
University of Pennsylvania
ScholarlyCommons

Departmental Papers (CIS) Department of Computer & Information Science

3-29-2006

R-Charon, a Modeling Language for
Reconfigurable Hybrid Systems
Fabian Kratz
Eindhoven University of Technology (TU/e), Eindhoven, The Netherlands

Oleg Sokolsky
University of Pennsylvania, sokolsky@cis.upenn.edu

George Pappas
University of Pennsylvania, pappasg@cis.upenn.edu

Insup Lee
University of Pennsylvania, lee@cis.upenn.edu

Postprint version. Published in Lecture Notes in Computer Science, Volume 3927, Hybrid Systems: Computation and Control, 2006, pages 392-406.
Publisher URL: http://dx.doi.org/10.1007/11730637_30

This paper is posted at ScholarlyCommons. http://repository.upenn.edu/cis_papers/257
For more information, please contact repository@pobox.upenn.edu.

http://repository.upenn.edu
http://repository.upenn.edu/cis_papers
http://repository.upenn.edu/cis
http://repository.upenn.edu/cis_papers/257
mailto:repository@pobox.upenn.edu

R-Charon, a Modeling Language for Reconfigurable Hybrid Systems

Abstract
This paper describes the modeling language as an extension for architectural reconfiguration to the existing
distributed hybrid system modeling language Charon. The target application domain of R-Charon includes
but is not limited to modular reconfigurable robots and large-scale transportation systems. While largely
leaving the Charon syntax and semantics intact, R-Charon allows dynamic creation and destruction of
components (agents) as well as of links (references) between the agents. As such, R-Charon is the first formal,
hybrid automata based modeling language which also addresses dynamic reconfiguration. We develop and
present the syntax and operational semantics for R-Charon on three levels: behavior (modes), structure
(agents) and configuration (system).

Comments
Postprint version. Published in Lecture Notes in Computer Science, Volume 3927, Hybrid Systems:
Computation and Control, 2006, pages 392-406.
Publisher URL: http://dx.doi.org/10.1007/11730637_30

This conference paper is available at ScholarlyCommons: http://repository.upenn.edu/cis_papers/257

http://repository.upenn.edu/cis_papers/257

R-Charon, a Modeling Language for
Reconfigurable Hybrid Systems?

Fabian Kratz1, Oleg Sokolsky2, George J. Pappas2, and Insup Lee2

1 Eindhoven University of Technology (TU/e), Eindhoven, The Netherlands
2 University of Pennsylvania, Philadelphia, USA

Abstract. This paper describes the modeling language R-Charon as an
extension for architectural reconfiguration to the existing distributed hy-
brid system modeling language Charon. The target application domain
of R-Charon includes but is not limited to modular reconfigurable robots
and large-scale transportation systems. While largely leaving the Charon
syntax and semantics intact, R-Charon allows dynamic creation and de-
struction of components (agents) as well as of links (references) between
the agents. As such, R-Charon is the first formal, hybrid automata based
modeling language which also addresses dynamic reconfiguration. We de-
velop and present the syntax and operational semantics for R-Charon on
three levels: behavior (modes), structure (agents) and configuration (sys-
tem).

1 Introduction

A hybrid system typically consists of a collection of components interacting
with each other and with an analog environment. In many real world systems,
the collection of components as well as the components they interact with may
change dynamically, i.e., reconfigure [1].

In the world of software design the concept of reconfiguration is well recog-
nized. Object orientation is (becoming) the main design and implementation
paradigm. Creation and destruction of objects as well as changing the commu-
nication structure of the objects are at the core of the object oriented design
paradigm.

Traditional object oriented design methodologies and languages, however,
only support the modeling of discrete systems. Despite the growth of hybrid
modeling languages [2–6], most hybrid modeling languages do not support re-
configuration. To properly describe and analyze reconfigurable hybrid systems, a
formal approach is necessary which integrates reconfigurable discrete behaviors
with continuous behaviors. In this paper we present a reconfiguration extension
for the hierarchical hybrid modeling language Charon [2, 3].

Charon is a hybrid modeling language with support for architectural as well
as behavioral hierarchy. The building block for describing a system architecture
? This research was supported in part by NSF CNS-0509327 and ARO DAAD19-01-

1-0473.

2

is an agent, which can communicate with other agents. Concurrency of agents
and hiding of information is provided by a composition and a hiding operator.
The building block for describing behavior in an agent is a mode. A mode is
a hierarchical hybrid state machine, i.e., it can have submodes and transitions
connecting them. An agent alternates between taking a discrete and a continuous
step. A discrete step consists of a series of transitions leading from the currently
active atomic mode, to another atomic mode. This flow of control is determined
by mode invariants, transition guards, and transition actions possibly changing
mode variables. A continuous step amounts to passage of time, during which the
continuous variables evolve according to the algebraic and differential constraints
of the active modes.

There could be many notions of (re)configuration for hybrid systems. We fo-
cus on reconfiguration in two, in a sense similar, application domains: large-scale
transportation systems and modular reconfigurable robots. A transportation sys-
tem typically consists of a large number of possibly mobile entities, competing for
bounded resources. These entities can enter and leave an environment dynam-
ically. Furthermore, (groups of) entities nearing each other may dynamically
set up a communication connection to prevent a collision or to continue as a
group to allow for a more efficient use of the resources. Examples of large-scale
transportation systems include highway control systems [7], unmanned aerial
vehicles [8], and air traffic control systems [9]. A modular robot is built up from
homogeneous modules which can be connected to each other [10, 11]. Typically
there are only a few different types of modules, where each type is designed to
be very orthogonal with respect to the connection to other modules. In this way
a number of many relative simple modules can be connected to form a sophisti-
cated robot. A comprehensive overview of the different existing modular robot
systems can be found in Chapter 4 of [12].

