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Towards a Model of Provenance and User Views in Scientific Workflows
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Scientific experiments are becoming increasingly large and complex, with a commensurate increase in the
amount and complexity of data generated. Data, both intermediate and final results, is derived by chaining and
nesting together multiple database searches and analytical tools. In many cases, the means by which the data
are produced is not known, making the data difficult to interpret and the experiment impossible to reproduce.
Provenance in scientific workflows is thus of paramount importance.

In this paper, we provide a formal model of provenance for scientific workflows which is general (i.e. can be
used with existing workflow systems, such as Kepler, myGrid and Chimera) and sufficiently expressive to
answer the provenance queries we encountered in a number of case studies. Interestingly, our model not only
takes into account the chained and nested structure of scientific workflows, but allows asks for provenance at
different levels of abstraction (user views).
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Towards a Model of Provenance and User Views

in Scientific Workflows

Shirley Cohen, Sarah Cohen-Boulakia, and Susan Davidson

Department of Computer and Information Science
University of Pennsylvania, USA

{shirleyc,sarahcb,susan}@seas.upenn.edu

Abstract. Scientific experiments are becoming increasingly large and
complex, with a commensurate increase in the amount and complexity
of data generated. Data, both intermediate and final results, is derived
by chaining and nesting together multiple database searches and ana-
lytical tools. In many cases, the means by which the data are produced
is not known, making the data difficult to interpret and the experiment
impossible to reproduce. Provenance in scientific workflows is thus of
paramount importance.

In this paper, we provide a formal model of provenance for scientific
workflows which is general (i.e. can be used with existing workflow sys-
tems, such as Kepler, myGrid and Chimera) and sufficiently expressive to
answer the provenance queries we encountered in a number of case stud-
ies. Interestingly, our model not only takes into account the chained and
nested structure of scientific workflows, but allows asks for provenance
at different levels of abstraction (user views).

1 Introduction

Fueled by technologies capable of producing massive amounts of data, scientists
are faced with an explosion of information which must be rapidly analyzed and
combined with other data to form hypotheses and create knowledge. Scientific
analyses are thus becoming increasingly large and complex, with a commensurate
increase in the amount and complexity of data generated.

To address this problem, over the past several years a number of scientific
workflow systems have been developed to support scientists in the analysis of
their data. Such systems differ from business-oriented workflow systems in the fo-
cus on data – e.g. sequences, phylogenetic trees, proteins – and its transformation
into hypotheses and knowledge [23]. Examples of scientific workflow systems in-
clude myGrid/Taverna [19], Kepler [5], Chimera [12] and DiscoveryNet [22] (see
[30]). Still other interesting examples of workflow systems include MHOLline
[25], HKIS-Amadea [9], and AdaptFlow [14]. Some integration solutions also in-
clude workflows to add value to warehoused data. For example, the GUS [11]
system allows users to import data of interest, run bioinformatics tools over that
data, and store the results obtained; pipelines are expressed using Perl.



Scientific workflows are specified using a variety of graph-based models.
Nodes in the workflow specification represent step classes (alternatively called
tasks, actors, processes, boxes) and edges capture the flow of data between step
classes. In many workflow systems (e.g. Kepler and myGrid), a step class may
itself be a workflow. An execution of a workflow generates a partial order of
steps, each of which has a set of input and output data objects. Each step is an
instance of a step class, and the input-output flow of data and class associated
with each step must conform to the workflow specification (see for example [16]).

In workflow systems, data, both intermediate and final results, is thus de-
rived by chaining and nesting together multiple database searches and analytical
tools. In many cases, the means by which the data are produced is not known,
making the data difficult to interpret and the experiment impossible to repro-
duce. Provenance in scientific workflows is thus of paramount and increasing
importance, as evidenced by recent specialized workshops [2] and surveys [23]
dedicated to the subject of provenance of scientific information.

