
University of Pennsylvania
ScholarlyCommons

Departmental Papers (CIS) Department of Computer & Information Science

11-3-2006

Securing the Drop-Box Architecture for Assisted
Living
Michael J. May
University of Pennsylvania

Wook Shin
University of Illinois

Carl A. Gunter
University of Illinois

Insup Lee
University of Pennsylvania, lee@cis.upenn.edu

Postprint version. Copyright ACM 2006. This is the author's version of the work. It is posted here by permission of ACM for your personal use. Not for
redistribution. The definitive version was published in Proceedings of the Fourth ACM Workshop on Formal Methods in Security FMSE '06, November
2006, pages 1-12.
Publisher URL: http://doi.acm.org/10.1145/1180337.1180338

This paper is posted at ScholarlyCommons. http://repository.upenn.edu/cis_papers/284
For more information, please contact repository@pobox.upenn.edu.

http://repository.upenn.edu
http://repository.upenn.edu/cis_papers
http://repository.upenn.edu/cis
http://repository.upenn.edu/cis_papers/284
mailto:repository@pobox.upenn.edu

Securing the Drop-Box Architecture

for Assisted Living∗

Michael J. May

University of Pennsylvania

mjmay@seas.upenn.edu

Wook Shin

University of Illinois

Urbana-Champaign

wookshin@uiuc.edu

Carl A. Gunter

University of Illinois

Urbana-Champaign

Insup Lee

University of Pennsylvania

lee@cis.upenn.edu

November 2006

Abstract

Home medical devices enable individuals to monitor
some of their own health information without the
need for visits by nurses or trips to medical facilities.
This enables more continuous information to be pro-
vided at lower cost and will lead to better healthcare
outcomes. The technology depends on network com-
munication of sensitive health data. Requirements
for reliability and ease-of-use provide challenges for
securing these communications. In this paper we
look at protocols for the drop-box architecture, an
approach to assisted living that relies on a partially-
trusted Assisted Living Service Provider (ALSP). We
sketch the requirements and architecture for assisted
living based on this architecture and describe its com-
munication protocols. In particular, we give a de-
tailed description of its report and alarm transmission
protocols and give an automated proof of correspon-
dence theorems for them. Our formulation shows how
to characterize the partial trust vested in the ALSP
and use the existing tools to verify this partial trust.

1 Introduction

Advances in networking, distributed computing, and
medical devices are combining with changes in the
way health care is financed and the growing number
of elderly people to produce strong prospects for the
widespread use of assisted living, a health care ap-
proach which can benefit from transferring medical
information collected in homes to clinicians over data

∗In Formal Methods in Software Engineering (FMSE ’06),
Alexandria, VA, November 2006. ACM.

networks. Software architectures, devices, and proto-
cols for assisted living are all nascent, with expand-
ing deployment of increasingly sophisticated systems.
These systems are challenged by strenuous require-
ments for reliability, usability, and security. So far,
these challenges have been addressed at the expense
of other aims like the extensibility and openness of
the solutions. Closing this gap requires the develop-
ment of standardized interfaces and protocols whose
properties must be assured for all conforming imple-
mentations.

One approach to achieving these aims is to em-
ploy a division of labor between the Assisted Persons
(APs), the clinicians, and the IT specialists where
a (possibly independent) monitoring service assures
IT-related properties. This parallels the structure of
certain other types of home sensor systems such as
electronic alarm systems, where a monitoring service
like ADT (adt.com) acts as an intermediary between
home owners and emergency services like police and
firemen. The drop-box architecture is an approach
to assisted living in which a third party known as
the Assisted Living Service Provider (ALSP) collects
medical data from APs and holds it in an encrypted
repository from which it can be retrieved by clini-
cians, the APs themselves, and other parties such as
concerned (and authorized) friends and family mem-
bers. The aim of this paper is to describe a collec-
tion of protocols that support the drop-box architec-
ture and analyze their security. Such protocols call
for a relatively complex workflow to securely estab-
lish a collection of passwords, security tokens, and
certificates used by devices from independent ven-
dors, potentially technology-naive APs, diverse gen-
eral and specialized clinicians, the ALSP, and friends

1

and family members. These support a suite of proto-
cols that link these parties over a computer network.
This system must demonstrably satisfy all regulatory
constraints, for example the Health Insurance Porta-
bility and Accountability Act (HIPAA) and the Food
and Drug Administration’s (FDA) rules in the United
States.

Once the protocols have been motivated and descri-
bed, our principal objective is to perform a secu-
rity analysis of some of their key features. Our
work builds on progress toward exploiting the im-
proved formalism of web services to facilitate auto-
mated analysis. We describe the drop-box communi-
cation protocols as web services, use automated tech-
niques to encode the descriptions, and then employ
an underlying theorem proving system to verify se-
curity properties. We offer three contributions. First
of all are the assisted living protocols themselves. At
the current time, assisted living solutions are all pro-
prietary and not available for study beyond high-level
information one can obtain from sales brochures and
FDA filings. Published protocols could form the ba-
sis for standardization leading to open systems that
are more capable than unanalyzed single-vendor solu-
tions. Second, we push the boundaries of scalability
for formal protocol analysis, which has mainly fo-
cused on more generic protocols not so closely tied
to a concrete application. This represents a test of
the tools which shows their limits and potential for
routine usage with more complicated complexes of
protocols that involve many types of parties. Third,
and finally, we explore a variation on the current tool
capabilities by introducing a method to use them to
perform a verification on a partially trusted party, viz.
the ALSP, which collects, stores, and serves medical
data but is not privy to the clinical elements of the
data itself. Our technique involves compromising the
ALSP in a specific way and letting the correspon-
dence theorems imply the desired property.

The rest of this paper is organized as follows. In
Section 2 we present the motivation and requirements
for assisted living and discuss how these requirements
impact security issues for the assisted living proto-
cols. In Section 3 we describe the drop-box archi-
tecture and sketch its bootstrapping workflow. Sec-
tion 4 provides a detailed description of the report
and alarm protocols for the drop-box architecture.
Section 5 presents our formalization of these proto-
cols, their security model, and describes the verifica-
tion of theorems for them. Section 6 reviews regula-
tory issues for assisted living and their relationship
to verification and open architectures. Section 7 dis-
cusses a prototype implementation for the architec-
ture and protocols. Section 8 describes the related

work on assisted living and formal verification of pro-
tocols. Section 9 concludes.

2 Motivation

In the United States and many other countries there
is a growing number and percentage of elderly people.
This population has a greater need for health care ser-
vices than the younger population. At the same time,
in the U.S. at least, health services such as Medicare
are moving toward ‘episodic’ payment systems which
emphasize the quality of AP outcomes over a period
of time rather than ‘per service’ payments (such as
a payment for each nursing visit or test). This leads
to a powerful incentive for care that focuses on lower
cost and closer monitoring. When this is combined
with steady improvements in networking and medi-
cal devices, there is a hope that monitoring can be
done on a continuous basis in the homes of APs, thus
providing more detailed information and saving the
costs and inconvenience of nursing visits to homes or
AP visits to a health care facility. A variety of types
of such monitoring are now feasible. For example, a
pulse oximeter can read pulse and blood oxygen levels
with just a simple device that clamps onto a finger.
A typical approach is to attach the pulse oximeter
to some type of communication hub that connects to
the Internet to communicate the results to a clinician.
Even as simple a sensor as a bathroom scale can be
useful to clinicians since sudden variations in weight
are often correlated with significant AP health issues.
It is now possible to buy a Bluetooth-enabled scale,
which can be associated with a local computer on the
Internet that transmits daily weight results to a clin-
ician. More ambitious technologies are on the way.
For instance, physicians worry about the APs who
fall and become unconscious; devices like accelerom-
eters, which are now provided in devices like motes,
could perhaps provide falling alerts. RFID tags may
provide very fine-grained information about the loca-
tions of APs and objects within the home; this can
be used to monitor AP behavior and help APs find
things they have misplaced.