The main contribution of this paper is the formal definition of R-Charon and
its features. In addition to the Charon features, our extension supports agent
creation and destruction as well as dynamic communication connections between
the agents. This makes R-Charon the first formal, hybrid automata based mod-
eling language with explicit support for reconfiguration. We used two guidelines
in the design of R-Charon: minimize the amount of changes to Charon and min-
imize the number of restrictions on the use of the syntax. Note that the latter
comes at the expense of more sophisticated semantics.

Related work. An early approach to hierarchical hybrid modeling with sup-
port for reconfiguration is SHIFT [13]. R-Charon is inspired by its features while
enjoying the formal Charon semantics. The Φ-calculus [6] is a process algebraic
based hybrid reconfigurable modeling language. As an extension of Milner’s π-
calculus [14] it inherits the powerful reconfiguration primitives on process algebra
terms. However, as pointed out in [4] the Φ-calculus considers continuous be-
havior to be a property of an explicit environment instead of being part of an
agent as we do. Furthermore a process algebraic approach has the disadvantage
that it is difficult to learn and use due to some of its technicalities [15]. Besides
a hybrid extension to I/O Automata [5], also a reconfiguration extension [16]

3

exists, though not both are combined into a single framework. Some work has
been done on reconfiguration in discrete state machines [17] for programmable
hardware. The state machines are reconfigured by adding and removing states
and transitions, i.e., take place at the behaviorial level in contrast to the archi-
tectural level we aim at.

2 Reconfiguration

Before we present R-Charon, we first formalize the notion of reconfiguration we
use. The definition is based on the reconfiguration possibilities of modular robots
and large-scale transportation systems, and is inspired by SHIFT [13].

A model of a system consists of a set of components C. Each component
c ∈ C consists of a single set of links L, containing links to other components
to which the component is either logically or physically connected. The set of
links L of a specific component c is denoted by c.L. A component c having at
least one link to a component d, means that c can communicate with d, where
we consider linking not to be reciprocal.

Given a system with a set of components C, the reconfiguration primitives
given below can take place. More complex operations can be performed by a
series of primitives. Since a reconfiguration-only view is presented, the time
instant or the event at which the reconfiguration happens is not relevant.

1. Adding a component: A component c ∈ C can create a new component
cnew and add it to the set C, i.e., C := C ∪ {cnew}. As a consequence
components can now link to cnew. We assume that cnew is of a certain type,
which is known beforehand and defines the structure of the new component.

2. Removing a component: A component c ∈ C can remove an arbitrary
cr ∈ C from the set C, i.e., C := C − {cr}.

3. Adding a link: A component c ∈ C can add an arbitrary ca ∈ C to its
set c.L, i.e., c.L := c.L ∪ {ca}. As a consequence component c can now
communicate with ca.

4. Removing a link: A component c ∈ C can remove an arbitrary cr ∈ c.L
from c.L, i.e., c.L := c.L− {cr}.

The configuration of the world is determined by the set of components C
and the specific values of the sets of links L of all components. To keep a system
consistent after removal of a component, all links to the removed component are
removed as well.

3 Application Example

In this section we present an application example that exhibits the new fea-
tures of R-Charon. In the course of the example, we introduce some graphical
R-Charon syntax, and point out the difficulties in defining the semantics for R-
Charon. Our example is inspired by next generation air-traffic control supporting

4

free flight for commercial airplanes [9], which allows airplanes to navigate them-
selves to their target with minimal air-traffic control interaction. We focus on
a section of airspace (center) in which airplanes enter and leave, see Figure 1.
The center has a designated no-fly zone, e.g. a military training operation area
off limit to commercial airplanes. In case an airplane approaches the designated
no-fly zone, ground control takes over the navigation of the airplane by giving
way-points, directing the airplane around the no-fly zone. Collision avoidance is
not considered in this example.

leave
airspace

enter
airspace

Fig. 1. Air-traffic control example

Airplane3

CAV(Auto)
Pilot

ADS-B
Datalink C

ontroller

Airplane2

CAV(Auto)
Pilot

ADS-B
Datalink

Airplane1

...(Auto)
Pilot

...

Ground control

Center

Fig. 2. Configuration snapshot

Figure 2 presents a snapshot of the hierarchical agents and the configuration
of the system. The arrows originating from a white box depict the links from
one agent to another. The Center agent represents the section of the airspace
and stores links to all airplanes in the airspace. Airplanes entering and leav-
ing the center are modeled by creation and destruction of Airplane agents. The
Ground control agent monitors the airspace in the center. In case an Airplane
agent approaches the no-fly zone, the Ground control agents creates a new con-
troller agent. The Controller agent contacts the corresponding airplane and
guides it around the no-fly zone. As in Charon, each agent consists of one or more

(Auto)Pilot

dif{ d(pos) == v * SPEED }

global Real ID
(Real,Real) pos[X,Y]
(Real,Real) v[X,Y]
ICenter ctr
IController c

local (Real, Real) tar[X,Y]

Ground control guided

alg{ v == f (c.tar, pos) }

inv{ c.release == False }

Free flight

alg{ v == g (tar, pos)

inv{ c == ε }

c.release == True
destroy (c)

Ground control

Monitor center
...