Many systems using scientific workflows provide a way to keep track of the
origins of data. For example, the GUS schema contains about twenty tables
dedicated to provenance information. Some scientific workflow systems, such as
myGrid [28], record various kinds of metadata related to provenance. Recently,
Kepler has developed a logging mechanism for tracking information and depen-
dencies between components of the data flow [4]. Nevertheless, no formal model
of provenance for workflow systems has to our knowledge been developed which
precisely defines the meaning of provenance taking into account the nested struc-
ture of step classes and the data produced.

Formal models of provenance do exist within the database community (see for
example [6, 3, 27]). However, these models reason over restricted forms of alge-
braic queries and give very fine-grained reasoning; for example, a tuple in a result
gets its value from a particular set of tuples in the input (where provenance) and
is there because of a (possibly bigger) set of input tuples (why provenance). More
recently, [7] considers the problem of copying data between databases, and de-
scribes an approach in which these actions can be automatically recorded in a
convenient, queryable form with acceptable overhead. However, the problem of
tracking provenance in scientific workflow systems raises new challenges. First,
since the operators in workflows are black boxes (step classes), fine grained rea-
soning cannot be performed. The most that can be assumed is that steps are
deterministic, i.e. that given the same set of input the output will be the same.
This input must include not only data but also user input (e.g. the selection of
results based on visual inspection), parameter settings (e.g. the kind of matrix
used in a Blast tool), and any other input used by the step (e.g. a randomize
number used in a bootstrap). Second, scientific workflow systems frequently pro-
vide a notion of user views which determines whether or not a user can zoom
into a step class to see a sub-workflow. User views therefore affect the granularity
at which provenance is reasoned about.

The aim of this paper is to present a formal model of provenance in workflow
systems which takes into account the chained and nested structure of scientific



workflows as well as user views. The model has been formulated by interviewing
numerous scientists in several domains (e.g. genomic research, and phylogenetic
tree construction and analysis) and analyzing what several important scientific
workflow systems are currently doing. The model is abstract, i.e. it details the
minimum information that must be provided by a workflow system in order to
perform the types of reasoning about provenance that scientists wish to perform.
It is generic in the sense that it can be used by any workflow systems providing
this minimum information.

This paper is organized as follows. We first present one of the use cases
collected (Section 2) from our interviews of scientists, whose data provenance
requirements are representative of those of other studies. We then introduce our
model of provenance (Section 3) and in Section 4 show how it can be used to
express the provenance queries of Section 2. In Section 5 we show the connection
to nested transactions, and discuss whether or not the required provenance infor-
mation is provided by the logging mechanisms of Kepler, myGrid and Chimera.
Finally, Section 6 concludes the paper.

2 Tree Inference Use Case

Systematic biologists are attempting to develop a comprehensive history of life’s
origins by studying the phylogenetic relationships of the millions of earth species.
Assembling these species and placing them on the “tree of life” requires increased
amounts of information about each one as well as sophisticated analytical tools
to build an understanding of the relationships among species. At present, the
infrastructure used to manage the flow of phylogenetic data lacks the querying
capabilities needed to address many important scientific challenges.

As an example, consider a typical tree inference workflow depicted in Figure
1. This workflow is composed of four main step classes (S1 to S4); the last step
class is nested and composed of four step classes (S4a to S4d).

The Download Sequence step class (S1) is responsible for obtaining a set of
chosen DNA sequences from GenBank. Note that the input to this step class is a
user-driven event. The second step class, Create Alignment (S2), takes in the raw
sequences and runs an alignment program, such as ClustalW [15], to generate
a multiple sequence alignment. The third step class, Refine Alignment (S3), is
where the biologist verifies and improves the quality of the multiple sequence
alignment by manually adjusting gaps inserted by the alignment program.

