
University of Pennsylvania
ScholarlyCommons

Departmental Papers (CIS) Department of Computer & Information Science

7-12-2005

Steering of Discrete Event Systems: Control
Theory Approach
Arvind Easwaran
University of Pennsylvania, arvinde@seas.upenn.edu

Sampath Kannan
University of Pennsylvania, kannan@seas.upenn.edu

Oleg Sokolsky
University of Pennsylvania, sokolsky@cis.upenn.edu

Follow this and additional works at: http://repository.upenn.edu/cis_papers

Part of the Computer Engineering Commons, and the Computer Sciences Commons

Postprint version. Published in Electronic Notes in Theoretical Computer Science, Volume 144, Issue 4, 2005, pages 21-39.
Publisher URL: http://dx.doi.org/10.1016/j.entcs.2005.02.066

This paper is posted at ScholarlyCommons. http://repository.upenn.edu/cis_papers/258
For more information, please contact libraryrepository@pobox.upenn.edu.

Recommended Citation
Arvind Easwaran, Sampath Kannan, and Oleg Sokolsky, "Steering of Discrete Event Systems: Control Theory Approach", . July 2005.

http://repository.upenn.edu?utm_source=repository.upenn.edu%2Fcis_papers%2F258&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/cis_papers?utm_source=repository.upenn.edu%2Fcis_papers%2F258&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/cis?utm_source=repository.upenn.edu%2Fcis_papers%2F258&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/cis_papers?utm_source=repository.upenn.edu%2Fcis_papers%2F258&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=repository.upenn.edu%2Fcis_papers%2F258&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=repository.upenn.edu%2Fcis_papers%2F258&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/cis_papers/258
mailto:libraryrepository@pobox.upenn.edu

Steering of Discrete Event Systems: Control Theory Approach

Abstract
Runtime verification involves monitoring the system at runtime to check for conformance of the execution
trace to user defined safety properties. Typically, run-time verifiers do not assume a system model and hence
cannot predict violations until they occur. This limits the practical applicability of runtime verification.
Steering is the process of predicting the occurrence of violations and preventing them by controlling system
execution. Steerers can achieve this using a limited knowledge of the system model even in situations where it
is infeasible to store the entire model. In this paper, we explore a control-theoretic view of steering for discrete
event systems. We introduce an architecture for steering and also describe different steering paradigms.

Keywords
runtime correction, steering, runtime checking, control theory

Disciplines
Computer Engineering | Computer Sciences

Comments
Postprint version. Published in Electronic Notes in Theoretical Computer Science, Volume 144, Issue 4, 2005,
pages 21-39.
Publisher URL: http://dx.doi.org/10.1016/j.entcs.2005.02.066

This conference paper is available at ScholarlyCommons: http://repository.upenn.edu/cis_papers/258

http://repository.upenn.edu/cis_papers/258?utm_source=repository.upenn.edu%2Fcis_papers%2F258&utm_medium=PDF&utm_campaign=PDFCoverPages

RV 2005 Preliminary Version

Steering of Discrete Event Systems: Control
Theory Approach

Arvind Easwaran 1, Sampath Kannan 2 and Oleg Sokolsky 3

Department of Computer and Information Science

University of Pennsylvania

Philadelphia, USA

Abstract

Runtime verification involves monitoring the system at runtime to check for confor-
mance of the execution trace to user defined safety properties. Typically, run-time
verifiers do not assume a system model and hence cannot predict violations until
they occur. This limits the practical applicability of runtime verification. Steering
is the process of predicting the occurrence of violations and preventing them by
controlling system execution. Steerers can achieve this using a limited knowledge of
the system model even in situations where it is infeasible to store the entire model.
In this paper, we explore a control-theoretic view of steering for discrete event sys-
tems. We introduce an architecture for steering and also describe different steering
paradigms.

Key words: runtime correction, steering, runtime checking,
control theory

1 Introduction

Verification and validation are established techniques to ensure correctness of
software systems. But, verification checks the specification rather than the
implementation and validation does not provide guarantees for conformance.
Also, verification and validation do not scale well to large systems. Runtime
verification checks for conformance of execution traces to formally specified
safety properties and hence exports the advantages of verification techniques
to trace validation. Although runtime verifiers can efficiently detect non-
conformance, they cannot predict violations in advance because they do not
have information on the system model. Since any run-time technique deals

1 Email: arvinde@seas.upenn.edu
2 Email: kannan@cis.upenn.edu
3 Email: sokolsky@cis.upenn.edu

This is a preliminary version. The final version will be published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

Easwaran and Kannan and Sokolsky

with a single execution trace, limited knowledge (local to the execution trace)
of the system model will be sufficient to predict violations with high confidence.
Steering exploits this limited system knowledge to predict violations.

A steerer looks ahead into a partial system model to explore the state space
in advance. It then invokes the runtime verifier to detect non conformance
and generates control actions to prevent the system from reaching a violation.
Steering can thus be defined as the process of analysis (using look ahead) of a
partial system model to detect non-conformance (prediction) and application
of control actions to the model (prevention). We assume, the steerer and the
system to be residing on different machines and executing concurrently. This
leads to communication delay in the transmission of event notifications and
steering actions between the steerer and the system.

In this paper, we formulate the problem of steering of Discrete Event Sys-
tems (DES) as a supervisory control problem. Communication delay is ac-
counted for by assuming partial observability of the system. We introduce a
generic architecture for steering and propose four different steering paradigms.
Constraints imposed on the system model and the steering overhead to the
system are used to classify these paradigms. The paper then describes a sub-
way system example to which a particular paradigm is applied.