local IAirplane nfzPlane
ICenter ctr
IController newController

create(newController,
(ctr := this.ctr; release := False;
 tar := (0,0); plane := nfzPlane),
Controller)

Controller global (Real, Real) tar
local ICenter ctr

IAirplane plane

Guide plane

inv{ plane <> ε }

plane.con := this

plane = ε
destroy(this)

destroy(this)

nfzPlane <> ε

c <> ε

distance(pos, tar) < 1
destroy(this)

distance(pos, tar) < 1
destroy(this)

(Auto)Pilot

dif{ d(pos) == v * SPEED }

global (Real,Real) pos[X,Y]
(Real,Real) v[X,Y]
IController con

local (Real, Real) tar[X,Y]

Ground control guided
alg{ v == g (con.tar, pos) }
inv{ con <> ε }

Free flight
alg{ v == f (tar, pos)
inv{ con == ε }

con = εcon <> ε

distance(pos, tar) < 1
destroy(this)

distance(pos, tar) < 1
destroy(this)

Fig. 3. Top-level modes of a Ground control and Controller agent

top-level modes, which can contain submodes. Figures 3 and 4 depict simplified

5

views of the top-level modes of a Ground control agent, a Controller agent,
and a number of Airplane agents, respectively. Modes not specified in detail are
marked with a fat line. Assume that in the mode Monitor center , an airplane
approaching the no-fly zone will be assigned to the nfzPlane reference variable.
This triggers the creation of a new controller referred to by the newController
variable. In the discrete initialization step of a Controller agent, the no-fly zone
violating airplane is notified by setting a reference of the Airplane agent to itself.
Note that this reference represents a link from Airplane to Controller . The air-
plane switches to Ground control guided mode and follows a target coordinate
given by the controller, which is computed in the Guide plane mode. As soon as
either the airplane leaves the center or the controller decides that the airplane
has maneuvered successfully around the no-fly zone, the controller is destroyed.
In the latter case, the airplane switches back to the Free flight mode.

(Auto)Pilot

dif{ d(pos) == v * SPEED }

global Real ID
(Real,Real) pos[X,Y]
(Real,Real) v[X,Y]
ICenter ctr
IController c

local (Real, Real) tar[X,Y]

Ground control guided

alg{ v == f (c.tar, pos) }

inv{ c.release == False }

Free flight

alg{ v == g (tar, pos)

inv{ c == ε }

c.release == True
destroy (c)

Ground control

Monitor center
...

local IAirplane nfzPlane
ICenter ctr
IController newController

create(newController,
(ctr := this.ctr; release := False;
 tar := (0,0); plane := nfzPlane),
Controller)

Controller global (Real, Real) tar
local ICenter ctr

IAirplane plane

Guide plane

inv{ plane <> ε }

plane.con := this

plane = ε
destroy(this)

destroy(this)

nfzPlane <> ε

c <> ε

distance(pos, tar) < 1
destroy(this)

distance(pos, tar) < 1
destroy(this)

(Auto)Pilot

dif{ d(pos) == v * SPEED }

global (Real,Real) pos[X,Y]
(Real,Real) v[X,Y]
IController con

local (Real, Real) tar[X,Y]

Ground control guided
alg{ v == g (con.tar, pos) }
inv{ con <> ε }

Free flight
alg{ v == f (tar, pos)
inv{ con == ε }

con = εcon <> ε

distance(pos, tar) < 1
destroy(this)

distance(pos, tar) < 1
destroy(this)

Fig. 4. Top-level mode of an airplane agent

The most prominent semantic difficulties are related to agent creation and
destruction. With agent creation the question arises when new agents take their
discrete initialization step. Moreover, agent creation during initialization of a
created agent leads to questions about creation and initialization order. With
agent deletion the question arises how and when to update affected reference
variables to reflect the deletion. The common difficulty lies in the compositional
and hierarchial structure of Charon and the fact that creation or destruction is
an action of a mode that has an effect on the much higher system level.

4 R-Charon

4.1 Notation

Let T be a tuple (t1, t2, . . . , tn). The ith element of T is identified by T.ti. In
other words, the tuple element-names are used as record names and the period is
used as a selector operator. This notation is extended to sets of tuples as follows.
Let ST be a set of tuples with the same structure. The shorthand notation ST.ti
with ti a set will be used for

⋃
T∈ST

T.ti.

6

Let V be a set of typed variables. A valuation for V is a function mapping
from V to values, where the mapping is assumed to be type correct. The set of
valuations over V is denoted QV . Restriction of a valuation q ∈ QV to a set of
variables W ⊆ V is denoted as q[W]. Function application of a valuation q ∈ QV

to a variable v ∈ V is written as q(v) and returns the value of the variable v.
A flow for a set V of variables is a differentiable function f from a closed

interval of non-negative reals to the set of valuations: f : [0, δ] → QV , with δ ≥ 0
the duration of the flow. The set of all flows for V is denoted as FV . Restriction
of a flow f ∈ FV to a set of variables W ⊆ V is denoted as f [W].

A list l with elements a1, . . . , an is written as 〈a1, . . . , an〉. A list with zero
elements is written as 〈 〉. Concatenation of two lists la = 〈a1, . . . , an〉, lb =
〈b1, . . . , bm〉 is denoted by la a lb and results in the list 〈a1, . . ., an, b1, . . ., bm〉.

4.2 Syntax

The syntax of Charon is extended to accommodate the proposed (re)configuration
concept. The syntax is presented in a top-down fashion. Although counterintu-
itive for a modular modeling language, this approach is more suitable since the
reconfiguration infrastructure is defined on the higher system and agent levels
and used in the lower mode level.

