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A Dynamic Scheduling Approach to Designing Flexible Safety-Critical
Systems

Abstract
The design of safety-critical systems has typically adopted static techniques to simplify error detection and
fault tolerance. However, economic pressure to reduce costs is exposing the limitations of those techniques in
terms of efficiency in the use of system resources. In some industrial domains, such as the automotive, this
pressure is too high, and other approaches to safety must be found, e.g., capable of providing some kind of
fault tolerance but with graceful degradation to lower costs, or also capable of adapting to instantaneous
requirements to better use the computational/communication resources.

This paper analyzes the development of systems that exhibit such level of flexibility, allowing the system
configuration to evolve within a well-defined space. Two options are possible, one starting from the typical
static approach but introducing choice points that are evaluated only at runtime, and another one starting
from an open systems approach but delimiting the space of possible adaptations. The paper follows the latter
and presents a specific contribution, namely, the concept of local utilization bound, which supports a fast and
efficient schedulability analysis for on-line resource management that assures continued safe operation. Such
local bound is derived off-line for the specific set of possible configurations, and can be significantly higher
than any generic non-necessary utilization bound such as the well known Liu and Layland’s bound for Rate-
Monotonic scheduling.
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ABSTRACT
The design of safety-critical systems has typically adopted
static techniques to simplify error detection and fault tol-
erance. However, economic pressure to reduce costs is ex-
posing the limitations of those techniques in terms of effi-
ciency in the use of system resources. In some industrial
domains, such as the automotive, this pressure is too high,
and other approaches to safety must be found, e.g., capable
of providing some kind of fault tolerance but with grace-
ful degradation to lower costs, or also capable of adapting
to instantaneous requirements to better use the computa-
tional/communication resources.

This paper analyses the development of systems that ex-
hibit such level of flexibility, allowing the system configura-
tion to evolve within a well-defined space. Two options are
possible, one starting from the typical static approach but
introducing choice points that are evaluated only at runtime,
and another one starting from an open systems approach but
delimiting the space of possible adaptations. The paper fol-
lows the latter and presents a specific contribution, namely,
the concept of local utilization bound, which supports a fast
and efficient schedulability analysis for on-line resource man-
agement that assures continued safe operation. Such local
bound is derived off-line for the specific set of possible con-
figurations, and can be significantly higher than any generic
non-necessary utilization bound such as the well known Liu
and Layland’s bound for Rate-Monotonic scheduling.

Categories and Subject Descriptors
D.4.7 [Operating Systems]: Organization and Design—
Real-time systems and embedded systems
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1. INTRODUCTION
There is currently a growing importance of flexibility in

the design of distributed embedded systems, and particu-
larly automotive systems, e.g., to conceive software architec-
tures that are as independent as possible from the underly-
ing hardware architectures upon which they will execute, to
allow different choices of technologies at the hardware level,
to allow easy customization of different product models, to
improve efficiency in using the hardware resources namely
ECUs and networks, etc. This is, for example, the flexibil-
ity pursued by the AUTOSAR consortium in the automo-
tive domain [11]. Their purpose is to reduce production
costs whilst satisfying the demands for increased function-
ality, customization, safety, efficiency, and performance.

The aspects of flexibility referred above apply only at de-
sign time, and give the designer more freedom to design func-
tions and allocate them in the hardware architecture (design
flexibility). However, further benefits can be achieved if the
system is able to adapt at runtime to changes in the oper-
ational environment or system configuration, such as those
arising from hazardous events, evolving requirements, en-
vironmental changes, and on-line Quality-of-Service (QoS)
management [4, 9, 14, 5]. This level of flexibility (opera-
tional flexibility) can be exploited to increase the system
survivability [14, 15], e.g., by supporting flexible modes and
graceful degradation, as well as increasing efficiency in the
use of system resources [5], particularly CPU and network
bandwidth, carrying along an inherent potential to reduce
system costs and improve its dependability.

Operational flexibility may be particularly interesting in
cost-constrained safety-critical systems since it may provide
support for fault-tolerance mechanisms that are less expen-
sive than modular redundancy approaches to fault tolerance.
For example, using functional replicas with different QoS



instead of modular redundancy may allow exploiting spare
capacity in existing computing resources without the need
for extra ones [15, 8].

