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Path-based systems to guide scientists in the maze of biological data
sources

Abstract
Fueled by novel technologies capable of producing massive amounts of data for a single experiment, scientists
are faced with an explosion of information which must be rapidly analyzed and combined with other data to
form hypotheses and create knowledge. Today, numerous biological questions can be answered without
entering a wet lab. Scientific protocols designed to answer these questions can be run entirely on a computer.

Biological resources are often complementary, focused on different objects and reflecting various experts'
points of view. Exploiting the richness and diversity of these resources is crucial for scientists. However, with
the increase of resources, scientists have to face the problem of selecting sources and tools when interpreting
their data.

In this paper, we analyze the way in which biologists express and implement scientific protocols, and we
identify the requirements for a system which can guide scientists in constructing protocols to answer new
biological questions. We present two such systems, BioNavigation and BioGuide dedicated to help scientists
select resources by following suitable paths within the growing network of interconnected biological
resources.
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Fueled by novel technologies capable of producing massive amounts of data for a
single experiment, scientists are faced with an explosion of information which must be
rapidly analyzed and combined with other data to form hypotheses and create knowl-

edge. Today, numerous biological questions can be answered without entering a wet lab.
Scientific protocols designed to answer these questions can be run entirely on a computer.

Biological resources are often complementary, focused on different objects and re-
flecting various experts’ points of view. Exploiting the richness and diversity of these

resources is crucial for scientists. However, with the increase of resources, scientists have
to face the problem of selecting sources and tools when interpreting their data.

In this paper, we analyze the way in which biologists express and implement scientific

protocols, and we identify the requirements for a system which can guide scientists in
constructing protocols to answer new biological questions. We present two such systems,
BioNavigation and BioGuide dedicated to help scientists select resources by following
suitable paths within the growing network of interconnected biological resources.

Keywords: Querying biological resources; Paths between sources; Metadata and user’s
preferences.
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1. Introduction

Due to the explosion of high-throughput scientific data that is available over the web,

an increasing number of biological questions can be answered without entering a wet

lab. That is, the scientific protocols designed to answer these questions are digital

and can be run entirely on a computer. Each step of a digital scientific protocol is

a bioinformatics task, and is defined by a description which captures its scientific

aim and an implementation which specifies the resources selected to execute the

task44,1. Thus the same task description may admit multiple implementations.

Although many scientists currently use scripting languages such as Perl to ex-

press and execute digital scientific protocols, there is an increasing recognition of

the need for workflow systems to manage them, i.e. systems which allow the ex-

pression of protocols, can invoke protocol implementations, record results, and be

used to query results as well as the reasoning that produced those results; exam-

ples include myGrid/Taverna37, Kepler3, Chimera16, DiscoveryNet40, MHOLline46,

HKIS-Amadea12, and AdaptFlow20 (see the web page survey42 for other examples

of workflow systems).

These systems are very good at describing implementations of scientific protocols

and managing the resulting digital results. However, they do not help scientists with

the overwhelming task of selecting an implementation for a given scientific protocol.

As an illustration, Figure 1 shows an example of a protocol called the bacterial

artificial chromosomes (BAC) augmentation protocol, which has been designed in

the context of the HKIS project.a12 The steps of the protocol are indicated with

boxes, and the data flow by ovals and arrows. Within comparative genomic hy-

bridization (CGH) array experiments, BACs are used to detect gains and losses in

the DNA of tumoral samples, thus allowing the identification of new cancer-related

genes. Thus, loosely speaking, this protocol answers the question “What genes in

my CGH array can be related to cancer?”. Each step of a protocol corresponds to

an intermediate question; for example, the question associated to the first step (Po-

sition BAC) is “Where are all the BACs of my CGH array located on the genome

sequence?” Some of these steps require importing data from external data sources.

Note that external data is required in two of the bioinformatics tasks in the sample

protocol.

Public biological resources form a complex maze of heterogeneous data sources,

interconnected with links and applications. This valuable network offers scientists

potential answers to a wide variety of scientific questions. However selecting the

appropriate resources for obtaining the data of interest is a tedious task: While

scientific questions are posed at a conceptual level, their implementation entails

determining which data resources and tools to use, that is, which paths in the

network of sources to follow.

aFor more information about the HKIS project and its Web-based platform see
http://isoft.free.fr/hkis/.
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Fig. 1. BAC augmentation protocol

For example, the first step of the BAC augmentation protocol (Position BAC)

requires the scientist to know which data resources have information about the

positions of BACs. Frequently, this choice is based on what resources the scientist

is most familiar with, rather than what resources are best suited to the question.

The number of resources a scientist uses regularly is very small compared to

the number of resources that are available on the Web; scientists tend to access

a core of well-known resources (e.g., GenBank, Swiss-Prot) to which they add a

few specialized resources depending on their specific needs. A survey conducted in

200322 showed that 29 scientists belonging to three different research teams used

on the average six public resources (including databases and applications) of a

total of 57 cited distinct resources. In contrast, there are 719 public data sources

listed in the Molecular Biology Database Collection18, and this number is increasing

exponentially: since 2004 there has been a 31% increase, and a total increase of 351%

since the list was compiled in 19995.

Unfortunately, it is unreasonable to expect scientists to use more resources due to

the complexity of evaluating and mastering them, combined with the speed at which

they evolve. In evaluating the usefulness of a resource for a biological question, the

scientist must understand a number of things, including the content of the resource;

the state of its curation; the format of its entries; the capabilities made available to

access, analyze, and display the data; and its relative position within the network

of interconnected public biological resources.