System. The components of Section 2 are mapped onto Charon agents. Con-
sequently, agents can be created and destroyed. Moreover, when creating new
agents dynamically, the structure of the agent has to be known beforehand. To
capture the dynamic set of agents and the possible structures of new agents, we
define an R-Charon system as:

Definition 1 (System). An R-Charon system is a tuple (S,A), where S is a
set of structures and A is a set of parallelly composed agents. Each agent is an
instantiation of a structure from the set S.

Structures and Agents. Assume that a system Sys = (S,A) is given. A
structure is then defined as:

Definition 2 (Structure). A structure S ∈ S is a tuple (TM,V), where TM
is a set of top-level modes and V is a set of typed variables.

A structure is a blueprint for agents. The set of top-level modes consists of
R-Charon modes, which are Charon modes extended as described in the mode
syntax section further below. The top-level modes of the structure collectively
define the behavior of each R-Charon agent which is an instance of the structure.
The set of variables V is partitioned into two sets: a set of local variables Vl and
a set of global variables Vg. All global variables of the structure have to originate
in some top-level mode, i.e., Vg ⊆ TM.Vg. As in Charon, a variable can be of
any type, as long as it has a type correct valuation.

To facilitate the concept of adding and removing links between agents, we
introduce reference variables. Each instantiated reference variable represents a

7

link to an agent. This introduces another partitioning of the set of variables V
of a structure into two sets: the set of reference variables variables Vr and the
set of non-reference variables Vnr. A reference variable which is instantiated to
point to an agent A can be used to access the global variables of A. Note that a
reference variable can be a global or a local variable.

A straightforward choice for the type of reference variables would be any
S ∈ S. However, to allow for a greater flexibility we introduce and use the notion
of interface. The interface of an Agent A of structure S is defined to be the set
of global variables of S, S.Vg. The set of interfaces I is then I = {S.Vg|S ∈ S}.
The type of a reference variable can be any I ∈ I, possibly representing a link to
an agent with a compatible interface J . An agent with interface I1 is compatible
to a reference variable of type interface I2, if all variables available in I2 are
also present in I1, i.e., I2 ⊆ I1. These definitions enable interface specialization,
allowing a single reference variable to link to agents with compatible interfaces
but different behaviors.

Each agent A ∈ A is an instantiation of a certain structure S ∈ S, i.e., there
exists a function s : A → S mapping each agent to a structure. The structure of
each agent remains fixed throughout its entire lifespan. An agent is defined as :

Definition 3 (Agent). An agent A ∈ A of structure s(A) is a tuple (TM,V, I),
where TM is a set of top-level modes, V a set of variables, and I is a set of
possible initialization assignments to the variables of A.

The set of top-level modes is a copy of the set of top-level modes of the
structure of the agent. The set of variables is a copy of the set of variables of
the structure of the agent. The set V is extended with a special fixed variable
this, always referring to the agent itself. The use of this variable will become
apparent in the mode syntax presented below.

Modes. The high-level definition of the mode is identical to a Charon mode:

Definition 4 (Mode). A mode M is a tuple (E,X, V, SM,Cons, T), where E
is a set of entry control points, X is a set of exit control points, V is a set of
variables, SM is a set of submodes, Cons is a set of constraints, and T is a set
of transitions.

The entry and exit control points and the submodes are the same as in Charon
modes. A mode M is called atomic if M.SM = ∅ and composite otherwise.
The syntax of the sets of variables, constraints, and transitions is extended to
facilitate reconfiguration.

In R-Charon the configuration of the agents and the system can change as the
system evolves. Hence, the Charon concept of using fixed agent input and output
variables in the description of a mode is changed. Now modes can use the global
variables of all agents to which they have a reference. To prevent undesirable
behavior, all global variables of agents except for the (discrete) global reference
variables are defined to be single writer variables, i.e., read-only for the modes
in other agents. Allowing to write to global reference variables provides more
flexibility in modeling reconfiguration.

8

To use the global variables of referenced agents in a mode, some additional
syntax is introduced. Consider an agent A with the global variables A.Vg. Any
mode in an agent with a reference variable vr pointing to A, can use any global
variable v ∈ A.Vg of A by putting vr.v in its constraint or transition definitions.

The set of variables V of a mode is partitioned into subsets Va and Vd, the
sets of analog and discrete variables, respectively. In addition, V is partitioned
into subsets Vg and Vl of global and local variables, respectively. Let Vref ⊆ Vd

be the subset of V containing all reference variables of the mode. Define V+ to
be the set of the readable variables, i.e., the union of V and the sets of global
variables Vg of the interfaces of the reference variables in Vref . Moreover define
the set Vact to be the set of writable variables, i.e., the union of V and the
subsets of global reference variables of the interfaces of the reference variables
in Vref . The set of derivatives of the variables in V is denoted as d(V).

To enable creation and destruction of agents, the syntax of the action part
of the transitions is extended with two special operations: create and destroy.
The create operation has a three tuple argument of the form (vr, Init , S). With
vr a reference variable afterwards pointing to the new agent, Init ∈ QS.V an
initialization of the variables of the agent, and S the structure of the agent to
be created. Similar to assignments to reference variables, the interface of S is
required to be compatible to the interface type of vr. The destroy action has one
argument, a reference variable pointing to the agent that has to be destructed.
Note that self-destruction of an agent is possible using the this-variable.