The fourth step class, Infer Tree (S4), takes the edited alignment and pro-
duces from it a phylogenetic tree. Note that this step class contains multiple
substeps within it. The first substep class, Compute Trees (S4a), runs a tree
inference program like PAUP [24] or Phylip [21] and generates a set of un-
rooted trees from the alignment. The second substep class, Create Consensus
Tree (S4b), computes a consensus tree from the set of unrooted trees. The third
substep class, Bootstrap Tree (S4c), calculates a confidence score for each node
of the consensus tree. The last substep class, Root Tree (S4d), consists of root-
ing the consensus tree by selecting a site as an outgroup. The output from this



Fig. 1. Tree inference use case

substep class, a rooted tree, is saved if it is considered biologically meaningful.
Otherwise, the alignment and inference step classes are repeated until a suitable
rooted tree is derived.

A typical lab executes this scenario several times a year, resulting in vast
amounts of intermediate and final data products. However, with current work-
flow technology this scenario is carried out without the ability to ask questions
about how a phylogenetic tree came to be and what alignment and sequences
it originated from. A biologist wishes to not only review the current state of a
phylogenetic analysis that is in progress, but also guide it to some desired fu-
ture state; such as refining the parameters to Clustal to produce a more precise
alignment or foreseeing (based on historical results) that Phylip may produce
fewer trees than PAUP*. The biologist also wishes to know which sequences
were dropped by the alignment program and consequently were not used to in-
fer the rooted tree. A related goal is to be able to assess the quality and impact
of a data product such as a rooted tree by reviewing both the DNA sequences
and alignment used to produce it, and understanding which subsequent work-
flow executions used the same alignment as input to a tree inference step. In
related studies, increased knowledge of data provenance will allow the biologist
to reuse intermediate products, such as the many unrooted trees which can be
quite time-consuming to generate. To address these needs we collected some data
provenance queries that describe in words the semantics of the queries we are
interested in:

1. What direct data products did this tree originate from?
2. What are all the data products which have been used to produce this tree?
3. What step produced this tree?
4. What sequence of steps produced this tree?



5. What parameters and steps produced this tree?
6. What alignments in the space of stored data objects were used as inputs to

steps in subsequent workflows?
7. What trees in the data space were inferred using the same sequence of steps,

parameters, and input data?
8. What steps require user input data?

It should be noted that there is a strong connection between questions about
data provenance and general questions about workflow execution, and the biol-
ogist is interested in discovering useful facts about both. Some general workflow
queries are shown below:

– What steps in this workflow did not complete or execute?
– What steps ran concurrently in the same workflow instance?

In this paper, we will concentrate on the first set of queries, the data prove-
nance queries. However, a longer-term goal is to allow biologists to interactively
explore other aspects of a workflow execution without needing to become an
expert in the logging mechanisms of the system.

3 Model of provenance

Provenance is defined over a workflow execution as a function which takes as
input the identifier of a data object and returns the sequence of steps and input
data objects on which it depends. All data that is produced by some step is called
calculated data. In contrast, user or parameter data is injected into the data space
of the workflow execution by a user; its provenance is whatever information is
recorded about how it was input, e.g. the user who input the data and the time
at which the input occurred. We call this Info(d).

Definition 1. The provenance of a data object d (Prov(d)) is given as:

Prov(d) =

{

(sid, {d1 : Prov(d1), ..., dn : Prov(dn)}) d is calculated data
Info(d) d otherwise

where sid is the id of the step that produced d as output, and di is the id of data
input to the step.

As an example, consider the simple toy workflow in Fig. 2, in which S1 takes
as input {I1, I2}, produces as output {D}, which is taken as input to S2, which
produces as output {O1}. Then

Prov(O1) = (S2, {D : (S1, {I1 : Info(I1), I2 : Info(I2)})})

Note that Prov(d) gives complete information about how the data object
came to be (deep provenance). We could also have defined Prov(d) to consider
just the immediate provenance or n-deep provenance of a data product.



Fig. 2. Example of workflow

Throughout this section, we will use Datalog to define the minimal informa-
tion needed from the workflow system (base predicates) as well as the reasoning
we can perform over that information. We choose Datalog since it is a simple,
declarative language which easily expresses recursive queries; it is thus a natural
model for graph data and queries which entail finding paths. Using known trans-
lations to the relational model, the provenance system described in this paper
could then be implemented using a relational database system which provides
support for transitive closure (e.g. Oracle or DB2). (See [26] for a description
of Datalog and its translation to the relational model and [7] for a discussion of
how to optimize performance.)

