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Abstract
Mobile robots can be easily equipped with numerous sensors which can aid in the tasks of localization and
ego-motion estimation. Two such examples are Inertial Measurement Units (IMU), which provide a gravity
vector via pitch and roll angular velocities, and wide-angle or panoramic imaging devices. As the number of
powerful devices on a single robot increases, an important problem arises in how to fuse the information
coming from multiple sources to obtain an accurate and efficient motion estimate. The IMU provides real-
time readings which can be employed in orientation estimation, while in principle an Omnidirectional camera
provides enough information to estimate the full rigid motion (up to translational scale). However, in addition
to being computationally overwhelming, such an estimation is traditionally based on the sensitive search for
feature correspondences between image frames. In this paper we present a novel algorithm that exploits
information from an IMU to reduce the five parameter motion search to a three-parameter estimation. For
this task we formulate a generalized Hough transform which processes image features directly to avoid
searching for correspondences. The Hough space is computed rapidly by re-treating the transform as a
convolution of spherical images.
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Correspondenceless Ego-Motion Estimation
Using an IMU∗

Ameesh Makadia and Kostas Daniilidis
GRASP Laboratory

University of Pennsylvania, Philadelphia, PA 19104
{makadia, kostas}@grasp.cis.upenn.edu

Abstract— Mobile robots can be easily equipped with nu-
merous sensors which can aid in the tasks of localization
and ego-motion estimation. Two such examples are Inertial
Measurement Units (IMU), which provide a gravity vector via
pitch and roll angular velocities, and wide-angle or panoramic
imaging devices. As the number of powerful devices on
a single robot increases, an important problem arises in
how to fuse the information coming from multiple sources
to obtain an accurate and efficient motion estimate. The
IMU provides real-time readings which can be employed in
orientation estimation, while in principle an Omnidirectional
camera provides enough information to estimate the full
rigid motion (up to translational scale). However, in addition
to being computationally overwhelming, such an estimation
is traditionally based on the sensitive search for feature
correspondences between image frames. In this paper we
present a novel algorithm that exploits information from
an IMU to reduce the five parameter motion search to a
three-parameter estimation. For this task we formulate a
generalized Hough transform which processes image features
directly to avoid searching for correspondences. The Hough
space is computed rapidly by re-treating the transform as a
convolution of spherical images.

Index Terms— Omnidirectional vision, localization, inertial
sensors.

I. INTRODUCTION

The commoditization of peripheral sensors like GPS
units, range finders, wide-angle or panoramic cameras,
and Inertial Measurement Units (IMU) has made it fairly
effortless to equip mobile robots with a plethora of sens-
ing devices (see Figure 1). This advance has altered the
way longstanding problems of robot self-localization and
ego-motion estimation are approached. Instead of collect-
ing enough reliable information to perform any of these
motion-based tasks, the problems are now geared towards
the fusion of information already available. Since many
devices on a robot independently capture enough data to
provide partial or even complete solutions to these motion
estimation problems, the target is to find the optimal fusion
of available sensors in order to reach the objectives of
accuracy and efficiency. In this paper we assume that a
robot is outfitted with two useful devices: an IMU and a
single viewpoint Omnidirectional camera system.

An IMU generally combines three orthogonal accelerom-
eters to deliver the angular velocities of motion. The mea-

∗The authors are grateful for support through the following grants:
NSF-IIS-0083209, NSF-IIS-0121293, NSF-EIA-0324977, NSF-CNS-
0423891, NSF-IIS-0431070, and ARO/MURI DAAD19-02-1-0383.

surements of the roll and pitch angles can be used to form
the gravity vector, which could alternatively be obtained
directly from an on-board inclinometer. In terms of motion
estimation, the gravity vector reduces our rotational search
space down to a single rotation about a known axis.

As opposed to IMUs, cameras generally capture enough
information in a pair of images to estimate both rota-
tional and translational components of motion. However,
due to the projective nature of image formation, distance
information is lost and only the translational direction, but
not magnitude, can be recovered. The successful fusion of
information from inertial sensors with image information
has numerous applications. For example, for augmented
reality, accurate registration is required to seamlessly over-
lay artificial objects on a real view. Azuma et al. [4]
created a hybrid inertial-vision tracker where a vision-
based algorithm refines orientation estimates provided by
an inertial sensor. Recently Burschka and Hager [5] and
Diel et al [6] used vision measurements to compensate for
the drift in inertial readings. In addition to these examples,
there is also the InerVis Workshop [1] dedicated solely to
the integration of inertial and vision sensors.