As already formalized in the Charon semantics, T is a set of transitions of
the form (e, α, x), where e ∈ E ∪ SM.X and x ∈ X ∪ SM.E. The action α has
a guard γ attached to it, which in turn is a predicate over the set of valuations
of V+, QV+ . The action α is a sequence of assignments to the variables Vact or
create or destroy statements.

Each assignment is of the form x = g(x1, . . . , xn) with x ∈ Vact and x1, . . .,
xn ∈ V+. The function g might be any function on the given arguments, which
returns a value with the same type as x. Note that by the definition of Vact new
links to agents can be created either through assignments to reference variables
of the mode or through assignments to global reference variables of referenced
agents. A reference to an agent can be removed by assigning a special value ε to
the reference variable representing the link. Adding as well as removing a link
are demonstrated in the Controller mode of Figure 3.

As in Charon, the set of constraints consists of a set of invariants, a set of
algebraic constraints, and a set of differential constraints, which together define
the flow permitted in the mode. Similar to transition actions, the right-hand side
of constraints can include variables from the set of global variables of referenced
agents, V+.

4.3 Informal Semantics

The extensions to Charon consist of two parts. The first part consists of the ref-
erence variables and the use of global variables of referenced agents in the mode
constraints and transitions. This combination enables creation and destruction

9

of links. The second part consists of the creation and destruction of agents. The
semantics are defined on three levels: mode, agent, and system. An extensive
discussion on the informal semantics and the motivated choices made, can be
found in Section 4.4 of [18].

Upon agent creation, a new agent of the specified structure will be created
and initialized according to the given initialization assignment on the mode level.
The reference variable passed along as a parameter of the create command will
point to the newly created agent. On the system level, the newly created agent
will be added to the set of agents of the system.

Upon agent destruction, the agent referred to by the argument of the destroy
operation, is removed from the set of agents of the system. The passed reference
variable is set to ε. Upon deleting an agent, all reference variables in the system
referring to the deleted agent are set to ε.

4.4 Semantics

Mode Operational Semantics. The set of all variables of a mode M as well
as all variables of the submodes of M is defined recursively as M.V∗ = M.V ∪
M.SM.V∗. A subset of M.V∗ containing all reference variables of a mode M
and its submodes, is defined recursively as M.Vref ∗ = M.Vref ∪ M.SM.Vref ∗.
Assuming that q is the current valuation of the variables in V∗, the set V] is
defined as M.V] = M.V∗ ∪

⋃
v∈M.Vref∗

q(v).Vg. For every composite mode, the set

V] is extended with a local variable h which stores the currently active submode.
In case no submode is active, h is valued ε. The state of the mode consists
of a valuation of V], denoted by various forms of q. The configuration state is
captured by the valuation of the reference variables of the mode.

For any transition (e, α, x) ∈ M.T of a mode M, the action α is defined
as a relation between the states of the variables. As described in the syntax,
agents can be created or destroyed in α and as such also affect the system
level. Respecting the hierarchy, however, the mode semantics cannot capture
this directly. Therefore the relation defining the action is augmented with a list
of agents created and destroyed in the action. Such a list will be denoted by
various forms of L. The relation part of the action is a relation between QVact\Vl

and QVact
if e ∈ M.E and between QVact

and QVact
otherwise. All operations and

assignments in α are executed sequentially, atomically, and instantaneously. An
augmented pair ((q, q′), L) ∈ α if and only if:

– q satisfies the guard γ attached to α.
– Assuming that α contains k operations, there is a sequence of pairs of a state

and a list of created and destroyed agents (q1, L1), (q2, L2), . . . , (qk+1, Lk+1)
such that q1 = q, L1 = 〈 〉, and for every operation i, 1 ≤ i ≤ k:
• Unless specified otherwise, for every v ∈ V], qi+1(v) = qi(v).
• If operation i is a create operation (vr, Init , S), then Li+1 = Li a 〈Anew〉

with agent Anew = (S.TM,S.V, Init) of structure S. Moreover qi+1(vr) =
Anew and qi+1[Anew.V] = Init . Note that Anew is created instantly and
can be used in operations of the remainder of the transition.

10

• If operation i is a destroy operation with argument vd, then Li+1 =
Li a 〈qi(vd)〉. Moreover qi+1(vd) = ε and qi+1(v) = ε for every reference
variable v ∈ V] with qi(v) = qi(vd).

• If operation i is neither a create nor a destroy operation, then Li+1 = Li

and qi+1 is the result of the assignment operation performed in qi.
– q′ = qk+1 and L = Lk+1.

The relations which capture the discrete steps of a mode M (RD, Re for
e ∈ M.E, and Rx, for x ∈ M.X) are constructed from one or more transitions. As
in Charon, the relations are constructed by sequentially aggregating the actions
of the transitions, including the added lists of created and destroyed agents.

An atomic mode has a single internal step, which is the idling step. It is
enabled if and only if the invariant of the mode is satisfied. Obviously, no agents
are created or destroyed. So, for each state q such that I(q), ((q, q), 〈 〉) ∈ RD.
Further an atomic mode can be entered and exited at any time. Since it does not
have any entry or exit transitions, neither the state is changed nor agents are
created or destroyed. That is, for all q, ((q, q), 〈 〉) ∈ Rde and ((q, q), 〈 〉) ∈ Rdx.