Another option would have been to use an object-oriented data model as
suggested by the definition of Prov(d). While this model avoids the problem of
having to flatten nested sets of data, it does not naturally capture transitive
closure. Furthermore, our model of provenance does not need any of the object
features it supports (such as inheritance or polymorphism). We therefore opt for
a simpler and more declarative model.

3.1 Minimal information to reason about provenance

To be able to reason about provenance, we make a number of assumptions about
the information provided by the workflow system:

– Provenance information for user or parameter data is provided.
That is, Info(d) is available.

– Each output data object has a unique id. The notion of unique ids for
output objects is ubiquitous in proposals for scientific workflow. For example,
in [27], data is never overwritten or updated in place, and each version of
data has a different id; in [5], each token has a unique id although two tokens
may correspond to the same data object.

– The system maintains information about steps and the ordering of
input/output operations to steps. In order to reason about provenance,
some sort of logging must be performed by the system. We will discuss how
to achieve this in Section 5.

We therefore model the minimal information that must be provided to a
provenance reasoning system as the following base predicates, where did is the
id of a data object, annot is the provenance information of user or parameter
data (Info(did)), sid is the id of a step, and ts is an integer that captures the
partial order of input and output events to a step:



info(did, annot)
input(sid, did, ts)
output(sid, did, ts)

To allow users to see the value of data objects and obtain information about
the step class of which sid is an execution, we use csid as the id of a step class
and add:

value(did, v)
instanceOf(sid, csid)
infoClass(csid, info)

Using these base predicates, we can express Prov(d) for calculated data using
the following Datalog rule:

prov(did, sid, iid) : −input(sid, iid, tsi) ∧ output(sid, did, tso) ∧ tsi ≤ tso

Note that our definition of provenance includes both the step and input data
to that step. However, it will also be useful to talk about the set of data objects
on which calculated data depends (dProv), either directly or indirectly, as well
as the set of steps on which were used in calculating the data (sProv):

dProv(did, iid) : −prov(did, , iid)
dProv(did, iid) : −prov(did, , x) ∧ dProv(x, iid)

sProv(did, sid) : −prov(did, sid, )
sProv(did, sid) : −prov(did, , x) ∧ sProv(x, sid)

Returning to the toy example of Fig. 2, since prov(D,S1, I1), prov(D,S1, I2),
and prov(O1, S2,D) are true, we can infer dProv(O1,D), dProv(O1, I1), dProv(O1, I2).
We can also infer sProv(O1, S2), sProv(D,S1) and sProv(O1, S1).

3.2 Composite steps

In many workflow systems, a step class may itself be a workflow. We call such
step classes composite, and their executions composite steps; step classes that
do not contain workflows will be called base, and their executions base steps.
Typically, each input to a composite step class is input to one or more of its
substep classes, and the output of a substep class is either input to another
substep class or becomes the output of the composite step class.

There are several reasons why composite step classes are used in workflows.
First, users may wish to focus on a certain level of abstraction and ignore lower
levels of detail. Second, they may represent levels of “authorization”; users with-
out the appropriate clearance level would not be allowed to see the lower level
executions of a step class.

Definition 2. Given a workflow specification, the user view of a user (or class
of users) U , UserV iew(U), is the set of lowest level step classes that U is entitled
to see.



Note that a user view cannot contain two step classes such that one is con-
tained in the other. We assume that the user view is valid, i.e. that each of the
highest level step classes in the workflow specification is either in the view, or
that at some lower level all of its contained substeps are in the user view. For
example, consider Fig. 3. In this workflow, SC directly contains SC1 and transi-
tively contains step classes S1 and S2. The composite step class at the highest
level, SC , has input set {I1, I2} and output set {O1, O2}. Within SC there is
a composite step class SC1 which takes {I1} as input and produces {O1} as
output; SC also contains step class S3 which takes {I2} as input and produces
{O2} as output. Within SC1 there is a step class S1 which takes {I1} as input
and produces {D} as output; {D} is then input to step class S2, which produces
{O1} as output.