Reconciling flexibility and safety as introduced above cre-
ates the problem that the system may evolve into an unsafe
state during the reconfiguration. In order to prevent this
from happening, operational flexibility must be adequately
constrained to a space of safe configurations that have been
pre-analyzed at design time and use a configuration change
mechanism that assures continued safety. Two approaches
can be followed, either starting from a static single configu-
ration system or from an open systems perspective (Fig. 1).
In the former case one needs to encode more configurations
and an adequate switching logic at design time. We refer to
it as static scheduling-based approach. In the latter case, it
is necessary to restrict the space of reconfiguration requests
that can be accepted at run-time. This will be referred to
as dynamic scheduling-based approach.

This paper explores the latter approach only, and proposes
a system model and design flow that is adequate to support
the design of flexible safety-critical systems. Moreover, a
specific contribution is proposed, namely the concept of lo-
cal utilization bound, to support fast and efficient schedula-
bility analysis for on-line resource management. Such bound
is derived for each specific configurations space, but it is sig-
nificantly higher than common bounds devised for general
task sets, i.e., considering any relative offset, period and ex-
ecution time. Higher utilization bounds mean that more
configurations are accepted at run-time.

The remainder of the paper is organized as follows. Sec-
tion 2 revisits previous related work, Section 3 presents the
system model, Section 4 discusses the associated design flow,
Section 5 presents the local utilization bound while Section
6 presents one quantitative example. Conclusions are drawn
in Section 7.

Figure 1: Two approaches to build systems with
bounded operational flexibility

2. RELATED WORK
Despite the potential benefits of flexible and adaptive run-

time approaches to complex embedded systems, as referred
in Section 1, such approaches are not common because of
safety concerns and absence of motivation to optimize re-
source efficiency. Looking at the work carried out within re-
lated lines we identify two main directions. On one hand we
find the systems that encompass several operational modes
to be selected at run-time. There are two issues associ-
ated with designing these systems: (1) selecting the modes
to include in the design and (2) the mode-change protocol
to manage the run-time mode switching. The former deals
with both trading off memory with the number of modes
and the practicality of verifying each mode individually for
correctness and safety. The typical approach has been to

strongly reduce the number of modes (i.e., the configuration
space). For example, [16] analyses the reconfigurations in-
duced by component failures but reduces the configuration
space by first analysing reconfiguration in small subsystems
and then composing subsystems into global system config-
urations. The latter, i.e., mode change protocols, is related
with the need to ensure safety during switching from one
configuration to another. A good survey of mode change
protocols in uni-processor systems and related issues can be
found in [13]. Concerning distributed embedded systems,
the Time-Triggered Protocol, for example, also allows defin-
ing up to 30 modes and includes a safe mode-change proto-
col [19].

Notice, however, that the previous approaches rely on
static scheduling, either static cyclic table-based or static
priorities-based, no matter the actual scheduling of tasks or
messages being carried out off-line, as in [19], or on-line, as
in [13]. In fact, the task and message sets of each mode are
statically defined at design time and cannot change on-line.
Other approaches use dynamic scheduling and are funda-
mentally different since the tasks executed in the system
may vary on-line (e.g., the Spring Kernel [12]). In dynamic
scheduling, an admission control assures continued timely
operation by rejecting new tasks that would lead to unfeasi-
ble configurations. In these circumstances it is impossible to
know beforehand which tasks the system will be executing
at each instant. Despite assuring continued timeliness, this
approach does not assure continued safety. In fact, at a given
time, a new task that is essential for the system safety might
be rejected because the bandwidth of a CPU or network is
fully taken by other non-critical tasks/messages.

This problem has been partly addressed with on-line QoS
management approaches, which allow defining flexible pa-
rameters for tasks and messages as well as managing them
as a whole instead of simply testing whether a given change
can be accomplished with respect to a fixed running con-
figuration. When an admission control returns a negative
answer, these approaches manage the flexible parameters in
order to find a configuration in which the requested change
can be accepted. Using appropriate management policies,
such as the elastic model [5] or the (m,k)-firm model [8] and
bounding the task/message set as proposed in [1] it is pos-
sible to assure that critical tasks will always find enough
resources to be accepted on-line, thus assuring continued
safety.