For a composite mode M , the entry relations Re and the exit relations Rx

are constructed from the actions of entry, respectively exit transitions of the
submodes of M. For each entry transition (e, α, e′), it holds that ((q, q′), L) ∈
Re if for some q′′, ((q, q′′), L′′) ∈ α, e′ is an entry point of a submode M ′,
(q′′, q′, L′) ∈ M ′.Re′ and L = L′′ a L′. For the default entry point, ((q, q), 〈 〉) ∈
Rde whenever q(h) 6= ε, which means that the execution of M has been previously
interrupted by a group transition. None of the group transitions added in Charon
contains a create or destroy operation and hence the create and destroy list
is empty. When q(h) = ε, a non-deterministic initialization occurs and thus
((q, q′), L) ∈ Rde whenever ((q, q′), L) ∈ Re for some non-default entry point e.
Similarly, for each exit transition (x′, α, x) of a composite mode, ((q, q′), L) ∈ Rx

if for some q′′, ((q, q′′), L′′) ∈ M ′.Rx′ , ((q′′, q′), L′) ∈ α and L = L′′ a L′. Also,
M can be interrupted by a group transition at any moment during its execution
and thus always has to be ready to exit through the default exit. Therefore, for
every q such that q(h) 6= ε, ((q, q), 〈 〉) ∈ Rdx.

Internal steps of a composite mode M are either internal steps of M changing
the currently active submode or internal steps of the currently active submode of
M . If a transition of the mode is involved in the step, then the source submode of
the transition should be the active submode and allow an exit step that matches
the transition, and also the target submode of the transition should allow a
matching entry step. Similar to entry and exit steps, the create and destroy
lists are constructed straightforwardly from the create and destroy lists of the
transitions within the step. Consequently, ((q, q′), L) ∈ RD if there exists a state
q0 such that q0[V] = q[V] and

– For an active submode N ∈ M.SM , it holds that ((q0[N.V]], q′[N.V]]), L) ∈
N.RD and q0[V]\N.V]] = q′[V]\N.V]], or

– The following four conditions hold:
• There exists an exit point x of the active submode N such that for some

q1 and L1, ((q0[N.V]], q1[N.V]]), L1) ∈ N.Rx.

11

• There exists an entry point e of a submode N ′ such that for some q2 and
L2, ((q2[N ′.V∗], q′[N ′.V∗]), L2) ∈ N ′.Re.

• There exists a transition (x, α, e) ∈ M.T such that for some L3,
((q1, q2), L3) ∈ α.

• L = (L1 a L3) a L2.

Similar to the Charon mode semantics, the continuous steps are captured by
the relation RC . The relation RC ⊆ QV+ ×FV+ gives for every state q of M , the
set of flows from q. RC is obtained from the constraints of a mode and relation
N.RC of its active sub-mode. Given a state Q of a mode M , (q, f) ∈ RC if and
only if the following three conditions hold:

– The flow f is permitted by M , i.e., f satisfies all constraints in M.Cons.
– (q[N.V]], f [N.V]]) ∈ N.RC .
– For each variable x, q(x) = f(0)(x) unless M has an algebraic constraint

Ax.

To be able to define the semantics for a mode, all reference variables used in
a mode must be initialized, i.e., be unequal to ε, at all times at which the mode
is active. A reference variable is used if it either appears in a destroy operation
or a global variable of the referenced agent appears in the constraints or transi-
tions. Consequently, every mode should have an invariant for each used reference
variable, which states that the reference variable is unequal to ε. Figure 5 shows
an example of a mode M1 with one reference variable ref1 complying to this
requirement.

M2

M1

inv{ ref1 <> }

M1.1 M1.2
… ref1.var1 ...

ref1 <>

Fig. 5. Example of an additionally required invariant for a used reference variable

Definition 5 (Mode Operational semantics). The operational semantics of
the mode M , OS(M) is defined to be a six tuple consisting of its control points,
its variables and the discrete and continuous relations: OS(M) = (M.E ∪M.X,
M.V], M.RC , M.RD, {M.Re|e ∈ M.E}, {M.Rx|x ∈ M.X}).

Agent Operational Semantics. Assume that q is the current valuation of the
variables in V . Denote the set of all variables as well as all global variables of
referenced agents as V], formally V] = V

⋃
v∈Vr

q(v).Vg. The state of the agent

consists of a valuation of V], denoted by various forms of q.
To improve the clarity of the semantics of the system level, we lift the discrete

and continuous step relations defined in the mode semantics to the level of

12

the agent semantics. The discrete and continuous relations RAinit, RAD, and
RAC are constructed from the relations Rinit, RD, and RC respectively of the
top-level modes of the agent3. For o ∈ {init, D}, ((q1, q2), L) ∈ RAo if and
only if there is an M ∈ TM such that ((q1[M.V]], q2[M.V]]), L) ∈ M.Ro. For
the continuous steps, (q1, f) ∈ RAC if and if only for every mode M ∈ TM ,
(q1[M.V], f [M.V]) ∈ M.RC .

Definition 6 (Agent Operational semantics). The operational semantics
of the agent A, OS(A) is defined to be a five tuple consisting of the control
points of its top-level modes, its variables, the continuous step relation, and the
discrete step relations: OS(A) = (A.TM.E ∪A.TM.X, A.V], A.RAC , A.RAD,
A.RAinit)

System Operational Semantics. The state of a system consists of a two tuple
(q,A). The first element of this tuple is a valuation of all variables of all agents
in A. The set of variables of V] of the system is defined as V] = A.V . The second
element of the tuple is the set of all agents that currently exist in the system.

Definition 7 (System operational semantics). The operational semantics
of a system Sys, SO(Sys) consist of the set of structures and the set of agents
of the system: SO(Sys) = (S,A).

