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Shape Dynamics and Rheology of Soft Elastic Particles in a Shear Flow

Abstract
The shape dynamics of soft, elastic particles in an unbounded simple shear flow is investigated theoretically
under Stokes flow conditions. Three types of motion—- steady-state, trembling, and tumbling—- are
predicted, depending on the shear rate, elastic shear modulus, and initial particle shape. The steady-state
motion is found to be always stable. In addition, the existence of a trembling regime is documented for the
first time in nonvesicle systems, and a complete phase diagram is developed. The rheological properties of
dilute suspensions of such soft particles generally exhibit shear-thinning behavior and can even display
negative intrinsic viscosity for sufficiently soft particles.

Disciplines
Engineering | Physics

Comments
Suggested Citation:
Gao, T., Hu, H. H., & Castañeda, P. P. (2012) Shape Dynamics and Rheology of Soft Elastic Particles in a
Shear Flow. Physical Review Letters, 108, 058302.

© 2012 American Institute of Physics. This article may be downloaded for personal use only. Any other use
requires prior permission of the author and the American Institute of Physics. The following article appeared
in Physical Review Letters and may be found at http://link.aps.org/doi/10.1103/PhysRevLett.108.058302

This journal article is available at ScholarlyCommons: http://repository.upenn.edu/meam_papers/279

http://link.aps.org/doi/10.1103/PhysRevLett.108.058302
http://repository.upenn.edu/meam_papers/279


Shape Dynamics and Rheology of Soft Elastic Particles in a Shear Flow

Tong Gao,1 Howard H. Hu,1,* and Pedro Ponte Castañeda1,2
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The shape dynamics of soft, elastic particles in an unbounded simple shear flow is investigated

theoretically under Stokes flow conditions. Three types of motion—steady-state, trembling, and tum-

bling—are predicted, depending on the shear rate, elastic shear modulus, and initial particle shape. The

steady-state motion is found to be always stable. In addition, the existence of a trembling regime is

documented for the first time in nonvesicle systems, and a complete phase diagram is developed. The

rheological properties of dilute suspensions of such soft particles generally exhibit shear-thinning

behavior and can even display negative intrinsic viscosity for sufficiently soft particles.
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Microscale soft particles are commonly found in nature
and engineering applications. Examples include red blood
cells [1], fluid vesicles [2], and microgel particles [3].
When placed in a viscous flow, these particles can readily
undergo large deformations to accommodate the hydro-
dynamic forces exerted by the fluid and, in turn, have a
significant impact on the macroscopic rheological proper-
ties of the fluid-solid mixture.

Because of the thin membranes, or shell-like structures
surrounding them, biological cells and vesicles exhibit
highly complex responses in fluid flows. Thus, it has
been recognized that the membrane-area incompressibility
in vesicles can lead to a rich class of morphologies under
shear flow conditions [4–10]. However, other particle
types, such as microgel particles and swollen starch gran-
ules, do not possess surrounding thin membranes and have
to be modeled differently. For example, it is known that
initially spherical elastic particles admit steady-state (SS)
solutions [11–13] characterized by the balance between the
viscous force in the fluid and the elastic force in the solid.
In addition, compared to thin membranes, such ‘‘thick’’
elastic particles may be expected to be less susceptible to
instabilities induced by ambient flows, leading to poten-
tially very different dynamical behaviors.

Compared to the extensive efforts that have been de-
voted to understand the response of cells and vesicles in
viscous flows, much less attention has been drawn to
elastic particles, and a complete understanding of the effect
of elastic particles in fluid flows is still lacking. One key
challenge in the elastic particle systems is the difficulty in
handling the inherently nonlinear hydrodynamic interac-
tions between the fluid and the solid, particularly in the
large-deformation regime [14]. Recently, we have estab-
lished [15] a large-deformation theory for the response of
an elastic particle in an unbounded Newtonian fluid sub-
jected to a homogeneous remote field, by demonstrating
(see also [12]) that the physical fields (stress, strain-rate,
etc.) inside an initially ellipsoidal elastic particle are

uniform and making use of the well-known fact that an
ellipsoidal elastic particle subjected to a linear deformation
field (e.g., simple shear) will deform through a series of
ellipsoidal shapes [11–13], with evolving size, shape, and
orientation. In this sense, the problem is similar to the
classical Eshelby problem in the theory of composite ma-
terials [16] and was thus solved by means of a polarization
technique originally developed for elasticity [17,18].
In this Letter, we report on an analytical study of the