There are numerous efforts underway to provide as-
sisted living services based on the motives and tech-
nologies just described. However, these services de-
mand much more than a networked medical device.
There are essentially three major challenges, as listed
in the introduction. The system must be very reliable
since it is often being used to reduce other types of
health care contacts and there is a danger of getting
worse outcomes rather than better ones. Moreover,
the devices are not directly controlled by expert heath

2

care workers, but instead by APs. The system must
therefore be very usable. This usability applies to
clinicians too: they may be experts with respect to
the medical devices and the readings they provide,
but may be quite naive about IT issues, such as net-
work reliability, backups, and so on. The system must
be secure since it deals in sensitive AP data, which
is typically sent over a public network. The secu-
rity issues can be tricky if they involve many parties.
Assisted living also faces well-known (but unsolved)
challenges for ubiquitous and wireless security. An-
other factor that impacts reliability and security is
the need for regulatory approvals such as those from
the FDA and HIPAA in the U.S. Vendors have typi-
cally addressed this complex of issues by developing
packages in which all or most services are provided
by a single coalition of parties. For instance, one
approach that is being explored is collaboration be-
tween a cable company, device manufacturer, and a
health care provider to provide assisted living for an
FDA-approved family of devices that talk to a cable
set-top box which communicates results to clinicians
and allows APs to see their information on their tele-
vision.

3 Drop-box Architecture

As mentioned earlier, the main drawback to existing
approaches is that they are closed and proprietary.
This means that a given AP needs to have a service
contract with each independent doctor or device that
he uses. In particular, existing systems must be ex-
tended by the vendor that provides them and cannot
be extended by the AP or third party vendors. We
have been exploring the development of an open ar-
chitecture for assisted living called the drop-box ar-
chitecture. In this section we review its components
and bootstrapping protocols.

3.1 Components

The components of the drop-box architecture are il-
lustrated in Figure 1. The architecture is described
by Wang, et al. [28], including an overview of its po-
tential applications and its implementation using web
services. Our aim here is to look in more detail at the
security of its communication protocols, so we only
sketch the architecture and its rationale briefly here.
The main idea is to reduce the IT burden on APs
and clinicians by providing an ALSP that operates a
server to exchange records. In the drop-box architec-
ture, the medical devices communicate locally with
a hub and the hub contacts the ALSP server over
the Internet. Records are encrypted at the hub us-

Figure 1: The drop-box architecture.

ing keys shared only with parties that require them,
which means that while the ALSP may see routing in-
formation for messages, it is not privy to the clinical
contents of the data that it holds. This setup protects
all of the parties involved by reducing the number of
parties that handle the medical data. In particular,
the ALSP can argue that its status is very similar
to that of an Internet Service Provider (ISP) and its
stored medical records are similar to network audit
logs as far as it is concerned. This can all be elegantly
implemented using web services, which support for-
mats for encrypting different parts of a message for
different parties. Note that the web service approach
does not need to rely on tunnels such as IPsec or SSL.
Anyway, these tunneling protocols would not support
the necessary encryptions by themselves because they
do not account for the partially-trusted ALSP inter-
mediary.

To sum up the constitution of the drop-box archi-
tecture, it consists of the following components: the
AP’s medical devices, an AL hub (Assisted Living
hub), an ALSP server, and computers that clinician
and the AP’s family and friends use. Medical devices
are Bluetooth-enabled light-weight devices which are
deployed at the AP’s home. Devices send their read-
ings of the AP’s physical status to an AL hub over
a Bluetooth connection. An AL hub is a dedicated
computer that bridges communications between med-
ical devices and an ALSP server. It has the capabil-
ity to communicate via both Bluetooth and WiFi.
Since its job is to secure message transmissions, it
must be able to perform cryptographic functions as
well. An ALSP server receives and stores the AP’s de-
vices readings. The stored readings can be retrieved
by authorized users including the AP, clinicians, and
authorized friends and family members. Users are
authenticated by passwords and entity identification
contained in the routing information. The ALSP
provides a role based access control system for its
database and maintains access control lists for each

3

AP. The access control system is an essential protec-
tion mechanism for the medical records, however, in
this work we focus on the security protocols rather
than describing the access control system in detail.

3.2 Bootstrapping

Bootstrapping is the initial phase in which an AP,
an ALSP, and a clinician build relationships and
exchange the following security related parameters:
public key certificates (Γ), URL pointers (U∗), user
names and passwords (P), DataIDs (δ), access con-
trol lists (ACL), and family keys (KP). In the fol-
lowing discussion we presume that clinicians post
their public key certificates on publicly accessible
web servers. Clinicians who do not have their own
server may post their certificates on a third party cer-
tificate authority server or communicate them using
some out-of-band technique. Such clinicians may give
copies of their certificates to APs via smart cards.

Step 1 The clinician sets up relationships with one
or more ALSPs. When the clinician and an ALSP es-
tablish their relationship, they exchange URL point-
ers, U∗

c and U∗

AS
which respectively point to the pub-

lic key certificates of the clinician and the ALSP.
Step 2 The AP subscribes to an ISP to get In-

ternet service at home. She purchases a home gate-
way with wireless connectivity. The gateway man-
ufacturer provides a USB memory stick as an acces-
sory. She uses the memory stick to set up a protected
802.11i (or WPA-PSK) wireless network at home.
When she plugs the memory stick into the gateway
and presses a “generate key” button on it, the gate-
way generates a key, KG and an XML descriptor for
the key, Doc[KG]. The gateway copies Doc[KG] to
the memory stick. The memory stick can then be
used to add new devices to the home network.

Step 3 The AP visits the clinician who will be
monitoring her home medical readings. The clinician
asks about her insurance and discusses with her the
available medical devices and hubs that her insurance
will cover. The clinician then gives her a list of ALSPs
that the clinician can use. Finally, the clinician gives
the AP a copy of the clinician’s public key certificate
pointer U∗

c .
Step 4 The AP purchases one or more medical de-

vices and an AL hub. In order to add the AL hub
to the home network she plugs the memory stick into
the hub’s USB port and pushes a “configure” button.
The hub then copies the key, KG from the memory
stick and uses it to communicate securely with the
gateway from then on. When she turns on a med-
ical device it automatically establishes a Bluetooth
connection with the hub.

Step 5 The AP subscribes to an ALSP. The ALSP
sends her a URL pointer U∗

AS
and a password PPA via

a USB memory stick. When she plugs the memory
stick into the hub, the hub identifies the URL pointer
and password on the stick and copies them into per-
sistent memory. When this is done, the AP reports
to the clinician that the assisted living network is set
up.