The RoSES project (Robust Self-Configuring Embedded
Systems) [16, 15] deserves a particular reference for its re-
semblance with the work presented here in terms of some of
its aims. This project focused on achieving graceful degrada-
tion via reconfiguration caused by component failures using
the concept of a product family. Conversely, we aim at im-
proving resource efficiency in general, using flexible timing
attributes of tasks and messages. Despite also supporting
graceful degradation, this is not the main motivation for
our work, which targets a higher level of reconfigurability,
following the effective resource needs for each system state.

Finally, it is interesting to notice the convergence between
the static scheduling-based and dynamic scheduling-based
approaches which, despite starting from substantially differ-
ent stand points, allow us to reach the same goal of intro-
ducing operational flexibility into the design of safety-critical
systems. Previous work of the authors has explored both al-
ternatives, basically with the use of stateful schedules [7] and



the Flexible Time-Triggered framework [10], respectively.
In this paper we follow the latter approach introducing a

new contribution, namely the concept of local schedulability
utilization bound to support fast and efficient schedulabil-
ity analysis for on-line resource management. The overall
approach works as follows. Subsystems that are temporar-
ily not needed or at least not with high QoS are either shut
down or turned into a low QoS state, thus releasing resources
that are made available to a QoS manager. This manager
distributes these resources among the currently active sub-
systems, using a schedulability test and an adequate policy.
This corresponds to new configurations that are generated
on-line. The schedulability test for the QoS policy is also
executed on-line, and often within an iterative procedure,
thus the importance of using a fast test.

Examples of situations in which this approach can be ap-
plied include all cases in which several subsystems coexist
that are not effectively needed all the time, or at least, not
with the highest QoS. In the automotive domain we can
identify the ABS (anti-lock braking), needed when the brake
is pressed, only, the cruise-control, needed when switched on
by the user, only, and mutually exclusive with the ABS, the
ESP (electronic stability program) that is needed when a
lateral skid is detected, only, just to name a few. In robot
control, similar situations can be found, e.g. concerning the
obstacle detection, which can be more or less frequent de-
pending on the robot speed, etc.

3. SYSTEM MODEL AND PROBLEM FOR-
MULATION

In this paper we consider a complex system composed by
a set of subsystems interconnected by a network. Each sub-
system is characterised by a flexible set of parameters that
depend on which mode each subsystem is in and represent
different levels of QoS. The model considers thus a set of
nodes N (Eq. 1) that run a task set T (Eq. 2) and exchange
a set of messages M (Eq. 3) . We refer to the cardinality of
the sets with |N |, |T | and |M|, respectively. The framework
is time-triggered and tasks and messages follow a globally
synchronised periodic model, with execution/transmission
time (C), period (P ), deadline (D) and offset (O). The tasks
will also identify the node they reside in (n). There might
be also a fixed priority (Pr) representing the importance of
the task or message in the scope of the application.

A period of −1 means that the respective task or message
is switched off. A period of 0 means infinity and the task or
message will be released exactly once. Notice that, as usual
in time-triggered models, the transmission of messages is
carried out autonomously by the network and not by the
tasks that produce the values to be exchanged. Information
passing between tasks and messages is carried out through
retentive buffers. Therefore, messages behave very similarly
to tasks in terms of periodic release. On the other hand, we
will consider single packet messages, only, and thus message
transmission is non-preemptive.

N ≡ {ni, i = 1..|N |} (1)

T ≡ {ti (Ci, Oi, Pi, Di, ni, P ri) , i = 1..|T |} (2)

M≡ {mi (Ci, Oi, Pi, Di, P ri) , i = 1..|M|} (3)

One interesting aspect is that the time-triggered model al-
lows decoupling all active resources in the system, i.e., nodes

and network, in a way that each one can be analysed sep-
arately and appropriate off-sets can be derived to control
the end-to-end latency of distributed transactions [6][17].
Therefore, from this point on and for the sake of clarity
we will refer to one task set executing on one node. Finally,
at this point it is irrelevant whether the deadlines can be
larger than the periods or if they are constrained to be less
than or equal to the periods. This issue is only relevant to
determine the kind of off-line analysis that must be carried
out to deduce the local utilization bound, as seen later on.