Related Work: Stephane et. al. in their online control work [3], [4],
[6] present a control-theory-based approach for control of DES with limited
look ahead. We adapt this work to the steering problem where steerers must
generate control actions with as little latency as possible in the presence of
communication delays and concurrent execution. The steering framework de-
scribed in [8], [10] is specific to a particular runtime verifier and assumes that
a recovery after the occurrence of a violation is always possible. It assumes
no knowledge of the system model and hence the user is required to specify
steering actions. Papers [5], [7], [1] provide very domain specific solutions
to simpler control problems and would be extremely inefficient in a general
framework.

The rest of the paper is organized as follows. Section 2 lists motivating
examples for steering and Section 3 formally defines the steering problem.
Section 4 introduces the steering architecture and Section 5 formulates the
steering problem as a control problem under partial observability. Section 6
describes four steering paradigms and Section 7 gives an illustrative example.
Section 8 concludes the paper and indicates future research directions.

2 Motivation

When developing a software system, the designer and the users have at least
an informal idea of properties that the system must satisfy. However, subtle
errors throughout the software engineering process can lead to an incorrect
implementation. Static analysis of an abstract model of the implementation to
eliminate undesirable behaviors is a challenging problem when the state space

2

Easwaran and Kannan and Sokolsky

Dynamic
Controller System

Real−Time

Actual execution
timeUtilization

estimate

Runtime verifier

utilization
estimate

Actual

time estimate
execution
Average

Desired
utilization

New task period satisfying
desired utilization

Task period

(a) Task scheduling

System
Alternate
models

Verifier Steerer

model
Request alternate

Runtime data

Control
parameter

Verify
correctness

model
Alternate

(b) Requirement adher-
ence

Fig. 1. Steering for different domains

to be explored is large or time varying(dependent on external environment).
Thus, in order to eliminate undesirable behaviors while preserving a rich set
of allowable behaviors, we must use dynamic control. In this section, we list
a few examples from different domains that support our claim for the need of
a steerer.

2.1 Scheduling of real-time tasks using actual execution time

The paper [1] introduces a real-time task model in which the worst case ex-
ecution times for each task, minimum and maximum execution periods for
each task and the desired system utilization are given. The runtime verifier
monitors task executions to determine their actual execution times and then
evaluates the actual utilization of the system. The steerer uses this utilization
estimate to adjust task periods so that the desired utilization may be achieved.
This architecture is shown in Figure 1(a).

2.2 Reconciling System Requirements at run-time

At run-time, a software system can deviate from its expected behavior because
of changes in the system environment. The paper [5] suggests two approaches
for runtime steering. As shown in Figure 1(b), steering can be achieved by
monitoring the system and modifying control parameters to minimize devia-
tions. If the deviation is large, the steerer could also request that an alternate
design model be used by the system. For example, consider a meeting sched-
uler scheduling a meeting based on the availability times of all the participants.
One of the system requirements is that the scheduler should be able to get
the availability times of the participants. One way of achieving this goal is by
locating the agenda for each participant and extracting the availability times.
An alternate approach would be to send email requests to participants. Steer-
ing would then involve switching between these approaches depending on the
accessibility of the agenda. When using the email model, the steerer can also

3

Easwaran and Kannan and Sokolsky

monitor the delay in response of participants and adjust reminder frequencies
accordingly.

2.3 Inverted Pendulum

Paper [8] describes a control system which consists of an inverted pendulum
run by an experimental controller. The experimental controller generates ran-
dom values for the motor speed of the pendulum. The runtime monitor checks
if the experimental controller is maintaining the pendulum within a stable re-
gion. If the monitor detects a violation it switches the control to a safety
controller which maintains the pendulum in the stable region. This experi-
ment demonstrates the use of steering in a continuous-variable, constrained
environment.

3 Problem Statement

As described in Section 2 steering is essential to detect certain errors in soft-
ware, especially when the system state space is large or time varying. In this
paper, we develop a steering architecture and steering paradigms for DES with
large state spaces.

3.1 Steering for DES with large state spaces

Any steerer for a DES must satisfy the following properties,

Light Weight: Steering must be light weight i.e., the steerer should not
behave like a central controller.

Fast: Low response time is desirable because steering actions are state
dependent. Low response time is also a desired property when steering real-
time systems.

Minimally restrictive: Steering must restrict the system model mini-
mally while ensuring that violations do not occur.

We now formulate the steering problem for DES with large state spaces. A
DES is a transition system M = 〈S, T, Σ〉, where S is the large state space,
Σ is the event set and T is the transition function T : S × Σ −→ S. We
assume that all the events Σ are controllable by the steerer. The state space
S is discrete and hence finite or countably infinite. The state machine is event
driven i.e., at each time instant at most one event can be generated. Let, n
be the round-trip communication delay between the system and the steerer.
This means that the system can generate a maximum of n events between the
generation of an event e and the reception of steering action corresponding to
e. We assume that the processing delay of the steerer is negligible compared
to this delay. The steering problem can then be decomposed into the following
problems: Given communication delay n, current state s′0 of the DES M and
the system model M ,

4

Easwaran and Kannan and Sokolsky

(i) Predict non-conformance to user defined safety properties along different
execution paths originating from s′0 in the partial system model

(ii) Generate appropriate steering actions to ensure that the system does not
reach violation by restricting the partial model

(iii) Determine a steering paradigm for execution of the steering actions by
the system

Problem (i) can be formulated as a standard runtime verification problem
once the partial system model has been generated. Problem (ii) has been
addressed in this paper using supervisory control theory for DES. Steering
paradigms designed later in the paper provide a solution to problem (iii). The
same architecture and paradigms can be used for time varying systems if the
partial system model for such systems can be generated at each step.