Step 6 The AP uses the hub to generate a DataID
δ for each medical device. The DataID is used by the
ALSP and clinician to identify the AP/device com-
bination that produced a particular reading. Each
time a device sets up a connection with the hub, it
transmits its serial number s. When the hub detects
a new device, the AP can press a button on the hub
to generate a new δ for it. The hub then asks the AP
which clinicians will receive readings from the device
so that their pointers will be associated with it. The
hub then associates each clinician pointer U∗

c with the
generated δ, storing tuples of the form (s, δ, U∗

c). The
hub sends the tuple of (s, δ, AP name) to clinicians so
that the clinicians can properly interpret data tagged
with δ. The hub also registers the tuple of (δ, U∗

c) so
that ALSP can forward data which tagged with δ to
authorized clinicians.

Step 7 The AP generates a “family and friends
key” KP . KP is a symmetric key which encrypts the
AP’s medical data. Using a smart card reader which
is a peripheral of the medical hub, the AP generates
several copies of KP . Several copies of the key are
stored in smart cards and shared among the AP’s
family members or friends. The AP gives the cards
to her family members in order to allow them to see
her medical data.

4 Report and Alarm Protocols

The drop-box architecture uses a suite of protocols
for transmitting information between parties. A com-
plete implementation of the drop-box architecture re-
quires protocols for key distribution and bootstrap-
ping, sending messages from the patient to the doc-
tor, messages from the doctor back to the patient, and
a complex role based access control protocol suite to
manage the rights of different doctors, patients and
family members. We have discussed the bootstrap-
ping protocol above. In this section we focus on a
subset of the protocols for sending messages from APs
to clinicians.

We have two goals in the transmission protocols:
security and privacy.

First, for security our aim is a protocol that is se-
cure against a Dolev-Yao style attacker [15] who can

4

inject, intercept, or construct arbitrary messages. An
attacker cannot, however, guess encryption keys or
forge digital signatures. The Dolev-Yao model is lim-
ited, however, in that it does not consider the algo-
rithmic problems of combining encryption and digital
signatures. Indeed, work by Davis [14], Anderson and
Needham [4] and Abadi and Needham [2] have shown
that certain combinations of encryption and digital
signatures can lead to attacks based on the computa-
tional properties of cryptographic primitives. We rely
on Davis’ proof that the cited attacks can be avoided
by using the proper combination of sign-then-encrypt
and the inclusion of sender and recipient fields in mes-
sages.

Second, for privacy our aim is to prevent an at-
tacker from discovering medical device readings in
transit or through straightforward accesses to records
stored by the ALSP. To support these requirements
we use a combination of authentication and encryp-
tion between agents, encrypted storage, and an access
control system.

Our trust model assumes that all APs, clinicians,
and family members participate honestly in the pro-
tocols. Our trust model for the ALSP is as follows.
The ALSP’s job is to accept messages from APs to
store for later access. For security purposes the ALSP
is trusted to perform authentication and encryption.
However, for privacy purposes, it is not trusted and is
not allowed access to the records it stores. An insider
attack from the ALSP would therefore break the as-
sumptions about access control, authentication, and
availability of records, but would not reveal the con-
tents of the stored medical information. We develop
this more formally in §5.2.

Our protocols are based on standard public/private
key cryptographic primitives as well as web services
security protocols. We adapt the following notation
from previous work by the authors in Lug, et al. [22].
We assume knowledge of public key certificates. We
write Γ for the public certificate, pub(Γ) for associ-
ated public key, and priv(Γ) for the associated private
key. We write M s : (priv(Γ)) for a signature on the
digest of M using priv(Γ). For clarity, we use two in-
terchangeable notations for symmetric encryption –
Mk and M enc:(k). We use for former for encryption
of message parts and the latter for whole message
encryption.

We use the following notation for salted password
authentication and encryption [23].

Definition: (Salted Password Authentication)
We write A → B : M (pswd P, r, t) if A sends

B a message of the following form A | M | r | t |
MAC(P, A | M | r | t)

Here t is the current time according to the clock
of A and r is a random number selected by A. The
principal B processes this message by checking the
following conditions in this order: the time t is not
older than a given threshold; the nonce r is not in
the replay cache of B; the MAC is correct for the
password associated with A. If any of these fails then
the remaining steps are omitted and the message is
discarded. If all of the conditions succeed, then r is
added to the replay cache with an expiration time
determined by a given threshold. In this case the
message is said to be valid. �

The security tokens used in the outline and detailed
description of the protocol are named as follows:

ΓDoc: Public key certificate of a doctor (Doc). The
associated public key is pub(ΓDoc). The associated
private key is priv(ΓDoc).

ΓAS: The ALSP’s public key certificate. The asso-
ciated public key is pub(ΓAS). The associated private
key is priv(ΓAS).

KP : A secret key shared by the AP and her family
members.

U∗, V ∗: URL pointers to the ALSP’s public key
certificate.

PPA, PFA: APs and family members passwords
(respectively) shared with the ALSP.

ACLPat: An access control list for the AP’s (Pat)
records at ALSP.

Report, Alarm: Allowed values for the message-type
flag. If the flag is valued Report it indicates the mes-
sage is non-emergency. If the flag is valued Alarm it
indicates the message is an emergency.

4.1 Detailed Protocol: Report

Using the above notation and the names of agents in
the system as described in the outline, the protocol
steps to transmit a non-emergency report are as fol-
lows. A schematic of the messages sent appears in
Figure 2.

Msg1 D → H : n | chk(n) | t | s | m

The AP takes a reading n with her device D. The
device computes a checksum of the reading chk(n)
and a time stamp t. It concatenates them to its serial
number s and sets the message type flag(m = Report)
to create Msg1 which it sends to the hub H using
Bluetooth link layer encryption.

Msg2 H → G → AS : U∗?
H receives Msg1 from the device and sends its URL
reference U∗ via the internet gateway G to the ALSP
server AS to get the latest version of ALSP’s public
key certificate.

5

Figure 2: The transmission of a report.

Msg3 AS → G → H : ΓAS

ALSP server’s AS receives Msg2, recognizes the
pointer for the public key certificate, and sends ΓAS

back to the hub via the gateway.
H receives the Msg3 and checks the validity of the

certificate provided. If the certificate is valid, it uses
pub(ΓAS) to encrypt further messages to AS.

Msg4 H → G → AS : {{n | chk(n) | t | δ}Kmi
|

(Family | {Kmi}KP
) | (Doc | {Kmi}pub(ΓDoc)) | δ |

m} s:(pswd PPA, r1, t1) enc:(Kmo)
| Kmo s:(pswd PPA, r1, t1) enc:(pub(ΓAS))
H first creates the inner message from the informa-
tion received from the device, first replacing the serial
number s with the DataID δ. It encrypts the whole
message with a fresh session key Kmi. It then queries
the smart card for keys to encrypt Kmi under. The
smart card returns two keys: KP for the AP’s fam-
ily and pub(ΓDoc) for the doctor. H then attaches δ

and the message type to create the outer message. It
signs the outer message with PPA and then encrypts
it under a fresh session key Kmo. It then signs Kmo

with PPA and encrypts it under pub(ΓAS).
When ALSP’s server receives Msg4, it first de-

crypts Kmo using priv(ΓAS). It then uses Kmo to
decrypt the outer message. It uses the DataID to
identify the message as coming from the AP and
then checks the signatures with PPA. If the signa-
tures are valid and the message is not an emergency
(m = Report), the reading is queued in the AP’s
record for retrieval. It checks which recipients are
listed and links the encrypted session keys with them,
in this case assigning {Kmi}pub(ΓDoc) with the doctor
and {Kmi}KP

with the AP and her family.

