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Realization of Receptive Fields with Excitatory and Inhibitory Responses
on Equilibrium-State Luminescence of Electron Trapping Material Thin
Film

Abstract
Our theoretical modelings and experimental observations illustrate that the equilibrium-state luminescence of
electron-trapping materials (ETMs) can be controlled to produce either excitatory or inhibitory responses to
the same optical stimulus. Because of this property, ETMs have a unique potential in optical realization of
neurobiologically based parallel computations. As a classic example, we have controlled the equilibrium-state
luminescence of a thin film of this stimulable storage phosphor to make it behave similarly to the receptive
fields of sensory neurons in the mammalian visual system, which are responsible for early visual processing.
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Our theoretical modelings and experimental observations illustrate that the equilibrium-state luminescence
of electron-trapping materials (ETMs) can be controlled to produce either excitatory or inhibitory responses
to the same optical stimulus. Because of this property, ETMs have a unique potential in optical realization
of neurobiologically based parallel computations. As a classic example, we have controlled the equilibrium-
state luminescence of a thin film of this stimulable storage phosphor to make it behave similarly to the re-
ceptive fields of sensory neurons in the mammalian visual system, which are responsible for early visual
processing. © 2007 Optical Society of America

OCIS codes: 200.4560, 200.4700, 200.3050, 200.4560.

Image processing in a number of mammals, including
humans, begins with early visual processing in the
retina and the lateral geniculate nucleus (LGN) and
continues in the primary visual cortex (area 17) [1,2].
During highly parallel computational schemes, many
features of the image (e.g., contrast, edges, spatial
frequencies and direction of motion) are detected by
real-time spatial filtering and differential operations.
Such computational power stems from the physical
shape of neuron’s receptive fields (RFs) with excita-
tory and inhibitory responses [3]. Isotropic RFs of
neurons in the retina and the LGN and the
orientation-selective RFs of neurons in the primary
visual cortex are depicted in Figs. 1(a)–1(d) [1]. The
presence of stimuli in the dark area of each RF hy-
perpolarizes the corresponding neuron and reduces
its activity. In contrast, a stimulus in the bright area
depolarizes the neuron and increases neuronal activ-
ity. Areas with little effects are shown in medium
gray. By comparing the firing rate of the center to the
surround, the neuron can encode the contrast infor-
mation of the optical stimulation. Spatial frequency
of the image can be extracted from the firing rate of
the cells of different RF sizes. Small RFs are sensi-
tive to high spatial frequencies and fine details of im-
age, whereas larger RFs are sensitive to low spatial
frequencies. Direction of movement can be detected
by neurons that have spatial–temporal RFs. Succes-
sive snapshots of such spatial–temporal RFs are
shown in Fig. 1(e) [1].

Previous researchers have used different enabling
technologies to realize this neurobiologically based
parallel computation. Mead and Mahowald’s at-
tempts resulted in a VLSI artificial retina [4]. Armit-
age and Thackara implemented an optical system by
combining photoconductive material and liquid crys-
tal [5]. Takei employed the inherent ability of bacte-
riorhodopsin molecules to emulate inhibition and ex-
citation in neural computation [6]. Recently, Gruev
presented a VLSI pseudo-general image processor
that is capable of applying different spatial–temporal

filters, including Gabor filters, to a captured image
during readout [7].

In this paper a particular type of stimulable stor-
age phosphor known as electron-trapping material
(ETM) is studied for optical realization of a similar
computational mechanism. We illustrate that the
equilibrium-state luminescence of ETMs can be de-
signed to exhibit controllable excitatory and inhibi-
tory behaviors. By combining this property with
high-resolution capabilities of ETM and state of the
art spatial light modulators (SLMs), dense arrays of
static and spatial–temporal RFs can be implemented
in an ETM thin film.

ETMs are alkaline-earth sulfides doped with rare-
earth luminescence centers [8]. Because of many at-
tractive properties, including high resolution and
wavelength diversity, this material has great poten-
tial for technical applications such as three-
dimensional memories, infrared sensors, and display
devices. Also ETMs have been employed in the struc-

Fig. 1. Static and spatial–temporal RFs of biological neu-
rons: (a) ON cell in retina and LGN, (b) OFF cell in retina
and LGN, (c) orientation-selective RF in primary visual
cortex sensitive to 45° edge with dark in the upper left and
light in the lower right, (d) orientation-selective RF in pri-
mary visual cortex sensitive to 135° edge sensitive to a
white line on a dark background, (e) spatial–temporal RFs
at Time-1–Time-4 [1].