Fig. 3. Example of composite Step

Three examples of user classes for this workflow are:

– UserV iew(U1) = {SC} (the “black box” user class)
– UserV iew(U2) = {SC1, S3}
– UserV iew(U3) = {S1, S2, S3} (the “admin” user class)

However, the user view {SC1} is not valid since S3 is missing.
A partial ordering <u on user views can be defined using the containment of

step classes.

Definition 3. Given two user views U1 and U2, we say that U2 is a finer level
than U1 (or U1 is a higher level than U2), U1 <u U2, iff
∀s2 ∈ UserV iew(U2) ∃s1 ∈ UserV iew(U1) such that s1 = s2 or s1 contains
s2 either directly or transitively.

For example, U1 <u U2, U2 <u U3 and U1 <u U3.

To answer questions of provenance, we must take the user view into account
and reason about the input and output to steps which are instances of step
classes that are in the user view. That is, we must know the connection between
the specification and the execution of a workflow, as well as the containment
relationship between step classes. We therefore assume that the workflow system
provides the following information:



– The user view of each class of users. A variety of techniques could be
used to capture this information. For example, the GUI in Kepler allows
users to zoom in on steps. We can imagine capturing this information by
taking each composite class, zooming in to the appropriate level, and taking
the union of the resulting classes.

– The input and output to each step, whether composite or base.

Thus we use the following as our base predicates, where sid is the id of a
step (either base or composite), did is the id of a data object, ts captures the
partial order of input and output events to a step, cid is the id of a step class
(either base or composite), and ccid is the id of a composite step class.

Cinput(sid, did, ts)
Coutput(sid, did, ts)
immContains(ccid, cid)
userV iew(u, cid)

Cinput (Coutput) is input (output) extended to composite steps. The re-
lation contains(ccid, cid), denoting the complete containment relation between
step classes, can be trivially computed as the transitive closure of the immedi-
ately contains relation, immContains. Furthermore, the following constraint on
userV iew expresses the fact that cid is the lowest level that u is entitled to see:
If contains(ccid, cid) and userV iew(u, ccid) holds, then userV iew(u, cid) does
not hold.

It will also be convenient to talk about steps (whether base or composite)
that are allowed to be seen by a particular user:

userInstance(u, sid) : −instanceOf(sid, cid) ∧ userV iew(u, cid)

Using these predicates, we calculate provenance as a function of the user view
as follows:

userProv(u, did, sid, idid) : −Cinput(sid, idid, tsi) ∧ Coutput(sid, did, tso)∧
tsi ≤ tso ∧ userInstance(u, sid)

We can also redefine the data (step) provenance with respect to a user view,
userDProv(u, did, iid) (userSProv(u, did, sid)) using userProv instead of prov.
(Details are omitted.)

3.3 Reasoning with user views

We now explore properties of provenance as a function of user view. In particular,
when a user views the execution at a finer level he may see data objects that are
not visible at a higher level which are the output of hidden substeps. Reasoning
about provenance at a finer level will also allow a more precise view of the
provenance of a data object.

For example, in the workflow of Figure 3, from user views U1 and U2 the data
object D is not visible as a data object on which O1 or O2 depends. Furthermore,
at user view U1 both I1 and I2 are seen as data objects on which O1 depends,
while at user views U2 and U3 only I1 is included.



The observation about what data objects d are visible within a user view u can
be formalized as follows:

invisible(d, u) : −output( , d, ) ∧ ¬visible(d, u)
visible(d, u) : −userProv(u, d, , )
visible(d, u) : −userProv(u, , , d)

For example, consider the workflow of Figure 3 and the user view U2. Then
userProv(U2, O1, SC1, I1) and userProv(U2, O2, S3, I2) hold, meaning that we
can infer visible(O1, U2), visible(I1, U2), visible(O2, U2), and visible(I2, U2).
Furthermore, since output(S1,D, ) holds but not visible(D,U2), invisible(D,U2)
holds. Similarly, we could show that invisible(D,U1) holds.