The clinician’s office performs a regular checkup of
all its APs. It queries each ALSP that the clinician
participates with. For each AP, it begins by sending
the following message.

Msg5 CC → AS : V ∗?

The clinician’s computer CC sends V ∗, its URL ref-
erence, to the ALSP’s server AS to retrieve ΓAS.

Msg6 AS → CC : ΓAS

ALSP’s server AS checks the URL pointer V ∗ and
sends back ΓAS to the clinician’s computer CC.

The clinician’s computer CC receives Msg6 and
checks ΓAS for validity. If the certificate is valid, it
uses Γ to encrypt further messages to AS.

Msg7 CC → AS : {from: Doc | about: Pat |
get: new}

s:(priv(ΓDoc)) enc:(pub(ΓAS))
The clinician formulates a request for an AP’s records
by attaching the doctor’s name, the AP’s name, and
the request type in a message. The message is signed
with priv(ΓDoc) and then encrypted with pub(ΓAS).
The ALSP has a copy of the clinician’s public key
certificate on its server and so can authenticate the
signature with it.

Msg8 AS → CC : {{n | chk(n) | t | δ}Kmi
| (Doc |

{Kmi}pub(ΓDoc)) | Pat | m} s:(priv(ΓAS)) enc: (Ko)
| Ko s:(priv(ΓAS)) enc: (pub(ΓDoc))
When the ALSP server AS receives Msg7, it first de-
crypts using priv(ΓAS) and then validates the clini-
cian’s signature using ΓDoc. It then checks that the
clinician is on the AP’s access control list (Doc ∈
ACLPat). The ALSP then sends the new device read-
ing messages along with the AP’s name and the en-
crypted session keys for the clinician. The message is
first signed with priv(ΓAS) and then encrypted with a
freshly generated message key Ko. Ko is signed with
priv(ΓAS) and then encrypted with pub(ΓDoc).

When the clinician’s computer CC receives Msg8, it
first decrypts the outer message with priv(ΓDoc) and
then checks the signature with pub(ΓAS) for validity.
The software then decrypts Kmi using priv(ΓDoc) and
uses it to decrypt the device readings. It checks the
checksums for the readings and then enters the new
data into the AP’s chart.

The AP and her family may retrieve her medical
records from the ALSP using a slightly different pro-
tocol from the clinician. We use the example of a
family member retrieving records. Messages 5 and 6
are omitted because they are similar to above.

Msg7 Family → AS : {from: Family | about: Pat |
get: new} s:(pswd PFA, r2, t2) enc:(pub(ΓAS))

The requesting family member’s computer receives
ΓAS in Msg6 and uses it for encryption to the ALSP. It
formulates a request for the AP’s records by attaching
the requestor’s name, the AP’s name, and the request
type in a message. The message is signed with PFA

and then encrypted with pub(ΓAS).

6

Msg8 AS → Family : {{n | chk(n) | t | δ}Kmi
|

{Kmi}KP
| Pat | m} s:(priv(ΓAS)) enc: (Ko)

| Ko s:(priv(ΓAS)) enc: (PFA)
When the ALSP server AS receives Msg7, it first

decrypts using priv(ΓAS) and then validates the re-
questor’s signature using PFA. It then checks that
the requestor is on the AP’s access control list
(Family ∈ ACLPat) and notes that the requestor has
the role “family” with respect to the AP. The ALSP
server then sends the new device reading messages
along with the AP’s name and the encrypted session
keys for family members. The message is signed with
priv(ΓAS) and then encrypted with a freshly gener-
ated message key Ko. Ko is then also signed with
priv(ΓAS) and then encrypted with PFA.

When the requesting family member’s computer re-
ceives Msg8, it first decrypts the outer message with
PFA and then checks the signature with pub(ΓAS) for
validity. The software then decrypts Kmi using the
family member’s copy of KP and uses it to decrypt
the device readings. It checks the checksums for the
readings and then notes the new data.

4.2 Detailed Protocol: Alarm

In cases of emergency, a variant alarm protocol is
followed. Emergencies may occur, for example, when
a medical device notices that a reading is unusual
enough to demand immediate attention. Alterna-
tively, if the ALSP notices that it has not received
device readings beyond some safety threshold (e.g.
12/24/36 hours) it may trigger an automatic alert.
The difference between such an alarm case is that
instead of waiting for clinicians to retrieve records,
the ALSP actively alerts them. The ALSP must be
aware of the relative seriousness of alerts so that it
will be able to react appropriately to different situ-
ations. For example, an alarm about sudden weight
gain from for an AP being watched for anorexia is
perhaps not as urgent as an AP being watched for
fluid retention. The ALSP does not know the clinical
details of the information it receives, so it acts on the
basis of an alarm type provided as part of the mes-
sage. In this case we just assume one type of alarm.
When the ALSP server notices that it is facing a po-
tential emergency it takes the following steps.

First, the ALSP inspects the “notify” list for the
AP and sends electronic messages to inform them of
the situation. The list includes the AP’s doctors and
may include some authorized friends or family mem-
bers.

Next, if the ALSP does not receive a quick response
from its messages (or if it is after business hours), it
attempts to contact the AP by phone to check on her.

If it can not reach the AP and establish contact, it
phones the clinician’s office or messaging service to
alert them.

Finally, if all other efforts fail and the ALSP has
reason to suspect immediate action is needed, it sum-
mons an ambulance to the AP’s home for investiga-
tion.

We next give a detailed description of how the
alarm protocol differs from the report protocol. Since
some emergency messaging methods are out-of-band
we do not consider them in our detailed description
of the protocol. For brevity we only comment on the
part that differs from the report protocol above.

Msg1-4 are as above, except that the message type
flag is set to alarm (m = Alarm).
When the ALSP’s server receives Msg4, it processes it
as above. The server notices, however, that the report
type is alarm so it takes steps to contact the individ-
uals on the AP’s access control list that are marked
with a “notify” flag. The AP’s doctor is marked with
a “notify” flag and so will be sent Msg5 as a notice.

Msg5 AS → Doc : {about:Pat | Alarm | t1}pub(ΓDoc)

s:(priv(ΓAS))enc:(pub(ΓDoc))
The ALSP server assembles a notify message with the
AP’s name, a note that there is an alarm, and the
previous message’s time stamp t1. The ALSP server
AS first signs the message with priv(ΓAS), encrypts it
with pub(ΓDoc), and sends it to the clinician Doc.

Since the clinician does not have a server that can
accept incoming connections, we denote the message
as being sent to her directly rather than to CC. This
message will be sent out of band, perhaps to the clin-
ician’s email account. The rest of the protocol con-
tinues as above with Msg5–8 as given in the report
protocol.

5 Protocol Verification

Having specified the report and alarm protocols for
the drop-box architecture, we then turned to formal-
ize them and prove some security properties. We
specified the protocols formally using the TulaFale [8]
specification language. The language has constructs
for public key signatures and salted password authen-
tication. The TulaFale script compiles to a script
that is verifiable with the ProVerif protocol veri-
fier of Bruno Blanchet (www.di.ens.fr/~blanchet/
crypto-eng.html,
version 1.13 patch level 6).