The goal of this paper is to analyze the way in which scientists currently con-

struct their protocols, and identify the requirements for a system which can guide

them in constructing new protocols to answer new biological questions. In particu-

lar, the system must help scientists select resources and find paths between resources

within the growing network of interconnected biological resources.
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The paper is organized as follows: Section 2 motivates the need for alternative

resource selections. Challenges for designing scientific protocols, and user require-

ments collected from a questionnaire are discussed in Section 3. Section 4 focuses

on features which should be satisfied by a guidance system. Path-based guiding sys-

tems are then introduced and compared in Section 5. Section 6 discusses additional

challenges in designing workflow systems to manage digital scientific protocols.

2. Alternative resource selection

The network formed by biological resources is diverse, and offers multiple orthogo-

nal viewpoints on scientific data. Each viewpoint is expressed by the way in which

the data are organized (e.g., GenBank is sequence-centric while GeneCards is gene-

centric), the access capabilities offered to scientists (e.g., to access gene descriptions

in GeneCards, one can use a full-text search engine or provide a HUGO symbol),

as well as the applications, annotations, and links to other relevant resources. In

addition to this structural diversity, biological resources offer a rich semantic diver-

sity. This semantic diversity may be characterized by the number of entries present

in the data source, the number of attributes pertaining to each entry, the number

of links between entries, as well as the quality, consistency, and reliability of these

resources. All these semantic characteristics offer metrics that may be used in de-

termining whether or not to use the resource in an implementation of a scientific

protocol, and dramatically affect the collected dataset instance28. In addition, com-

bining several similar resources may provide complementary pieces of information,

thus generating a more complete dataset.

An experiment conducted in February 200523 demonstrates how the selection of

resources may result in dramatically different datasets. Consider the simple query

“Retrieve bibliographic references related to [a particular genomic disorder].” To

execute this query, a selection of resources could include OMIMb and the PubMed

Links provided by NCBI to retrieve PubMed entries related to each of the OMIM

entries. These links offer a valuable contribution to the scientists as curated pre-

computed joins between heterogeneous data sources. For the disease diabetes, 48,941

entries (without duplicates) were retrieved from PubMed that were linked to OMIM

entries retrieved by conducting a search with 17 keywords related to diabetes. Alter-

native resource selections include using the same data sources (OMIM and PubMed)

but using different links; using alternative data sources (e.g., an alternate resource

for OMIM is GeneDisc); or using alternative paths that may include additional re-

sources. An alternative link between OMIM and PubMed may be found by parsing

the retrieved OMIM entries and extracting all PubMed references. This alternate

execution of the same query retrieved 50,843 PubMed entries from the same set of

OMIM entries, that is 1,902 more entries than the previous selection. Therefore, a

bOMIM is available at http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=OMIM.
cGeneDis is available at http://life2.tau.ac.il/GeneDis.
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scientist whose goal is to retrieve as many entries as possible while accessing the

fewest resources should favor the latter option. However, a scientist wishing to re-

trieve all possible entries should collect entries from both options because the first

option retrieved 21 entries not included in the second option; whereas a scientist

wishing to retrieve entries with the most evidence might take the intersection of

entries retrieved in the first and second options. This example illustrates that the

selection and use of resources is critical to the quality and completeness of the re-

trieved dataset, and is linked to the goal of the scientist who is posing the question.

Section 3.2.4 explains how a semantic description of resources should be used to

define the approach used for biological resource selection.

As another example of why alternative resources should be considered, recall

the first step of our sample workflow query introduced in Section 1 which asked

the question “Where are all the BACs of this CGH array located on the genome se-

quence?”. Alternative selections of resources give complementary results concerning

single instances of BACs. For example, accessing only MapViewFishd locates BAC

RP11-89F21 on a particular chromosome band, whereas accessing UCSCGenomee

gives the exact position of this BAC on the chromosome sequence10.

However, alternative resource selections may lead to conflicting results. For the

BAC CTD-2012D15, GenBank and MapView locate it on chromosome X, while

UCSCGenome and MapViewFish locate it on chromosome 11. In this situation, the

selection of a single path would lead to a result which is potentially inaccurate.

However, if the user selects both paths, the system must resolve the conflict in

chromosomal location for this query: X or 11. One solution would be to exploit the

user’s evaluation of the reliability of the resources involved to resolve the conflict;

another would be to report both locations and give the provenance of the answer,

e.g. the data source providing the answer.

For these reasons, it is critical to explore alternative selections of biological

resources to execute scientific protocols and use various paths to obtain comple-

mentary pieces of information. In the next section, we give an overview of a study

of how users go about selecting resources to use in implementing their protocols,

and explore their motivations. The analysis of these use cases lays a foundation for

how guidance systems should support the selection of scientific resources to execute

protocols.

3. User requirements

There are many challenges that bioinformaticians face while supporting scientists in

creating digital scientific protocols. First, the statement of a protocol is frequently

abstract, e.g. “Retrieve bibliographic references related to [a genomic disorder].”,

admitting many different implementations each of which consults different data

dThe NCBI MapView bank is available at http://www.ncbi.nlm.nih.gov/mapview/ is split into

two different sources: /MapViewFish/ and /MapView (Fish mapping or not).
eThe UCSC genome is available at http://www.genome.ucsc.edu/cgi-bin/hgGateway.
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sources, links, and tool-links. Second, the choice of implementation is subjective and

varies from scientist to scientist. The bioinformatician must therefore know what

information to give to the scientist as well what subjective information to elicit from

the scientist in order to help formulate an appropriate implementation. In particular

the bioinformatician must locate relevant resources and extract information about

these resources, such as what entities they contain and associated metadata.

In this section, we start by describing a case study that was performed to deter-

mine how scientists formulate their protocols. We then discuss the need for trans-

parent and mixed queries, and the kind of information that must be obtained in

order to implement those queries.

3.1. Collecting user requirements

Over the past few years, several surveys have been performed to study how scien-

tists search for information within data sources44,45,13. More recently, in the context

of the BioGuide project10, a study was done to determine the reasons why biolo-

gists select one source to query rather than another, and to identify the ways in

which biologists collect information. This study was performed by developing a

questionnaire and performing interviews, and involved 20 researchers whose inter-

ests included disease studies, functional genomics and structural genomics.

