response message, the
second rule of the establishment initiator invokes the autho-
rization layer to see if the credential Kb satisfies the policy
La.

Rule E.1.3
`a 〈v, a, b, s, d, k1, k2, k3, ιa, ιb〉,

Σ,Πi,Πo, ↑auth(k3) (true) −→

Σ ∪ {Out(b, ιb)},

Mech(d −→ s : v : Bndl[Out(b, ιb)]) ⊗ Πo,

Σ ∪ {In(b, ιa)},

Mech(s −→ d : v : Bndl[In(b, ιa)]) ⊗ Πi, ↑est(k1) .

If the authorization layer returns true, then Rule E.1.3 up-
dates the association and mechanism databases for both
associations and writes the establishment acknowledgment
term.

The establishment layer responder is invoked by node
b in expectation that an initiator node will be discovered
and perform establishment with it. The establishment layer
responder is defined by the following three rules.

Rule E.2.1
Lb `b ↓eresp(v,k1) ,

⇑sec(v) P(a, b,X(Req(s, d, v, ιa, K
a)) −→

↓auth(v,k2) A(Lb,Ka),

〈v, a, b, s, d, ιa, k1, k2〉

where k2 is new.

Upon the arrival of an establishment request message, Rule
E.2.1 invokes the authorization layer to verify that the ini-
tiator’s credential Ka satisfies the policy Lb.

Rule E.2.2
Kb `b 〈v, a, b, s, d, ιa, k1, k2〉,

↑auth(k2) (true), Σ, Πi,−→

Σ ∪ In(a, ιb),

Mech(d → s : v : Bndl[In(a, ιb)]) ⊗ Πi,

↓sec(v,k3) P(b, a, v,

X(Rep(s, d, v, ιa, ιs,K
b))),

〈v, a, b, s, d, ιa, ιb, k1, k2, k3〉

where k3 is new.

if ∃In(a, ιx) ∈ Σ then ιb = ix else ιb is new.

If the policy has been satisfied, then Rule E.2.2 generates
an establishment response message. If there is an existing
association flowing from the initiator to the responder, then
it gets reused. Otherwise, a new association is generated.
The establishment response message is sent to node a and
entries are then added to the association and mechanism
databases for the association flowing from a to b and the
establishment reply message is sent.

Rule E.2.3
`b 〈v, a, b, s, d, ιa, ιb, k1, k2, k3〉,

Σ,Πo, ↑sec(k3) −→

↑eresp(k1) R(a)

Σ ∪ {Out(a, ιa)},

Mech(s → d : v : Bndl[Out(a, ιa)]) ⊗ Πo.

Upon acknowledgment that the reply has been sent, Rule
E.2.3 adds entries the association and mechanism databases
for the association flowing from b to a.

15

20th IEEE Computer Security Foundations Symposium (CSF'07)
0-7695-2819-8/07 $20.00 © 2007

	University of Pennsylvania
	ScholarlyCommons
	6-6-2007

	Reasoning about Concurrency for Security Tunnels
	Alwyn E. Goodloe
	Carl A. Gunter