7

5.1 Formal Model

We strove to keep the formal model as close to the
protocol specification as possible, even at the cost of
some redundancy and additional complexity. This
was done for software engineering purposes, to give
us confidence that the model truly represents the op-
eration of the implemented system. This effort also
ought to be a model for modern push-button pro-
tocol verifications–the development of a single high
level protocol specification that is directly verifiable
using automated tools.

In order to make the model more tractable, how-
ever, we made two simplifications. First, we modeled
a system with only one AP/doctor pair. We assume
that increasing the number of doctors and APs will
not break the secrecy proofs, but plan to evaluate
this question in future work. Second, we remove the
access control functionality from the ALSP, assum-
ing it to be perfect. Since we are verifying only the
protocol, rather than the access control system, its
removal should not affect the validity of the proofs.

In TulaFale agents are processes and messages are
passed over named channels. Messages are built and
taken apart using predicates. An attacker can listen
to and inject messages on each public channel. The
attacker can combine and create messages based on
the messages that it hears, but it can not break en-
cryption or forge digital signatures.

To give a taste of the TulaFale script, we now list
and explain two sample predicates, the ones needed
to build and check (de-construct) Msg7. Note that
in a predicate the formal parameters include both
the inputs and outputs. Computation is performed
by providing some of the parameters as inputs and
attempting to derive the rest by executing the state-
ments in the predicate. In our model we name our
predicates following TulaFale’s convention: mkM to
create M and isM to check M.

Example: (Building Msg7)
The predicate to build Msg7 is as follows:

1 predicate mkMsg7 (CCcert:bytes,

CCkey:bytes

2 AScert:bytes, CApubkey:bytes,

drname:string,

3 patname:string, Msg7:item,

Msg7signed:item,

4 Msg7encrypted:item):-

5 Msg7 = Message7(drname, patname, "new"),

6 mkSignature(Sig, "rsasha1", CCkey,

7 [<List>Msg7</>]),

8 isX509Cert(AScert, CApubkey, "AS",

"rsasha1",

9 ASpubkey),

10 Msg7signed = <env>Sig Msg7</>,

11 mkAsymEncryptedData(Msg7encrypted,

12 Msg7signed, ASpubkey).

Lines 1–4 declare the name of the predicate and the
parameter list. Each parameter has a type, bytes

for numbers and data, item for XML tags and pairs,
string for strings. The meaning of the parameters
are: CCcert is ΓDoc; CCkey is priv(ΓDoc); AScert is
ΓAS; CApubkey is the public key for the certificate au-
thority; drname is the name of the clinician; patname
is the name of the AP; Msg7 is the base message;
Msg7signed is it signed; Msg7encryped is it signed
and encrypted.

Line 5 creates the Msg7 item as a tuple of the
names and request type. Lines 6–7 use the mkSig-
nature library predicate to create a digital signa-
ture (Sig) on Msg7 (the brackets are necessary to
convert it to a list type) using the specified al-
gorithm (rsasha1) and key priv(ΓDoc). Lines 8–
9 use the isX509Cert library predicate to extract
the public key pub(ΓAS) from ΓAS. Line 10 cre-
ates an “envelope” with Msg7 and its signature (Sig)
called Msg7signed. Lines 11–12 use the mkAsymEn-
cryptedData library function to public-key-encrypt
Msg7signed with pub(ΓAS). The output is called
Msg7encrypted, the message that is sent over the
public channel. �

The clinician computer then sends the signed and
encrypted message to the monitoring service to re-
quest all of the AP’s new records. The monitoring
service takes it apart using the isMsg7 predicate.

Example: (Checking Msg7)

1 predicate isMsg7 (Msg7encrypted:item,

2 Msg7signed:item, CCcert:bytes,

AScert:bytes,

3 ASkey:bytes, CApubkey:bytes,

drname:string,

4 patname:string, Msg7:item) :-

5 isAsymEncryptedData(Msg7encrypted,

6 Msg7signed, ASkey),

7 Msg7signed = <env>Sig Msg7</>,

8 isX509Cert(CCcert, CApubkey, drname,

9 "rsasha1", CCpubkey),

10 isSignature(Sig, "rsasha1", CCpubkey,

11 [<List>Msg7</>]),

12 Msg7 = Message7(drname, patname, "new").

As in the previous example, lines 1–4 declare the
name of the predicate and the parameter list. The
meaning of the parameters are as above with AScert
ΓAS replacing CCcert and ASkey priv(ΓAS) replacing
CCkey.

8

Lines 5–6 decrypt Msg7encrypted using ASkey in
the isAsymEncryptedData library predicate. Line 7
takes apart Msg7 and its signature. Lines 8–9 take
apart ΓCC to extract pub(ΓCC). Lines 10–11 use it to
check that Sig is valid for Msg7. Line 12 takes apart
Msg7 into its building blocks. �

As part of keeping the model similar to the protocol
we introduced some redundancy. First, we wrote two
predicates for each message in the report and alarm
protocols even though Msg2/3 are similar to Msg5/6
and perhaps could have been merged. We also made
use of two public channels, for the gateway and the
ALSP, rather than merge them into one. Since the
clinician computer does not have a server, in the re-
porting protocol it correspondingly does not have a
named channel to listen on. In the alarm protocol
Msg5 must be sent to the clinician, so it is given a
third channel to listen on. Note that in the alarm
protocol since the clinician computer does not have
a copy of the ALSP’s certificate until after Msg7,
Msg5’s verification is deferred until after Msg7’s.

While messages between the hub, monitoring ser-
vice, and clinician service are all secured with mes-
sage encryption and authentication, messages be-
tween the device and hub are secured using link-layer
security. The device and hub therefore communicate
over a private channel that the attacker can not read
or write. We do not analyze the security of this com-
munication more deeply. In practice it would be sup-
plied by something like a secured Bluetooth connec-
tion.

5.2 Formal results

To test our model we performed three stages of verifi-
cation on the transmission protocols discussed above.
First we examined the correspondence properties of
each message and developed the following theorem:

Theorem 1 (Message Correspondence) The receipt
of messages 1, 3, 4, 6–8 as part of the report protocol
(1, 3, 4, 5, 7–9 of alarm) corresponds to an autho-
rized process sending them as part of the report (or
alarm) protocol.

Messages 2 and 5 of report (2 and 6 of alarm) are
excluded. Both messages are just URL requests for
the ALSP’s public key certificate. Since the certifi-
cate is public knowledge, the ALSP certificate server
does not need to authenticate the requestor. The
ALSP’s response, however, is authenticated so that
the recipients know they have received a true copy of
the certificate from the ALSP.

Having established correspondences between the
messages we examined the receipt of a reading by

the clinician. This theorem trusts the monitoring
service’s verification of messages from APs. If the
monitoring service does not perform proper verifica-
tion, this property is no longer true. It also presumes
that the AP is the only source of records at the mon-
itoring service. If others are allowed to create records
about the AP (e.g. doctors, hospitals, family mem-
bers) then this property is no longer true.

Theorem 2 (Readings) Assuming trust in the mon-
itoring service, if a clinician receives a reading r with
time stamp t about an AP from the monitoring ser-
vice, the specified AP sent it as part of a transmission
protocol.