The questionnaire was developed using standard guidelines21,17,38, and built

on previously recognized considerations such as user preferences44,45,13 and data

quality35,33,36. The questionnaire consisted of 28 questions organized around three

main topics: (A) queries and sources accessed, (B) ways of accessing sources, and

(C) bioinformatics tools used. A few of the questions are provided below as an

illustration:

• (Part A) Select a context from your own area of study and list some bio-

logical questions that you frequently ask. If several sources yield answers

for your question, do you access them all or do you select only a few?

• (Part B) When you are collecting data related to two linked entities (e.g.,

a gene and the protein it encodes), how do you proceed (e.g., do you follow

a particular order of entities)?

• (Part C) How many bioinformatics tools (e.g., Blast, Fasta) do you use when

you want to perform a given bioinformatics task (e.g., similarity search)?

How often do you change the parameters of a given tool?

Interviews were then conducted using classical techniques15,39. More precisely,

two pools of individuals were considered. The first pool of five individuals were asked

to fill in the questionnaire and were then interviewed. For this pool, we used the

debriefing technique39 in which answers are analyzed with the interviewee. We used

this technique to gain a better understanding of how respondents interpreted the

questions asked of them. We were thus able to identify words, terms or concepts that

respondents did not interpret as we intended, and to obtain suggestions for revising
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the questionnaire. By using this technique, we not only improved our questionnaire

but also collected clear answers. The second pool consisted of fifteen individuals

who were interviewed using the incident critics technique15: we asked scientists to

describe their area of study, and show us what they do when they want to find

information in their data sources of interest. In this way, we obtained answers to

the questionnaire by having a discussion with the scientist.

As a result of this study, a set of 156 scientific questions expressed in natural

language were collected, as well as a set of sources, tools and preference criteria.

The collected questions are analyzed in the next subsection.f

3.2. Analyzing responses to survey

The scientific questions that were collected can be classified as transparent queries

and mixed queries, which are respectively explained in Sections 3.2.1 and 3.2.2. In

addition to the wording of the scientific question itself, scientists expressed prefer-

ences about the resources used to implement a protocol and how the protocol was to

be executed, i.e. the approach followed. The preferences expressed by the scientists

are developed in Section 3.2.3 while Section 3.2.4 introduces the different kinds of

approaches which can be followed to implement a given protocol. The results we

present hereafter were obtained by working in close collaboration with biologists

who systematically validated our results.

3.2.1. Transparent queries

Our analysis of the collected scientific questions revealed that, in many cases, neither

the data sources nor the tools to be used were specified by the biologists. That is,

scientists designed their questions at a conceptual level24 referring to underlying

biological entities and the relationships between these entities. Examples of such

questions are:

(1) Return all contigs that map “close” to the marker M on chromosome 19.

(2) Where are all the BACs of this CGH array located on the genome sequence?

(3) What gene(s) result(s) in the Long QT syndrome disease and codes for an in-

active protein?

(4) From this set of structural motifs, which are the corresponding proteins having

the same 3Dstructure (using the FSSB source) and their ORFs?

The biologists we worked with were then asked to identify the underlying enti-

ties and relationships present in their questions. As an example, the term “ORF”

in question (4) was associated with the entity “Gene”, and in question (3) the fact

that a set of genes may “result in” a given disease was associated with a “causes”

fThe questionnaire and survey results are available at BioGuide web site: http://bioguide-
project.net.
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relationship. Occasionally, we also asked biologists to associate entities and rela-

tionships with terms in questions listed by other scientists.

More generally, the questions above refer to the following biological entities: (1)

Contig, Marker, and Chromosome, (2) Chromosome and Bac, (3) Gene,

Disease, and Protein (4) 3D-Dom-Structure, Protein, 3D-Structure, and

Gene

They also refer to the following relationships (1) “mapsWith” and “isOn”, (2)

“isOn”, (3) “causes” and “codesFor”, (4) “hasStruct”, and “hasSimilarStruct”.

Discussions with the biologists revealed that they consider different types of re-

lationships between entities. Some relationships are precalculated, that is, explicitly

represented and stored in the sources consulted; others are implicit and must be cal-

culated on-the-fly using some bioinformatics tool. For example, in query (1) the fact

that “Marker M is on chromosome 19” may be stored in the data sources queried

by the biologist. In contrast, the relationship “close mapping” can be calculated

(e.g., using Blastn).

The fact that many of the scientific questions were abstract points to the need to

be able to express scientific protocols as transparent queries31 which refer to scien-

tific entities and relationships rather than physical data sources and bioinformatic

tools.

3.2.2. Mixed queries

Although many of the questions collected were transparent, others evoked specific

biological resources. We refer to these questions as mixed queries. For example, the

question “Retrieve proteins involved in breast cancer from OMIM” specifies OMIM

as the data source to be consulted to retrieve information about the disease “breast

cancer”, although no source is specified to retrieve the proteins involved (such a

data source could be Swiss-Prot, TrEMBL, PIR, etc.).

Biological resources evoked in a scientific question may be data sources or links.

Data sources are repositories of entries which are instances of scientific entities; for

example, OMIM is a repository of instances of the Disease entity. Links connect

different entries, possibly from different data sources. They express the relation-

ships between scientific entities and include cross-references (or internal links), and

tool-links.g. Cross-references are hypertext links (hyperlinks) from an entry in one

source to complementary information (another entry or a set of entries) in an-

other source. Cross-references are not necessarily symmetric; for example, although

numerous specialized sources cross-reference GenBank, these resources are not ref-

erenced by NCBI in return. Internal links are used to join entries within a data

source, and correspond to foreign keys in relational databases. Finally tool-links are

(Web) services provided by a source to link entries from different sources. Each

source may provide several different services achieving a given relationship between

gA cross-reference or a tool-link is also referred to as a capability28
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entities. For example, ENTREZ provides various tool-links across the NCBI data

sources. Tool-links such as PubMed Links, Nucleotide Links, Protein Links, etc. are

implemented as indices, whereas others (such as “sequence similarity search”) are

implemented by tools (such as MegaBlast or BlastN ).