3.1 Representing different QoS levels
To represent the possible different values of QoS, we cur-

rently consider different task execution times and periods,
only. Despite a possible, though complex, relationship be-
tween offset and QoS, this parameter is not considered as a
QoS parameter in this work. Priorities could also be used to
control the QoS but they are used herein to express the rela-
tive importance of each task in the scope of the application,
as referred above.

Therefore, the QoS attributes herein considered are pe-
riods and execution times, which are expressed as vectors
(Eq. 4 and 5) instead of scalars as usual. These vectors
contain all possible values of the respective attribute.

{Pi}T =
nh

P 1
i P 2

i . . . P
qTi
i

io
T

(4)

{Ci}T =
nh

C1
i C2

i . . . C
dTi
i

io
T

(5)

The term qTi is the length of the period configurations
vector, i.e., the number of different periods for task i, and
dTi is the number of different execution times of task i.

We will designate the whole space of all possible combi-
nations of parameters, the QoS state space (Ω). This space

has a cardinality of |Ω| = Π
|T |
i=1q

T
i dTi , which represents the

total number of instances of task sets, i.e., configurations,
that can be produced by instantiating the specified QoS pa-
rameters.

However, in general, not the whole QoS space will be fea-
sible. It is possible that many combinations of individual
parameters of tasks lead to unschedulable sets. These are
undesired and must be avoided during system operation.
Thus, a first constraint that must be applied to the QoS
space Ω is that of schedulability, resulting in the subset ΩS

of all schedulable configurations. Necessarily, ΩS ⊆ Ω.
On the other hand, we define two other sets of constraints

over the QoS space Ω, namely the exclusion constraints X
and the coherency constraints H. These constraints capture
control dependencies across application subsystems that re-
sult in forbidden or mandatory relationships among tasks
periods or execution times. For example, the ABS in a car
runs in mutual exclusion with the cruise control. This means
that configurations in which specific tasks of both functions
are active at the same time should be rejected. Also, when
the rate of a task that produces a message is changed, the
rate of that message should change consistently. These con-
traints must be enforced when generating on-line configura-
tions.

Definition 1 (Exclusion constraint). An exclusion
constraint X = 〈ti, tj〉 specifies that if ti is in state (Ci, Pi)
and tj is in state (Cj , Pj), then Pi ≥ 0 ⇒ Pj = −1 and
Pj ≥ 0 ⇒ Pi = −1.



Definition 2 (Coherency constraint). A period co-
herency constraint HP = 〈ti, tj , k〉 specifies that if ti is in
state

`
Ci, P

k
i

´
where k indicates the index in the ti period

vector Pi, then tj must be in state
`
Cj , P

k
j

´
with k ∈ Z≥1

and |Pi| = |Pj |. A computation coherency constraint HC =
〈ti, tj , k〉 specifies that if ti is in state (Ck

i , Pi), tj must be in
state (Ck

j , Pj) where k has equivalent meaning to k in HP

and |Ci| = |Cj |.

Exclusion constraints model configurations that are for-
bidden and they can be used to model, in a compact way,
mutually exclusive subsystems, i.e., when one is operating
the other is switched off. Consider, for example, two mes-
sage streams m1 and m2 that are mutually exclusive. This is
stated with X = 〈m1, m2〉 meaning that P1 ≥ 0 ⇒ P2 = −1
and vice versa. Notice that switching off both subsystems is
still possible, i.e., P1 = −1 ∧ P2 = −1. The coherency con-
straints model tasks and messages of the same subsystem
that must change coherently, e.g., keeping always a similar
period or even a similar ratio as with oversampling. Only
configurations that meet the constraints are allowed, so af-
ter applying these constraints to the QoS space Ω we obtain
the subspace ΩH∪X ⊆ Ω.

Finally, there must be at least one configuration, called
nominal and represented by F = {ti, mj , i = 1..|T |, j = 1..|M|},
which guarantees safe operation, even with degraded perfor-
mance, no matter the operational system state. This con-
figuration must be schedulable and fulfill the exclusion and
coherency constraints. It represents the minimum resources
needed by all subsystems for safe operation. It is likely that
in this configuration all, or several, non-critical functions will
be deactivated, which will only run when some critical func-
tions can be temporarily switched off or executed at lower
than nominal QoS, thus releasing the required resources.