4 Steering Architecture for DES

The communication delay between the system and the steerer dictates the
minimum amount of look ahead that the steerer must use to ensure that
steering actions are transmitted to the system in time. Further, since steering
actions are state dependent, each action must be executed by the system at
the state for which that action was generated. In this section, we develop a
steering architecture for DES which addresses these issues.

4.1 Steering Architecture

In response to an event notification, the steerer must generate a partial (n+1)
step DES originating from the current state as shown in Figure 2. n+1 is the
minimum amount of look ahead required to ensure that steering actions are
received by the system in time. The states of this DES are known as runtime
states and each state uniquely identifies an execution trace in the system.
Formally, the runtime DES for a current state s0 and system model M can be
defined as Gs0

= 〈S ′, R, Σ, s0, F, C, T ′〉. S ′ is the set of runtime states and R
defines a function, mapping runtime states in S ′ to static states S in DES M .
s0 ∈ S ′ is the initial state of Gs0

and Σ is the event set. T ′ : S ′ × Σ −→ S ′

is a transition function defined on Gs0
such that T ′(s′, e) = T (R(s′), e) where

e ∈ Σ. F ⊂ S ′ is the set of final states of the runtime DES and C ⊂ S ′ is the
set of control states defined as C = {s′ ∈ S ′|∃e ∈ Σ, f ∈ F, T ′(s′, e) = f}. The
steering action for s0 will disable some of the transitions with source states in
C.

In response to a request from the steerer, the runtime verifier finds a set
of violating states F ′ such that F ′ ⊆ F . Let, G

′

s0
be the steered system for

the original system Gs0
such that F ′ is not reachable in G

′

s0
. Some steering

paradigms might require that the steerer send activation and deactivation
signals to the system for each steering action. These signals occur at points in
the execution of the system and the steering action is applicable in the interval

5

Easwaran and Kannan and Sokolsky

1 step

c_1

f_2

f_1

c_2

c_k

f_m

f_m−1

f_m−2

C = {c_1, ... , c_k}
F = {f_1, ... , f_m}

s_0 n steps

s_0 = Current state

c_k−1

Fig. 2. Runtime DES Gs0

F = {f_1, f_2, ... , f_m}

F’ = Set of Violations

Activation = <A, N, E_d, E_e>Event e

System (DES)

Deactivation = <D, N>

Verifier
Runtime

Steerer

Fig. 3. Steering architecture

of time between these points. These signals are necessary because there is no
synchronization between the system and the steerer and steering actions are
associated with specific system states. An activation signal is of the form
〈A, N, Σd, Σe〉 where A implies activation and N is the action number. The
steerer uses this number(unique for every activation-deactivation pair) when
sending the deactivation signal. Σd is the set of events to be disabled and Σe

is the set of events to be enabled in the system model. The deactivation signal
is of the form 〈D, N〉 where D implies deactivation.

The architecture of a DES with a steerer and a runtime verifier is shown in
Figure 3. The functions of each of the modules in the architecture is described
below.

• System(DES): When an event is generated, the system sends an event
notification to the steerer. On receipt of a steering action, the system may
either apply the action immediately or store it for future use depending on
the steering paradigm employed. The system may also receive activation
and deactivation signals from the steerer. When the system receives an
activation signal, it executes the accompanying steering action. When it
receives a deactivation signal, it deactivates the action corresponding to the
action number accompanying the signal.

• Steerer: On receiving an event notification from the system, the steerer
generates the partial runtime DES Gs0

. It then sends the set of final states F

6

Easwaran and Kannan and Sokolsky

in Gs0
to the runtime verifier. For each state u ∈ C having transitions to F ′,

the steerer generates the set Σu
d of events that need to be disabled(transitions

leading to F ′). The steering action for the state s0 is then given by Σd =
⋃

u∈C Σu
d . Similarly, the steerer could also generate a set of enabled events

Σe for C depending on the paradigm.

• Monitor: The monitor checks if any of the states in F (sent by the steerer)
violate any of the user defined safety properties. It then reports all violations
to the steerer in the set F ′.

Steering problems defined in Section 3 can be refined under the architecture
described in this section. Given communication delay n, current state s′0 and
the system model M , steering entails

• finding the runtime DES Gs′
0
,

• generating steering actions for Gs′
0
. This would involve determining the

violating states in Gs′
0

using the runtime verifier and

• determining a steering paradigm for the execution of steering actions.

Given system model M , current state s′0 and the steered runtime DES
G

′

s0
from the previous iteration, the steerer can efficiently compute the new

runtime DES Gs′
0
. If e ∈ Σ is the current event received from the system, the

steerer updates its runtime state to s′0 = T ′(s0, e) where T ′ is the transition
relation in G

′

s0
. It then computes the states f ∈ F \ F ′ of G

′

s0
that are

reachable from s′0. Gs′
0

is now generated by determining the successor states
of this reachable set using M .

5 Control Theory based Steering

The runtime DES Gs0
for which we wish to generate steering actions is a finite

state machine. This steering problem can be formulated as a static control
problem for DES under partial observation. The partial observation is as a
result of the fact that the steerer has limited knowledge of the current state
of the system due to communication delay.