Although some degree of transparency is often needed in queries, scientists also

expect to be aware of the provenance of the answers19,50. That is, they need to

know which data sources and tools have been used to generate the answer to their

questions (this is called why-provenance4). Traceability of results has been identified

as a requirement for systems which execute scientific protocols37,32 and is crucial

for verifying results, drawing conclusions, and testing biological hypotheses50.

3.2.3. Preferences

Answers to the questionnaires also revealed that biologists express preferences about

biological resources to be used in the implementation of a protocol. These prefer-

ences may be subjective, or based on measurable qualities captured in the metadata

associated with the data sources and tools.

Subjective preferences

Many preferences are subjective, and are related to the management or curation of

the data source, the ease-of-use of the data source, the completeness of the entries

in the data source with respect to the question being asked, the the richness of

information given about the entity of interest, and the quality of cross-references

from entries in the data source. The confidence a user has in a tool-link may depend

on its ease-of-use, the reputation of the tool, the completeness of answers generated

by the tool, as well as what source is providing it. For example, a user may con-

sider a Blast tool as reliable in general but assign to it a different reliability level

depending on the source which provides it (e.g., BlastN from NCBI vs. BlastN from

Expasy). Although preferences values should be given by each user, default values

established by other scientists or by means of metadata (see below) are often very

useful, especially for less experienced users.

Metadata-driven preferences

Other preferences are based on quantitative measures that are captured as meta-

data associated with a data source or tool. In contrast to subjective preferences,

metadata does not vary from user to user. Examples of metadata include data

source cardinality; link cardinality, i.e. the number of pairs of entries for each type

of link; the number of entries in the data source with at most one outgoing link;

the number of entries in the data source with at least one incoming link; how many

attributes for an entity are contributed by the source; and measures of the curation

of the data source and links. Note that the measures of curation may be somewhat

subjective, but not at the level of the user.
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3.2.4. Approaches

When scientists search for answers to a given biological question, they usually follow

paths of links between sources as implementations of their question. For example,

to answer the question “Retrieve the nucleotide sequences, proteins, and references

to published articles related to [a genetic disorder]”, one implementation could be:

(1) Retrieve all OMIM entries related to the generic disorder (with a list of keywords

characterizing the disorder).

(2) Follow all links from the entries collected from OMIM to the corresponding

sequences in NCBI Nucleotide.

(3) Follow all links from the entries retrieved from NCBI Nucleotide to entries in

NCBI Protein.

(4) Follow all links from the entries retrieved from NCBI Protein to entries in

PubMed.

The implementation of the question is a path over the biological resources OMIM

→ NCBI Nucleotide → NCBI Protein → PubMed. The links not specified in the

query may be the NCBI links (indices computed and provided by NCBI via the

EUtils), or a local parser that extracts from each entry the needed identifiers from

the retrieved entries combined with a call to the resource to retrieve the linked

entries (e.g., to retrieve the PubMed entries linked to the protein entries, one can

either use the PubMed Links or extract the PubMed ids from the protein entries

and retrieve the corresponding PubMed entries).

Scientists may therefore wish to characterize the set of paths used in the imple-

mentation of their question, that is, to specify the approach to be followed. There

are several ways in which this might be done. First, approaches may exploit pref-

erences; for example, by considering the set of paths that find the greatest number

of entries, entries that are supported by the largest number of paths, paths that

maximize the information about each entry, or paths that take the shortest time

possible. Second, approaches may exploit some characteristics of the paths, for ex-

ample, whether a data source can or should be visited more than once, or the order

in which data sources are visited.

4. Features of path-based systems

In this section, we draw on the user requirements presented in the previous section

– the need for transparency in queries, subjective as well as metadata-driven pref-

erences, and expression of approach – and discuss how they impact the design of a

system that assists scientists in constructing digital protocols.

4.1. Graphical support

Scientific questions are frequently expressed as paths between scientific entities

whereas the implementation of the question involves specifying the physical re-
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sources involved. For these two reasons, a system that guides scientists in con-

structing digital protocols must provide two layers of representation.

Graph-based representation of biological entities

In order to allow scientists to formulate meaningful (and transparent) queries,

a path-system should provide a logical level to represent the biological knowledge

involving scientific entities (e.g., Gene, Protein) and relationships between them

(e.g., a Gene codes for a Protein, a Gene maps with a Protein). The most natu-

ral way to represent biological knowledge is to use a conceptual graph in which each

node represents a biological entity (or scientific class) considered at a conceptual

level. The edges connecting these nodes represent biological relationships between

the corresponding entities. As two scientific entities may be linked by multiple re-

lationships, each expressing a scientifically meaningful property, the graph should

allow multiple labeled edges between two nodes.

Graph-based representation of resources

In order to allow scientists to be aware of the relevant resources to be selected

for answering their queries, a path system should provide a logical level to represent

the network of resources.

As seen in Section 3.2.2, data sources (or physical sources) are connected through

different kinds of links: internal links, cross-references and tool-links. These links

express effective ways to navigate from one data source to another. A straightfor-

ward way to represent biological resources is a graph in which each node represents

a data source (e.g., OMIM) and each edge between two nodes represents a link (e.g.,

Entrez Nucleotide links). To adequately represent biological resources, edges of the

physical graph should be directed and labeled, and there may be multiple edges

between two nodes. As seen previously, in most cases links between two biological

data sources are not symmetric, and multiple tool-links or cross-references may be

available between two physical data sources because different physical links may

carry significantly different scientific meanings or possess different properties.

Mapping between graphs

A mapping between the conceptual graph and the physical graph is also needed.