To formalize the second observation, given data object d and two user views
u1 and u2, let DProv(u1, u2, d) be the set of all data objects that d depends on
either directly or indirectly as seen in user view u2 that are visible in u1. More
precisely, it is the set of data objects X in ans(X) below (where parameter $U1
is set to u1, $U2 is set to u2 and $D is set to d):

ans(X) : −userDProv($U2, $D,X) ∧ visible(X, $U1)

As an illustration, consider the workflow of Fig. 3 with $U1=U1, $U2=U3 and
$D=O1. Then userDProv(U3, O1,D), userDProv(U3, O1, I1) and visible(O1, U1)
hold, but visible(D,U1) does not hold. Thus DProv(U1, U3, O1)={I1}.

The observation about the refinement of data provenance as a function of
user view can now be stated as follows:

Lemma 1. Given a data object did and two user views u1 and u2, such that
u1 <u u2 and did is visible in u1. Then

DProv(u1, u1, did) ⊇ DProv(u1, u2, did).

Returning to our example, recall that U1 <u U3. It can be easily checked that
DProv(U1, U1, O1)= {I1, I2} and thus DProv(U1, U1, O1) ⊇ DProv(U1, U3, O1).

3.4 Discussion

Much of the information (base predicates) that we are assuming are easily ob-
tainable from either the workflow specification (immContains, userV iew, info,
infoClass), or from low-level logging/execution knowledge (input, output and
instanceOf). However, many workflow systems do not keep intermediate data
products, that is value(did, v) may not be available for all did. In this case, the
workflow system may be able to provide only partial information about prove-
nance, i.e. the did of data objects.

The remaining predicates, Cinput and Coutput, are the topic of Section 5.
Is it reasonable to require that the value of all intermediate data objects

be kept? An increasing number of optimization and compression techniques to
efficiently record provenance information have been proposed in the database



community. In particular, [7] exploits the hierarchical structure of data to opti-
mize provenance storage, and gives experimental results to show that provenance
can be tracked and managed efficiently. In the context of scientific workflows,
which are run many times and generate a large number of intermediate results,
the nesting of composite steps and use of user views also gives the ability to
limit the results. However, the results are kept around only if they are visible in
some user view. By specifying appropriate user views, the system can therefore
limit the promises made to users about provenance information.

4 Querying provenance

We now turn to the queries about provenance introduced in Section 2, and show
that they can be answered using the predicates developed in Section 3. Note that
these queries concern data (1,2,5) and step (3,4) provenance and use immediate
(1,3) as well as deep (2,4,5) provenance information.

In what follows, we assume that the user view is input as parameter $U and
the data object as parameter $D. Examples are given in terms of data object
O4 in the Tree inference workflow of Figure 1.

1. Which data objects have been directly used to produce this result?
ans(X) : −userProv($U, $D, ,X)

If the input user view contains step S4, then the immediate provenance of

O4 given by ans(X) above is {O3}. However, if the input user view contains
steps S4a-d, then ans(X) is {O4c}.

2. What are all the data objects which have been used to produce
this result?
ans(X) : −userDProv($U, $D,X)

ans returns {O1,O2,O3} if the input user view contains step S4, and

{O1,O2,O3,O4a,O4b,O4c} if it contains steps S4a-d.

3. What step class produced this data product?
ans(X) : −userProv($U, $D,X, )

If the input user view contains step S4, then ans(X) is {S4}. However, if

the input user view contains steps S4a-d, then ans(X) is {S4d}.

4. What sequence of steps produced this data product?
ans(X) : −userSProv($U, $D,X) ans returns {S1, S2, S3, S4} if the input

user view contains step S4, and {S1, S2, S3, S4a,S4b,S4c,S4d} if it contains
steps S4a-d.