3.2 Design problem
Following from the previous section, the final configura-

tions space, ΩR, available for safe on-line use, is the inter-
section between ΩH∪X and ΩS and, by definition, F ∈ ΩR.
In other words:

ΩR ≡ ΩH∪X ∩ ΩS and F ∈ ΩR

Figure 2 illustrates this relationship. It also allows to
formulate our design problem. Our goal is two fold: on
one hand to find all configurations, or as many as possible,
within the space ΩR, and on the other hand, to establish a
mode switching logic that assures continued safety. Achiev-
ing these two goals allows maximizing efficiency in using
system resources, because we will have more configurations
to choose from in order to find one that better exploits the
resources available at each instant.

In practice, there are two approaches to find configura-
tions within the ΩR space: (1) generate specific configu-
rations at run-time according to requests managed by an
on-line QoS management policy that integrates admission
control or (2) generate safe configurations off-line and en-
coding them in memory. These two approaches have been
designated, in Section 1, as the dynamic scheduling-based
and the static scheduling-based, respectively. Nevertheless,
both are normally sub-optimal in the sense that, generally,

the actual space of configurations they generate, ΩR′
, is just

a subset of ΩR (Fig. 2). This is due to the pessimism of the
schedulability analysis used within the former approach and

Figure 2: Constraining the configurations space to
ensure safety

the space limitations in the generation and encoding of all
possible configurations in the latter.

3.3 QoS management policy
It was referred above that one of the goals of this work is

to establish a mode switching logic that assures continued
safety. This is a fundamental goal since many of the configu-

rations within ΩR′
will improve resource efficiency in certain

system states [18], because resources usage will be tuned to
actual needs, but may be unsafe for other system states in
which resource needs might be different. The referred mode
switching logic, which is part of the QoS management policy
(µ), is responsible for tracking the current system state and
force the adequate configuration changes (Fig. 3).

In each configuration, each task can be in one of two QoS
states, forced or managed, being thus integrated into the
respective set. These sets are defined as follows:

• Forced QoS set, set of tasks whose current QoS state
has been explicitly set to their low values as a re-
sponse to reconfiguration events generated aside the
QoS management policy.

• Managed QoS set, set of tasks whose current QoS
state is controlled by the QoS management policy, which
tries to provide the best QoS possible to all such tasks
with the level of resources currently available and con-
sidering any existing relative importance or value as
well as the X and H constraints.

• Reconfiguration event, event that causes the tran-
sition of tasks from one of the sets defined above to
the other.

To better illustrate these definitions consider again the
ABS example in a car. During normal driving and after a
certain period of stable conditions and no use of the braking
function, the ABS, or part of it, is switched off (in the sense
that certain functions will cease being invoked, despite re-
maining latent). This issues a reconfiguration event to move
the associated tasks and messages from the managed QoS set
to the forced one, releasing the associated resources that are
then used by the QoS manager to improve the QoS of the
tasks currently in the managed set. Later, there is a sudden
need for braking, e.g. when the driver touches the brakes
pedal), and thus another reconfiguration event is issued to
move those tasks and messages back into the managed set
to have the ABS system fully active again. In this case,



given the higher importance of this function, the QoS man-
ager will allocate to it the required resources, switching off
all tasks and messages with exclusion constraints, e.g., the
Cruise Control system, and further reducing the QoS of less
critical functions or even switching off non-critical ones if
needed.

It is clear that the QoS management policy must be fast
enough to allow prompt reconfigurations, mainly when re-
sponding to requests for awaking critical functions. The
maximum time to carry out a QoS redistribution must, thus,
be specified and used to select an adequate QoS management
policy. These policies can be of different types, from fixed
value-based, in which higher valued entities receive avail-
able resources before lower valued ones, to dynamic policies,
such as the elastic model, in which the available resources
are distributed among managed entities in a more even way,
possibly weighted with a parameter [10]. This issue will be
revisited in Section 4 but a thorough coverage of QoS man-
agement policies, including the strategy used to define the
actual switching instant for replacing the period of a spe-
cific task, for adding a new task (previously switched off)
or removing a running task (switching it off), is beyond the
scope of this paper.