5.1 Steering of runtime DES as a Static Control Problem

Let, G be the finite DES for which we wish to design a controller and M =
L(G) denote the language generated by G. ¯L(G) = {s ∈ Σ∗ : (∃t ∈ Σ∗)∧(st ∈
L(G))} is the prefix closure of L(G). Let, S denote the finite DES(supervisor)
we wish to design such that L(S×G) ⊆ L(G) where L(S×G) is the language
generated by the supervised system. Σo ⊆ Σ denotes the set of observable
events and Σu = Σ \ Σo denotes the set of unobservable events. P is a pro-
jection function defined on event strings denoted as P : Σ∗ −→ Σ∗

o. Figure 4
shows the architecture for control of finite DES under partial observation. The
supervisor S can be defined by a function SC : P (L(S ×G)) −→ 2Σ given by
s ∈ L(S × G) ∧ sσ ∈ L(G) ∧ σ ∈ SC(P (s)) ⇒ sσ ∈ L(S × G).

7

Easwaran and Kannan and Sokolsky

S(P(s))

s

P(s)

P

S

G

Fig. 4. Control under partial observation

Two different strings can be equivalent under partial observation and
hence the control actions required for these two strings in order to gener-
ate the controlled language must be the same. The observability condi-
tion is used to determine whether a controlled language is admissible for a
given system under given partial observability. Let, P i(sσ) = P−1[P (s)]σ
where (s ∈ Σ∗) ∧ (σ ∈ Σ). Also, P i(ε) = ε. Further, let supP (N) =
N \ [(Σ∗ \ N)Σ∗] where N ⊆ Σ∗. Basically, supP (N) is given by the set
{s|(s ∈ N)∧ (All prefixes of s are in N)}. Let K be any language such that
K ⊆ L(G) and K 6= φ. We wish to decide if we can design a supervised system
S generating K(K = L(S × G)) and admissible for M under the projection
P . The observability condition given in [2] can be stated as,

K is said to be observable with respect to M and P if

∀s ∈ K̄ ∧ ∀σ ∈ Σ, (sσ 6∈ K̄) ∧ (sσ ∈ M) ⇒ P−1[P (s)]σ ∩ K̄ = φ

The observability condition given in [9] can be defined as,

K is observable with respect to M and P if and only if

supP (P i(K̄)) ∩ M ⊆ K̄

Proof of equivalence of these two observability conditions is given in Ap-
pendix A. Steering paradigms described later in the paper will restrain the
system model using these observability conditions to ensure correctness of the
paradigm. Generation of steering actions for the runtime DES Gs0

can now be
formulated as a static control problem under partial observation. Gs0

is the
finite DES for which we wish to design a steerer and G

′

s0
denotes the steered

DES. The steering problem can now be stated as,

Given Gs0
and the set F ′ ⊆ F of violating states, design G

′

s0
such that

F ′ is not reachable in the controlled system G
′

s0
. G

′

s0
and Gs0

must satisfy
observability conditions specified in the particular steering paradigm used.

6 Steering Paradigms

In this section we describe different steering paradigms that can be adopted
under the architecture defined in Section 4. Since the steerer and the system
have inconsistent views of the current state of the system, the steerer must
assist the system in determining the state at which a particular steering action
must be executed.

8

Easwaran and Kannan and Sokolsky

6.1 Paradigm 1: Unconstrained System Model(Hashing based Steering)

Steering paradigms under this classification do not impose any restrictions
on the system model. Hashing based execution of steering actions is one
such paradigm. In this approach, the steerer sends hashed values of event
strings(states u in C that have transitions to violating states in F) and the
corresponding set of disabled events(Σu

d) to the system. The system stores
these values in a hash table. When an event occurs, the system generates a
new hash value(incrementally) for the event string seen so far and hashes into
this table. On a hit, the system activates the steering action associated with
that slot. This action can be deactivated on the occurrence of any further
event.

We now design a hash function for this paradigm. Let, (k − 1) denote the
number of different events in the system model. We will then use a radix-k
representation for event strings. Each event e ∈ Σ will be associated with a
unique integer ie ∈ (1, k − 1). For every event string es = e1e2 · · · el where
ie1

, ie2
, · · · , iel

are the unique integers for events e1, e2, · · · , el respectively, its
radix-k representation res = iel

+ iel−1
× k + · · · + ie1

× kl−1. Given es and
its radix-k representation res, the radix-k representation of the event string
es′ = es.el+1(. represents string append) is res′ = iel+1

+ (res × k).

This representation splits event strings into different ranges of natural
numbers depending on string lengths. The hash function we design, will ensure
that event strings with different lengths do not hash into the same slot. We
split the entire hash table into n regions numbered 0, · · · , (n − 1) each of the
same size. Event string es ∈ Σ∗ will hash into the (|es| mod n)th region in the
hash table where |es| denotes the string length. Splitting the hash table into
n regions is sufficient because n is the communication delay. When steering
action for a string of length 2n is received by the system, the system must have
executed the action for strings of length n(steerer generates steering actions
for strings of length 2n after the system reaches states corresponding to strings
of length n). All strings of length less than n cannot be associated with any
steering action and hence will hash into a single slot.

Let, m+1 be the total size of the hash table where m/n is an integer. The
size of each region is m/n and slot 0 will be used to hash all strings of length
less than n. The hash function is then given by,

h(res, i) = 0 i ≤ (n − 1)
= (res mod m/n) + ((i mod n)(m/n)) + 1 otherwise

The relation between res and i in the hash function is given by (ki −
1)/(k − 1) ≤ res ≤ (ki − 1). The average chain length at each slot is α =
O(((k−1)n)n/m) because the maximum number of strings that can hash into
a single region is always (k−1)n(steerer generates steering actions for runtime
states in C using Gs0

and has complete knowledge of the execution trace upto
s0. The length of any event string originating from s0 and terminating in some
state in C is always n).