5. What parameters and steps produced this data product?
The intent of this query is to know the input to each step that led to the
data product. Note that to distinguish parameters from other input data we
need additional information from the workflow system, e.g. the predicates



parameter(d), userInput(d) and calculated(d), which could then be used by
our system in a straightforward way. ans(X,Y ) : −userProv($U, $D,X, Y ),

parameter(Y)
ans(X,Y ) : −userProv($U,Z,X, Y ), ans( , Z) Assuming the input user view

contains step S4, ans returns {(S1,G), (S2,O1), (S3,O2), (S4,O3)}. To an-
swer the original query, this set would be filtered for the second component
to be a parameter resulting in the empty set (all inputs are calculated data
in this example).

Details of queries 6-8 can be found in [10].

5 Obtaining Cinput and Coutput from Logs

Up to this point, we have assumed that Cinput and Coutput are available to
define the provenance of a data object. We now argue that this information is
achievable using standard nested transaction logging mechanisms, and discuss
how to obtain this information in Kepler, MyGrid and Chimera.

Logging of nested transactions. Using ideas from nested transactions [18], the log
of the workflow system would contain the events – start (s), read (r), write (w),
and commit (c) – not just of base transactions but of transactions within which
they are nested. For example, the following could be the log of the (composite)
transaction T1 which contains subtransaction T2, which in turn contains the
(base) transaction T3:

s(T1), s(T2), r(d1), w(d2), s(T3), r(d2), r(d3), w(d3), c(T3), w(o1), c(T2), c(T1)

In this case, input(sid, did, ts) is computed as the data read and the order in
which it was read. For example, input(T3, d2, 5) could be true. With composite
transactions, the output would be calculated as all the data that is output by
some subtransaction and not input to another subtransaction; the input of a
composite transaction is defined analogously. For example, input(T1, d1, 2) and
input(T1, d3, 5) would be true but input(T1, d2, 6) would not be true.

Note that we can compute Cinput and Coutput from the log events of nested
transactions since it contains the notion of execution of composite steps as well
as base steps.

Kepler. In Kepler, a workflow consists of a collection of nodes called Actors
(corresponding to step classes) which communicate through input and output
ports. Communication occurs through the passing of tokens (corresponding to
data input and output) which are globally unique; tokens are read and written,
and each token is written only once. The model of computation of a workflow is
defined by a Director who mediates communication between actors.

The log associated with this model records the reading and writing of tokens
on ports, which are uniquely associated with Actors [4]. Each execution of an
actor corresponds to a step in the terminology of this paper.



Conceptually, the first read event on a port associated with an Actor begins
the execution (transaction) of that Actor. Subsequent writes by that Actor on
this port depend on all its previous reads, where “previous” is captured by an
integer called a firing. Since this implies that the state (read tokens) of the Actor
gets bigger and bigger as time goes on, the notion of a clear event is introduced
and recorded in the log, the effect of which is to clear the state of the Actor.
Thus any write after the clear event will depend only on the read events since the
state was cleared. In terms of transactions, this can be thought of as committing
a transaction and beginning a new transaction.1

Using the Kepler log, it is certainly possible to capture input and output.
Moreover, Kepler supports composition of Actors, and enables users to zoom in
and view finer levels of detail of an Actor. However, since the log records only
events of base steps, there is currently no notion of the execution of a composite
step. Thus it is not clear how to calculate Cinput and Coutput for composite
steps. The Kepler group is exploring a variety of approaches to work around this
problem [17].

myGrid. In myGrid [19],2 a workflow is a network of processors and links. A
processor (corresponding to a step class) is a transformation that accepts a set of
input data and produces a set of output data. Several types of processors exists,
one of which is the nested processor. Two kinds of links are considered: data links,
which mediate the flow of data between a data source and sink; and coordination
constraint links, which control the execution of two processors (roughly speaking,
playing the role of a director in Kepler). The log file in myGrid is an XML file
which records global execution information: the user of the workflow, the start
time, the end time and the set of services invocations performed (each invocation
corresponds to a step). Exploiting the nested structure of XML, information is
also provided for each service invocation: start time, end time, parameters of
the service invocations, input data, and output data. Life Sciences Identifiers
(LSIDs) [8] are used to uniquely and persistently identify data resources and
their associated metadata.