One drawback to the approaches just mentioned is that
the vision component requires some successful feature or
target tracking. In [5] the pose is obtained by locating and
tracking landmarks, while in [4] tracked image features
provide the refinement to the orientation estimate. Sophis-
ticated feature extraction and matching algorithms ([13],
[10]) must often be tailored in different environments to
achieve satisfactory results. Notwithstanding an impressive
volume of research dedicated towards this problem, there
are many scenarios (depending on properties of the imaging
sensor, or scenes with repeated textures) for which features
cannot be successfully matched. Take for example Omnidi-
rectional camera systems, which have become synonymous
with mobile robots. The panoramic view which makes
such sensors so appealing is also being represented by
relatively fewer pixels (per viewing angle). Combined with
the projection geometry of such sensors, this complicates
successful feature tracking.

In the correspondenceless setting, Aloimonos and Hervé
[2] showed the rigid motion of planar patches can be
estimated without correspondences using a binocular stereo
setup. More directly related to the task of planar ego-
motion in arbitrary scenes, Roy and Cox [12] treated this
approach by statistically modeling the variance of inten-
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Fig. 1. A computer controlled wheelchair sporting numerous
sensing devices, including a laser range finder, IR proximity
sensors, encoders for odometery, an IMU, and an Omnidirectional
camera.

sity differences between points relative to their Euclidean
distance. This model is used to estimate the likelihood of
assumed motions. Geyer et al [9] proposed a 6D Radon
transform on the space of Essential matrices parameterized
by ordered pairs in the rotation group SO(3), and Antone
and Teller [3] used a Hough transform on a limited set
of features to initialize an EM motion algorithm. Whereas
these proposed techniques address the general motion
problem, we are concerned with the restricted 3-parameter
subproblem enabled by the presence of a gravity vector
obtained from an onboard IMU.

We treat this motion estimation problem with a gener-
alized Hough transform on the space of three-parameter
motions, rendering the search for matching feature pairs
between images unnecessary. By decoupling the search for
the one remaining rotational parameter and the translational
direction, we reduce the complexity of the Hough com-
putation down to a convolution of two spherical images.
This is advantageous because spherical convolution enjoys
a marked speedup when performed in the Fourier domain
as multiplication.

The organization of this paper is as follows. In section II
we will generalize the Hough transform to the space of
restricted motions in which we are interested. We will mold
this Hough into a spherical convolution in Section III (an
introductory exposition on spherical harmonic analysis is
offered in the appendix), and we will cover the full motion
estimation algorithm in Section III-A. Experiments follow
in Section IV and we discuss planned future work along
with some concluding remarks in Section V.

II. MOTION ESTIMATION AS HOUGH

Images processed on board mobile robots are increas-
ingly likely to come from wide-angle or panoramic imaging
devices such as Omnidirectional camera systems. The pro-
jection models for these camera systems are quite different
from the traditional planar-perspective model. In fact, for
many Omnidirectional systems combining digital cameras
with conic mirrors, the natural image modality is often the
surface of a parabola or hyperbola rather than a planar
surface. For a large class of such single-viewpoint sensors,
the projection geometry is equivalent to a projection of
scene points onto a sphere, followed by a stereographic
projection to the image plane. This enables us to unify im-
ages from many Omnidirectional sensors under the canopy
of spherical images. In this setting, the imaging surface
takes the shape of a sphere, while the single viewpoint
of the camera would lie at the center of this sphere. The
spherical perspective projection model maps scene points
P ∈ R

3 to image points p ∈ S
2, where p = P/||P ||.