Figure 3: The role of the QoS management policy
(µ) to ensure safety.

4. DESIGN FLOW
The design flow associated with the scheme proposed in

this paper is shown in Fig. 4. Steps 1 and 2 deal with the
system requirements analysis and constraints specification.
They provide the necessary information to expand all pos-
sible configurations in terms of tasks and messages parame-
ters, as carried out in Step 3. Step 4 consists on executing a
schedulability analysis, as accurate as possible, to filter out
any non-schedulable configurations. If this schedulability
test is necessary and sufficient then all schedulable configu-
rations, and only them, will pass it, thus generating the full
safe configurations space (ΩR). On the other hand, if the
test is just sufficient then a few schedulable configurations
might be left out by the test, thus leading to a subset of all

safe configurations (ΩR′
).

Finally, Step 5 deals with the definition of the QoS man-
agement policy, including the definition of an integrated
schedulability test to be used on-line, which assures that
the configurations generated at run-time are all schedula-
ble. It is this test that defines the final configurations space

that will actually be used (ΩR′
). Therefore, in the general

1. Analyze system requirements

(a) Deduce tasks and messages

(b) Deduce their periods, execution and trans-
mission times, modes (for each subsystem)

2. Specify constraints H and X, and the nominal
vector F .

3. Expand all possible configurations considering
all exclusion and coherency constraints (ΩH∪X).

4. Analyze off-line the schedulability of all the con-
figurations within ΩH∪X and define the configu-

rations space (ΩR or ΩR′
).

5. Define the QoS management policy (µ) that
will establish the switching logic to control the
changes of configuration.

(a) Define a suitable on-line schedulability test
that is fast and accepts as many configura-
tions as possible from those selected in Step

4, redefining the configuration space ΩR′
.

Figure 4: Proposed design flow

case, it is possible to skip Step 4 since the exclusion of poten-
tially non-schedulable configurations is carried out on-line.
However, we show, in this paper, that using both tests, off-
line and on-line, might lead to an improved efficiency of the
latter, namely using the concept of local utilization bound
presented in discussed in Section 5.

5. THE LOCAL UTILIZATION BOUND
When deciding about which schedulability test to use on-

line, the utilization-based bounds stand up as an attractive
solution because of the simplicity of the calculations involved
and thus the low latency imposed by their use. A good ex-
ample of a utilization bound is the one for EDF scheduling
with preemptive independent task systems and D=P, which
is necessary and sufficient. However, this is not the gen-
eral case and all other similar tests, for different polices or
task models, are typically poor in terms of efficiency, gener-
ating substantial levels of pessimism thus rejecting several
schedulable configurations.

One problem associated with those bounds is that they
are general in the sense that they were devised to be ap-
plied to task sets generated with any relative offset, period
and execution time, i.e., an infinite space of possibilities. In
our case, we want to apply a schedulability test to a well
defined space of configurations, only, namely those in the
space ΩH∪X (Fig. 2). Therefore, we conjecture that the
utilization threshold for schedulability within this space will
be more favourable than in the general case. The reasoning
behind is that the configurations with the most unfavourable
parameters, in general, will not be present in the set ΩH∪X .
If they unfortunately are, then the schedulability utilization
threshold will be equal to the general one, but this seems
rather infrequent in most practical designs.

We call such bound a local utilization bound for schedu-
lability (LUBΩ) and notice that the validity of such bound
is naturally confined to the configurations space (Ω) from



which it was derived. Different spaces will exhibit different
bounds. The schedulability test for a set of tasks T will then
be of the form:

|T |X
i=1

Ui =

|T |X
i=1

Ci

Pi
≤ LUBΩ (6)

The determination of LUBΩ is carried out by off-line anal-
ysis, within Step 4 of the design flow shown in Fig. 4. All
configurations within ΩH∪X are sorted in ascending order
of utilization and their schedulability is determined using
an analysis with good accuracy. Three regions can nor-
mally be identified, a region of lower utilization in which all
configurations are schedulable, a mid utilization region in
which there are schedulable and non-schedulable configura-
tions mixed together, and finally a higher utilization region
with non-schedulable configurations, only (Fig. 5). These
are called the guaranteed schedulability, mixed schedulabil-
ity and guaranteed non-schedulability regions, respectively.
With necessary and sufficient conditions, the mixed schedu-
lability region will not exist. LUBΩ will then be the highest
utilization of the configurations in the guaranteed schedu-
lability region, i.e. the highest utilization below which all
configurations are schedulable, thus providing a utilization-
based schedulability test that is correct by construction.
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Figure 5: The local utilization bound.