Each node of the conceptual graph (e.g., Gene) is mapped to the data sources

that provide information about the scientific entity (e.g., OMIM, NCBI Gene,

GeneCard). Similarly, each relationship between two concepts (e.g., is published

in between the concept Gene and the concept Publication) is mapped to the

physical links that implement it (e.g., NCBI PubMed Links). For each calculated

relationship between entities, the system should determine which tools can be used

by the scientist to calculate the relationship (e.g., the tool BlastN calculates the
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relationship mapsWith).

Since the conceptual graph captures knowledge about a domain (biological enti-

ties and their relationships) and creates a shared understanding of the domain that

can be used by both humans and computers, it may be considered an ontology43.

Ontologies of resources may then be considered based on the mapping between

the physical and conceptual graphs and/or based on the metadata and preferences

associated to the resources.

Designing graphs and mappings should be performed in close collaboration with

biologists. Entity and relationship names should also be carefully chosen to reflect

the scientists’ knowledge of the domain.

A good path system should also provide a flexible graphical interface in which it

is easy to support updates (modification, insertion or deletion) to both the concep-

tual and physical graphs. This is especially important as the network of biological

resources is rapidly changing: schemas of data sources evolve, and new resources

become available. Similarly, the mapping between the two graphs must be easily

modifiable in response to change.

4.2. Browsing and querying

A guiding system should provide scientists transparency combined with an active

control of the selection of resources. To allow informed decisions, a guiding system

should provide the ability to access and navigate through both layers of repre-

sentation and their mapping. A browsing mode allows users to navigate through

the conceptual and physical graphs and access the information known about the

resources and used by the system to select resources. With the querying mode, sci-

entists express their scientific protocols and the guiding system returns a selection

of resources that may be used for their implementation. A user-friendly interface

should exploit graphical interactions for both modes.

4.2.1. Specifying the approach

As each transparent scientific query may result in multiple path and resource se-

lections, users must also be able to influence the implementation of the query by

specifying the approaches to be followed. In particular this can be done by exploit-

ing the preferences they have in the resources. More precisely, because the set of all

possible paths that match a transparent query can be extremely large, the system

must provide a filtering mechanism for selecting path and resource selections. There

are three categories of filters: (i) global, (ii) intermediate and (iii) local. The global

level corresponds to a filter on a path, i.e. on the sequence of sources and links

taken as a whole. Examples of such filters include constraints such as the maximum

path length, the calculated reliability of a path, or the size of expected output (e.g.,

the number of returned entries expected at execution)12. Filters at the intermediate

level focus on a given entity or relationship. For example, such filters could be used



August 24, 2006 6:15 WSPC/INSTRUCTION FILE jcbc-06-777359Final

13

to build paths where all the sources provide reliable information about proteins,

or where the tool-links for calculating similarity are easy to use. At the local level,

filters relate to a given source or link, allowing the biologist to name the resource

used.

A path-based system should rank implementations with respect to the scien-

tists’ expectations, allowing them to choose how to schedule their execution. The

feature vector used to compute the ranking should take into account the data, cross-

reference and tool-based resources used in the path as well as path characteristics.

Ranks can be calculated by weighting the feature vector according to the scientist’s

expectations.

4.2.2. Evaluating and reusing queries

Having decided on a set of paths to implement the scientist’s query, the system

must then implement it over the physical resources. In general, this will entail using

an integration environment capable of running queries or pipelines over multiple,

heterogeneous data and tool resources.

Efficiency is also a concern as the number of paths connecting a set of nodes may

be extremely large if any ordering of nodes is allowed. However, it is worth pointing

out that queries generally evoke only a small number of entities at the same time

(only 8 % of the queries of the set of collected scientific questions had more than

three entities) and the length of paths expressed by scientists’ queries rarely exceeds

6 nodes. Therefore path-based systems can be expected to be practically efficient

in real applications.

Finally, the system should provide the ability to store and reuse queries and

their implementation (a per-user “history”), the ability to suggest default settings

for preferences, filters and ranking, and the ability to share results between trusted

sets of users.

5. Current path-based guiding systems

Having described user requirements and expected features of path-based guiding

systems, we now summarize systems that are currently available for biological ap-

plications: BioMediator34,41, Biozon2, BioNavigation25 and BioGuide10. All of these

systems provide a graph-based representation of a biological domain and exploit

cross-references to navigate within the biological network.

Table 1 gives an overview of the features of these four systems, and indicates

for each: (i) whether it allows a graphical representation of the conceptual (C) and

physical (P) graphs, and what the complexity of the mapping between these graphs

is (x nodes in the conceptual graph correspond to y nodes in the physical graph),

(ii) the query language of each system, (iii) whether it allows the user to express

preferences and approaches, (iv) whether it is architecture-independent.

BioMediator34 was the first system to consider queries based on a biological

semantic network layer over physical data sources. In BioMediator, the conceptual



August 24, 2006 6:15 WSPC/INSTRUCTION FILE jcbc-06-777359Final

14

Systems Graphs(C,P)(x-y) Query Language Preferences Archi.-indep

BioMediator (Yes,No)(1-n) XQuery-like Limited No

Biozon (Yes,No)(1-n) Web-Forms No No

BioNavigation (Yes,Yes)(1-n) Graphical/LR(E) Yes Yes

BioGuide (Yes,Yes)(n-n) Graphical/XPR Yes Yes

Table 1. Current path-based systems

graph is a mediated schema to which the sources are mapped; each path in the

graph is a query plan. The project focuses on an XML mediator approach using the

query language XQuery. BioMediator considers NCBI sources for which wrappers

are available. BioMediator is thus currently dedicated to users who know XQuery,

and cannot be used online. Moreover, the use of preferences and metrics to filter

and rank paths as well as the possible effect of divergence between alternative paths

were not fully considered in the context of this project.