Now consider such a spherical camera observing a scene
from two different locations and orientations which are
related by the rigid camera transformation (R, T ), R ∈
SO(3), T ∈ R

3. If P and Q are the 3D coordinates of the
same world point as viewed from the two camera frames,
then the relationship between P and Q can be determined
from the relative pose of the cameras: Q = RP +T . Since
the projection of P,Q to image points p, q will not retain
any information about the distances of the points from the
camera center, we can only infer that three vectors Rp, q,
and T lie on the same plane. This condition gives rise to
the traditional two-view epipolar constraint:

(Rp × q)T T = 0 (1)

Notice that this constraint is independent of the translation
vector’s scale, so only the direction of translation can be
recovered without prior knowledge of the environment. To
reflect this we will write T as a unit vector explicitly
defined by two rotations: T = Rz(γ)Ry(β)�e3. Here Rz(γ)
is a rotation about the Z-axis by the angle γ, and �e3 is
the unit vector representing the north pole (Z-axis). The
epipolar constraint (1) then becomes

(Rp × q)T (Rz(γ)Ry(β)�e3) = 0 (2)

This motion space is five dimensional (three for orientation
and two for direction), but we would like to remove some
complexity by integrating information from an onboard
IMU. For many off-the-shelf IMUs, the recorded inertial
measurements come in the form of angular velocities about
the three canonical axes of R

3. Two of these measurements,
the angles of Pitch and Roll, can be combined to determine
the gravity vector. We would like to fuse this partial ori-
entation information with our image information to reduce
the dimensionality of our unknown parameter space. The
gravity vector acts as somewhat of a reference vector since
it has the effect that we can rectify our camera coordinate
frames so that the rotational component linking the two
cameras is just a rotation about a known axis (without
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loss of generality we will always choose this axis to be
the Z-axis). With the assistance of the IMU readings, our
unknown 3D rotation is reduced to a one-parameter rotation
about the Z-axis Rz(α). The epipolar constraint for this
restricted motion is

(Rz(α)p × q)T (Rz(γ)Ry(β)�e3) = 0 (3)

We can use this reduced epipolar constraint to obtain an
ego-motion solution bypassing the traditional first step of
identifying matching feature pairs.

A. Hough on the space of motions

We shall begin with an introduction to the traditional
Hough transform as it applies to identifying lines in planar
perspective images before illustrating how similar intuition
can be used to identify the correct motion parameters
of a spherical camera. Specifically, we will examine the
continuous case of the Hough transform which is often
identified with the Radon transform. For identifying lines
on a planar image the Radon transform is given as

G(ρ, θ) =
∫ ∞

−∞

∫ ∞

−∞
g(x, y)δ(ρ − x cos θ − y sin θ)dxdy

Here g(x, y) is the weighting function, in this case an edge
image. δ is a soft characteristic function which measures
how close the edge pixel (x, y) lies to the line given by
(ρ, θ). Conceptually, for any line (ρ, θ), G(ρ, θ) counts the
number of edge pixels (x, y) which belong to the line given
by ρ − x cos θ − y sin θ = 0. As the Radon transform
identifies lines in images, we would like to formulate a
conceptually similar transform that will identify the free
parameters describing the motion of a spherical camera.

A restricted camera motion as described by the constraint
(3) is identified by three individual rotations. If we parame-
terize the full rotation group SO(3) with ZYZ Euler angles
α, β, and γ so that R(α, β, γ) = Rz(γ)Ry(β)Rz(α), we
can rewrite (3) as

(RT
2 R1p × RT

2 q)T �e3 = 0, (4)

where R2 = R(0, γ, β) and R1 = R(α, 0, 0). A camera
motion is now identified with the rotation pair (R1, R2).
For each such motion, we we want to count the number
of point pairs (p, q), where p is an image point of the first
image, and q the second, such that (p, q) satisfies the motion
constraint (4), weighted by the similarity of the points p,
q.

Unlike motion estimation algorithms which rely on
a best-fit minimization, accumulator algorithms like the
Hough transform implicitly account for a large percentage
of outliers. Thus we need not search for the perfect
similarity measure which will eliminate false positives.
The objective is simply to identify a measure which is
slightly more discriminating than a simple image-based
comparison. Our proposal is to use SIFT image features
[11] which compute distinguishing characteristics such
as local gradient orientation distributions. SIFT features
typically associate a 128 dimensional feature vector with
each feature location. Using this notion of a similarity

between features, we can formulate an integral transform
to compute the validity of each rigid motion:

G(R1, R2) =

∫
p

∫
q

g(p, q)δ(((RT
2 R1p × RT

2 q)T �e3)dpdq (5)

Here the soft characteristic function δ measures how
close the feature pair (p, q) comes to satisfying the motion
constraint (4). The weighting function g(p, q) measures the
similarity between features p and q, and is given as

g(p, q) =

{
e−||p−q|| if features have been extracted at p and q
0 otherwise

where ||p − q|| is the measure of difference between two
features. When using SIFT, this difference can be as simple
as the Euclidean distance between two feature vectors.