While we trust the monitoring service for verifica-
tion of APs and doctors, it is not fully trusted. We do
not allow the monitoring service to view the records
of the APs that it is holding. To examine this semi-
trusted status we sought to prove that the monitoring
service can not access readings. Since there is no di-
rect way to ask the prover this, we instead proved a
stronger theorem:

Theorem 3 (Secrecy) If an AP sends a reading r
encrypted for a doctor or family members, the at-
tacker can not discover it. This is true even if the
monitoring service reveals all of its secrets and inter-
mediate information to the attacker.

To prove this we set up the monitoring service pro-
cess to publish all of its knowledge to the attacker.
A corollary of Theorem 3 is the weaker theorem that
we sought to prove:

Corollary 1 (Secrecy) If an AP sends a reading r
encrypted for a doctor or family members, the moni-
toring service can not discover it.

This corollary validates our semi-trust of the mon-
itoring service by showing that we can separate its
role as an authentication and verification agent from
its having access to the stored data.

Both protocols involved seven process types (de-
vice, hub, gateway, certificate servers). The protocols
and queries are encoded in approximately 500 lines
of TulaFale code. The queries were performed on an
IBM ThinkPad R40 with a 1.4GHz Centrino M pro-
cessor and 768MB of memory. Running time for the
queries ranged from a under 2 minutes with approxi-
mately 200MB of memory used for the early message
correspondences to 6 minutes with over 360MB of
memory for Theorem 2 and several hours with over
600MB of memory for Theorem 3.

9

6 Regulatory Issues

In the design of our system we must consider the rel-
evant U.S. regulatory issues for health information
security and privacy. For our architecture there are
two relevant U.S. regulations: the Food, Drug, and
Cosmetic Act from the Food and Drug Administra-
tion (FDA) and the Health Information Portability
and Accountability Act of 1996 (HIPAA) from the
Department of Health and Human Services Office for
Civil Rights. We discuss shortly how these regula-
tions affect our design, but a complete legal investi-
gation is beyond the expertise of the authors. Our
discussion is based on our study of the legal texts
and consultation with Food and Drug Adminstration
(FDA) Division of Electrical and Software Engineer-
ing Deputy Director Brian Fitzgerald.

The HIPAA documents which we consider, the Pri-
vacy [18] and Security [17] Rules, apply to only to
organizations designated “covered entities”, a term
which does not include the ALSP. However, since the
ALSP will contract with clinicians, it would be a busi-
ness associate of the clinicians [§160.103]. Business
associates are beholden to business associate con-
tracts which must enforce rules similar to what cov-
ered entities must respect [§164.504(e)]. Since the
Rules are an upper bound on the restrictions in busi-
ness associate contracts, for this discussion we con-
sider the responsibilities of the ALSP with respect
to the Rules. If the Rules are satisfied, any business
associate contract should be as well.

Regarding security, both the Food, Drug, and Cos-
metic (FDC) Act [21 USC 301–399] and the HIPAA
Security Rule [17] place requirements. A medical de-
vice is defined under the FDC Act [21 USC 321(h)]
as an “instrument, apparatus, implement, machine,
. . . which is - (2) intended for use in the diagnosis
of disease. . . or in the cure, mitigation, treatment, or
prevention of disease, in man. . . ” which would in-
clude parts of the drop-box architecture. This means
that the FDA must ensure that it is “safe and effec-
tive.” Since our architecture proposes the use of ex-
isting medical devices in a monitoring architecture,
Mr. Fitzgerald remarked that we would need to
demonstrate that our architecture works safely and
does not cause harm. Since the ALSP stores private
health information, it is also faces requirements from
the HIPAA Security Rule to ensure data transmis-
sion security [§164.312(e)], enforce access control via
authentication of users and encryption [§164.312(a)],
and implement audit controls and data integrity pro-
tections [§164.312(b)–(c)]. While we have only per-
formed a limited security analysis of the protocols,
our success at their formalization gives us provable

guarantees of their efficacy and security against the
Dolev-Yao attacker model. One important aspect of
the HIPAA Rule is that the yardstick for security is
“reasonable and appropriate” security measures. Mr.
Fitzgerald remarked that in his opinion our efforts
at transmission security would stand up in court by
that yardstick. Further work to formalize the boot-
strapping workflow, the access control system of the
ALSP, and other security related aspects of the drop-
box architecture will give us stronger guarantees and
thereby greatly ease the way for approval of a deploy-
ment of the drop-box architecture.

Regarding privacy, the HIPAA Privacy Rule [18]
restricts the disclosures and uses that may be per-
formed on private health information. It requires
that holders of private health information such as the
ALSP get consent before using or disclosing informa-
tion under certain circumstances, restricts the trans-
fer of information, and requires holders to provide
patients with an accounting of all disclosures of their
health information on demand. As with the Secu-
rity Rule, the Privacy Rule requires “reasonable and
appropriate” protections of health information pri-
vacy. Our formal proof of the inability of the ALSP
to access the information that it holds would give it a
defensible claim in court of efforts at privacy protec-
tion and shield it from lawsuits by patients accusing
it of inappropriate disclosures.

We restrict the ALSP so that it can not access the
records that it holds, but even the demographic in-
formation about patients and information about the
doctors that serve them qualify as protected health
information and must be protected [§164.103]. The
ALSP will obtain consent from patients when first
starting service and adding authorizations for indi-
viduals to access their records. Even though this is
not required by federal law [§164.506], it is by far
common practice and often required by state law. It
is possible that patients will need to provide fresh
consent for each modification to their access control
lists.

It would be reasonable for the ALSP to be on guard
for data quality reductions and abrupt cessations of
transmissions, either of which may indicate an emer-
gency condition to which it ought to react. We con-
sider such emergency conditions in §4.2.

7 Implementation

After designing and verifying the transmission proto-
col, we implemented a prototype of the architecture
to test its feasibility. Our current prototype demon-
strates that it is not difficult to implement the trans-

10

mission protocol based on the state of the art web
service technologies.

In this section, we introduce a drop-box proto-
type that implements the report protocol which is
described in Section 4.1. Using the prototype, an as-
sisted person reports his vital status to a clinician
at remote site. When an assisted person tests his
vital status using a medical device, the status infor-
mation is automatically sent to a remote server in
a secure manner. The status information is fetched
by a clinician’s computer periodically so the clinician
can trace the physical status of the assisted person.
In the remain parts, we explain the hardware devices
and the software libraries we used. Next, we describe
the message processing procedures and show the mes-
sage snapshots.

The prototype implementation consists of two
notebooks, a desktop machine, and a medical device.
The notebooks run Microsoft Windows XP Profes-
sional and are connected to the Internet using WPA.
The desktop runs Ubuntu Linux operation system
and is connected to the Internet using a LAN. The
medical device is the Bluetooth-enabled digital pulse
oximeter made by Nonin Medical Inc.

The messages are encoded in SOAP Version 1.2
format and transferred via SOAP-RPC. We deployed
drop-box services to a Web server using Apache2,
Tomcat, v.5.5, and Axis v.1.4. Axis provides WSDL
tools and SOAP bindings. The prototype system is
written in Java. Consequently, we exploited JCE
and Apache XML Security library for Java for se-
curing messages. Additionally, we use AvetanaBlue-
tooth (http://www.avetana-gmbh.de/) JSR-82 im-
plementation for our Bluetooth connectivity.