dynamics of elastic particles undergoing arbitrarily large
deformation in a simple shear flow. In contrast to prior
studies [11,12,15,19], which assumed that the initial shape
of the elastic particles was perfectly symmetric (i.e.,
spherical, or circular in 2D models), in this work the
particles are taken to have a nontrivial initial (spheroidal
or elliptical) shape. This more general assumption is shown
to give rise to a new type of motion for the particle—which
is different from the SS motion observed for initially
spherical particles [11,12,15,19] and also different from
the tumbling (TU) motion for rigid ellipsoidal particles
[20]—but somewhat reminiscent of a certain type of trem-
bling (TR) motion first observed in vesicles under shear
flow conditions [5–10]. In addition, the conditions deter-
mining the TR-TU transition are identified, and the corre-
sponding critical behaviors of shape change near the
transition are elucidated. Finally, the rheological properties
of dilute suspensions of the elastic particles—correspond-
ing to the three types of motions—are characterized.
We consider an initially ellipsoidal (elliptical) particle

immersed in an unbounded simple shear flow U ¼
ð _� �x2; 0; 0Þ, where _� is the shear rate and f �xig is the fixed
laboratory coordinate system. The particle is assumed to be
a homogeneous, incompressible, neo-Hookean elastic
solid with shear modulus S, while the surrounding fluid
is Newtonian with viscosity �. It is then natural to define

the dimensionless parameter G ¼ � _�
S , representing the

ratio of the viscous forces in the fluid to the elastic forces
in the solid. When the particle undergoes a planar motion
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in the shear plane (e.g., the �x1- �x2 plane), the evolution of
the system can be described by a set of coupled, nonlinear,
first-order ordinary differential equations in a rotating co-
ordinate system fxig aligned with the particle’s axes for the
aspect ratios of the particle !, the orientation angle �
(defined from the horizontal axis to the long axis of the
particle), and the ‘‘extra’’ stress �p in the particle (total
minus hydrostatic), as described in Ref. [21]. For an elastic
particle with an initially prolate spheroidal (or elliptical)
shape, the initial conditions are provided by the initial
aspect ratio !0, which will be taken to be between 0 and
1, the initial orientation �0, which produces only a time
shift in the results and will therefore be fixed to take the
value �

2 , and �p
0 ¼ 0.

For simplicity, we begin with the 2D model problem
involving a cylindrical particle with an elliptical cross
section. As illustrated in Fig. 1 for a particle with a fixed
value ofG and different values of!0, three types of motion
can be identified depending on the time evolution of �. An
initially circular particle (!0 ¼ 1) becomes elongated and
rotates until reaching a stable configuration with a fixed
orientation [15]. We emphasize, however, that, although
the particle shape reaches a SS, material elements inside
the particle undergo a (periodic) tank-treading motion. For
a slightly elongated particle (!0 ¼ 0:8), its long axis os-
cillates periodically in a TR motion, never making a full
2� rotation. As the initial shape becomes more elongated
(!0 ¼ 0:6), the particle switches to a TU motion, with the
long axis nowmaking complete 2� rotations. Comparisons
are also shown with direct numerical simulations (open
circles) using an arbitrary Lagrangian-Eulerian finite-
element method [19].

For the initially circular particle (!0 ¼ 1), the governing
equations in 2D can be simplified to two equations
for � and ! [21], with steady-state solutions given by

! ¼ ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þG2
p �GÞ2, � ¼ 1

2 arctanð1GÞ, �p11¼�ð�p22Þ�1¼
2ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þG2
p

þGÞ, and �p12 ¼ 0. A linear stability analysis

leads to the two eigenvalues �� ¼ � 1þG2

ð1þ2G2ÞG �
½ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þG2
p

=ð1þ 2G2Þ�i with strictly negative real parts,
indicating that the SS motion is always stable, even for
large particle deformation.
For fixed G> 0, as soon as the initial particle shape

ceases to be circular (!0 < 1), the particle motion becomes
TR and eventually switches to TU for sufficiently elon-
gated particles (!0 � !�

0). Thus, as shown in Fig. 2(a), the

amplitude of the oscillations in � gradually increase (from
0) as !0 decreases (from 1), and, at the same time, the
transition from the minimum to maximum values becomes
sharper, leading to a discontinuity at !0 ¼ !�

0, beyond

which the motion shifts into the TU regime. As shown in
Fig. 2(b), � undergoes complete rotations in the TU re-
gime, with a time period that gradually increases as !0

continues to decrease below !�
0.