Biozon2 is another recent and very interesting system that allows the user to ask

queries by selecting entities from a conceptual graph. Web-forms related to these

entities may then be filled in by the user to express his query. However, Biozon

does not consider generating multiple and alternative paths between sources before

accessing instances of data. The conceptual graph is fixed, only eight entities are

considered, and there is only one edge between two entities. Instances of data are

stored in a curated local data warehouse. There is therefore no physical graph of

sources. Mixed queries are not allowed, and neither preferences nor approaches may

be expressed.

BioGuide10 and BioNavigation25 are the only two systems providing a graph-

ical representation of the two graphs, proposing both graphical and formal query

languages, allowing users to express preferences and approaches, and having been

designed without being associated with a given architecture. We therefore present

these systems in more detail, and briefly compare them.

5.1. BioNavigation

In BioNavigation25,26,29, a query is defined as a regular expression LR(E) over

the alphabet V of scientific entities. Thus an expression e is defined recursively as

follows:

e == c|e.e|e.(∗).e|e.(+).e

where c ∈ V . The symbol “(∗)” represents the Kleene’s closure, and denotes that

any number of entities may be considered; this operator is analogous to descendant

traversal ”//” in XPath49. The symbol ”.” expresses that a link must exist between

two particular sources. Finally, the symbol ”(+)” specifies that one or more occur-

rences of any scientific entity may appear. Regular expressions on the set V capture

transparent queries.
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The semantics of an expression e = e1.....em in this language is the set of

paths in the physical graph which satisfies the expression. Recall that a node in the

physical graph is a data source which is associated with one class in the conceptual

graph via a conceptual-physical graph mapping.

Then, intuitively, a path s1.s2.....sn satisfies e if each si can be mapped to some

ej such that:

(1) if ej ∈ V then the data source si which maps to ej is also associated with ej in

the conceptual-physical graph mapping (i.e. its scientific entity is “correct”);

(2) if ej is (∗) (resp. (+)) then zero (resp. one) or more consecutive si’s are mapped

to it; and

(3) the order between elements of the paths is preserved in this semantic mapping.

As an example, consider a scientist interested in retrieving citations related to

a particular disease. This corresponds to the query, Disease.(∗).Citation, specifying

paths that start at a particular source which provides information on diseases,

traverses any number of other sources using links, and ends at a source which

provides information on Citations. One physical path which conforms to this would

be to start at OMIM and follow the NCBI PubMed Link from OMIM to PubMed.

Here, OMIM is mapped to Disease and PubMed is mapped to Citation; no source is

mapped to (∗). However, there are many other physical paths which conform to the

query involving one or more intermediate data sources, the entity classes of which

are unimportant.

Mixed queries are expressed with a specification of the resources that need to

be included in (or removed from) the physical paths. Thus in the example above,

the user could specify that Disease can only be mapped to OMIM.

The browsing mode of BioNavigation allows the user to navigate the conceptual

and the physical graphs. The user can click on a node in the physical graph to

learn more about its properties, including the scientific class it is mapped to, the

URL of the source, the number of entries, the schema of data records, etc. Similarly,

the user can click on a link between two nodes in the physical graph to view its

properties. At the conceptual level, the user can explore what data sources each

node represents.

The querying mode allows the user to enter a query, or graphically build a query

by selecting the nodes in the conceptual graph, and run the guiding system. For

mixed queries, users can specify which data sources they wish to use for a scientific

entity by selecting nodes in the physical graph that are mapped to that entity.

Graphical User Interface

Figure 2 shows a screen shot of the first version of the BioNavigation graphical user

interface.h Note that the nodes (ovals) at the top represent scientific entities (con-

ceptual graph), while those at the bottom represent data sources (physical graph).

hBioNavigation is available at http://bioinformatics.eas.asu.edu/bionavigation.htm
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An edge between two data sources represents a tool-link or cross-reference. An edge

between a scientific entity and a data source represents the semantic mapping. The

pane to the right is the query builder.

Fig. 2. The BioNavigation Interface

Once a query is built, BioNavigation generates the search space of all physical

simple paths validating the regular expression. A naive evaluation returns all the

physical paths that match the query. This process generates a potentially exponen-

tial number of paths, and is therefore neither efficient nor useful to the scientist.

BioNavigation therefore performs an exhaustive breadth-first search and returns

a list of simple physical paths ordered with respect to a selected user preference

(algorithm ESearch29). A simple path repeats no nodes.

User preferences are handled by annotating each node (biological resource) and

edge (tool-link or cross-reference) in the physical graph with metadata informa-

tion. For biological sources, this information includes the number of entries and the

number of attributes. For tool-links and cross-references, this includes the number

of distinct pairs of entries between the two sources (link cardinality), the number

of entries from the input source that are linked to at least an entry in the output

source (link participation or domain), and the number of entries in the output source
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linked from at least an entry from the input source (link image).

ESearch uses a deterministic finite automaton (DFA) that recognizes the regular

expression query to traverse the physical graph, and produces only the physical

paths that implement the paths in the conceptual graph that are accepted by the

DFA. The ESearch algorithm runs in polynomial time in the size of the physical

graph, when the physical graph is cycle-free and there is a path between any two

nodes48. If d is the maximum number of sources that can precede a source in the

physical graph, and b is the maximum length of (cycle free) physical paths, then

O(db) is an upper bound for ESearch.

The list of paths returned by the ESearch algorithm represents the different

ways in which the user can navigate through the data sources in order to evaluate

the query. The paths are ranked with respect to the following three metrics:

• Path Cardinality, the number of instances of paths of the result. For a path of

length 1 between two sources s1 and s2, it is the number of pairs (e1, e2) where

e1 is an entry in s1 linked to entry e2 of s2.

• Target Object Cardinality, the number of distinct objects retrieved from the

final data source; and

• Evaluation Cost, the cost of the evaluation plan, which involves both the local

processing cost and remote network access delays.