The prototype’s message reporting procedure
closely follows the description in Section 4.1, but dif-
fers in some ways. A gateway is not included in
the implementation because it does not contribute
towards secure transmissions of the report and the
alarm messages. Instead, we just used WPA network
of the CS department of UIUC. The asking and re-
trieving certificates are not included either because
the current version of the prototype does not have
a certificate server. We assumed that each node al-
ready has valid certificates of the other, therefore,
Msg2, Msg3, Msg5, Msg6 in the protocol description
are omitted. We will upgrade the prototype later to
use Java Certificate Service.

The implemented reporting procedure is as follows;
The digital oximeter reads assisted person’s blood
oxygen level and sends it to a notebook that im-
plements the functionality of the assisted person’s
AL Hub (Msg1). The hub makes a SOAP message,
encrypts the message, adds signatures, and sends it

Figure 3: A block diagram of the drop-box prototype
system.

to a Linux server (AS) that implements the ALSP’s
functionality (Msg4). Another notebook (CC), the
clinician’s computer, sends (AS) a request for new
messages (Msg7), and receives the assisted person’s
physical status information (Msg8). The clinician’s
notebook is also used as family member’s computer.
The procedures of a clinician’s asking and fetching
medical information and those of a family member’s
are identical except that different cryptographic keys
and authentication algorithms are used.

Fig. 3 presents how the above messages are pro-
cessed in the prototype system. We define AL
(Assisted-Living) Messages and generate SOAP en-
velopes using the SOAP with Attachments API for
Java (SAAJ) library. Cryptographic functionalities
are supported by AL Security Engines that are built
on XML Security library. Our extension from the
existing library is to support plural key-encryption-
keys. As it is described in the protocol description,
our message encryption key is encrypted for doc-
tors and family members separately. We also imple-
mented our own password-based signature function-
alities because we could not find proper Java libraries
that support XML signature.

Fig. 4 shows a snapshot of Msg1. The message is a
plaintext message. It includes a physical status read-
ing of an assisted person, a checksum of the reading,
a timestamp, and a device serial number.

H encrypts the message with a symmetric key
which is for family members and also with an asym-
metric public key of a doctor. It adds the recipient
information to the KeyInfo tags. In this implemen-
tation, we use Triple DES-EDE and RSA algorithms
for the symmetric and asymmetric encryption. Fig. 5
presents the result of the encryption. Fig. 6 shows
that signatures to the message and Kmo are added to
the encrypted message. We implemented a password-
based signature functionality using AES so that an

11

Figure 4: A plaintext message which includes physi-
cal status information.

Figure 5: The message after the first encryption.

assisted person and family members can generate sig-
natures using their passwords. Clinicians and the
ALSP server use RSA private keys. The final result
of the Msg4 is shown in Fig. 7. The message header
is encrypted as well as the message body. Only the
ALSP can see and verify the signatures.

8 Related Work

The related work for the assisted living system falls
into two general categories. First, we consider exist-
ing technologies and systems for home health care,
both suggested and deployed. Second, we consider
work related to the formalization of security and pri-
vacy protocols.

There have been many efforts to develop health
care systems for people in their own homes or in

Figure 6: Signatures are added to the encrypted mes-
sage.

Figure 7: The message after the second encryption.

specially-adapted assisted living facilities. Aging-in-
Place [12] and Aware Home [25] explore biosensors,
audio and video sensors, and RFID tags for mon-
itoring vital signs and movements. In other work,
worries about privacy have inspired an emphasis on
non-invasive sensors that exclude cameras and micro-
phones [26]. At least one study developed middleware
to integrate sensors and medical devices produced by
multiple vendors: MiLAN (Middleware Linking Ap-
plications and Networks) [24] is a sensor network mid-
dleware in which existing network protocols are en-
capsulated supporting QoS and efficient energy pro-
cessing. HealthGear [27] from Microsoft Research fo-
cused on real-time analysis of physical status data,
implemented a client-server architecture using a med-
ical sensor and a cellphone, and validated this with
experiments. These studies did not emphasize secu-
rity considerations. Motiva from Philips [20], Proac-
tive Health from Intel [13], and Healthcare manage-
ment solutions of IBM [11] proposed home health care
architectures, but these all depend on proprietary

12

products from these respective companies rather than
open standards. Moreover, they do not publish de-
tailed workflows and protocol descriptions.

The approach taken to formal methods in this work
builds on our work on WSEmail [22], for which we
formalized a single protocol and proved a correspon-
dence theorem. Here we have undertaken the formal-
ization and verification of two arguably more complex
protocols and proven more complicated theorems. It
would be impossible to do justice to the entire body
of work on formal methods and protocol verification
in this discussion, so we present only selected work
that are closely related to our own.

Goodloe, et al. [19] analyze a multi-party protocol
for network service billing using logical simulations.
Their protocol has an intermediary, the Network Ac-
cess Server (NAS), which is similar to our ALSP in
some respects, but they focus on functional properties
of the protocol rather than proving a correspondence
theorem.

Efforts at the formal verification of messaging pro-
tocols include Zhou, et al.’s [29] work on verifying the
properties of Privacy Enhanced Mail (IETF RFCs
1421–4) and Abadi, et al.’s [1] formal proof of cor-
rectness for a trusted third party messaging system.

For our formal analysis we used the TulaFale
language, a product of the Samoa (securing.ws)
project at Microsoft Research. The authors of the
project have developed theoretical frameworks and
for protocol verification in the context of web services
[6, 8] and general security protocols [7]. The TulaFale
language compiles to the input language for Bruno
Blanchet’s ProVerif protocol verification tool. The
tool verifies protocols using the Dolev-Yao assump-
tion of perfect cryptographic primitives. As noted
above, the model ignores the computational aspects
of cryptography. Although this makes its proofs in-
complete [5], such proofs have a strong record for de-
tecting errors and recent work on an protocol verifi-
cation from the computational perspective [9, 3] may
offer new avenues of automated exploration.

Designers of home health care and telemedicine
systems acknowledge the need for security in their de-
sign (e.g. [16, 21, 10]), however there has been little
focus on formal verification. Instead, studies largely
show software correctness using UML and use secu-
rity tunnels based on SSL. Such an approach skirts
the issues of protocol correctness and security, since
simply using secure tunnels does not guarantee end-
to-end message security and privacy. Indeed, as we
mentioned earlier, SSL alone cannot implement the
drop-box architecture.

9 Conclusion

The drop-box architecture for assisted living is char-
acterized by a semi-trusted Assisted Living Service
Provider (ALSP) that houses data from patients for
later access by clinicians and others. The architec-
ture is designed to create a reasonable distribution of
IT responsibilities and reduce the burden on patients
and clinicians in managing transfer of home health
care records. The architecture relies on standards-
based communication and security protocols and is
designed to allow for open interfaces between com-
municating parties.

In this work we have developed the fundamental
workflows and communication protocols needed for
its operation. We first describe the protocols for the
transmission of both normal data reports and emer-
gency data alarms in detail and then translate them
to the TulaFale typed protocol language.

We use the ProVerif security protocol verifier to
derive theorems about message correspondence and
end-to-end transmission authentication. As a secrecy
property we prove that the ALSP can not access the
private data that it holds. We show this property by
first showing that even when the ALSP publishes all
of its secrets the attacker can not break the secrecy.