Before going further, we should make note that the
lone remaining rotational parameter R1 = Rz(α) is not
a complete unknown. In fact, we can always integrate
the angular velocity from the IMU to obtain an estimate
for α. Although this measurement may be corrupted by
drift, in some circumstances it may still provide an initial
starting value to help reduce the possible search space.
This scenario motivates us to decouple the rotational term
R1 from the translational component of motion. In the
following section we will see how fixing and searching
over α can reduce the computation of our Hough transform
(5) to a simple convolution of two spherical images.

III. HOUGH AS CONVOLUTION

Suppose we fix the rotation angle α. This implies that we
have completely rectified or ”de-rotated” our spherical im-
ages so that our search is now limited to just a translational
direction. We can rewrite our Hough transform without the
rotational term α, leaving us with

G(R2) =

∫
p

∫
q

g(p, q)δ(((RT
2 p × RT

2 q)T �e3)dpdq (6)

=

∫
p

∫
q

g(p, q)δ((RT
2 (p × q))T �e3)dpdq (7)

This formulation is quite different than the one we
originally started with (5). Previously, for each motion we
were interested in accumulating all the possible feature
pairs (p, q) between two spherical images which satisfied
the epipolar constraint. With (7), we are interested in
accumulating points (p × q) ∈ R

3 which satisfy the con-
straint (RT

2 (p× q))T �e3 = 0. We can equivalently consider
normalized points ω = p×q

||p×q|| such that (RT
2 ω)T �e3 = 0.

ω is ill-defined when q = ±p, but this can occur for
only a negligible subset of possible point pairs, which are
easily omitted. Since ω ∈ S

2, and since the projection
(p1 × p2) ∈ R

3 �→ ω ∈ S
2 is not unique, our weights are

generated by summing over all pairs which are equivalent
in this mapping:

g(ω) =
∑
p∈I1

∑
q∈I2

e−||p−q||δ(||ω × (p × q)||) (8)

Re-examining our Hough transform we see that

G(R2) =

∫
ω

g(ω)δ((RT
2 ω)T �e3)dω. (9)

This Hough is a correlation between two functions defined
on the sphere S

2, where the correlation shift in this case is
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performed by elements of the rotation group SO(3). We
proceed to show how this correlation can alternatively be
phrased as a convolution of two spherical signals.

The characteristic function δ(ωT �e3) is just the image of
the equatorial great circle, which corresponds to a camera
translating along the Z-axis. Now consider what happens to
δ as it is rotated by an element of SO(3). We write ω ∈ S

2

as a rotation of the north pole vector �e3, just as we did for
the translation vector T (2). By making the substitution
ω = R3 �e3, R3 ∈ SO(3), we have

G(R2) =
∫

R3

g(R3 �e3)δ((RT
2 R3 �e3)T �e3)dR3 (10)

Since δ is just the image of the equator, a rotation of δ by
an element R ∈ SO(3) is equivalent to a rotation by its
inverse RT :

δ((RT
2 R3)�e3)T �e3) = δ((RT

3 R2)�e3)T �e3) (11)

Remember that R2 = Rz(γ)Ry(β) is the rotation that
determines the direction of camera translation as T = R2 �e3

(here we have normalized the translation vector to unit
length). (10) becomes

G(T ) =
∫

R3

g(R3 �e3)δ((RT
3 T )T �e3)dR3, (12)

which is the exact definition of the convolution of two
spherical signals. From the appendix we know that the
Spherical Fourier coefficients of G(T ) can be computed
as

Ĝl
m = 2π

√
4π

2l + 1
ĝl

mδ̂l
0 (13)

where ĝ and δ̂ can be obtained from (15). Subsequently,
we can take an inverse transform (14) of Ĝ to obtain the
real values of the original Hough space G(T ).