In Figure 2, this selection can be made by the user under “Path Builder Settings”

in the pane to the right.

Although BioNavigation has many nice features and meets the requirements in

Section 4, there are a few limitations in its current implementation (BioNavigation

1.0). First, only one tool-link or cross-reference between two data sources is allowed

in the physical graph. Second, ESearch produces simple paths, and therefore will

never visit the same source more than once in a path (although it may be useful

for refining the final result).

5.2. BioGuide

As in BioNavigation, BioGuide10,11 presents both a conceptual and physical graph

to the user. However, the semantic mapping between the two is more complex.

Rather than mapping a data source to a single scientific entity, BioGuide allows

a data source to be mapped to a set of entities. Thus each node in the physical graph

is a “source-entity” – i.e., the view of an entity in a given source – and the semantic

mapping associates sources-entities with scientific entities. There are labels on edges

of the two graphs. Labels on arrows in the physical graph specify the kind of link:

cross-reference (CrossRef), internal link (Internal, links between entities in the same

source), or tools-link (e.g., Blast). In both the conceptual and physical graphs, there

may be multiple edges between two nodes. For example, three different relationships

are considered between the entities Gene and Protein: similarSeq, encodedBy, and

translated. Similarly, to implement the cross-reference similarSeq several different
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Fig. 3. BioGuide main interface. On the left hand side: the graph of entities where two entities
(Bac, Chromosome) and a relationship (mapsWith) have been selected by the user. On the right
hand side: the sub-part of the graph of sources-entities corresponding to the mapsWith relationship

between Bac and Chromosome. The user has specified she does not want the ensEMBL source to
be used to find Chromosome (consequently, ensEMBL Chromosome is struck out). She also has
specified that she wants the UCSCGenome source to be used to find BAC information (conse-
quently, UCSCGenome BAC appears in bright). The strategy with ordered entities is considered

(as seen on top of the figure and indicated on the conceptual graph by numbered entities).

BlastX tools could be used.

BioGuide’s graphical user interface is shown in Figure 3. The conceptual graph

is shown on the left, and a portion of the physical graph on the right. The semantic

mapping between the two graphs is many-to-many, and can be visualized through

the BioGuide interface: By clicking on a given node in the conceptual graph the

user can determine which sources contain this entity; similarly, by clicking on a

relationship the user can determine which links achieve this relationship. BioGuide

thus offers browsing capabilities.

The BioGuide user interface allows a progressive use of features by moving com-

plex and less frequently used options out of the main user interface (Figure 3) into

secondary screens (Figure 4). In this way, BioGuide allows non-experienced users

to exploit default values while permitting experienced users to customize the sys-

tem according to their needs: specifying strategies, defining filters, ranking methods,
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modifying preferences values etc. The next paragraphs are dedicated to these points.

Querying

Users specify queries in BioGuide by selecting a set (possibly ordered) of entities in

the conceptual graph. From this set of entities, a list of physical paths is enumerated

using strategies and preferences.

Strategy criteria are alternative approaches for implementing paths. During in-

terviews with scientists, it became apparent that they differ in whether or not they

(i) followed an order on the entities; (ii) were willing to explore other, unspeci-

fied, entities (analogous to (*) in BioNavigation); and (iii) were willing to visit a

source more than once. We term these elementary strategy criteria Ordered, On-

lyGivenEntities and SourceOnceForAll, respectively. Note that SourceOnceForAll

allows cycles in the enumerated paths. While it seems counter-intuitive that cycles

should be allowed, they are used by scientists to validate information already ob-

tained: Visiting a given source multiple times allows the biologist to check whether

or not the information obtained has remained coherent. This process is particularly

interesting when accessing data sources which are not curated.

The strategy criteria can be selected through the graphical user interface, and

their combination forms the query strategy. Selecting one or several criteria ensures

that only paths which meet the criteria are enumerated in the implementation. The

usefulness of BioGuide’s query strategy concept was shown10; an independent study

has also underlined these results23.

Preferences

BioGuide considers subjective preferences, such as the reliability of entities in a

data source, the confidence the user has in links, and the completeness of the data

source. Metadata driven preferences have not been explicitly taken into account,

but could be used to guide the user in assigning subjective preference values. Initial

values for preferences are set by the system, but can be adjusted by the user (see

Figure 4).

Preference values are used to filter and order the paths (see 4th and 5th menu

options on Figure 3). All three levels of filters are provided: global (e.g., length of

the paths), intermediate (e.g., reliability of the sources providing a given entity),

and local (e.g., particular sources or tools to be considered or avoided). Various

path estimation operations are provided, including Weighted Sum, in which the

confidence value of the path is the average of the confidence values of all of the

nodes and arrows of the path, and Best source in which the confidence value of the

path is the value of the node having the highest confidence value.

BioGuide can be customized to each user by creating new kinds of preferences,

as well as by changing the content of the conceptual and physical graphs, i.e.,

adding/removing/modifying links and nodes. The resulting configuration can then

be saved to an XML file for future use by the user.

Although not visible to the user, there is an underlying query language for
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Fig. 4. Initializing Preferences. Reliability values of the sources containing the Chromosome entity.

BioGuide called XPR (eXtensible Path language for RDF)11. XPR is expressive

enough to model all BioGuide queries, and takes into account selected elements of

the graphs (entities, and possibly relationships, sources, tools), as well as prefer-

ences and strategies. XPR is based on a complete RDF representation of BioGuide,

and is well-suited to the representation of biological entities and Web sources struc-

tured as multi-labeled graphs. XPR queries can be saved for reuse, exchanged in

collaborations between experts, compared in terms of expressiveness, and efficiently

evaluated.

Evaluating paths

BioGuide was initially used in the context of the HKIS-project to deal with the

positioning of BACs on the genome, in particular for the “BAC augmentation pro-

tocol” introduced in Section 2. In this usage, BioGuide generated alternative paths

which were then manually followed by biologists to get instances of data.