An interesting aspect of myGrid is the automatic annotation of provenance
logs with concepts drawn from the myGrid ontology. The COHSE3 system per-
forms this task by augmenting documents with links based on the semantic
content of those documents. This process allows users to dynamically generate
a hypertext collection of provenance documents, data, services, and workflows
based on their associated concepts, and to perform reasoning over the ontology
(see [28], [29], and [1] for more details).

Using the myGrid log, it is indeed possible to capture input and output. While
the current literature does not focus on the provenance of nested processors, the

1 This is a simplification of the model, which also uses a notion of “firings” to capture
the set of read tokens on which a write depends rather than an ordering of events.

2 We omit here the internal relationships between myGrid, the Scufl language, Taverna
and freefluo tools.

3 Conceptual Open Hypermedia Services Environment



intrinsically nested structure of the myGrid log file seems naturally suitable
for capturing nested transactions, thus allowing the calculation of Cinput and
Coutput.

Chimera. In Chimera [12],4 a transformation is a program (script file) and an
execution of a transformation is a derivation, corresponding to a step class and
a step, respectively. Data products are represented as abstract typed datasets
(virtual data) and as materialized replicas. Derivations can be connected to form
workflows that consume and produce replicas (input and output data).

The Chimera virtual data schema defines a set of relations used to represent
and capture descriptions of how a program can be invoked, and to record its
potential and/or actual invocations. Upon execution, workflows automatically
create invocation objects for each derivation in the workflow, annotated with the
information of the runtime process. Invocation objects are an annotation scheme
for representing provenance information and thereby providing a mechanism for
linking input and output data products.

In Chimera, provenance information can be retrieved from the Virtual Data
Catalog (VDC) [13] expressed in the Virtual Data Language (VDL). VDL sup-
ports both recursive searches and can output all the derivations in the system
that produced a particular dataset. VDL interacts with an end-user query sys-
tem, the Virtual Data Browser (VDB), to interactively access the catalog.

In the current implementation of Chimera, nested transformations are al-
lowed since each transformation can call other transformations. As each deriva-
tion has its own provenance information, it should be possible to populate Cinput

and Coutput.

6 Conclusion

This paper examines data provenance through the prism of large-scale scientific
applications. Motivated by phylogenetic analyses which produce volumes of data,
our research extends existing ideas of data provenance to scientific workflows.
In this context, we formulate a model for provenance and define notions of data
provenance, step provenance, and user views for computing user-oriented queries
over workflow executions.

User views are especially helpful for reasoning about data provenance through
nested executions. They are essential for defining the level of detail of a prove-
nance query and determining what data must be kept by the system. As such,
we devise ways in which a user can effectively query a workflow execution in
an intuitive fashion without needing to become an expert in the system’s log-
ging facility. We demonstrate the expressiveness of our model by answering a
collection of queries supplied by systematic biologists.

Our model is simple and generic enough to capture information that is (or
soon will be) available in existing scientific workflow system, and we demonstrate

4 We omit here the internal relationships between GriPhyN, Chimera, Pegasus and
Condor.



this with Kepler, myGrid, and Chimera. From this, we show that a scientific
workflow system which provides basic execution logging could implement our
model and benefit from our approach.

We are currently exploring new ways to improve the expressiveness of our
model. First, we will consider the general workflow queries in Section 2 related
to partial and concurrent executions. Second, we will augment our model with
additional semantics such as object typing to allow finer-grained queries, and
explore the use of an object-oriented data model augmented with transitive clo-
sure. Third, we wish to experiment with storage models such as that proposed
by the Pasoa project [20] to improve query performance.
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