June 1, 2007 / Vol. 32, No. 11 / OPTICS LETTERS 1501

0146-9592/07/111501-3/$15.00 © 2007 Optical Society of America



ture of computational machines and biological mod-
els [9–11]. The atomic band structure and the optical
mechanism of ETM are illustrated in Fig. 2. Rare-
earth-doped elements add a trap energy level within
the host bandgap. Interaction of electrons and blue
photons (wavelength around 450 nm) can transfer
sufficient energy to valance band electrons and excite
them to higher energy levels. Some of these electrons
tunnel to the trap energy level and become trapped
electrons. Blue photons also have enough energy to
detrap some of the trapped electrons. Nevertheless,
in an environment without optical stimulations,
trapped electrons remain in the trap energy levels
forever. On the other hand, exposing ETM to near-
infrared (NIR) light (wavelength around 1310 nm)
can excite some of the trapped electrons and kick
them out of the trap level. These electrons release
their extra energy as orange photons (wavelength
around 650 nm) when they return to the host valance
band. In this process the intensity of orange lumines-
cence is proportional to the intensity of optical stimu-
lations and the wavelength-dependent parameters of
the material. Under simultaneous blue light and NIR
illumination, the intensity of orange luminescence
(after a short transient) merges to a constant value
called the equilibrium-state luminescence of ETM.
We have recently shown that the equilibrium-state
luminescence of ETM can be formulated by the fol-
lowing equations [12]:

4�

�
IB sinh2�ns − n

2�IB
� =

4��

��
INIR sinh2� n

2��INIR
� , �1�

IO = �n�t�IB + �n�t�INIR. �2�

In these equations IB and INIR represent the inten-
sity of blue and NIR light, respectively. IO is the in-
tensity of orange luminescence; �, �, ��, ��, �, and �
are the wavelength-dependent parameters of the ma-
terial; n�t� is the density of the trapped electrons; and
ns is the saturation level of n�t�. For any specified val-
ues of the blue and NIR irradiance, the intensity of
the corresponding orange luminescence can be calcu-
lated by the equations. Figure 3 is an equilibrium-
state plane showing intensity contours of constant or-
ange luminescence plotted as a function of the
intensity of the blue light and the NIR irradiance.
The numbers on the contours are the output voltage

of the photodetector that measured the intensity of
orange luminescence. The subtle point of this dia-
gram can be highlighted by investigation of four
sample points, S, P, Q, and R. Despite different NIR
and blue exposures on points S and Q, these two
points are on the same contour. Consequently, the in-
tensity of orange luminescence at points S and Q is
equal. This can be justified intuitively by considering
the fact that the intensity of orange luminescence is
proportional to the rate of detrapping. Meanwhile,
the rate of detrapping is proportional to the probabil-
ity of interaction between NIR photons and trapped
electrons. In the diagram, lower NIR exposure at
point Q compared with point S is compensated by
higher blue illumination, which increases the popula-
tion of trapped electrons and the probability of inter-
action. Blue exposure at the points P, Q, and R is
equal; however, NIR irradiance is more at P and less
at R compared with NIR irradiance at Q. Higher NIR
exposure at P increases the rate of detrapping and
the corresponding orange luminescence compared
with Q. Conversely, orange luminescence at R is less
than Q as a result of lower NIR illumination.

Now consider the case where two light sources are
linearly coupled. In this case, based on the param-
eters of linear coupling, only intensities of orange lu-
minescence along a line are accessible in the
equilibrium-state plane. For linear coupling along
the line SP (from S to P) the intensity of orange lu-
minescence increases monotonically, which is an ex-
citatory reaction to the extra blue illumination. Con-
versely, from point S to R along the line SR, the
intensity of orange luminescence decreases and the
reaction is inhibitory. Along SQ the level of orange lu-
minescence does not change considerably, similar to
the gray areas in Fig. 1. If ETM is biased at S (the
resting point) and external stimulations are applied
by extra blue exposure, then depending on the cou-
pling parameters, the behavior of ETM can be either
excitatory or inhibitory. Hence, the type and the in-
tensity of ETM’s reaction to an external excitation
depends on the coupling parameters.