9

Easwaran and Kannan and Sokolsky

Splitting the hash table into n regions up front can lead to under utilization
of the hash table. The modified hash function which splits the hash table
dynamically is given by,

h(res, i, j) = 0 i ≤ (n − 1)
= (res mod m/j) + ((i mod n)(m/j)) + 1 otherwise

The steerer will now send the entire hash table to the system every time it
generates new steering actions. In practice, violating states are a small subset
of the state space and hence the number of entries in the hash table will be
small. The steerer also sends the number of regions j into which the hash
table is currently split.
Advantages This paradigm does not impose any restrictions on the system
model.
Disadvantages There is an overhead on the system for storing the hash table
and for computing the hash function.

6.1.1 System correctness

System correctness depends on the interaction between event strings that par-
ticipate in a collision in the hash table. A conflict occurs between two colliding
strings only when an event disabled by the steering action of one string is re-
quired to be enabled in the other. We make a pessimistic assumption that
two colliding strings lead to incorrect control when either of them have any
steering action associated with them. Let, h denote the number of hash slots
in each region of the hash table, p the average number of strings hashing into
a region and d the average number of strings that have steering actions as-
sociated with them. Let the set of event strings that have steering actions
associated be denoted by D. Assuming simple uniform hashing, the probabil-
ity of collision between any two strings res1, res2 hashing into the same region
and having same length i is Prob{h(res1, i) = h(res2, i)} = 1/h. The probabil-
ity that the system during its execution generates one of the strings from res1

and res2 is Prob{ System generates res1 ∨ res2} = 2/p. Using our assumption,
the probability that res1 and res2 conflict is given by,

Prob{res1, res2 conflict |(res1 ∈ D) ∨ (res2 ∈ D)} = 1
Prob{res1, res2 conflict |(res1 6∈ D) ∧ (res2 6∈ D)} = 0

Given n is the number of regions in the hash table and Prob{Region fails}
is the probability of failure(colliding and conflicting strings) in one region, the
probability that the steered system is correct is,

Prob{System correct} = [1 − Prob{Region fails}]n

Now, Prob{Region fails} = Prob{h(res1, i) = h(res2, i)} × Prob{ System
generates res1 ∨ res2} × Prob{res1, res2 conflict }

10

Easwaran and Kannan and Sokolsky

= 1/h× 2/p× [Prob{res1, res2 conflict |res1 ∈ D or res2 ∈ D}× Prob{res1 ∈ D
or res2 ∈ D}+Prob{res1, res2 conflict |res1 6∈ D and res2 6∈ D}× Prob{res1 6∈ D
and res2 6∈ D}]

= 1/h × 2/p × [Prob{res1 ∈ D or res2 ∈ D} + 0]
= 1/h × 2/p × [1 − Prob{res1 6∈ D and res2 6∈ D}]
= 2/(hp)[1−

(

p−d

2

)

/
(

p

2

)

]

Therefore, Prob{Region fails} = 2/(hp)[d(2p − d − 1)/p(p − 1)]
Hence, Prob{System correct} = [1 − (2/(hp)[d(2p − d − 1)/p(p − 1)])]n

6.2 Constrained System Model

In this steering paradigm we reduce the steering overhead on the system by
constraining the system model. A constrained model will provide opportu-
nities for automated activation and deactivation of steering actions. Let,
Pn1,n2

(s) = s.s′ such that n1 ≤ |s′| ≤ n2 where s, s′ ∈ Σ∗ and |s′| denotes
length of string s′. Also, let Gs0

be the original system, F be the final states
of Gs0

and G
′

s0
be the steered system.

6.2.1 Paradigm 2: Event Trace based Steering

In this approach, the steerer sends the disabled event set Σd and its observed
event trace s0 to the system. The system compares its own event trace with
the trace sent by the steerer and determines the distance to C(states where
steering actions must be executed) for that steering action. It stores this
distance along with the steering action and decrements the distance at the
occurance of each event. When this distance reduces to zero, the corresponding
steering action is executed. Deactivation can be done at the occurance of any
further event. When the steering action is executed, the system could be in
any state in C. To ensure correctness, the system model must satisfy the
observability condition given in Section 5.1 where K̄ = G

′

s0
, M = Gs0

and all
strings in Gs0

are equivalent under projection P .

Advantages This paradigm imposes less overhead on the system as com-
pared to hashing.

Disadvantages The system must store its event trace and also update the
distance metric for all the stored steering actions at the occurance of every
event. The system model is also constrained by the observability condition.

6.2.2 Paradigm 3: Steering with Observability Condition and Minimum Sep-
aration

In this paradigm, the system will disable all the events in Σd as soon as it
receives the steering action 〈A, N, Ed, Ee〉(N not required). To ensure admis-
sibility of the steering action, the system model must satisfy the observability
condition as in paradigm 2. The system will deactivate the steering action as

11

Easwaran and Kannan and Sokolsky

soon as any event in Σd∪Σe occurs. A minimum separation property of events
in the model will ensure correctness of this deactivation procedure. Minimum
separation is given by,

∀sσ ∈ (Gs0
∩ F), P0,n−1[s0]σ ∩ Gs0

= φ

This property ensures that no event in Σd ∪ Σe will occur in any of the tran-
sitions with source states in S ′ \ (F ∪ C).

Advantages Event traces are not required to be stored by the system in
this paradigm. The steering overhead on the system is also minimal.

Disadvantages The steerer is required to send both the event sets Σd and
Σe. The system model is also severely constrained.