In the TR regime, we can carry out a perturbation
analysis for nearly circular (!0 ¼ 1� ", " � 1) particles;

i.e., � ¼ �ð0Þ þ "�ð1Þ þOð"2Þ. The zeroth-order solution

�ð0Þ is the SS solution at !0 ¼ 1 given earlier. At the next

order, the solution is �ð1Þ ¼ e�t½C1 cosð�tÞ þ
C2 sinð�tÞ� þ C3 sinðtþ�Þ, with constants �, �, Ci, and

�. In particular, � ¼ � 1þG2

ð1þ2G2ÞG < 0, which suggests that,

at large times (t ! 1), the dynamics is dominated by
C3 sinðtþ�Þ and the particle settles into a periodic orbit
with time period 2�, which is consistent with the plots in
Fig. 2(b) for the smaller values of ". Likewise, in the TU
regime, we performed another perturbation analysis for an
almost rigid particle (G � 1). It is straightforward to show
that the leading-order solution for � recovers the classical
Jeffery’s orbit for a rigid particle [20]: tanð�Þ ¼
!0 tanð� �t

T Þ, with period T ¼ �ð!0 þ 1=!0Þ.
Next, we address in more detail the transition from

the TR to the TU regimes aiming to construct a ‘‘phase
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FIG. 1 (color online). Three types of particle motion under
shear at G ¼ 0:2. The solid black lines represent the unsteady
TR and TU motions for initially elliptical (2D) particles, which
are computed at !0 ¼ 0:8 and !0 ¼ 0:6, respectively. The
dashed black line represent the SS motion of an initially circular
(!0 ¼ 1) particle [11,15]. The blue and green symbols are
arbitrary Lagrangian-Eulerian finite-element method results
(with Re ¼ 0:01). Shape contours are shown sequentially at
times indicated by black squares. The black dotted line is the
particle’s major axis.
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FIG. 2. Typical time-dependent solutions for � at G ¼ 0:2 in
the (a) TR and (b) TU regimes.
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diagram’’ for the particle motion in the parameter space
defined by G and !0. Before doing so, it is important to
emphasize that the dynamics in this Letter refers to
‘‘shape’’ dynamics (or morphologies) for the soft particles
[4]. In fact, the material elements in the particle undergo
only one type of motion—a continuous tank-treading mo-
tion where the material lines going through the particle
center spin continuously in the cw direction. However, as a
consequence of the competition between the hydrody-
namic forces that tend to stretch material line elements
instantaneously coinciding with the maximum stretch di-
rection (þ �=4) and the restoring elastic forces that tend
to resist this stretch, the long axis of the particle in its
current (or deformed) state is not necessarily always the
initial (reference) long axis of the elliptical particle. If, for
a given initial particle shape !0, the hydrodynamic forces
are not sufficiently strong compared to the elastic forces in
the particle—tending to preserve its initial shape—the
particle will tumble; otherwise, it will tremble (or reach a
steady state if the particle is initially circular). More pre-
cisely, making use of the fact that an initially straight
material line remains straight in a linear deformation field,
we can visualize the particle motion by tracking two spe-
cial material lines initially coinciding with the semimajor
(A) and semiminor (B) axes. From Fig. 3(a), both lines A
and B continue to spin in the cw direction. However, in the
TU regime, the length of B (lB) is always shorter than that
of A (lA), while in the TR regime, lA and lB exceed each
other in an alternating fashion. Correspondingly, the cur-
rent long axis of the particle (dashed black line) completes
a full rotation in the TU regime, while it swings back and
forth in the TR regime. Clearly, the critical condition for
the TR-TU transition corresponds to the situation when lB
only reaches lA without ever exceeding it—the current
particle shape then becomes instantaneously circular
(! ¼ 1). The critical behavior of � is highlighted in
Fig. 3(b) by two different time-evolution curves for � at
G ¼ 0:2, with !0 ¼ 0:68 and 0.681. As can be seen by
following the 5 sequential time instants marked with black
squares, and corresponding to the same times shown in
Fig. 3(a), a bifurcation in � occurs with a jump of either
� �

2 (TU) or þ �
2 (TR).

Having characterized the TR-TU transition, it is now a
simple matter to construct the (2D) phase diagram, which
is shown in Fig. 3(c) for arbitrary G and !0. Thus, as !0 is
reduced from 1 with G fixed, the particle motion changes
from SS to TR and in turn to TU, as was seen in Fig. 1. On
the other hand, as G is increased for any initially non-
circular shape (!0 < 1), a transition from TU to TR is
observed. In addition, plots are included as insets in
Fig. 3(c) of the D versus � orbits (where D ¼ 1�!