More recently, BioGuide has been placed on top of the SRS integration system14

(BioGuideSRS). In BioGuideSRS7,8, paths are created using preferences and query

strategy, and automatically implemented using SRS links between sources. Building

the SRS dedicated conceptual and physical graphs was very easy, and only took a few

hours. Furthermore, the initial preference values were easily set using information

given by the SRS system (e.g., the number of instances per source etc.). BioGuide
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is available for use at http://bioguide-project.net.

5.3. Discussion

BioGuide and BioNavigation are two similar path systems that offer distinct view-

points on how to build paths between resources to exploit the richness of the re-

sources. Both systems use a formal, graph-based framework and provide the user

with graphical interfaces to view the conceptual and physical layers. The two sys-

tems are user-friendly, and allow users to express both transparent and mixed

queries. They also allow various ways of expressing preferences and approach, by

providing means of filtering/ranking paths. Thus, BioNavigation and BioGuide meet

the requirements and expected features introduced in Sections 3 and 4.

BioNavigation and BioGuide differ in some aspects, such as the underlying query

language used (LR(E), a regular expression language vs. XPR, an RDF-based path

language), and the structure of their graphs (single links vs multiple links between

two nodes). However, the most salient differences between the two systems spring

from their initial objectives. The goal of BioNavigation is to generate a limited,

ordered and selected set of paths, and hence optimize the way in which data is

searched for. This is done by returning the best paths according to the query and

the metrics (metadata) considered. On the other hand, the goal of BioGuide is to

generate an exhaustive set of alternative paths for finding data, carefully filtered

and ordered according to users’s preferences. BioGuide provides the user with a

(potentially large) set of paths with an ordering which enables the user to favor

some of them and to deal with divergent data.

This difference in initial goals has obvious consequences in the systems at two

levels: the kind of filter criteria they provide and the complexity of their algorithms.

First, BioNavigation uses metadata based on properties of sources (e.g., num-

ber of instances contained, number of attributes, etc.) while BioGuide mainly uses

subjective metadata (e.g., reliability of a source, ease-of-use, completeness, etc.).

The metadata in BioGuide can be initialized using objective properties (e.g.,

using information from SRS, as seen in Section 5.2) but the initial values can always

be modified by the user. It is thus not surprising that in BioNavigation the metadata

can be consulted by the user while in BioGuide several interfaces are given to allow

the user to view and modify the preference values. Nevertheless, both systems allow

filters to be specified at the three levels discussed in Section 3.2.4 and provide

different sort methods to order these paths.

Second, the complexity of the algorithms is different. In BioNavigation, the

ESearch algorithm runs in polynomial time in the size of the graph assuming some

constraints on the graph (e.g., the physical graph is cycle-free and there is one path

between any two nodes). In contrast, the worst case time complexity of BioGuide

is high10, as it searches for an exhaustive set of alternative paths, allows various

strategies, and does not make any assumption on the topology of the graph. This

complexity is unavoidable because the number of ordered paths in a graph can
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be exponential10,48. However, whatever the chosen strategy is, the set of sources-

entities paths is, in practice, very rapidly generated in the prototype version of

BioGuide. Therefore, BioNavigation and BioGuide can be both used efficiently in

practical cases.

6. Conclusion

In this paper, we have discussed the need for systems to support scientists in con-

structing digital scientific protocols. In particular, we have analyzed how scientists

currently construct digital protocols, and highlighted the role of preferences and

approach in selecting appropriate implementations. Building on this, we discussed

essential features of a path-based system, whose goal is to generate paths com-

posed of biological resources where each path provides an alternative way to obtain

data. Alternative paths are especially useful for integrating biological data because

they exploit the complementarity of biological sources and provide opportunities

for dealing with divergent data.

More generally, we claim that path-based systems should be architecture-

independent and should consider different degrees of coverage at the conceptual

level. The conceptual level presumes that the biological entities together with the

relationships between them can be listed as exhaustively as possible, i.e. that an

ontological representation of all biological entities structured by the relationships

between them can be provided. A complete catalog of resources for biological data

sources and for bioinformatics tasks44 would be highly useful, and could be struc-

tured according to preferences and biological entities relative to the resources in a

“resource ontology”. However, for a particular use of the system it may be more

appropriate to have a specialized conceptual level tailored for the domain area,

i.e. equipped with partial ontologies that model the current knowledge about the

biological entities needed or the available resources.

As an illustration, BioNavigation provides a semantic map of services for struc-

tural biology47.i BioGuide was first used manually for oncology-related queries and

is currently being used on top of the SRS integration system (BioGuideSRS7,8) for

genomic queries.

Path-based systems must be based on top of an integration platform for the

implementation of queries9. Ideally, they should also be placed in the context of a

scientific workflow system to help with the specification and management of bioin-

formatic tasks, flow of data between tasks, and to store and reuse workflow com-

ponents. For example, BioGuide was initially tested on top of the HKIS-platform,

a workflow system for managing scientific workflows12; on-going work on BioNavi-

gation is placing it within SemanticBio24, a workflow design and execution system,

enhancing it by allowing the exploration of execution paths prior to the execution

of the scientific protocol.

iIn that context, a new version of BioNavigation is being developed.27,30
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In the context of workflow systems, the tool-links offered should include all pos-

sible ways of connecting data. Consequently, analysis tools (e.g., statistical tools to

analyze micro-array data) should be included in such solutions. Another challenging

issue is to find automatic ways to extract metadata from sources. For example, grid

infrastructures45 typically exploit statistics such as usage frequency and response

time.

It will also be extremely important to consider data provenance, i.e., record

where data came from and how it was used in a chain of derivations leading to some

result6. Thus a large part of future work for path-based systems will be to answer

questions like “Where did this data come from?, “What sequence of bioinformatics

tasks led to this result?” or “Where was this data used in a bioinformatics task?”
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