6.2.3 Paradigm 4: Steering with Stringent Observability Condition

In this approach, the system will disable all the events in Σd as soon as it
receives the steering action 〈A, N, Σd, Σe〉(Σe is empty). When the steerer
sends the activation signal, it stores the action number N alongwith the cor-
responding set of final states F of G

′

s0
. When the steerer receives an event

notification, it checks if the current state matches with any state in F for any
action number. If such a match occurs for action number N , the steerer sends
the deactivation signal 〈D, N〉. On receiving a deactivation signal, the sys-
tem deactivates the steering action specified by the action number. To ensure
admissibility of steering actions, the system model must satisfy a modified
observability condition given by,

∀s ∈ G
′

s0
, ∀σ ∈ Σ, (sσ 6∈ G

′

s0
) ∧ (sσ ∈ Gs0

) ⇒ P0,2n[s0]σ ∩ G2
s0

= φ where

G2
s0

is the steered runtime DES originating from s0 and having depth 2n + 1.
When the system receives the activation signal, it could be in any of the states
in S ′ \ F and when it receives the deactivation signal it could be in any state
which is at a distance of atmost n steps from some state in F . The modified
observability condition ensures that if σ ∈ Σd, then all the σ transitions in
this entire region are disabled.

Advantages This paradigm induces minimal steering overhead on the
system. The restriction on the system model is less stringent than in paradigm
3.

Disadvantages The steerer has to send deactivation signals and also needs
additional storage for previously sent activation signals.

7 Illustrative Example

In this section, we apply steering paradigm 4 to an example of a simple subway
system [3]. We demonstrate the ability of our architecture to prevent the
subway system from entering violations and highlight the constraints that the

12

Easwaran and Kannan and Sokolsky

T3

T2

T1

T6

T7
J2J1S1 S2

Fig. 5. Subway System

steering paradigm enforces on the system model.

7.1 Simple Subway System

As shown in Figure 5, a subway system consists of stations, junctions, trains
and a set of tracks with directions. Each train is represented by its source
station, destination station and a route. We assume each track is further
divided into 4 sections. This is a good example for dynamic control because
the state space grows with the number of trains in the system and this in
general can be very large.

Safety properties for this subway system may include,

(i) Limit on the maximum number of trains at any given time at any junc-
tion. For example, let one safety property be “Junction J1 has capacity
for only 2 trains at any given time”

(ii) Balanced usage of tracks in the system. For example, let the system
be constrained by the property that “The difference in loads(number of
trains that have used the track) in tracks T6 and T7 must never exceed
4”.

We would like to steer the system and prevent it from violating any of
these safety properties. We assume that the round-trip communication delay
between the steerer and the subway system is n = 1.

7.2 Steering of Subway System

Let, α(i, j, k) represent the event that train k enters section j of track i and
α(i, 5, k) represent the event that train k left track i and entered a junction
or a station. Let for example, the system consist of three trains X, Y and Z.
Assume train X executed event α(1, 4, X) and Y executed event α(2, 4, Y)
most recently. Let train Z be currently at junction J1 and let s represent
this state of the combined system. At this state, the system can violate safety
property 1 in n + 1 = 2 steps(both X and Y decide to enter J1 without
train Z leaving it). Hence the steerer, under paradigm 4, will disable events
α(1, 5, X) and α(2, 5, Y) at state s as shown in Figure 6. Train Z could
move to section 1 of track T3 before trains X and Y arrive at junction J1
and this will ensure that property 1 is not violated. But for admissibility of
the steering action under paradigm 4, the system must satisfy observability
condition specified in section 6.2.3. This condition would require that events
α(1, 5, X) and α(2, 5, Y) be disabled in all states which are at most n + 1 = 2
steps from s as shown in Figure 6. If we use hashing based steering(Paradigm

13

Easwaran and Kannan and Sokolsky

α(1,5,Χ)

α(1,5,Χ)

α(3,1,Ζ)

Steering action = Disable

α(1,5,Χ), α(2,4,Υ), α(1,5,Ζ) α(1,4,Χ), α(2,5,Υ), α(1,5,Ζ) α(1,4,Χ), α(2,4,Υ), α(3,1,Ζ)

α(1,5,Χ), α(2,5,Υ), α(1,5,Ζ) α(1,4,Χ), α(2,5,Υ), α(3,1,Ζ)

α(2,5,Υ) α(2,5,Υ)

Unsafe State : disabled Safe State : disabled

α(1,5,Χ), α(2,5,Υ)

α(1,4,Χ), α(2,4,Υ), α(1,5,Ζ)

α(2,5,Υ)

Fig. 6. Paradigm 4 applied to Safety Property 1

α(3,4,Α), β_Β

α(3,5,Α), β_Β

β_Β

Safe state : enabledUnsafe state : disabled

α(3,4,Α), α(6,5,Β)

α(3,5,Α), α(6,5,Β)

α(6,1,Α), α(6,5,Β)

α(6,1,Α)

Steering action = Disable α(1,6,Α)

α(3,5,Α)

α(3,5,Α)

Fig. 7. Paradigm 4 applied to Safety Property 2

1), valid executions are no longer required to be disabled but this technique
does induce additional overhead on the system.