In any case, the final efficiency of the local utilization
bound depends on the particular configurations space (Ω)
and on the accuracy of the off-line schedulability analysis
carried out in Step 4 of the design flow. In fact, we can say
that the local utilization bound approximates, from below,
the efficiency of the schedulability analysis used off-line.

One relevant aspect is the time taken by the off-line anal-
ysis, given the potentially large dimension of the configura-
tions space. However, for many practical cases it is likely
that many tasks and messages will be related to each other
through exclusion and coherency constraints reducing dras-
tically the whole (raw) configuration space, i.e., |ΩH∪X | <<
|Ω|. Moreover, there are new analysis proposed recently that
are particularly efficient and fast, such as those proposed in
[3] for fixed priorities systems. Finally, if the configurations
space still grows beyond what can be handled off-line, it is
always possible to disable the reconfiguration of some sub-

systems and make them operate at an adequate fixed QoS
level.

6. EXAMPLE
To allow a better understanding of the model exposed

before, namely the respective design flow and the local uti-
lization bound concept, we present the following illustra-
tive example. Let us consider a distributed system in which
the execution of tasks and transmission of messages is time-
triggered and is under the control of a QoS management
scheme that keeps the load on the nodes and network under
adequate limits. The global QoS management is a complex
and important topic that, nevertheless, is beyond the scope
of this paper. For the sake of simplicity we focus on the fol-
lowing set of tasks (T ) executing on one particular node us-
ing fixed priority preemptive scheduling. Time is expressed
in an arbitrary time unit. The different QoS levels are en-
forced with different periods.

T ≡ {ti (Ci, Pi, P ri) , i = 1..12} ≡ {
t1 (0.25, [2, 8] , 1) ,
t2 (0.2, [2, 8] , 2) ,
t3 (0.3, [−1, 2] , 3)
t4 (0.15, [−1, 2] , 4)
t5 (0.25, [3, 4] , 5)
t6 (0.2, [3, 4] , 6)
t7 (0.25, 2, 7)
t8 (0.25, 2, 8)
t9 (0.1, [−1, 2] , 9)
t10 (0.2, [−1, 4] , 10)
t11 (0.15, [−1, 4] , 11)
t12 (0.5, [−1, 4] , 12)
}

For all messages, offsets are not considered, i.e., taken
as arbitrary, and D = P . The exclusion and coherency con-
straints are the following X ≡ {〈t3, t4〉} , H ≡ {〈t1, t2〉 , 〈t5, t6〉}.
The nominal configuration F corresponds to the following
periods:

F ≡
ˆ
P F

1..12

˜
= [8, 8, 2,−1, 4, 4, 2, 2,−1,−1,−1,−1]

The total QoS space ΩH∪X has 192 configurations with
different period combinations. Figure 6 then shows the sets

that result from the LUB. The set ΩR′
contains the con-

figurations from 0 to 180. The remaining 12 configura-
tions are beyond the bound; this set can be characterized as
ΩH∪X \ ΩS . This figure shows the total utilization of each
configuration as well as its schedulability assessment. The
solid impulses mark schedulable configurations, the dashed
ones are non-schedulable. The total utilization varies be-
tween Umin = 0.4188 and Umax = 1.0375. The nominal
configuration is not shown but has index 22 with utilization
UF = 0.5687.

The schedulability assessment is carried out using the
worst-case response time analysis for fixed priorities preemp-
tive scheduling [2]. Thus, we use the following equation to
derive upper bounds to the worst-case response time of each
task, assuming the task set sorted by decreasing priorities.

Rwc
i = Iwc

i + Ci

Iwc
i =

P
j<id

Rwc
i

Pj
e × Cj
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Figure 6: Sets ΩR′
and ΩH∪X \ ΩS in relation to the

local utilization bound of the example.