1þ! is the

deformation parameter). They show that with decreasing
!0 the orbits become larger in the TR regime tending to a
dumbbell shape at the transition and then to a skew ‘‘8’’
shape in the TU regime. The nature of the TR-TU

transition near the origin can be clarified by using a
‘‘mixed’’ perturbation analysis for a nearly circular (!0 ¼
1� ", " � 1) and almost rigid (G � 1) particle, with
G ¼ k", for some constant k. Interestingly, to the leading
order, the variables �p11, !, and � satisfy the relation:

½!ð�p11 þ 1
GÞ�2 ¼ 1

k2
� 4ðcos2�Þ2 � 0. It follows that a so-

lution allowing arbitrary values of �—and corresponding
to a typical TU motion—is possible for k < 1

2 . On the other

hand, for k > 1
2 , a (real) solution exists only when � is

restricted to the interval [ 12 arccosð 12kÞ, �
2 � 1

2 arccosð 12kÞ],
corresponding to TR motions. Therefore, in the region
where both G and " are small, the condition for the TR-

TU transition is simply G� ¼ 1�!0

2 .

For an initially spheroidal (3D) elastic particle under-
going planar motions in the shear plane, completely analo-
gous results are obtained. In particular, the SS motion for
an initially spherical particle is found to be stable, and the
same mechanism described above can be used to explain
the TR-TU transition for the 3D elastic particles when the
projection of the particle onto the shear plane becomes

FIG. 3 (color online). (a) Snapshots of 2D shape contours at
five sequential time instants for G ¼ 0:2, where the TR-TU
transition happens at!�

0 � 0:68. The blue and red lines represent
two material lines initially coinciding with the semimajor and
semiminor axes of the particle, respectively, while the dashed
black lines represent the ‘‘current’’ semimajor axis.
(b) Bifurcation in � near the TR-TU transition for a 2D particle.
(c) Phase diagram for both a 2D and a 3D (initially prolate
spheroidal) particle under shear. Insets in (c): Typical D-� orbits
for a 2D particle in the two regimes at G ¼ 0:2, 0:3 � !0 � 0:9.
The arrows show the direction of decreasing !0.
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circular. The phase diagram for the case of initially prolate
spheroidal particles, with initial aspect ratio !0, is also
shown in Fig. 3(c), for completeness.

Using the single-particle dynamics, we can calculate the
rheological properties of a dilute suspension (concentra-
tion 	 � 1) of such soft particles [15,21]. Depending on
the initial shape of the prolate spheroidal particles, the
rheological response will either tend to a steady state or
to a periodic, time-dependent response. Figure 4(a) shows
plots of the intrinsic viscosity [�] (see its definition in
Ref. [21]) for G ¼ 0:2 and three different values of !0 in
the SS (1), TR (0.8), and TU (0.5) regimes. For initially
spherical (!0 ¼ 1) particles, all particles reach a stable
configuration with a shear-thinning effect [15]. (Note that
[�] becomes negative for large G.) For initially nonspher-
ical particles, we make use of the time average of [�] over
one period (for a single particle), [ ��], as a simple mea-
surement of the mean viscosity of a dilute suspension of
uncorrelated particles [9,20,22]. As shown in Fig. 4(b),
suspensions of deformable particles generally exhibit shear
thinning, although the effect becomes less pronounced
with decreasing aspect ratio !0. It also shows that, for
given _�, [ ��] drops with particle stiffness S, although,
again, deviations from perfectly spherical shapes tend to
weaken the effect. These phenomena may be explained by
noting that, compared to an initially spherical particle, the
unsteady rotation of an initially nonspherical particle gen-
erates larger disturbances in the flow and therefore leads to
higher intrinsic viscosity for the suspension.

In conclusion, three different types of motion have been
identified for elastic particles in an unbounded shear flow,
depending on their initial aspect ratio !0 and the stiffness
parameterG. They are globally similar to those observed in

vesicle motions under shear [5–9], but the phase diagram is
simpler, not allowing SS motion for initially nonspherical
particles nor direct transitions from the SS to the TU
regime. The results for the rheological properties are also
different, since—even for initially nonspherical particles—
the intrinsic viscosity can become negative for sufficiently
soft particles (large G). It is hoped that the results of this
study will help guide future experimental work on the
response of soft elastic particles in microscale fluidic en-
vironments. A more complete study, including generally
ellipsoidal shapes and more complex out-of-plane motions,
will be presented elsewhere.
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