Let, βk represent the event that train k enters track T7 from S2 and γk

be the event that train k enters track T7 from J2 . Safety property 2 can
now be written as −4 ≤ (|β| + |γ| − |α(6, 1, ∗)|) ≤ 4 where |e| represents
the number of occurrences of event e(ignoring train numbers) in the system
execution history. Let, the system currently consist of trains A and B only
where train A has executed event α(3, 4, A) most recently and train B is at
station S2. Also, let the current value of (|β|+ |γ| − |α(6, 1, ∗)|) be −4. Now,
if train A enters track T6 before train B enters track T7, safety property 2
will be violated. To prevent this, the steerer will disable event α(6, 1, A) at
the current state. The observability condition in section 6.2.3 does not block
safe states in this case as shown in Figure 7.

8 Conclusion and Future Work

In this paper, we have introduced an architecture for steering of DES with
large state spaces and also described different steering paradigms for execution
of steering actions. Runtime monitors equipped with steerers will be able
to predict occurrence of violations well in advance to be able to steer the
system away from them. The paper, essentially views the steerer as a dynamic
controller that uses the runtime verifier as a sub-module to predict violations.
If the violations are restricted to a small subset of the state space, then this
architecture will provide efficient steering for DES with large state spaces.

14

Easwaran and Kannan and Sokolsky

Generation of the partial system model for time varying systems is an
important extension for this steering architecture. Extending the steering
architecture to models where not all transitions are controllable is also a nat-
ural area to explore because in a typical system not all execution points are
controllable. Reducing steering overhead by using probabilistic prediction of
violations is another direction for further work.

References

[1] Giorgio Buttazzo and Luca Abeni. Adaptive workload management through
elastic scheduling. Real-Time Systems, 23(1-2):7–24, 2002.

[2] Christos G. Cassandras and Stephane Lafortune. Introduction to Discrete Event

Systems. Kluwer Academic Publishers, Norwell, Massachussetts, 1999.

[3] Sheng-Luen Chung, Stephane Lafortune, and Feng Lin. Limited lookahead
policies in supervisory control of discrete event systems. In IEEE Transactions

on Automatic Control, volume 37. IEEE, 1992.

[4] Sheng-Luen Chung, Stephane Lafortune, and Feng Lin. Supervisory control
using variable lookahead policies. In Proceedings of Discrete Event Dynamic

Systems. Kluwer, 1994.

[5] M. S. Feather, S. Fickas, A. van Lamsweerde, and C. Ponsard. Reconciling
system requirements and runtime behaviour. 9th International Workshop on

Software Specification and Design, Apr 1998.

[6] Nejib Ben Hadj-Alouane, Stephane Lafortune, and Feng Lin. Variable
lookahead supervisory control with state information. In IEEE Transactions

on Automatic Control, volume 39. IEEE, 1994.

[7] Yinghua Jia and Joanne M. Atlee. Run-time management of feature
interactions. ICSE Workshop on Component based Software Engineering, May
2003.

[8] Moonjoo Kim, Insup Lee, Usa Sammapun, Jangwoo Shin, and Oleg Sokolsky.
Monitoring, checking, and steering of real-time systems. In Electronic Notes in

Theoretical Computer Science, volume 70. Elsevier, 2002.

[9] Ratnesh Kumar and Vijay K. Garg. Modeling and Control of Logical Discrete

Event Systems. Kluwer Academic Publishers, Norwell, Massachussetts, 1995.

[10] Oleg Sokolsky, Sampath Kannan, Moonjoo Kim, Insup Lee, and Mahesh
Viswanathan. Steering of real-time systems based on monitoring and checking.
Fifth International Workshop on Object-Oriented Real-Time Dependable

Systems, 1999.

15

Easwaran and Kannan and Sokolsky

A Equivalence of Observability Conditions

The observability condition given in [2] can be stated as,

K is said to be observable with respect to M and P if

∀s ∈ K̄ ∧ ∀σ ∈ Σ, (sσ 6∈ K̄) ∧ (sσ ∈ M) ⇒ P−1[P (s)]σ ∩ K̄ = φ (A.1)

The observability condition given in [9] can be defined as,

K is observable with respect to M and P if and only if

supP (P i(K̄)) ∩ M ⊆ K̄ (A.2)

We first prove some lemmas which will then be used to prove the equiva-
lence of Eq. (A.1) and Eq. (A.2).

Lemma A.1 Eq. (A.1) ⇔ [∀sσ, σ ∈ Σ, [(s ∈ K̄)∧(sσ ∈ M)∧(∃s′σ ∈ K̄, s′σ ∈
P i(sσ))] ⇒ (sσ ∈ K̄)]

Proof. From Eq. (A.1) we have,
∀s ∈ K̄ and ∀σ ∈ Σ, (sσ 6∈ K̄) ∧ (sσ ∈ M) ⇒ P−1[P (s)]σ ∩ K̄ = φ
⇔ ∀s ∈ K̄ and ∀σ ∈ Σ, (sσ 6∈ K̄) ⇒ (sσ 6∈ M)∨(∀s′σ ∈ K̄, s′σ 6∈ P−1[P (s)]σ)
⇔ ∀s ∈ K̄ and ∀σ ∈ Σ, ((sσ ∈ M) ∧ (∃s′σ ∈ K̄, s′σ ∈ P i(sσ)) ⇒ (sσ ∈ K̄))

⇔ ∀sσ, σ ∈ Σ, ((s ∈ K̄) ∧ (sσ ∈ M) ∧ (∃s′σ ∈ K̄, s′σ ∈ P i(sσ)) ⇒ (sσ ∈ K̄))
(A.3)

Thus Eq. (A.1) ⇔ Eq. (A.3) and this proves Lemma A.1 2

Lemma A.2 sσ ∈ P i(s′σ) ⇔ s′σ ∈ P i(sσ)

Proof. We now prove that sσ ∈ P i(s′σ) implies s′σ ∈ P i(sσ). From the
definition of P i(.),

sσ ∈ P i(s′σ) ⇒ s ∈ P−1[P (s′)] ⇒ s′ ∈ P−1[P (s)] ⇒ s′σ ∈ P−1[P (s)]σ ⇒
s′σ ∈ P i(sσ).