A trivial schedulability test is then carried out by check-
ing whether ∀ti ∈ T : Rwc

i < Di. This allows defining
the local utilization bound (LUBΩ) as shown there in, too,
which equals 0.925. To give a notion of the relative effi-
ciency achievable with this bound, we can compare it with
the Liu and Layland’s utilization bound for Rate-Monotonic,
which computes to 0.7241 for a set of 8 tasks1. This corre-
sponds to an extra 20% of CPU utilization that are made
available by the local utilization bound with respect to Liu
and Layland’s bound, thanks to the higher efficiency inher-
ited from the response-time schedulability test carried out
off-line. The whole test, including expansion of the config-
urations space, application of exclusion and coherency con-
straints and response-time analysis, was carried out using
Matlab and took approximately 80ms in a 1.7GHz Centrino
laptop with energy management disabled.

Once the local bound is established, the associated schedu-
lability test (as in Eq. 6) can be integrated within the QoS
management policy (µ) to be used on-line. As an example,
consider that a prioritized QoS management policy is used,
according to which the available bandwidth is preferably as-
signed to the higher priority messages, unless they are in the
forced QoS set.

Therefore, suppose that at a given instant the system is
operating in the following configuration, with total utiliza-
tion 0.925, i.e., just at the local bound (LUBΩ).

[P1..12] = [2, 2,−1, 2, 3, 3, 2, 2, 2, 4,−1, 4]

Notice that tasks t3,4 are mutually exclusive and task t11
is in the forced QoS set, i.e., there was a previous recon-
figuration event to switch it off. Then, at a given instant,
there is a new reconfiguration event to switch on task t3,
which has higher priority than t4. This event will cause t4
to be switched off due to their mutual exclusion. However,
swapping tasks t3,4 causes the total utilization to grow to 1,
i.e., 0.075 above the local bound. Therefore, the QoS man-
agement policy starts reducing the QoS of the tasks in man-
aged QoS set, starting from the lower priority ones and until
enough bandwidth is accumulated. This requires switching
off task t12, releasing a bandwidth of 0.125, which is enough

1Notice that the number of active tasks varies dynamically
but we consider an average of 8 being active simultaneously
among the 12 that compose the task set

to accommodate the request leading to the following config-
uration, with a total utilization of 0.875.

[P1..12] = [2, 2, 2,−1, 3, 3, 2, 2, 2, 4,−1,−1]

7. CONCLUSIONS AND FUTURE WORK
Dynamic QoS management is appearing as a possible frame-

work to develop more flexible and more resource efficient em-
bedded systems, particularly networked ones. However, the
achieved level of flexibility may conflict with timeliness and
safety requirements. Therefore, this paper proposes a frame-
work to deploy dynamic QoS management with constrained
flexibility in order to harmonize the referred attributes. In
this respect, the paper proposes defining a confined config-
uration space and a switching logic that assures that a safe
configuration is always used and, at the same time, the re-
sources usage is maximized, particularly CPU and network
bandwidth.

In order to support a prompt switching between configu-
rations, a fast on-line QoS management policy must be used,
which must include a fast schedulability analysis. Utilization-
based schedulability tests are fast but normally inefficient.
Therefore, the paper proposed the concept of Local Utiliza-
tion Bound (LUB), i.e., a bound that applies to a confined
configurations space, only, avoiding pernicious general con-
figurations and resulting in substantially higher efficiency.
Such bound must be determined off-line for each particular
configurations space. An example is shown that highlights
the use of dynamic QoS management based on the concept
of the local utilization schedulability bound.

Nevertheless, there are still issues to be further explored
in future work, namely the use and comparison of differ-
ent local utilization bounds, e.g., considering blocking, non-
preemption and inserted idle-time, their integration with dif-
ferent dynamic QoS management policies, the use of the pro-
posed approach in several practical case studies and, also,
within a holistic system design perspective, considering si-
multaneously task scheduling in the nodes and message schedul-
ing in the network. Finally, the proposed framework is also
being integrated with static scheduling-based approaches, as
referred in Sections 1 and 2, facilitating the formal verifica-
tion of the nominal configuration, the switching to and from
it, and the possibility to include in the configurations space
those configurations that are schedulable but are left out by
the residual pessimism in the schedulability analysis used
within the dynamic scheduling based approach followed in
this paper.
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