A. Algorithm

We now present the full ego-motion estimation algorithm
in Figure (2). It is important to note that the resolution of
our Hough space G(T ) depends directly upon the band-
limit we assume for g and δ when computing the Spherical
Fourier Transform. If the band-limit is chosen to be L, we
will obtain a result for G(T ) with 2L uniformly spaced
samples in both angles (β ∈ [0, π], γ ∈ [0, 2π)). We are
now ready to discuss experimental results displaying the
effectiveness of this approach.

IV. EXPERIMENTS

In this section we will address some practical con-
siderations regarding the computation of our ego-motion
parameters, followed by experimental results.

A. Spherical Images

As we have discussed earlier, the projections of cata-
dioptric systems with a unique effective viewpoint are
equivalent to a projection on the sphere followed by a
projection from a point on the sphere axis to the plane
[8]. If calibrated, such a sensor enables us to interpolate

INPUT

1) Omnidirectional images I1, I2, and gravity vec-
tor from two robot locations

OFFLINE

1) Compute the spherical Fourier coefficients δ̂

ONLINE

1) Generate SIFT feature sets p, q from images
I1, I2.

2) Map feature point locations from Omni image
to sphere: pi �→ Pi ∈ S

2, qi �→ Qi ∈ S
2

3) Rectify spherical features P,Q using gravity
vector from IMU.

4) Discretize search space for α ∈ [0, 2π)
5) Initialize αmax = 0, Gmax = 0.
6) Replace feature sets with Cartesian product of

feature sets: P × Q.
7) For each αi in search space:

a) ωi = Rz(αi)Pi × Qi.
b) Compute g(ω) from (8) and then ĝ from

SFT.
c) Compute Ĝ from (13).
d) Obtain G(T ) from inverse SFT of Ĝ.
e) if max(G(T )) > Gmax:

• αmax = αi.
• set Tmax to peak position of G(T ).
• Gmax = max(G(T )).

8) Motion estimate is αmax and Tmax.

Fig. 2. The algorithm to estimate three unknown parameters of motion

spherical perspective images. We used a system consisting
of a Canon Powershot G2 digital camera along with a
parabolic mirror attachment produced by Remote Reality.
The mirror’s field of view is 212◦. The images are mapped
to the sphere by interpolating onto a polar grid, where
angular sampling is uniform. Figure (3) shows a sample
catadioptric image obtained from a parabolic mirror and
its corresponding projection onto the sphere.

Our first experiment is designed to test the merits of the
full algorithm given in Figure 2 as an effective estimator
of motion. Our input data set is a sequence of synthetic
spherical images simulating a camera moving along a tilted
circle in space. Ten images were generated along this circle,
and so the first and last image positions were identical.
The orientation of the camera at each point was selected
at random. The motion between all consecutive pairs of
images was estimated using the full algorithm of Figure 2.
Each successive run of this experiment was performed with
an increasing corruption applied to the IMU input gravity
vector. Figure 4 shows the estimated camera location for
three different trials: first with the input gravity vector as
ground truth, second with 3◦ error in the input gravity
vector, and third with 6◦ error. The motion estimate from
each tested pair of images was then concatenated to pro-
duce an estimate of the trajectory followed by the camera.
We are able to display this path because the magnitude
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Fig. 3. Top Left: a parabolic catadioptric image. Bottom: the
corresponding spherical image on a uniformly sampled θ-φ grid.
Top Right: the spherical image as it would appear on the surface
of the sphere
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Fig. 4. A simulated path of a camera moving in a circle in space.
The motion was estimated between every two consecutive images.
Positions marked by circles correspond to noise-free simulation.
The path traced by the ’+’ is for noise of 3◦ in the simulated IMU
measurement. The ’*’ is for noise of 6◦ in the IMU readings. Note
that for such a significant IMU error (6◦) there is still very little
drift in the measurements by the time we return full circle to
position 0.

of translation was kept fixed between each position along
the circle. As the results indicate, the estimation is reliable
even in the presence of what would be significant IMU
error.

In Figure 5 we show the estimation result for a purely
translational sequence. To test the stability for larger ro-
tations against ground truth we also perform artificial
rotations to one image before estimation. The small errors
in the estimated angle of rotation α for rotations up to
60◦ show that for the estimation is accurate even for large
rotations.