To verify the above observation an experiment is
organized. Figure 4 displays the schematic of the op-
tical setup. An ETM panel (25 mm�25 mm thin film
of SrSEu2+:Sm3+ coated on a quartz substrate [13]) is

Fig. 2. (Color online) Atomic band structure of ETM.

Fig. 3. (Color online) Equilibrium-state plane of ETM.
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exposed to the combined beam of two pairs of linearly
coupled light sources, (B1, NIR1) and (B2, NIR2).
(B1, NIR1) and (B2, NIR2) are coupled with suitable
coupling parameters to produce excitatory and in-
hibitory regions of a RF, respectively. B1 and B2 are
bright blue LEDs, and NIR1 and NIR2 are Exalos
1310 nm, 20 mW superluminescent laser diodes. Two
masks, M1 and M2, adjust the shape and the size of
each region. In this experiment, areas of both ON
and OFF regions are fixed to 3 mm2. An avalanche
photodetector (Hamamatsu APD module CA4777-01)
detects orange luminescence through an orange opti-
cal filter (Semrock LP01-633Rs-25). External stimu-
lation is directed to B1 or B2 by two switches, S1 and
S2. To produce the resting point both light source
couples illuminate ETM with IB=40 �W/cm2 and
INIR=10 mW/cm2 for which ADP generates 3.5 V in
the equilibrium state. The equilibrium happens ap-
proximately after 100 ms. During the first experi-
ment, S1 is closed and S2 is open to stimulate the ON
region of the RF and the intensity of the blue irradi-
ance is swept up to IB=60 �W/cm2. During this ex-
periment the equilibrium-state output voltages of the
APD monotonically increases up to 4.9 V (Fig. 5). In
the second experiment, stimulations are applied to
the OFF region by closing S2 and opening S1. This
time, increasing the blue exposure reduces the or-
ange luminescence, and at IB=60 �W/cm2 the APD’s
output voltage drops to 2.3 V. By choosing suitable
coupling parameters one can make each region more
or less sensitive to the optical stimulation.

Our experimental results convincingly show the
potential of ETM to produce controllable excitatory
and inhibitory reactions. Dense arrays of RFs with a
variety of shapes and dimensions can be realized in
ETM thin film by illuminating the ETM panel with
two SLMs, such as Texas Instruments Digital Micro-
mirror Devices. In such an optical setup one SLM
modulates the intensity of NIR illumination when
the other SLM provides the modulated blue light ex-
posure. The pixels of the two SLMs are linearly
coupled (via driving electronics) with suitable cou-
pling parameters to generate variety of different re-
actions to the same stimulus. By changing the modu-
lation and the coupling parameters of the pixels, such

an optical setup would be capable of dynamically re-
programming the ETM for the generation of different
RFs including spatial–temporal RFs. Despite the
flexibility of this approach, the only drawback is the
fact that all the interesting behaviors happen in the
equilibrium state. So after illumination one should
wait until the transient response is passed. This de-
lay time reduces the speed of the parallel computa-
tions. Fortunately, because of the electronic nature of
all the processes, speed of computations can be im-
proved by using ETMs with a faster response.

This research was supported in part by Army Re-
search Office MURI grant prime DAAD 19-01-0603
via Georgia Institute of Technology subcontract E-18-
677-64 and in part by Office of Naval Research grant
N00014-94-1-0931.
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Fig. 4. Schematic of the optical setup: B.S., beam splitter;
S.F., spatial filter, O.F., optical filter. Other abbreviations
defined in text.

Fig. 5. (Color online) Experimental results. When exter-
nal stimulus is applied to the ON (OFF) region, the level of
orange luminescence changes from S to P (R). Along SQ,
stimulus is applied to the ON region, and (B1, NIR1) are
coupled so as to be less sensitive to external excitation.

June 1, 2007 / Vol. 32, No. 11 / OPTICS LETTERS 1503


	University of Pennsylvania
	ScholarlyCommons
	June 2007

	Realization of Receptive Fields with Excitatory and Inhibitory Responses on Equilibrium-State Luminescence of Electron Trapping Material Thin Film
	Ramin Pashaie
	Nabil H. Farhat
	Recommended Citation

	Realization of Receptive Fields with Excitatory and Inhibitory Responses on Equilibrium-State Luminescence of Electron Trapping Material Thin Film
	Abstract
	Keywords
	Comments


	tmp.1187028683.pdf.kHr9n