This work is a continuation of work by the au-
thors on the design and specification of practical,
application-oriented security protocols that are eas-
ily subjected to formal verification. The availability
of languages for high level specification of protocols
and tools for push-button verification their security
in the face of attackers promise to ease the task of
formal protocol verification. This study shows that
existing tools are reaching a good level of feasibility
for realistic protocol suites.

Acknowledgements

We would like to thank to Brian Fitzgerald and Paul
Jones of the FDA and the UIUC Assisted Living
Project for discussions about this work. We also
benefited from discussions with Michael Hicks and
Michael Nidd. This research was supported in part
by NSF CNS 05-06546, NSF CNS 05-09268, ARO
W911NF-05-1-0158, NSF CCF 04-29948, and ARO
DAAD19-01-1-0473.

13

References

[1] M. Abadi, N. Glew, B. Horne, and B. Pinkas.
Certified email with a light on-line trusted third
party: design and implementation. In Proceed-
ings of the eleventh international conference on
World Wide Web, pages 387–395. ACM Press,
2002.

[2] Mart́ın Abadi and Roger Needham. Prudent en-
gineering practice for cryptographic protocols.
Research Report 125, Digital Systems Research
Center, Palo Alto, CA, 1 June 1994.

[3] Mart́ın Abadi and Philip Rogaway. Reconcil-
ing two views of cryptography (the computa-
tional soundness of formal encryption). Journal
of Cryptology, 15(2):103–127, 2002.

[4] Ross J. Anderson and Roger M. Needham. Ro-
bustness principles for public key protocols. In
Don Coppersmith, editor, CRYPTO, volume 963
of Lecture Notes in Computer Science, pages
236–247. Springer, 1995.

[5] Michael Backes and Matthias Schunter. From
absence of certain vulnerabilities towards secu-
rity proofs: pushing the limits of formal verifi-
cation. In NSPW ’03: Proceedings of the 2003
workshop on New security paradigms, pages 67–
74, New York, NY, USA, 2003. ACM Press.

[6] K. Bhargavan, C. Fournet, and A. Gordon. A se-
mantics for web services authentication. In Pro-
ceedings of the 31st ACM SIGPLAN-SIGACT
symposium on principles of programming lan-
guages, pages 198–209. ACM Press, 2004.

[7] K. Bhargavan, C. Fournet, A. Gordon, and
S. Tse. Verified interoperable implementations
of security protocols. In 19th IEEE Com-
puter Security Foundations Workshop (CSFW-
19), pages 139–152, Venice, Italy, July 2006.
IEEE Computer Society.

[8] K. Bhargavan, C. Fournet, A. D. Gordon, and
R. Pucella. TulaFale: A security tool for
web services. In International Symposium on
Formal Methods for Components and Objects
(FMCO’03), LNCS. Springer, 2004.

[9] Bruno Blanchet. A computationally sound
mechanized prover for security protocols. In
IEEE Symposium on Security and Privacy,
pages 140–154, Oakland, CA, May 2006. IEEE.

[10] Zhe Chen, Xiaomei Yu, and David Feng.
Telemedicine system over the internet. In CR-
PITS ’00: Selected papers from the Pan-Sydney
workshop on Visualisation, pages 113–118, Dar-
linghurst, Australia, Australia, 2001. Australian
Computer Society, Inc.

[11] IBM Corporation. Healthcare management solu-
tions. www.research.ibm.com/hc/home.html.

[12] Intel Corporation. Age-in-place. www.intel.

com/research/prohealth/cs-aging_in_

place.htm.

[13] Intel Corporation. Proactive health. www.

intel.com/research/prohealth/.

[14] Donald T. Davis. Defective sign and encrypt
in S/MIME, PKCS#7, MOSS, PEM, PGP, and
XML. In Proceedings of the Usenix Techni-
cal Conference, pages 65–78, Boston, MA, June
2001.

[15] D. Dolev and A.C. Yao. On the security of public
key protocols. IEEE Transactions on Informa-
tion Theory, 29(2):198–208, 1984.

[16] Anamarija Margan Edgar Pek, Sven Loncaric.
Internet-based medical teleconsultation system.
In Proceedings of the 2nd International Sympo-
sium on Image and Signal Processing and Anal-
ysis, pages 657–661, Pula, Croatia, June 2001.
IEEE R8-EURASIP.

[17] Office for Civil Rights. Health insurance reform:
Security standards; final rule. Federal Register,
68(34):8334–8381, 20 February 2003. 45 CFR
Parts 160, 162, and 164.

[18] Office for Civil Rights. Standards for privacy
of individually identifiable health information.
Regulation Text (Unofficial Version) 45 CFR
Parts 160 and 164, U.S. Department of Health
and Human Services, August 2003. As amended:
May 31, 2002, Aug 14, 2002, Feb 20, 2003, and
Apr 17, 2003.

[19] A. Goodloe, C. A. Gunter, and M. Stehr. Formal
prototyping in early stages of protocol design. In
WITS ’05: Proceedings of the 2005 Workshop on
Issues in the Theory of Security, pages 67–80,
New York, NY, USA, 2005. ACM Press.

[20] Philips Inc. Motiva interactive healthcare
platform. www.medical.philips.com/main/

products/telemonitoring/products/motiva.

14

[21] V. Jones, A. Rensink, T. Ruys, E. Brinksma,
and A. van Halteren. A formal MDA approach
for mobile health systems. In Second Euro-
pean Workshop on Model Driven Architecture
(MDA), Canterbury, England, Sept 2004.

[22] Kevin D. Lux, Michael J. May, Nayan L. Bhat-
tad, and Carl A. Gunter. WSEmail: Secure in-
ternet messaging based on web services. In Inter-
national Conference on Web Services (ICWS),
Orlando, FL, July 2005. IEEE.

[23] Anthony Nadalin, Phil Griffin, Chris Kaler,
Phillip Hallam-Baker, and Ronald Monzillo
(Eds.). Web services security UsernameToken
profile 1.0. Standard 200401, OASIS, March
2004.

[24] Univ. of Rochester. Center of future health. www.
futurehealth.rochester.edu/news/.

[25] Georgia Institute of Technology. Awarehome.
www.cc.gatech.edu/fce/ahri/.

[26] Univ. of Virginia. Smart in-home monitoring
system. marc.med.virginia.edu/projects_

smarthomemonitor.html.

[27] N. Oliver and F. Flores-Mangas. HealthGear:
A real-time wearable system for monitoring and
analyzing physiological signals. Technical Re-
port MSR-TR-2005-182, research.microsoft.
com/~nuria/healthGear/, Redmond, WA,
2005 May 2005.

[28] Q. Wang, W. Shin, B. K. Alshebli, M. Caccamo,
C. Gunter, E. Gunter, J. Hou, K. Karahalios,
X. Liu, C. Oh, L. Sha, and Z. Zeng. An open
system architecture for assisted living. In IEEE
International Conference on Systems, Man, and
Cybernetics, Taipei, Taiwan, Oct 2006.

[29] D. Zhou, J. Kuo, S. Older, and S. Chin. For-
mal development of secure email. In Proceedings
of the 32nd Hawaii International Conference on
System Sciences. IEEE Computer Society, 1999.

15

	University of Pennsylvania
	ScholarlyCommons
	11-3-2006

	Securing the Drop-Box Architecture for Assisted Living
	Michael J. May
	Wook Shin
	Carl A. Gunter
	Insup Lee