The operational semantics define a transition system RS over the states of
the system Sys. A transition of the system RS representing a continuous step is

denoted by (q1,A)
(f,t)→ (q2,A) if for all A ∈ A, (q1[A.V], f [A.V]) ∈ A.RAC with

f defined on the interval [0, t] and f(t) = q2. Agents created and destroyed in
a discrete step will be added, respectively deleted from the system subsequent
to the discrete step. Each destroyed agent will be deleted from the system in
a system update delete step. Each created agent will be added in a system
update add step which is immediately followed by the discrete initialization steps
of the top-level modes of the created agent. System update steps and discrete
initialization steps of agents created or destroyed during a discrete initialization
step are handled in a depth-first approach. A discrete step and its aftermath
are thus best described recursively. For this purpose we introduce the recursive
function Γ with as arguments a state (q,A) and a list L of created and destroyed
agents. The function Γ ((q,A), L) returns all possible parts of the transition
system dealing with recursively adding and initializing the agents created and
deleting the agents destroyed during the discrete step.

Assuming the function Γ , a transition of the system representing a discrete
step and its aftermath is denoted by (q1,A) o→ Γ ((q2,A), L) if there is an A ∈ A
such that ((q1[A.V], q2[A.V]), L) ∈ A.RAo for o ∈ {init, D}. In a discrete step
only one top-level mode of one agent takes a discrete step.

Both the system update add and delete step only occur in the parts of the
transition system defined by Γ and are defined in the context of Γ . The function
3 A Charon top-level mode only has a single entry point init and no exit points.

13

Γ is defined based on the pattern of the list of created and destroyed agents
argument. In case the list is empty, no agents have been created or destroyed
during the discrete step: Γ ((q,A)), 〈 〉) = (q,A). In case the first element of
the list is a destroyed agent Ad, first a system update delete step is taken:
Γ ((q1,A)), 〈Ad〉 a L) = (q1,A) ud→ Γ ((q2,A\{Ad}), L) if
– q2[V]\A.Vr] = q1[V]\A.Vr].
– For all v ∈ A.Vr, if q1(v) = Ad then q2(v) = ε otherwise q2(v) = q1(v). That

is, all references to the destroyed agent are removed.

In case the first element of the list is a created agent Ac:

Γ ((q,A), 〈Ac〉 a L) = (q,A) ua→ (q0,A0)
init→

Γ ((q1,A1), L1)
init→ . . .

init→ Γ ((qk−1,Ak−1), Lk−1)
init→ Γ ((qk,Ak), Lk a L)

if
– Agent Ac has k top-level modes, i.e., |Ac.TM | = k.
– q0[A.c\(Ac.Vr∩Ac.Vg)] ∈ Ac.I[A.c\(Ac.Vr∩Ac.Vg)]. Note that the valuation

of global reference variables of Ac already might have been changed by the
remainder of the discrete step in which the agent has been created.

– The created agent is added to the set of agents in the system update step,
i.e., A0 = A1 = A ∪ {Ac}.

– There is an M ∈ Ac.TM such that ((q0[Ac.V], q1[Ac.V]), L1) ∈ M.Rinit.
That is, the first discrete step initializes one of the top-level modes of the
added agent.

– For every 2 ≤ i ≤ k:
• Denote the last state of the transition system part defined by

Γ ((qi,Ai), Li) as (q′i,A′
i).

• There is an M ′ ∈ Ac.TM\M such that ((q′i−1, qi), Li) ∈ M ′.Rinit. That
is, the remaining top-level modes of the added agent are initialized.

• Ai = A′
i−1.

An execution of a system Sys = (S,A) is a path through the transition graph
of RS and starts with:

(q0,A0)
init→ Γ ((q1,A1), L1)

init→ Γ ((q2,A2), L2)
init→ . . .

init→ Γ ((qk,Ak), Lk)

such that if we define (q′i,A′
i) to denote the last state of a transition system part

defined by Γ ((qi,Ai), Li):
– A0 = A and for all A ∈ A it holds that q0[A] ∈ A.I.
– The number k equals the total number of top-level modes initially in the

system, i.e., k =
∑

A∈A
|A.TM |.

– Each of the k top-level modes initially in the system takes one of the k
explicitly described discrete initialization steps.

– For any i, 2 ≤ i ≤ k it holds that qi = q′i−1 and Ai = A′
i−1.

From that point on the execution continues as follows:
(f1,t1)→ (qk+1,Ak+1)

o→ Γ ((qk+2,Ak+2), Lk+2)
f2,t2→ . . .

such that for any i > 0, i odd, it holds that Ak+i = A′
k+i−1.

14

5 Example Revisited

We discuss a part of a trace of the air-traffic control example system of Section 3:

. . . (q0,A) D→ (q1,A) ua→ (q1,A′) init→ (q2,A′)
(f1,0)→ (q2,A′) D→

(q3,A′)
(f2,t2)→ (q4,A′) D→ (q5,A′) ud→ (q6,A)

(f3,0)→ (q6,A) D→ (q7,A)
(f3,0)→ . . .

We consider the system at a stage with three agents: a ground control agent, a
center agent, and an airplane agent, i.e., A = {gc, ctr, a}. Assuming the airplane
is approaching the no-fly zone, a discrete step in the gc agent occurs. In this
step, gc creates a new controller c to guide a which results in a system update
add step and A′ = {gc, ctr, a, c}. Note that the valuation q1 does not change in
this step. As described in the semantics, the add step is followed by the discrete
initialization step of c. In this initialization step a link from a to c is created, i.e.,
q2(a.con) = c. The continuous step with flow f1 has a duration of 0 because the
invariant of the Free flight mode of a evaluates to false now. The next discrete
step is then a mode switch in a to the Ground control guided mode. After some
time t2 the airplane has been navigated successfully around the no-fly zone and
the controller c destroys itself in a discrete step. This leads to the system update
delete step in which the link from a to c is removed (q6(a.con) = ε) and c
is removed from the system. Because the invariant in the active mode of a has
become false again, the next continuous step has a duration of 0. In the following
discrete step, a is forced back into the Free flight mode.