The other direction can be proved similarly. 2

Lemma A.3 Eq. (A.3) ⇔ ∀sσ, σ ∈ Σ, ((s ∈ K̄) ∧ (sσ ∈ M) ∧ (sσ ∈
supP (P i(K̄))) ⇒ (sσ ∈ K̄))

Proof. From Eq. (A.3) we have,
∀sσ, σ ∈ Σ, ((s ∈ K̄) ∧ (sσ ∈ M) ∧ (∃s′σ ∈ K̄, s′σ ∈ P i(sσ)) ⇒ (sσ ∈ K̄))

From Lemma A.2 we have,
⇔ ∀sσ, σ ∈ Σ, ((s ∈ K̄) ∧ (sσ ∈ M) ∧ (∃s′σ ∈ K̄, sσ ∈ P i(s′σ)) ⇒ (sσ ∈ K̄))
⇔ ∀sσ, σ ∈ Σ, ((s ∈ K̄) ∧ (sσ ∈ M) ∧ (sσ ∈ P i(K̄)) ⇒ (sσ ∈ K̄))

16

Easwaran and Kannan and Sokolsky

K̄ is prefix closed and hence we get,

⇔ ∀sσ, σ ∈ Σ, ((s ∈ K̄) ∧ (sσ ∈ M) ∧ (sσ ∈ supP (P i(K̄))) ⇒ (sσ ∈ K̄))
(A.4)

Thus Eq. (A.3) ⇔ Eq. (A.4) and this proves Lemma A.3. 2

We now prove the following theorem,

Theorem A.4 The observability conditions given by Eq. (A.2) and Eq. (A.1)
are equivalent.

Proof. Equation (A.2) ⇒ Equation (A.1)

From Eq. (A.2) we have, supP (P i(K̄)) ∩ M ⊆ K̄

⇒ (∀sσ, σ ∈ Σ, [(sσ ∈ (supP (P i(K̄)))) ∧ (sσ ∈ M)] ⇒ (sσ ∈ K̄))

Now, sσ ∈ (supP (P i(K̄))) ⇒ ∃s′σ ∈ K̄, sσ ∈ P i(s′σ) ⇒ ∃s′σ ∈ K̄, s′σ ∈
P i(sσ)

Also, ∀t such that t is a prefix of sσ, (t ∈ M) ∧ (t ∈ supP (P i(K̄))). Us-
ing this and Eq. (A.2) we get, s ∈ K̄.

Therefore Eq. (A.2) implies that,

∀sσ, σ ∈ Σ, ((s ∈ K̄) ∧ (sσ ∈ M) ∧ (∃s′σ ∈ K̄, s′σ ∈ P i(sσ)) ⇒ (sσ ∈ K̄))

But this is Eq. (A.3) and using Lemma A.1 we have Eq. (A.2) ⇒ Eq. (A.1).

Equation (A.1) ⇒ Equation (A.2)

From Lemma A.1 and A.3 we have, Eq. (A.1) is equivalent to Eq. (A.4).
Hence to prove Eq. (A.1) ⇒ Eq. (A.2) we prove Eq. (A.4) ⇒ Eq. (A.2). i.e.,
we prove ¬Eq. (A.2) ⇒ ¬Eq. (A.4).

From Eq. (A.2) we have, supP (P i(K̄)) ∩ M ⊆ K̄
⇔ [∀s [(s ∈ (supP (P i(K̄)))) ∧ (s ∈ M)] ⇒ (s ∈ K̄)]

Therefore, ¬Eq. (A.2) is given by,

∃s, (s ∈ (supP (P i(K̄)))) ∧ (s ∈ M) ∧ (s 6∈ K̄)

⇒ ∃s′α, α ∈ Σ, (s′α 6∈ K̄) ∧ (s′ ∈ K̄) ∧ (s′α ∈ M) ∧ (s′α ∈ supP (P i(K̄)))
where

s′α is the smallest prefix of s such that s′ ∈ K̄ and s′α 6∈ K̄(since s 6∈ K̄
, s ∈ M and s ∈ supP (P i(K̄)) such a prefix exists).

This is equivalent to ¬Eq. (A.4). Hence, ¬Eq. (A.2) ⇒ ¬Eq. (A.4) which
using Lemma A.1 and A.3 gives Eq. (A.1) ⇒ Eq. (A.2). 2

17

	University of Pennsylvania
	ScholarlyCommons
	7-12-2005

	Steering of Discrete Event Systems: Control Theory Approach
	Arvind Easwaran
	Sampath Kannan
	Oleg Sokolsky
	Recommended Citation

	Steering of Discrete Event Systems: Control Theory Approach
	Abstract
	Keywords
	Disciplines
	Comments

	Introduction
	Motivation
	Scheduling of real-time tasks using actual execution time
	Reconciling System Requirements at run-time
	Inverted Pendulum

	Problem Statement
	Steering for DES with large state spaces

	Steering Architecture for DES
	Steering Architecture

	Control Theory based Steering
	Steering of runtime DES as a Static Control Problem

	Steering Paradigms
	Paradigm 1: Unconstrained System Model(Hashing based Steering)
	Constrained System Model

	Illustrative Example
	Simple Subway System
	Steering of Subway System

	Conclusion and Future Work
	References
	Equivalence of Observability Conditions