Figure 6 shows the estimation results for a pair of im-
ages separated by an arbitrary one-parameter rotation and
translational direction. In lieu of reliable ground truth the
fully rectified spherical images are shown overlayed with
the estimated translational direction and epipolar circles
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Fig. 5. Top Row: Omnidirectional images taken from camera
locations where relative motion is a pure translation along the X
axis. Middle Left: the translational Hough space for the estimated
motion from the images on the top row. The translational direction
of the X-axis is clearly identified with strong peaks in the middle.
Middle Right: Simulated rotations were tested using the pair of
real translational images. Through all rotations up to 60◦, the
largest rotational error found was 5◦ and this is the translational
Hough space for one such instance. Bottom: Error in estimated
angle of rotation α for rotations up to 60◦.

(see figure caption for details).

V. CONCLUSION

In this paper we have presented a novel ego-motion
estimation algorithm fusing IMU measurements with vi-
sual information. The vision component of the algorithm
successfully estimates ego-motion without first having to
find feature correspondences between images. Preliminary
results indicate this approach provides a viable tool for
motion estimation, and in our future work we will attempt
to export this algorithm to a mobile robot equipped with
an Omnicam and IMU.

APPENDIX

This section is designed to provide a cursory introduction
to the theory of harmonic analysis on the sphere. Readers
are referred to [7] for a thorough exposition regarding the
computation of a discrete Spherical Fourier Transform and
a proof of the spherical convolution theorem.

As the angular portion of the solution to Laplace’s
equation in spherical coordinates, the spherical harmonic
functions Y l

m form a complete orthonormal basis over the
unit sphere:

Y l
m(θ, φ) = (−1)m

√
(2l + 1)(l − m)!

4π(l + m)!
P l

m(cos θ)eimφ,
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Fig. 6. On the left is a pair of real Omnidirectional images separated by a rotation Rz(α) and a free translation. After the ego-motion algorithm was
run, the spherical images were rectified for the correct α. On the right are the rectified spherical images (only the visible band on the sphere is shown
here). The great circles representing a subset of the epipolar circles are overlayed on the images. Points that lie on a great circle in the first image will
lie on the same great circle in the second image if the estimation is correct. From visual inspection this result is very accurate but not perfect. The two
antipodal spherical points representing the intersection of all the circles is in fact also the direction of translation.

where P l
m(cos (θ)) are associated Legendre polynomials.

Thus, for any function f(ω) ∈ L2(S2), we have a Spherical
Fourier Transform (SFT) given as

f(ω) =
∑
l∈N

∑
|m|≤l

f̂ l
mY l

m(ω) (14)

f̂ l
m =

∫
ω∈S2

f(ω)Y l
m(ω)dω (15)

An important property of the spherical harmonic functions
Y l

m is

Y l
m(R−1ω) =

∑
|k|≤l

Y l
k(ω)U l

km(R), (16)

where the (2l+1)×(2l+1) matrices U l are the irreducible
unitary matrix representations of the transformation group
SO(3), whose elements are given by

U l
mk(R) = e−imαP l

mk(cos β)e−ikγ . (17)

The P l
mk are the generalized Legendre polynomials. From

(16) we obtain a Shift Theorem relating coefficients of
rotated functions :

h(ω) = f(R−1ω) ⇔ ĥl
m =

∑
|k|≤l

f̂ l
kU l

mk(R) (18)

This Shift Theorem (18) shows us that the U l matrix
representations of the rotation group SO(3) are the spectral
analogue to 3D rotations. As vectors in R

3 are rotated by
orthogonal matrices, the (2l+1)-length complex vectors f̂ l,
comprised of all coefficients of degree l, are transformed
by the unitary matrices U l.

The convolution of two functions f, h ∈ L2(S2) is
defined as

(f ∗ h)(ω) =
∫

R∈SO(3)

f(R�e3)h(RT ω)dR (19)

From the SFT (14, 15) and the Shift Theorem (18), we can
write the coefficients of f ∗ h as

ˆ(f ∗ h)
l

m = 2π

√
4π

2l + 1
f̂ l

mf̂ l
0 (20)

This result is similar to the convolution theorem of function
defined on the real line, which illustrates that the spectral
analogue to the convolution integral is equivalent to the
pointwise multiplication of Fourier descriptors.
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