6 Conclusion and Future Work

We have presented an extension for reconfigurability to Charon, the hierarchi-
cal modular language for hybrid systems. The presented extension is a semi-
conservative extension of Charon. i.e., an embedding of a Charon model to an
R-Charon model exists [18]. The language extension is designed to support phys-
ical as well as communication-wise reconfiguration as encountered in large-scale
transportation systems and in modular reconfigurable robots. Applicability of
the reconfiguration notion inspired by SHIFT has already been shown [19].

The compositionality results of R-Charon modes can be taken over and ex-
tended straightforwardly from the mode compositionality results in [3]. A logical
next step is to come up with a sound notion of agent compositionality and to
prove that it holds for R-Charon agents. Other relevant work includes extending
the Charon toolkit to support the presented reconfiguration concept, applying
R-Charon to real modular robot models and use the models for analysis, explor-
ing explicit agent hierarchy and reconfiguration between sub-agents within an
agent, and adding a location model as a first class language element.

15

References

1. Fromherz, M.P.J., Crawford, L.S., Hindi, H.A.: Coordinated control for highly re-
configurable systems. In: HSCC ’05: Proceedings of the 8th International Workshop
on Hybrid Systems. Volume 3414 of LNCS. Springer-Verlag (2005) 1 – 24

2. Alur, R., Grosu, R., Hur, Y., Kumar, V., Lee, I.: Modular specification of hybrid
systems in Charon. In: HSCC ’00: Proceedings of the 3rd International Workshop
on Hybrid Systems. Volume 1790 of LNCS. (2000) 6 – 19

3. Alur, R., Grosu, R., Lee, I., Sokolsky, O.: Compositional modeling and refinement
for hierarchical hybrid systems. Journal of Logic and Algebraic Programming (To
appear)

4. Cuijpers, P.J.L., Reniers, M.A.: Hybrid process algebra. Journal of Logic and
Algebraic Programming 62(2) (2005) 191 – 245

5. Lynch, N.A., Segala, R., Vaandrager, F.W.: Hybrid I/O automata. Information
and Computation 185(1) (2003) 105 – 157

6. Rounds, W.C., Song, H.: The φ-calculus: A language for distributed control of
reconfigurable embedded systems. In: HSCC ’03: Proceedings of the 6th Interna-
tional Workshop on Hybrid Systems. Volume 2623 of LNCS. (2003) 435 – 449

7. Varaiya, P.: Smart cars on smart roads: problems of control. IEEE Transactions
on Automatic Control 38(2) (1993) 195 – 207

8. Zelinski, S., Koo, T.J., Sastry, S.: Hybrid system design for formations of au-
tonomous vehicles. In: 42nd IEEE Conference on Decision and Control. Volume 1.
(2003) 1 – 6

9. Perry, T.S.: In search of the future of air traffic control. IEEE Spectrum 34(8)
(1997) 18 – 35

10. Bishop, J., Burden, S., Klavins, E., Kreisberg, R., Malone, W., Napp, N., Nguyen,
T.: Self-organizing programmable parts. In: International Conference on Intelligent
Robots and Systems. (2005)

11. Yim, M., Zhang, Z., Duff, D.: Modular robots. IEEE Spectrum 39(2) (2002) 30 –
34

12. Østergaard, E.H.: Distributed Control of the ATRON Self-Reconfigurable Robot.
PhD thesis, Maersk McKinney Moller Institute for Production Technology, Uni-
versity of Southern Denmark (2004)

13. Deshpande, A., Göllü, A., Semenzato, L.: The SHIFT programming language and
run-time system for dynamic networks of hybrid systems. IEEE Transactions on
Automatic Control 43(4) (1998) 584 – 587

14. Milner, R.: Communicating and Mobile Systems: the π-calculus. Cambridge Uni-
versity Press (1999)

15. Aldini, A., Bernardo, M.: On the usability of process algebra: An architectural
view. Theoretical Computer Science 335(2-3) (2005) 281 – 329

16. Attie, P.C., Lynch, N.A.: Dynamic input/output automata: a formal model for dy-
namic systems. In: CONCUR 2001: 12th International Conference on Concurrency
Theory, Aaalborg, Denmark. (2001)

17. Teich, J., Koster, M.: (Self-)reconfigurable finite state machines: Theory and im-
plementation. In: Proceedings of the conference on Design, automation and test
in Europe. (2002) 559 – 568

18. Kratz, F.: A modeling language for reconfigurable distributed hybrid systems.
Master’s thesis, Technische Universiteit Eindhoven (2005)

19. Antoniotti, M., Göllü, A.: SHIFT and SmartAHS: A language for hybrid systems
engineering, modeling, and simulation. In: Proceedings of the USENIX Conference
of Domain Specific Languages. (1997)

	University of Pennsylvania
	ScholarlyCommons
	3-29-2006

	R-Charon, a Modeling Language for Reconfigurable Hybrid Systems
	Fabian Kratz
	Oleg Sokolsky
	George Pappas
	Insup Lee
	R-Charon, a Modeling Language for Reconfigurable Hybrid Systems
	Abstract
	Comments

